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ABSTRACT

The experimental work described in this thesis is aimed primarily

towards elucidation of the speciation of zinc-cyanide systems at elevated pH. In this

study the formation and stability of H+-eN-, binary Zn2+-eN- and ternary

Zn2+-CN--QH- complexes were studied by glass electrode potentiometry in aqueous

solutions at 25.0°0 and in a medium of ionic strength of 0.1 mol dm-3. The solution

pH was varied to cover the range 4 to 11. The study was undertaken with a view to

establishing whether and under what conditions soluble binary zinc-cyanide

complexes and ternary zinc-cyanide-hydroxide complexes form, and to determine

formation constants for any such species that are found. This information would be

useful in defining more precisely the speciation of soluti9ns containing zinc and

cyanide ions at elevated pH values.

A titration method was used, in which hydrogen ion concentration was

monitored by means of a glass indicating electrode. The cell was calibrated to allow

measurements of hydrogen ion concentration rather than hydrogen ion activi ty.

Owing to precipitation difficulties, the reagents were used at sub-millimolar

concentration levels. The potentiometric data was interpreted with the aid of

various formation function plots together with the use of various computer

programs, such as HALTAFALL and ESTA.

The results show that the ternary complex Zn(ON)3(OH)2- is formed in

significant amounts in solutions of pH > 8.5. Some evidence was also obtained for

the existence of the five coordinated species Zn(CN)3(OH)~- and Zn(CN)~- in these

solutions, but existence of the latter two species cannot yet be regarded as firmly

established. No polynuclear complexes were detected at the sub-millimolar

concentrations used. Formation constants are reported for H+-eN- and both binary

Zn2+-eN- and ternary Zn2+-eN--QH- species.
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gLOSSARY OF SYMBOLS AND ABBREVIATIONS

ZDJr total (analytical) concentration of zinc (complexed and uncomplexed)

in solution.

ON
T

total (analytical) concentration of cyanide (complexed and un­

complexed) in solution.

HT total (analytical) concentration of hydrogen IOns (complexed and

uncomplexed) in solution.

MT total (analytical) concentration of metal Ion M (complexed and

uncomplexed) in solution.

LT total (analytical) concentration of ligand L (complexed and

uncomplexed) in solution.

E~~II a calibration constant (independent of [H+]) appearing in a modified

Nernst type equation Ecell = Eg~11 +Ej +k log[H+] used for relating

measured cell EMF to hydrogen ion concentration.

Ej swn of liquid junction potentials generated across the liquid junctions

present in the cell.

k a calibration constant termed the "electrode calibration slope", which

has 8. value close to (but not necessarily identical to) the Nernstian

value 2.3026 RTIF.

[Xl represents the concentration (in mol dm-3) of any species X in solution

in free (Wlcomplexed/non-coordinated) form.

E~ell E~ell =E~~II + Ej (see above).

Ppqr represents the cumulative formation constant for formation of the

species Znp CNq Hl'(2p+r-q)+ and is defined as [Znp CNq Hr]/

[Zn]p(CN]q[H]r (charges omitted). Negative values for r represent

hydroxide ions rather than hydrogen ions.
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-ZH represents the hydrogen formation function, defined as

(HT-[H] + [OHD/LT,
-ZM represents the metal formation function, defined as

1\
(LT - A ~ POlr[H]r)/MT,

r-l

A represents the "apparent" free ligand concentration, defined as
It

(HT - [H] +[OH])/~~~lT[H]r,

*Q represents the "deprotonation function", defined as (HT - HT)/MT,

*HT represents a fictitious total hydrogen ion concentration in the system at

the observed pH calculated from a hydrogen mass-balance equation

ignoring all metal complex formation, i,e,

* ~ *
HT =[H] - [OH] +~~1ot1"[L] [H]r,

*[L] represents a fictitious concentration of free (uncoffiplexed) ligand,

calculated at the observed pH from a ligand mass-balance equation

ignoring all metal complex formation, i.e.
* 1\

[L] =LT/(l +~~lr[H]r),

p[H] defined as -loglO[H+].

pA defined as -loglOA,
-*Zn represents a hydrogen formation function for the ligand-hydrogen

subsystem in a ligand-hydrogen-metal ion containing system, defined
*88 (HT - [H] +[OHD/LT,

OBJE an objective function used ill the computer program ESTA for

optimising values of formation constants from potentiometric cell EMF

data, Can be regarded as a measure of "goodness of fit".



CHAPTER ONE

INTRODUCTION

For over a century, cyanide h~ been used in the recovery of precious

metals, such as gold and silver from ores (1-3).

Zinc, has been almost universally used as a reductant for precious metals

dissolved in cyanide solutions, although for specific re~ons aluminium has been used

(1-3).

The process by which metallic gold is pre~ipitated by zmc from

aurocyanide solutions has been termed "zinc cementation".

Despite the age of the zinc cementation process, it is only recently that

fundamental studies have been carried out to determine the details of the

mechanisms of the reactions involved in the cementation of gold onto zinc In

aurocyanide solutions (1,4).

In a recent paper, R.L. Paul (4) describes the unit operations involved in

the recovery of gold from an ore. The flow sheet for a "conventional" gold recovery

plant consists of crushing and milling of the ore, followed by cyanidation, filtration,

and recovery of gold by cementation onto zinc dust. In some plants, gravity

separation is used to recover larger particles of gold liberated by milling before the

pulp is cyanided. A schematic flow sheet for the recovery of gold is shown in Figure

1.1.

In recent times many gold producers have introduced additional

processing steps or replaced existing unit operations by newly developed teclmiques,

in order to reduce operating costs while increasing overall recovery of gold (4).

Flotation is commonly used in the recovery of the pyritic (FeS2) content of an ore.

Microscopic particles of gold occluded within the pyrite can be liberated by roasting

of the pyrite to hematite (Fe20a). The carbon-in-pulp (CIP) process, which uses
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A schematic flow sheet for the r~covery of gold from some

pyritic feed material. (Taken from reference 4).

activated charcoal, permits the recovery of dissolved gold from the leached pulp

without the need for filtration (2,4,5). The CIP process has had a major impact on

the processing of pulps, such as calcines and slimes from the treatment of dump

material, which are not easily filtered (4). Figure 1.1 shows schematically, how some

of the recent developments fit into the flow sheet for the extraction of gold from

some pyritic feed material.

R.L. Paul (4), concludes that the recovery of gold from an ore IS

predominantly an electrochemical process. The cyanidation, cementation and

electrowinning unit operations have a very clear electrochemical basis, as do

flotation and CIP unit operations.

The overall stoichiometry of the zinc cementation process is as follows

(1,4):

, _ 2-
Zn +2Au(CN)2 ~ Zn(CN)4 +2Au (1.1)

Since the introduction of the use of zinc for the recovery of gold from

cyanide solutions in 1890, various improvements, such aB the use of zinc dust instead
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of zinc shavings, the addition of lead nitrate, the de-aeration of the pregnant

solutions have resulted in precipitation recoveries of more than 99 percent (1). The

efficiency of the zinc cementation process is generally very high, barren solutions

with a gold content lower than 0.01 mg.tt usually being obtained (4), but

occasionally problelD8 are experienced in reduction plants in the gold industry

(1,2,4,5).

The electrochemical study by Nicol et al. (1) of the kinetics and

mechanism of the cementa.tion of gold by metallic zinc in cyanide-containing

aqueous solutions has shown that the rate of anodic dissolution of zinc increases

markedly with cyanide concentration a.t constant pH, and al80 with pH value a.t

constant total (analytical) cyanide concentration. It was ~uggested that hydroxyl

ions, through formation of soluble binary zinc-hydroxy complexes of the type
2-

Zn(OH). or ternary zinc-hydroxyl-cyanide complexes participate in the rate

determining 8tep of the dissolution reaction.

A survey of the literature shows that the zinc-<:yanide system has been

studied quite extensively since 1903, with a view to determining the species present

in solution, a.nd 8880ciated formation consta.nt8.

Previous publications (6-23) dealing with this activity are listed in
Table 1.1.

Inspection of Table 1.1 indicates that:

(i) uncertainty exists concerning the species thought to be present in

solution, particularly with regard to the species Zn(CN)+,
3- 4-

Zn(CN)~ and Zn(CN)6 . There have been no reports of ternary

Zn-CN-oHspecies or polynuclear complexes, and

(ii) the values of formation constants quoted for the various species

vary over a range of 1 to 2 log Unit8, Le. by more than would be

expected even when account is taken of the effect of ionic strength

on the formation cOll8tants concerned.



I\BLE 1.1 Results of previous studies of formation of complexes of Zn(II) with the cyanide ion in aqueous solution

l.te Temp. Ionic Logarithm to base 10 of the cumulative formation

1°C Strength constant, log {3 (unless otherwise indicated) Method Used References
udy Imol dm-3

Zn(CNh Zn(CN)3
2- 3- 4-

ZnCN+ Zn(CN)4 Zn( CN) 5 Zn(CN)6

)3 21 variable 16.9 Zn metal electrode Euler( 6)

)4 18 variable 17.52 evidence Zn metal electrode Kunschert ( 7)

29 room variable 16.0 20.17 evidence Polarography Pines ( 8)

temp.
J1 18 variable 20.25 or 17.3 Zn metal electrode Masaki (9)

J2 12.5 variable 18.5-+20 Zn amalgam electrode Britton and Dodd ( 10)

>0 12.5 variable 19 Re-interpretation Bjerrum ( lU

>0 12.5 variable evidence evidence evidence Polarography ~s terud and Prytz ( 12)

>1 18 variable 12.60(?) Zn metal electrode Stabrovskii ( 13)

>3 25 Corr.-+O 16.76 Zn amalgam electrode Suzuki ( 14)

)8 32 Sat. Na 2S0 4 evidence Freezing point Kordes and Langenhoff( 15)

)9 25 Corr.-IO 16.72 Zn amalgam electrode Blackie and Gold ( 16)

i1 25 variable evidence Infrared spectra Penneman and Jones( 17)

II 25 dil. log K 4 = 5 pH Method P enneman and J ones ( 17)

K 2Zn(CN)4
(?)

Izatt et al. ( 18)15 25 Corr .-10 no evidence 11.07 16.05 19.62 . Glass electrode and

,9
polarography

Martin and Blanc( 19)25 0.1 no evidence 10.64 15.74 19.98 Glass electrode
'1 40 Corr.-IO 10.70 15.20 18.30 Glass electrode Izatt et al. ( 20)

'1 25 3 5.3 11.0 16.7 21.6 Glass electrode and Persson ( 2U

zinc amalgam
Ashurst et al. ( 22)1 25 variable no no Spectrophotometry

high cones. evidence evidence
2 25 0.5 4.94 9.7 14.7 18.44 Zn amalgam electrode Collier et al. ( 23)
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Kunschert (7) and Ferrel et al. (24) report that both zinc and zinc

amalgam electrodes are attacked by aqueous cyanide solutions and thus, aB pointed

out by Izatt et al. (18) results obtained using these electrodes should be considered

questiona.ble. Persson (21), found that the dissolution of zinc from zinc amalgam

electrodes increased rapidly with cyanide concentration, however he showed that a

zinc amalgam electrode can be used provided that oxygen is carefully excluded from

the solutions and the cyanide concentration kept low.

Izatt et al. (18), using the potentiometric titration method with a glass

membrane indicating electrode to measure the pH of the zinc-cyanide system, found

no evidence for the existence of the Zn(CN)+ complex. They used polarography to

support their potentiometric fmdings. The values of I' the analytical (total)

concentration of zinc (Zrur) and cyanide (eNT) in solution at the begirming of each

potentiometric titration, carried out by Izatt et al. (18), as well as the ligand: metal

ratios (CNT/Znrr) and the pH ranges covered are given in Table 1.2.

Persson (21), studied the zinc-cyanide system at an ionic strength of 3.0

mol dIn-3. He used the potentiometric titration method with a glass membrane

indicating electrode to record the cell EMF. The values of the analytical

concentrations of zinc (ZnT) and cyanide (eNT) in solution at the beginning of each

potentiometric titration, carried out by Persson (21), as well as the ligand: metal

ratios (CNT/Znrr) and the pH ranges covered are given in Table 1.2. Persson found

tha.t the Zn(ON)+ complex only exists in a. very narrow ra.nge, and claimed that Izatt

et al. did not detect the existence of the complex, because they worked outside this

range. The experimental conditions used by Izatt et al. (18) and Persson (21) are

compared in Table 1.2

There has been some a.pparent disagreement in the literature over the

question of whether or not complexes of the form Zn(eN)~ 2-n) + with n>4 exist in

solutions containing sufficiently high concentrations of the cyanide ion. Both Pines
3-

(8) and ~terud and Prytz (12) deduced the presence of the species Zn(CN)s and
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TABLE 1.2 Initial values of Znrr and ONT• toe ligand: metal ratios, aB well as

the pH ranges covered in the potentiometric titratioIl8 considered in

the studies by Izatt et al. (18) and Persson (21).

rritration

OCzatt et al.

1 8.496 x 10-4 6.741 x 10-3 7.93 10.310 -t 5.277

2 8.492 x 10-4 6.777 X 10-3 7.98 10.322 ... 5.299

3 8.492 x 10-4 6.777 x 10-3 7.98 10.284 ... 5.316

4 4.244 x 10-~ 3.367 x 10-3 7.93 10.185 ... 5.509

5 4.242 x 10-4 3.850 x 10-3 9.08 10.142 ... 5.277

Persson

1 3.00 x 10~ 1.530 x 10-3 5.10 8.52 ... 6.78
2 5.00 x 10-4 3.066 x 10-3 6.13 8.48 ... 6.64

3 3.04 x 10-4 1.238 x 10-3 4.07 8.29 ... 6.74
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Zn(CN)t from polarographic evidence. The latter authors worked with total zinc

concentrations in the range 10-4 to 10-3 mol dm-3 and cyanide concentrations from

zero up to about 0.6 mol dm-a. They reported four distinct polarographic waves,

denoted W W W and W in their publication, for species other than the zinc
co' Ct' C2 Cs

aquo ion. The wave W
C1

was found at a CNT:ZnT ratio of 4:1 upwards, through 24:1

i.e. [CN-lrree =0.02 mol dm-3, but had disappeared by CNT:Znrr =120:1, i.e.
1)-

[CN-]fr =0.12 mol dm-s. This wave was assigned to Zn(CN)4 . The wave W ,ee C2
3- .

assigned to Zn(CN)s I was found to appear at CNT:Znn, =8:1, l.e. [CN-]f =0.004
1 ree

mol dm-s. It was still present at CNT:Znrr =120: 1, i.e. [ON-]free = 0.12 mol dIn-s,

but had disappeared by [ON-lfr =0.6 mol elm-3. The~ wave W ,assigned toee ca
4-

Zn(ON)6 , was distinct at [ON-lrree =0.12 mol dIn-3, but had also disappeared at

[CN-]f = 0.6 mol dm-s. An interesting and unexplained fea.ture of theree
3­

polarographic results was that the waves assigned to Zn(ON) 5 and

Zn(CN)~-apparently both disappeared when the cyanide concentration was raised

from about 0.12 mol elm-3 to about 0.6 mol dm-3.

Of particular interest in this connection is the elegant infrared study of

this system by Ashurst, FinkeIstein and GooId (22) in 1971. In keeping with the

requirements of the infrared technique, they worked with zinc concentrations of the

order of 0.25 mol dm-a and total cyanide concentrations of 1.7 to 2.5 mol dm-3.

Measurements of the absorbance of free (uncoordinated) cyanide ions were consistent

with CN:Zn binding in the ratio 4:1 and not 5:1 or 6:1. It should be noted that, in

these measurements, the free cyanide concentrations in the two solutions studied

were, respectively, 0.56 and 1.50 mol dm-a.

The results of Ashurst et al. do not appear to necessarily conflict with
3­

those of cPsterud and Prytz when the absence of polarogra.phic waves for Zn(eN)5
4-

and Zn(CN)e at comparable free cyanide concentrations is considered. The metal

ion concentrations were also very different in the two studies, which presents the

possibility of polynuclearity at higher concentrations.
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Izatt et al. (18) did not take into consideration the possible existence of

ternary Zn~N-oB complexes in the manipulation of their potentiometric data,

despite the fact that they reached moderately high pH values (see Table 1.2).

Nevertheless, the speciation of zinc in zinc-cyanide solutions, particularly

at high cyanide concentrations (above about 0.01 moL elm-3), cannot be regarded as

well understood. Since increasing cyanide concentrations also implies an increase in

solution pH, the possibility exists that at least some of these anomalies may be

explicable in terms of the formation of ternary Zn-eN-Qa complexes in solution at

high pH.

This study was directed primarily towards elucid~tion of the speciation of

zinc-cyanide systems at moderately high pH values. This report describes a

potentiometric study of the H~N and the Zn-CN-QH systems, undertaken with a
view to establishing whether and under what conditions soluble binary zinc-cyanide

2-
complexes of the type Zn(eN)4 and ternary zinc-cyanide-hydroxyl complexes form,

and to determine formation constants for any such species that are fOWld. This

information would be useful in defining more precisely the speciation of solutions

containing zinc and cyanide ions at high pH values.

This potentiometric study was carried out at an ionic strength of

0.10 mol dm-3 and a temperature of 25.00C, because the gold cementation process

occurs at roughly these condition8.

The study was carried out in two stages. The first stage involved the

potentiometric determination of the formation constant for HCN, under the

experimental conditions of this study. Table 1.3 shows values for the forma.tion

constant of HCN from previous studies (21,25-30). As no HCN formation constant

value was available at an ionic strength of 0.1 mol dm-sand a temperature of 25°0,
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an estimated value of 9.01 was obtained using equation (1.2).

o
in!IT!Jl =_~H (1 _ 1 )

K(T2J T Tt T2

~ ~Ho 1 1
in K(25) =in K (20) -T (29B-~)

using ~H = -10.43 KcaJ. mott at 25°0 (31),

and log K (20) = 9.14, at an ionic strength of

0.1 mol dm-3 (26,29)

log K (25) = 9.01

(1.2)

(1.3)

The second stage involved ,the study of the zinc-cyanide system at

moderately high pH values.

There are a large number of references (32 - 36), which deal with the

study of chemical equilibria and the determination of stability constants.

In the study of ionic equilibria various types of complexes can be formed and various

quantities are used to describe and discuss complex equilibria. The various types of

complexes and quantities will be described below, prior to discussing the various

methods available for the determination of stability constants.

In this study the symbol !3pqr represents the cumulative formation
constant of the species MpLqH r , where M, L and H represented the metal ion, ligand

and hydrogen ions respectively. p and q are non-negative integers. r is an integer

which when positive indicates hydrogen ions and when negative indicates hydroxide

ions. The use and meanings of these symbols 'are elaborated on in the following

pages.



TABLE 1.3 Results of previous studies of the formation of HCN in aqueous solutions

ate of Temperature Ionic Strength Logari t hm to base lOaf Method used Reference

Study 1°C Imol dm-3 formation constant, log (3

1932 18 Variable 9.32 Glass electrode Britton et al. ( 25)

1957 20 0.1 (NaN0 3) 9.14 ± 0.01 Glass electrode Anderegg( 26)

1959 25 Corr. -+ 0 9.216 Spectrophotometric Ang( 27)

1962 10 Corf. -+ 0 9.63 ± 0.01 Glass electrode Izatt et al. ( 28)

15 Corf. -+ 0 9.49 ± 0.01

20 Corf. -+ 0 9.36 ± 0.01

25 Corf. -+ 0 9.21 ± 0.01

30 Corr. -+ 0 9.11 ± 0.01

35 Corr. -+ 0 8.99 ± 0.01

40 Corr. -+ 0 8.88 ± 0.02

45 Corr. -+ 0 8.78 ± 0.02

1965 20 0.1 (KN0 3) 9.14 Schwarzenbach et al. ( 29)

1966 20 Corr. -+ 0 9.36 ± 0.01 Glass electrode Boughton et al. ( 30)

26 Corf. -+ 0 9.19 ± 0.02

33 Corr. -+ 0 9.05 ± 0.03

1971 25 3.0 (NaCeO 4) 9.484 ± 0.01 Glass electrode Persson ( 2 t)

~
~
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Various types of complex species are known. The simplest systems of

complexes are the mononuclear complexes, in which only one series of complexes is

formed. These can include I

2+
(i) oligomers, Mp, which form by self association, such as Hg2 ,

(ii) a.cids, Hl'Lq, in solutions which contain no complexing metal ions

i.e. p =0, and

(iii) complexes, MLq.

Another system of complexes are the polynuclear complexes, in which the

complexes contain more than one central metal ion, (MpLq, p>1). Polynuclear

complexes may be homo- or hetero-nuclear, depending on whether the central metal

ions are the same or different.

A system of complexes exists, in which more than one type of ligand is

attached to the metal ion, (MpLqXr). These are called "mixed ligand or ternary"

complexes. X may be the hydrogen ion (a nprotonated" complex), the hydroxyl ion

(in which case the complexes are usually described as "hydrolysed"), or a second

type of ligand.

The reactions which lead to the formation of metal complexes are

substitution reactions, in which one or more solvent molecules are substituted by a.

ligand molecule. Interaction between the species of interest and the bulk electrolyte

may also occur, but for simplicity it is assumed that the concentrations of the

solvent and bulk electrolyte remain constant and their contributions are ignored.

When considering the forma.tion of mononuclear metal complexes, MLq,

in aqueous solutions, a metal ion M (or more generally any Lewis acid i.e. an

electron acceptor) can react with a ligand L (or Lewis base i.e. an electron donor) to

form a series of complexes generally represented by the following reversible reaction:

M(aq) +qL(aq). MLq(aq); q>O (1.4)
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For the sake of simplicity charges have been omitted. The resulting

complexes of the above rea.ction can be ca.tions, anions or uncharged molecules.

The activites (a) of the species present a.t equilibrium are related to the

thermodynamic (activity) equilibrium constant JJlq at a given temperature as

follows:

(1.5)

However the activity of a species Z is simply related to its concentration

([Z]) by the activity coefficient, "fz:

Thus equation (1.5) can be rewritten as

1ML [MLq]
q

JJlq=~

1MLq [ML q]

= iM if · IMTTLJCi

1MLq

=1M1f · f31q

(1.6)

(1.7)

If reaction (1.4) is carried out in a. medium of constant ionic strength, I,
the activity coefficients of the various species present in solution will remain

approximately constant. Thus, aJ31q will be proportional to f31q, since the activity

coefficient quotient is constant.

Hence the concentration quotient

[ MLq]

131q =IMTTLJCi (1.8)
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will also be constant. fJlq is known as the (cumulative) stability constant and is a

constant for a given reaction at a given temperature and ionic strength.

Reaction (1.4) can also be expressed as a series of q steps:

M+L ~ ML

ML +L ~ ML2

MLq-l +L. MLq

and equilibrium constants or stepwise stability constants for each of these steps can

be written as follows:

Ru - rM%
K12 - rffifh
K1q

[MLJ
-
~

Thus it follows that the cumulative stability constants are obtained from
the product of the stepwise sta.bility constants:

Pll - Kll

q
- 1r Kt', 1

PII
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In this study the hydrogen ion was considered as the third species, besides

Mand L. Hence the reaction analogous to reaction (1.4) is

pM(aq) + qL(aq) + rH(aq) • MpLqHr(aq)

The corresponding cumulative stability constant is defined as

[MpLJIr]
Ppqr=~

(1.9)

(1.10)

where [M], [L] and [H] represent the free (uncomplexed) concentrations of metal

ions, ligand and hydrogen ions respectively.

In this study, of the zinc~yanide system, the symbol Ppqr represents the

cumulative formation constant of the species ZnpCNqH ~ 2p+r-q) + and is defined as

[ZnpCNqHr ]

Ppqr=~

where charges are omitted for simplicity.

(1.11)

The formation constant for the protonation of the ligand may be written

as

(1.12)

Various techniques, such as potentiometry, polarography,

spectrophotometry, ion exchange and others are available and have been employed

in the study of chemical equilibria and for the determination of stability constants.

The ideal method of studying equilibria. in solution should give accurate
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and precise values of the free concentrations of all species present in any conceivable

system without disturbing the position of equilibrium, and should be quick. No

technique is without its problems, but "of the methods available, potentiometry is

the most versatile, most precise and most popular" (37).

Spectrophotometric measurements of solutions in which several species

absorb are often difficult to interpret, since the absorbance of the solution depends

on the concentrations and molar absorptivities of the species which absorb radiation

of the wavelength used. Each chromophore contributes to the measured absorbance

to a different extent, so the expression for the absorbance of a solution involves the

molar absorptivities of all chromophores in addition to stability constants and

concentration variables.

The stability constants obtained from polarograms are usually less precise

than those obtained from potentiometric measurements. Polarography is generally

restricted to systems in which the metal ions can be reversibly reduced at a dropping

mercury electrode.

Potentiometry can be used to study equilibria in non-aqueous organic

solvents, and in fused salts as well as in aqueous systems.

It is seldom if ever possible to obtain direct measurements of the

equilibrium concentrations of all the species which are present in a solution in which

complexes are formed. Using potentiometry, it is possible to measure the equilibrium

concentra.tion of one species and relate it to the reactions occurring and the

associated stability constants (see Section 4.1.1), since the concentration changes

caused by complex formation are reflected in the potential of a sensing electrode.

In potentiometry a large variety of sensing probes, such as quinhydrone

electrodes, glass electrodes, ion-selective electrodes and metal amalgam electrodes,

are available for the study of equilibria.
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In this work, a potentiometric titration method was used, in which a

glass-membrane electrode was used to measure the concentration of the free

(uncomplexed) hydrogen ion. This was possible because the reactions being studied

involved competition between the hydrogen ion and the zinc metal ion for the

ligand. Low sodium error glass electrodes were used in this study, so that

measurements could be obtained at high pH values, without the electrode membrane

being affected by the hydroxide ions. Other electrodes such as zinc-amalgam and

cyanide ion-selective electrodes were considered for use in this work, but were not

used due to limitations. It has been shown that the presence of cyanide complexes of

metal ions causes interference with the cyanide ion-selective electrode measurement

of free (uncomplexed) cyanide (38). As mentioned earlier in this chapter, the use of

zinc and zinc-amalgam electrodes is considered questionable (7,18,21,24).

A typical potentiometric cell, suitable for following the hydrogen ion

concentration is given below:

reference

electrode

test solution in

which equilibrium

takes place

glass

electrode

A description of the cell used in this study, as well as the various methods

used to calibrate it are given in Chapter 5.

The composition of the test 8olution can be varied by addition of titrants

from burettes. The experimental titrations should be designed, so that as much

information as possible can be obtained from a single titration. The actual titration

experiments can be designed in a number of ways (32). Chapter 6 describes the

design of the experimental titrations carried out in this work.

In the study of equilibria in solutions, a neutral or background

electrolyte, such as NaCtU4 or KN03, is often used in large excess over the reacting

species. The neutral electrolytes are .used in such concentrations that the
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activity coefficient for any particular ion is supposed to be constant in all solutions.

Sometimes the ionic strength is kept constant, or the total concentra.tion of all ions

is kept constant, or the concentration of inert cations or anions is kept constant.

If the activity coefficients are kept constant, the concentration of various reacting

ions may be calculated directly from EMF measurements and in applying the law of

mass action, one may use concentrations instead of activities.

M.T. Beck (35), states that the inert electrolyte used in the studies of

solution equilibria should meet the following criteria:

(i) it must be a strong electrolyte;

(ii) its cations must not ~ociate with the ligand or with the various

complexes formed;

(iii) its anions must not aBsociate with the central metal ion or with

the complexes;

(iv) redox reactions must not occur between the constituents of the

inert electrolyte and the central ion or ligand;

(v) it must have an adequate solubility;

(vi) its contribution to the measured physical or chemical property

must be negligible.

NaC«J4 and KNOa are the most frequently used of the few salts that
satisfy these criteria.

In this work, the ionic strength of all solutions was adjusted to 0.10 mol
dm-3 using NaCt{)4.

The quantity' of inert background electrolyte required to make up a

solution to the required ionic strength is obtained with the aid of the following
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equation:

(1.13)

where

I is the· ionic strength,

Ci is the concentration of the ith species,

Zi is the charge number of the ith species.

The applicability of the constant ionic medium is based on the

Lewis-Randall principle (39), which was later theoretically corroborated by the

Debye-Hiickel theory (40).

Once the data has been collected from the potentiometric titrations, they

have to be processed. A large number of methods have been described for obtaining

stability data from potentiometric titration data. Graphical representation of the

numerical data in the form of formation curves is often the first step in the

treatment of potentiometric data. Graphical methods allow "dud" experimental

points and systematic errors to be detected, as well as indicating the presence of

complicated species, such as mixed ligand or polynuclear complexes. Ha.ving

obtained sufficient good data the next step in the processing of the data is to deduce

the nature of the species present, and to calculate the corresponding sta.bility

constants. For systems which can be described by only one or two parameters,

graphical methods involving either linear I non-logarithmic plots or curve fitting

methods can be used to determine the stability constants. The processing of more

complicated systems requires the use of computer programs such as MINIQUAD

(41,42) and ESTA (43,44).

In this study, gra.phical methods were not used to determine the stability

constants from the potentiometric data.

Amongst the advantages that this study has over previous studies of the
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zinc cyanide system are:

the large amount of potentiometric data, which was collected over a

wide range of Znrr, ONT, ONT/ZDtr and pH values (see Tables 1.2

and 7.2); the experimental techniques employed in this study, such

as cell calibration and the use of low sodium error glass electrodes;

and the use of up-to-date computer programs for model selection,

such aB ESTA, which reduce the element of 8ubjectivit,y involved in

proposing a, model.
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CHAPTER TWO

MATERIALS

This chapter deals with the materials used in this study a.nd the wa.y in

which solutions were prepared and standardised. Freshly boiled doubly deionized

water was used throughout this work in analytical tests and to make up all

solutions, in an attempt to avoid contamination by carbonate. All solutions used in

the experiments were prepared by dilution of the relevant standardised stock

solutions, described below, and were made up to an ionic strength (I) of 0.10 mol

dIn-3, by using calculated amounts of the sodium perchlorate (Na.CtO 4) stock

solution. All volumetric glassware used in this study was tt A," grade.

2.1 PREPARATION AND STANDARDISATION OF STOCK SOLUTIONS
OF STRONG ACID AND STRONG BASE

Stock solutions of strong acid and strong base were prepared using

analytical reagent gra.de perchloric acid (HClO4) and sodium hydroxide (NaOH)
respectively.

2.1.1 Preparation and standardisation of perchloric acid stock solution

The perchloric acid (HCtU4) stock solution (~ 3.0 mol dm-3) wag

prepared by dilution of HC!)4 (BDH 72% Analar sp. gr. 1.70).

The HCL04 stock solution was standardised by titration against freshly

recrystallised borax (BDH Analar) (45).

2.1.2 Preparation and standardisation of sodium hydroxide solution

Initially, the sodium hydroxide (NaOH) solution (~ 1.0 mol dm-3) was

freshly prepared for each experiment, using 1.0 mol dIn-3 NaOH ampoules (MERCK

Titrisol or BDH CVS). The use of ampoules was stopped, because it was found that

many contained unacceptable levels of dissolved carbonate in the hydroxide.
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When ampoules of NaOH were no longer used, the NaOH stock solution

(~ 1.0 mol dIn-3) was freshly prepared for each experiment by dissolving about 20 g

of NaOH pellets (BDH Analar) in a 500 cm3 volumetric flask. The flask was flushed

with nitrogen gas, while it was being made up to the mark. The stock solution was

stored under nitrogen in a polyethylene bottle.

The NaOH solutions were st,andarmsed against HCl04, either by use of

methyl orange as indicator or for the more dilute NaOH solutions,

potentiometrically, using Gran plot techniques (see Section 4.1.3.2).

2.2 PREPARATION AND STANDARDISATION OF STOCK SOLUTION

OF BACKGROUND ELECTROLYTE

Owing to the low concentration of reactants used in this study, the

background electrolyte, sodium perchlorate (NaC!)4) had to be as pure as possible,

so a method of preparation described by Sjoberg (46) was used.

The NaCtQ 4 stock solution (~ 4.5 mol dm-3) was prepared by neutralising

35% HCL04 (MERCK GR) with solid anhydrous sodium carbonate (Na2C03)

(MERCK GR) or solid sodium carbonate decahydrate (Na2C03 ·10H20) (MERCK

GR). After the HClO4 had been neutralised a slight excess of Na2COS was added.

This slightly alkaline solution (pH ~ 8.0) was allowed to stand for a week. If Fe-, Af­

and Si- impurities are present they usually precipitate during this period as silicates

or hydroxides (46-49). The solid impurities were filtered off using a G4 sintered

gl888 filter. The filtrate was acidified to a pH value of approximately 1.0, using

HC«)41 and then boiled to expel the carbonate, as C02. After boiling, the solution

was neutralised to a pH value of approximately 6.0, with freshly prepared NaOH
2-

solution. Neither et, nor C03 , could be detected using the silver nitrate (AgNOg)

test (50,51). Fe2+ could not be detected using the potassium ferrocyanide

([Fe(CN)6]4-) test (52). Fe3+ could not be detected using the potassium ferricyanide

([Fe(CN)6]S-) test (53).

The NaC~4 stock solution was standardised, by paasing 5 cm3 aliquots
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of the NaC~4 stock solution through a cation-exchange column, prepared by

weighing out approximately 70.0 g cation-exchange resin (BDH Amberlite IR-120
(H)). Just prior to use, the cation-exchange resin column was eluted with 500 crn3 of

3010% NaCL (MERCK GR) solution, rinsed with wa.ter, eluted with 600 cm3 of a6%

HCf solution, and then again rinsed with water. The above procedure was used to

ensure that the resin had undergone a complete cycle of charging and discharging

before it was used.

Each 5 cm3 aliquot of the NaClO4 stock solution was eluted through the

resin using 150 cm3 of water. After each elution the resin was rinsed with water.

The resultant HCL04 solution was titrated aga.i~t a freshly prepared and

standardised NaOHsolution. The cation-exchange method was used in preference to

drying the material to constant mass and then analysing it, because it was more

rapid. The results were reproducible to within about 1%.

2.3 PREPARATION AND STANDARDISATION
PERCHLORATE STOCK SOLUTION

OF ZINC

A typical zinc perchlorate (Zn(Ci04)2) stock solution (~ 0.1 mol elm-3)

was prepared by dissolving 8.1388 g zinc oxide (ZnO) (BDH Analar) in

approximately 70.0 cms HC!)4 (3.2153 mol dIn-S) in a beaker. The solution was

filtered to remove solid impurities, before being transferred into a one dm3

volumetric flask and made up to the mark.

The Zn(C«)4)2 stock solution was standardised for Zn2+, using a standard

0.1 mol elm-s ethylenediaminetetra-acetic acid (EDTA) solution (54), which was

made up from EDTA (MERCK Titriplex Ill) dried at 80°C for 24 hours (55).

Eriochrome Black T WaB used aB indicator (54).

The excess acid in the Zn(Ct04)2 stock solution was determined

potentiometrically by a Gran plot method (see Section 4.1.3.1), in which a known

amount of HCtU4 was added to a known volume of the Zn(CtU4)2 stock solution and
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this was titrat~d with a freshly prepared and standardised NaOHsolution.

2.4 PREPARATION AND STANDARDISATION OF SODIUM CYANIDE

SOLUTIONS

The sodium cyanide (NaCN) solutions were freshly prepared for each

experiment, since it has been reported that sodium cyanide solutions decompose on

standing (12,20,28,56). This was confirmed in this study, by observing the

movement of peaks on UV-visible spectra. Marsh et al. (56) reported that the

decomposition products of the reaction between CN- and H20 were CO and NHs·

The NaCN solution (~ 0.1 mol dm-S) was prepared by dissolving a

known mass of NaCN (MERCK GR) in water.

The NaCN solution was standardised for CN- using the Leibig-Deniges

method (57), in which aliquots of the NaCN solution were titrated with a
standardised silver nitrate (AgN03) (BDH Analar) solution. The AgN03 solution

was standardised against a standard NaCl (MERCK GR) solution using the Mohr

titration method (58).

Any excess base that may have been present in the NaCN solution was

determined by potentiometric titration, in which a known amount of NaOH of

known concentration was added to a known volwne of the NaCN solution, and this

was titrated with an HC!)4 solution of known concentration. Gran plots were used

to determine the end points of titrations of mixtures of bases with strong acids (see

Section 4.1.3.3).
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CHAPTER THREE

APPARATUS

This project consisted of two sections, firstly the potentiolnetric

determination of protonation and stability constants in the zinc~yanide-hydrogen

ion system, under acidic and basic conditions at 25.0°0 and an ionic strength of 0.10

mot dIn-3. The second section consisted of an examination of solutions containing

mixtures of CN- and HCN by ultraviolet-visible spectrophotometry.

Grade"A" glassware was used for all volumetric work.

3.1 POTENTIOMETRIC APPARATUS

Stability constants were determined by means of a competition reaction

involving competition of H+ and Zn2+for the ligand species. The concentration of the

uncomplexed hydrogen ion or hydroxide ion was measured using an electrochemical

cell, comprising a reference electrode/salt bridge assembly and an indicating glass

electrode. RADIOMETER G202B (low sodium error) glass electrodes were used.

The glass electrodes were conditioned before use and stored according to the

manufacturer's instructions. Usually only one glaBB electrode was used, but in some

experiments a second electrode was used as a check. The reference electrode and salt

bridge were assembled using two INGOLD liquid junction tubes type 303-95-T-NS,

which had been modified, so that they could be thermostatted. Figure 3.1 shows a

diagram of the reference electrode/salt bridge assembly used in this study. The

solution in the salt bridge was 0.10 mol dm-3 sodium perchlorate, while that in the

reference electrode was 0.01 mol dm-3 sodium chloride + 0.09 mol dm-3 sodium

perchlorate. A drop of silver perchlorate (AgCtD4) solution was added to the

reference electrode solution, before inserting the METROHM silver~ilver chloride

(Ag/AgC~ reference electrode, type EA-27S, to ensure that the reference electrode

solution was saturated with AgOl, thus preventing dissolution of the AgOl coating

on the electrode.



Ag,AgC~ Reference Electrode

Reference Electrode Solution
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Modified Ingold Liquid Junction Tubes
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Salt Bridge Solution ­

0.1 mo~ dm-3 NaC~04

••

Figure 3.1: Diagram of Reference Electrode/Salt Bridge Assembly.
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The indicating glass electrode, the reference electrode/salt bridge

assembly, a thermometer or a second glass electrode, a METROHM EA 649 gas

bubbler and a burette were int,roouced into the METROHM jacketted glasa reaction

vessel, type EA 88(}-T-50. Figure 3.2 shows a diagram of the cell arrangement.

A JULABO P12 Paratherm III water bath unit was used to thermostat

the system at 25.0 *0.05°0. The water W88 circulated through the ja.cketted glass

reaction vessel and the jackets of the junction tubes.

Potentiometric measurements were performed using a RADIOMETER

PHM 64 Research pH meter reading to 0.1 mY.

The working solution, in the reaction vessel, was maintained Wlder a

carbon dioxide free atmosphere of high purity nitrogen, which had been scrubbed of

acid and alkaline impurities by passing the nitrogen through a 10% sodium

hydroxide and a 10% sulphuric acid solution. Before the nitrogen gas came into

contact with the working solution it was presaturated by passage through a. 0.1 nl0l

dm-3 sodium perchlorate solution. The working solution, in the reaction vessel, was

continuously agitated by the nitrogen gas bubbling through it and/or by the

magnetic stirrer used.

Titrant solutions were added to the reaction vessel using a METTLER

DV 10 automatic titr8.tor with 8. METILER DV 210 automatic burette 888embly.

Sodium hydroxide titrant solutions were kept in a modified solution reservoir under

a continuous flow of high purity nitrogen, which had been passed through a U-tube

containing soda-lime and anhydrous calcium sulphate to remove any carbon dioxide

and water, which m&y have come through the acid and alkaline scrubbing 8olutions.

Figure 3.3 shows a diagram of the solution reservoir assembly used for sodium

hydroxide titrant solutions.
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Ag, AgC€ Reference Electrode

Reference
Electrode/
Salt Bridge Assembly

Thermometer

Glass
Electrode

Jacketed Glass
Reaction
Vessel

Magnetic
Stirrer Bar

••

Automatic Burette

Nitrogen gas Bubbler

---- Water Inlet

Figure 3.2: Diagram of Potentiometric Cell Assembly.
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Figure 3.3 Modified Solution Reservoir used for NaOH Solutions.

3.2 ULTRAVIOLET-VISIBLE SPECTROPHOTOMETRIC APPARATUS

A PYE UNICAM SP 1800 UV-visible spectrophotometer In

combination with a PYE UNICAM AR 25 recorder was used to examine solutions

containing mixtures of ON- and HON. The solutions were studied in the 190 to 350

nm range. Quartz silica. cells having a. pa.th length of 1.0 cm were used.



CHAPTER FOUR

CALCULATION TECHNIQ!lliS

This chapter describes the various mathenlatical techniques used in this

study for the analysis of potentiometric titration data. The two main techniques

used were graphical and computational. The techniques were often used

simultaneously.

Data of high preC181on· can generally be satisfactorily processed by

computer, although data described by not more than two parameters can be treated

equally well using graphical methods. The essence of.either approach is the

comparison of an experimental function, obtained from experimental data, with

theoretical functions, calculated by substituting values of the parameters into the

appropriate equations. For example, an experimental function such aB a formation

curve, ZM(obs)vs log [L], derived from the measurements of MT, LT and [L] may be

-compared with a number of theoretical formation curves, ZM(calc)vs log [L] I which

are obtained by substituting different values of fipqr into equations of the type shown

below

N
~ nPn[L]n

- 0
ZM=~---

~,8n [L]n
o

(4.1)

The most acceptable values of the stability constants are those used to

calculate the function, which best reproduces the experimental formation curve.

For a method to be acceptable it must make full use of the experimental

data, give a good indication as to which complexes are present in solution, give the

best values of the parameters treated as unknowns in the calculation, and should be

flexible enough to allow the weighting of measurements. A good method should
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show up systematic errors. In the case of a. computer technique the limits of error in

the values of the parameters obtained should be given.

The calculation techniques used in this study are given below.

4.1 GRAPHICAL METHODS

Graphical methods have the advantage that they visually display gross

errors, show up "outliera" and systematic errors in the data obtained.

The shapes of curves provide information about the nature of the systems

being investigated.

The disadvantage of graphical methods is that stability constants of

complicated systems cannot be evaluated simultaneously, but have to be evaluated

in several stepwise calculations. An accumulation of error is associated with each

step.

Generally, graphical methods are used in conjunction with cOlnputer

techniques when potentiometric titration data are being analysed.

Apart from the graphical techniques used in this study for the

presentation of potentiometric titration data, a graphical technique called "the Gran

plot" method (5~) was used (see Section 4.1.3). The Gran plot technique was

used to determine the concentrations of acid and base solutions.

The graphical techniques used in this study for the presentation of

potentiometric titration data_ are described below.
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4.1.1 Formation and deprotonation fWlctions

The hydrogen formation fWlction, is defined as

_ HT-[H+] +[OH-]
Za= LT

where ZH represents the hydrogen formation fWlction,

HT is the total (analytical) concentration of hydrogen ions in solution,

[H+] represents the concentration (in mol dm-3) of free hydrogen ions in

solution,

[OH-] represents the concentration (in mol dm-3) of free hydroxide ions in

solution,

and LT represents the total (analytical) concentration of ligand L in solution.

Equation (4.2) can be further rearranged to give a general equation for

ZHI which is shown below (64).

ft r
~ r ,Boqr [ H+]

- r=o
ZH=yt----

r
~ Poqr[H +]
r=o

where It is the maximum number of protons that can be associated with the ligand

molecule.

- -
The function Zu (also denoted 88 j by some authors) is usually plotted

versus - log[H+] or p[H], where p[H] represents -log[H+]. The resultant curve is

called a "formation curve". The formation curves often give an insight into the type

of system being analysed i.e. number of protonation steps involved.

In simple systems, the formation constants can be determined using

graphical methods (65). In more complicated systems such as those involving two

step protonation, equation (4.3) can be rearranged such that for low values of [H+]
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and hence ZH' the values of the formation constants may be refined by successive

approximation (66).

Graphical methods for obtaining values of {JolT from ZH and [H+] dat.a

become much more involved when r~3, because formation curves which represent

more than two overlapping equilibria have no sjrrnmetry properties which can be

exploited (67); and due to the accumulation of error associated with each step of the

successive approximation refinement process, such complex systems are best

evaluated using computer methods.

The metal formation function, defined as

HT-[H+]+[OH-]
where A;:: yt----­

r
Er ,80 1r[H+]
l' • 1

(4.4)

(4.5)

and MT represents total (analytical) concentration of metal Ion M

(complexed and uncomplexed) in solution.

The function ZM is usually plotted versus pA - -log A, where A

represents the "apparentU free ligand concentration.

Under certain circumstances the functions ZH' ZM and A have simple

physical interpretations. 'For systems consisting of hydrogen ions and ligand only

(apart from spectator ions) ZH represents the average number of hydrogen ions

coordinated to the ligand species L. When metal ions are present as well, ZH
continues to represent the average number of hydrogen ions coordinated to the
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ligand, irrespective of the nature of the complexes formed between metal ion and

ligand, provided that hydrolysis of metal-containing species to form Mp(OHh and

MpLq(OH)r does not occur, and that protonated complex 8pec~ of t.he t.ype MpLqHr

do not form. When hydrolysis or complex protonation occurs ZH is still well defined

mathematically, but no longer has the same physical interpretation. The function

ZM is only defined for solutions containing hydrogen ions, ligand and metal ions. For

systems or conditions in which no hydrolysis of the metal aquo ion or any of the

complexes takes place, and no protonated complex species are formed, ZM represents

the average number of ligand molecules coordinated to the metal ion, and A=[L],

the concentration of free (uncomplexed and unprotonated) ligand. Under these

conditions, the function ZM is identical to the function ii ~ed by numerous authors

in the field. With some experience, the nature of the dominant species can often be-deduced from the shapes of ZM versus pA plots, and conclusions can be drawn, for

example, concerning the presence or absence of polynuclear complexes (68), and the

onset of hydrolysis.

-When hydrolysis or protonation of complexes does occur, both ZM and A

lose the simple interpretations given above. When extensive hydrolysis occurs, the-
function ZM becomes ill~onditioned and very sensitive to small uncertainties in the

analytical quantity HT' for example. Also A can take on negative values, nlaking pA
-

undefined. In general, ZM versus pA plots are not useful for graphical presentation

of potentiometric data in circumstances where extensive hydrolysis occurs.

-A "deprotonation function", Q, haa recently been defined by Murray and
May (44,69,70) as:

(4.6)



34

where H; is the total hydrogen ion concentration in the system at the observed

p[H], calculated from a mass-balance equation ignoring all metal complex

formation. When metal containing species are ignored, the mass-balance equa.tion

for ligand reads:

(4.7)

(4.8)

*where [L] is a fictitious concentration of free (uncomplex~d) ligand - since metal

containing species are ignored. Under the same fictitious circwnstances, the

mass-balance equation for hydrogen ions reads:

(4.9)

Substituting into equation (4.6) gives,

The function Qcan be interpreted as follows. If metal ions Mare added

to a. solution containing hydrogen ions and ligand, the metal ions will complex with

a certain amount of the ligand present, and in so doing, will liberate hydrogen ions,

thus lowering the solution p[H]. Some hydrolysis might also occur, also lowering the
*solution p[H). A certain amount of mineral acid, given by (HT-HT) would have to

be removed from the solution (e.g. by addition of strong alkali) in order to raise the

p[H] back to its original value. Qrepresents t.he number of moles of acid liberated in

the solution per mole of M, by virtue of the complexing power of the metal ion ­

hence the term ndeprotonation function" I since the hydrogen ions are thought of as

liberated from protonated ligand.
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The function Qis plotted as a function of solution p[H]. It is particularly

valuable in those regions of titrations (usually at high p[H]) where ZM and pA

functions become ill conditioned. It has been suggested (69) that plots of Q versus

p[H] may be less sensitive to experimental error than plots of ZM versus pA, and

may therefore be preferable for purposes of comparison between observed and

calculated data.

-*
It is useful to define a hydrogen formation function ZH (denoted nby

Murray and May (69)) for the ligand-hydrogen subsystem in a ligand-hydrogen­

metal system, such that,

(4.11)

-* -ZH is the value of ZH calculated ignoring the formation of met.al

complexes. It can be shown that if a solution contains only one predominant

complex of formula MpLqHr, then the hydrogen stoichiometry of the complex, r, is

given by

Negative values of r denote hydroxide groups on (or deprotonation of) the
-* -complex. This property of the formation function ZH and deprotonation function Q

can be useful in identifying the major species present in the system when there is

reason to believe that one complex predominates over a given region of a titration

(e.g. when a plateau is observed in the metal formation function).

4.1.2 System modellins

System modelling is the graphical comparison of curves obtained fron1 the

experimental data with theoretical curves obtained using values computed from
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optimised stability constants for proposed complexes in the systenl being studied, in

order to postulate a set of equilibria which describe the reactions occurring in the

8Y8tem.

The graphical method shows up random errors such aB sca.ttered points,

while systematic errors, such as an incorrect theoretical model, causes the theoretical

curve to deviate from the experimental curve.

In simple systems, such as instances where the maximwn number of

liganda bound to a metal ion is one or two, values of parameters may often be

obtained very 8a.tisfactorily by "non-linear curve fitting" (71). For 8Y8tem8 which

consist of a single complex, ML, the experimental plots of ZM against -log[A] are of

unique shapes (71).

4.1.3 Gran plots

In potentiometric titrations the equivalence point is often taken as the

point of inflexion on a titration curve, obtained by plotting the cell EMF, (E), as a

function of the volume, (V), of reagent added. Often these curves show only a small

potential change near the equivalence point and it has been customary to plot the

"differential curve", ~E/~Vasa fuction of the volume of reagent added. The peak

of thi8 curve i8 then taken as the equivalence point. Alternatively the point where

the "second derivative curve", ~~/~V2 plotted as a. function of the volume of

reagent added, has a. zero value, may be used.

Gran (59,60) devised a method of treating potentiometric titration da.ta,

so that the plots did not require a large number of readings corresponding to small

changes in volume in the region of the equivalence point, but also made use of

readings obtained in regi9DS far from the equivalence point.

The Gran (59-63) method consists of !inealising the titration curve by

computing from the titration data a fWlction which when plotted against the volwne

of titrant gives a straight line, which can be extrapolated to the equivalence point.
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Gran's graphical method can be applied to potentiometric titrations involving acids,

bases, ionic precipitatioDS, complex formation and oxidation-reduction reactions.

In this study Gran's method was used in the standardisa.tion of strong

base solutions, the determination of carbonate concentrations in base solutions, the

determination of excess base in sodium cyanide stock solutions and the excess a.cid in

zinc perchlorate stock solutions.

The methods used are described below. All titrations were carried out at

a temperature of 25.00Cand at an ionic strength of 0.10 mol dm-g.

4.1.3.1 Titration of a strong acid with a strong base

If Vo cm3 of a strong acid, with an original concentration, in mol dIn-s, of

CA' is titrated with a strong base, of concentration CB' the concentration of

hydrogen ions, CH' after the addition of V cmsof base will be:

(4.12)

At the equivalence point

(4.13)

where Ve is the volume of base added when the equivanence point is reached.

Substituting equation (4.13) into. equation (4.12) leads to

v-V
CH = CB V:tV

Now,

antilog (-pH) =10-pH =aH=1H x CH

(4.14)

(4.15)
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where aB and 'H represent the activity and activity coefficient of the hydrogen ion,

respectively.

Equation (4.14) and (4.15) together give

(4.16)

which can be transformed to

or more generally to

(V0+V) IO-pH = k1(V -V)
e

(4.17)

(4.18)

where k1 is a constant, including the activity coefficient, which in appropriate

instances, can be considered constant during a titration. This is normally achieved

by holding the ionic strength constant.

Similarly it can be shown that when the equivalence point has been

passed, the concentration of hydroxide ions, COH' is given by

Now,

C Kw
H=u;::;OH

which together with equation (4.15) gives

. H CB
antilog pH =1(f ="rH x Kw(Vo+V) (V-Vel

(4.19)

(4.20)

(4.21)

(4.22)
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which can be more generally transformed to

(4.23)

where k2 is a. constant, including the a.ctivity coefficient, which in appropriate

instances can b~ considered constant during a titration.

If the cell potential, E, of the galvanic cell

(+) elec t rode re~er8ible
to' hydrogen IOns I ti trati on

solution 11
reference (-)
half ce II

is measured, then, assuming ideal electrode behaviour, E is related to the free

hydrogen ion concentration, [H+], by the Nernst equation -

E=EO +~ log [H+] (4.24)

Since it is assumed that the cell behaves reversibly and tha.t the activity

coefficients are constant; the value of EO is constant. Rearranging equation (4.24)

leads to

The first term on the right hand side of equation (4.25) is a constant so that

H -EF
P (Xrn-mT

Equations (4.18) and (4.23) may therefore be written aB

(V0+V) lOEF/2.303RT = kt(Ve-V)

(4.25)

(4.26)

(4.27)
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and

Two quantities ~ and ~1 can now be defined as

(4.28)

and

ljl =(Vo+V) lOEF/2.303RT

~I =(V0+V) 10-EF/2.303RT

(4.29)

(4.30)

From equations (4.27) and (4.28) it is clear that the quantities ~ and ~I

are linear fWlctions of Vt such that «V) and ~'(V) both intersect on the abscissa at

the point (V to).e

Figure 4.1 8how8 an example in which a Gran plot for the titration of a

strong acid with a strong base was used to standardise the base solution. The

solutions were made up to an ionic strength of 0.10 mol dIn-3 using NaC!) 4.

Representative data for this plot is given in Table 4.1.

From Figure 4.1 one obtains V = 7.05 cm3
t from which thee

concentration of hydroxide can be calculated to be 0.0107 mot dm-3.

Deviations of the Gran functions from linearity were observed for some of

the titrations of strong acid with strong base, used to standardise the base.

Examples of these deviations are shown in Figures 4.2 and 4.3.

Figure 4.2 shows that curvature occurs a.t values of V remote from V
e

and corresponding to high values of hydrogen ion concentration.
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TABLE 4.1

Titration of a mixture of 7.00 CIU3 of 0.0107 Inol mn-3 HCtV4 plus 50.00 cln3 of 0.10

mol dm-3 NaCt04 with a solution containing approximately 0.01 mol dm-3 NaOH.

(Vo =57.00 cm3).

VJern3 (Vo+V)Jem3 Ecell/mV $x 103/em3

0.00 57.00 85.9 16.13 .

2.00 59.00 76.7 11.67

3.00 60.00 70.7 9.40

4.00 61.00 63.0 7.08

4.50 61.50 58.1 5.90

5.00 62.00 52.2 4.73

5.50 62.50 44.4 3.52

6.00 63.00 33.3 2.30

6.50 63.50 13.7 1.08

~t x 107/crn3

8.00 65.00 -314.5 1.34

9.00 66.00 -333.7 2.88

9.50 66.50 -338.6 3.51

10.00 67.00 -342.8 4.16

11.00 68.00 -350.5 5.70

12.00 69.00 -355.8 7.11
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Figure 4.1: Gran plot of the functions ~(V) and ~'(V) for the

titration of a strong acid with a strong base.
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This type of deviation from linearity can be explained in terms of the

activity coefficient and/or the junction potentials not being negligible at the extreme

values of the hydrogen ion concentration (61.63). R0880tti amd R0880tti (61) state

tha.t "if the plots are linear near the equivalence point, the values of Ve must be

obtained from this region alone". Representa.tive data for this plot is given in Table

4.2. The solutions were made up to an ionic strength of 0.10 mol elm-3 using

NaCi04.

TABLE 4.2

Titration of a mixture of 20.00 cm3 of 0.0103 mol dm-3 HCL04 plus 50.00 em3 of 0.10

mol dm-3 NaCi04 with a solution containing approximately 0.01 mol elm-3 NaOH.

(Vo =90.00 cm3).

V/cm3 (Vo+V)/cm3 Ecell/rnV ~ x 103/cm3

0.00 90.00 104.3 5.21

2.00 92.00 101.9 4.85

4.00 94.00 99.3 4.48

6.00 96.00 96.5 4.10

8.00 98.00 93.3 3.70

10.00 100.00 89.9 3.31
12.00 102.00 86.0 2.90

14.00 104.00 81.5 2.48
16.00 106.00 76.3 2.06
17.00 107.00 73.3 1.85
18.00 108.00 70.0 1.65
19.00 109.00 66.2 1.43
20.00 110.00 61.8 1.22
21.00 111.00 56.7 1.01
22.00 112.00 50.1 0.79
24.00 114.00 29.1 0.35
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From Figure 4.2, V == 25.74 cm3 from which the concentration of
e

hydroxide is calcula.ted to be 0.0080 mol dm-3,

6.00

5.00

(Y')

E 4.00
u

...........
(Y')

o
.-1

X

2: 3.00
~

2.00

1.00

0.00

0.0 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00

Volume of NaOH solution added/cm3

Figure 4.2: Gran plot of the function ~(V) for the titration of a

strong acid with a strong base, demonstrating deviation

of ~(V) from linearity at high [H+].
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Figure 4.3 shows a Gran plot, in which the basic Gran function, ~'(V), is

curved in the region of V . Rossotti and Rossotti (61) explained this type of
e

deviation as being due to the strong base solution being contaminated with

carbonate (63). R0880tti and R0880tti (61) state that if the function, ~'(V) is linear

over an appreciable range of V, then the function may be extrapolated to cut the

abscissa at the point V " resulting in the two functions $(V) and ~'(V) intersectinge

below the abscissa.

From the equivalence point (V ) obtained from the acid Gran function,e

the total base concentration, which i8 equal to sum of the hydroxide ion

concentration and twice the carbonate ion concentration, ~ obtained (63,72). The

equivalence point (V') obtained from the base Gran function is equal to thee

concentration of hydroxide ions in the basic titrant solution. Thus from the two

equivalence points the hydroxide ion concentration and an estimate of the carbonate

ion concentration of the basic 8olution can be determined.

Representative data for Figure 4.3 is given in Table 4.3. The solutions

were made up to an ionic strength of 0.10 mol dm-3 using NaCL04.

From Figure 4.3, V = 6.97 cm3 and V I = 7.45 ems, from which thee e

concentration of the hydroxide and carbonate in the base solution can be calculated

as follows:

[OH-] + 2[COi] =[Total Base] =10.006~9~'OOlO =1.43 x lO-amol elm-a

[OH-] =10.007~J·OOlO =1.34 x 1O-amol dm-a

and [COil = 4.5 x 10-5 mol elm-a
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TABLE 4.3

Titration of a mixture of 10.00 em3 of 0.0010 mol elm-a HCt04 plus 50.00 em3 of 0.10

mol dm-3 NaC!), with a solution containing approximately 0.0010 mol dm-3 NaOH.

(Vo =60.00 em3).

V/emS (Vo+V)/em3 Ecell/mV ~ x 10t/em3

0.00 60.00 26.3 16.70
2.00 62.00 16.8 11.92 .
3.00 63.00 10.6 9.52
3.50 63.50 7.0 8.34

4.00 64.00 2.5 7.06
5.00 65.00 -7.9 4.78

5.50 65.50 -15.6 3.57
6.00 66.00 -27.3 2.28

+' x 1~/em3

7.50 67.50 -211.2 0.25
8.00 68.00 -231.2 0.55
8.50 68.50 -243.7 0.90
9.00 69.00 -254.1 1.36

10.00 70.00 -266.4 .2.22
11.00 71.00 -274.6 3.10
12.00 72.00 -280.3 3.93
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Figure 4.3: Gran plot of the functions ~(V) and ~'(V) for the

titration of a strong acid with a solution containing

both carbonate and hydroxide.
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4.1.3.2 Titration of a strong base with a strong acid

When V0 cm3 of a strong base I with a concentration in mol dm-3 of CB I

is titrated with a strong acid of concentration CA' the concentration of hydroxide

ions COR after the addition of V cm3 of acid will be:

(4.31)

At the equivalence point

(4.32)

where V is the volume of acid added when the equivalence point is reached.e

Substitution of equation (4.32) into equation (4.31) leads to

Now

V -V
COB = CA V:tV (4.33)

antilog (-pOB) = lO-pOH = aOB = 'YOB xCOB' (4.34)

where &OB and 10B represent the activity and activity coefficient of the hydroxide

ion, respectively, equation (4.33) and (4.34) together give:

(4.35)

which can be transformed to

(4.36)
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Substituting pOH =pKw-pH in equation (4.36) leads to

(V0+V) lOPH-pK w = 'YORCA(Ve-V)

Rearranging, one obtains

1 C
(V0+V) 10PH = OH A (V -V)

10-pKw e

(4.37)

(4.38)

(4.39)

where k3 is a constant, provided that "YOH is constant. As mentioned previously this

is normally achieved by holding the ionic strength constant. Similarly it can be

shown that when the equivalence point has been passed

(4.40)

where k4 is a constant. If the cell potential E is measured, where E is related to the

free hydrogen ion concentration by the Nernst equation (see 4.24) and it is assumed

that the cell behaves reversibly and that the activity coefficients are constant, the

value of EO is a constant. Rearranging equation (4.24) gives the equation (4.26).

Equations (4.39) and (4.40) may therefore be written as

and

(V0+V) 10-EF /2.303RT =k3(V -V)
e

(Vo+V) lOEF/2.303RT = k4(V-V )
e

(4.41)

(4.42)
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Two quantities 4? 1 and 4? can now be defined as

and

~I =(V0+V) 10-EF/2.303RT

~ =(V0+V) 10EF/2.303RT

(4.43)

(4.44)

Comparison of equations (4.43) and (4.44) with equations (4.30) and (4.29)

respectively, indicates that corresponding Gran functions can be used for the alkaline

and acid regions of the titrations considered.

The titration of strong base solutions with strong acid solutions was used

to standardise baBe solutions. Deviations of the Gran functions from linearity,

similar to those which occurred in the titration of a strong acid with a strong baBe

(see Section 4.1.3.1) were observed.

An example of the deviation due to carbonate contamination is shown in

Figure 4.4. Representa.tive data for this plot is given in Table 4.4.

From Figure 4.4 one obtains V = 6.24 em3 and V ' = 6.09 em3 frome e

which the concentration of the hydroxide and carbonate in the base solution can be

calculated as follows:

[OH-] +2[C03] =crota! base] =6.2\x6~·O100 =9.45 x lO-s moldm-s

[OH-] - 6.09 x 0.0100 - 9 23 10-3 l dm-3- 6.60 -. x mo

[CO;] =1.1 X 10-4 mol dm-3.
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TABLE 4.4
Titration of a mixture of 6.60 cm3 of a basic solution, containing approximately

0.0093 mol dIn-3 NaOH with approximately 0.0001 mol dm-3 carbonate plus 50.00

cms of 0.10 mol dm-3 NaC«) 4, with a solution containing 0.0100 mol dm-s HC«)4.

(Vo = 56.60 em3).

V/cm3 (Vo+V)/cm3 Ecell/mV ~I x 107/crn3

0.00 56.60 -379.5 14.67

1.00 57.60 -374.3 12.19
2.00 58.60 -368.3 9.82

3.00 59.60 -360.5 7.37

4.00 60.60 -350.5 5.08

5.00 61.60 -334.8 2.80

6.00 62.60 -298.8 0.70

ep x 103/cm3

8.00 64.60 41.6 0.33
9.00 65.60 53.6 0.53

10.00 66.60 62.2 0.75
11.00 67.60 67.1 0.92
12.00 68.60 71.6 1.11
13.10 69.70 75.6 1.32
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Figure 4.4: Gran plot of the functions I'(V) and ~(V) for the

titration of a solution containing both carbonate and

hydroxide with a strong acid.
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4.1.3.3 Titration of a weak base with a strong acid

If V0 cm3 of a weak base, B, which is not fully dissociated in solution,

with an initial concentration in mol dm-3 of CWB is titrated with a strong acid of

concentration in mol dm-3 of CA' the equation for the weak monoprotic base can be

represented as:

where Kb is the stoichiometric baBe dissociation constant of B.

Then

and

[OH-]=~

(4.46)

(4.47)

After the addition of V cm3 of acid the concentration of BB+ and B in

solution can he expressed as:

(4.48)

and
•

(4.49)

The Gran method ignores the effect of the reversihIe reaction (72).
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At the equivalence point, Ve'

(4.50)

Sub8tituting equations (4.48), (4.49) and (4.50) into equation (4.46),

glves,

(4.51)

thus,

(4.52)

Since,
K

[OH-] =i*1 , (4.53)

thus,

p[OH-] =pKW- p[H+] (4.54)

Substituting equation (4.54) into equation (4.52), gives,

(4.55)

The cell potential, E, is given by equation (4.24). EO is constant, as it is

888umed that the cell behaves reversibly and that the activity coefficients are

CODst8nt, since the ionic strength W88 kept COIl8t&Ilt during a titration. Therefore

(4.56)
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wh~re Iq is a constant, provided that 1H is constant. This is normally achieved by

holding the ionic strength constant. Similarly it can be shown tha.t when the

equivalence point has been passed:

(4.57)

where ka is also a constant.

If the cell potential, E, is measured, where E is related to the free

hydrogen ion concentration by the Nernst equation and it is assumed that the cell

beha.ves reversibly and that the activity coefficients are constant, then the value of

EO is a constant. Equation (4.56) and (4.57) may be written ~:

vx lO-EF/2.303RT =ks(V -V)
e

and

(V0+V) lOEF/2.303RT = ke(V-V )
e

Two quantities f and ~ can now be defined as

tJi = Vx lO-EF/2.303RT

and

~ = (Vo+V) lOEF/2.303RT

(4.58)

(4.59)

(4.60)

(4.61)

From equations (4.58) and (4.59) it is clear that the quantities ~' and ~

are linear functions of V, such that ~'(V) and tl\V) both intersect on the abscissa at
the point (V ,0).

e
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In this work the excess amount of base in the sodium cyanide stock

solution was determined by adding a known quantity of sodium hydroxide of known

concentration, to a known quantity of the sodium cyanide stock solution and

titrating this solution with a strong acid. Thus the total base in the solution was

made up of the added sodium hydroxide, and the excess sodium hydroxide from the

sodium cyanide stock solution. The neutralization of this alkaline solution was

treated 88 two C88es:-

(i) titration of a strong base with a strong acid (see Section 4.1.3.2)

and,

(ii) the titration of a weak base with a strong &Cid.

The solutions titrated were never allowed to become acidic.

Figure 4.5 shows an example of a plot of Ecell against the volume of

strong acid titrated into an alkaline solution containing sodium cyanide with an

unknown quantity of excess sodium hydroxide, to which a known amoWlt of sodium

hydroxide had been added.

Representative data for Figure 4.5 is given in Table 4.5.

The first equivalence point in Figure 4.5 corresponds to the situation

when the totaJ concentration of hydroxide ions in the alkaline solution was

neutralised by the hydrogen ions added at that point. The exact equivalence point

was obtained by treating the data between 7.0 cmsand 19.0 emS of HC«)4 added, as

that of a strong base titrated with a strong acid, as described in Section 4.1.3.2.

From the Gran plot of this data the equivalence point is obtained 88 19.8 cm3

HC«)4· The excess concentration of hydroxide ions in the sodium cyanide stock

solution can thus be determined.
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TABLE 4.5
Titration of an alkaline solution containing 50.0 cm3 NaC«)4 (0.10 moi elm-3), 20.0

cm3 NaCN (0.0099 mol dm-3) with excess NaOH of unknown concentration and 20.0

cms NaOH (0.0100 mol dm-3) with a solution containing HClO4(0.0100 mol dIn-S).

(Vo =90.00 em3).

The ionic strength of all solutions was make up to 0.10 mol dm-3 using NaCtO 4.

V/cm3 (Vo+V)/cm3 Ecell/mV t'x lO7/cm3

0.0 90.0 -393.9 40.85
1.0 91.0 -392.3 38.88 .

3.0 93.0 -388.8 35.35

5.0 95.0 -385.1 30.61

7.0 97.0 -381.0 26.65
8.5 98.5 -377.8 23.89

10.0 100.0 -374.1 21.00

11.5 101.5 -369.9 18.10
13.0 103.0 -364.2 14.72
14.0 104.0 -359.7 12.47
15.0 105.0 -354.5 10.21
16.0 106.0 -348.1 8.29
17.0 107.0 -342.3 6.52
18.0 108.0 -335.5 5.05
19.0 109.0 -329.0 3.00

20.0 110.0 -322.1 3.81
21.0 111.0 -316.9 4.89
23.0 113.0 -306.2 7.55
24.0 114.0 -301.1 9.29
25.0 115.0 -296.3 11.30

. Cont.f. ......
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Table 4.5 continued/

V/cm3 (Vo+V)/cm3 Eeell/mV ~'X 101/cm3

26.0 116.0 -291.6 13.69

27.0 117.0 -287.0 16.52

28.0 118.0 -282.4 19.92

29.0 119.0 -277.9 23.94

30.0 120.0 -273.1 29.09

~'X 10S/cm3

31.0 121.0 -268.3 10.61

32.0 122.0 -262.8 8.84

32.5 122.5 -260.0 8.05

33.0 123.0 -256.8 7.22

33.5 123.5 -253.8 6.52

34.0 124.0 -250.0 5.11

34.5 124.5 -246.8 5.11

35.0 125.0 -242.0 4.30

35.5 125.5 -237.5 3.66

36.0 126.0 -231.6 2.95

36.5 126.5 -225.0 2.32

37.0 127.0 -216.5 1.69

37.5 127.5 -206.8 1.17

38.0 128.0 -186.5 0.54

The second equivalence point is that of the weak base, and the exact

point can be determined using the Gran plot method for the titration of a weak base

with a strong acid for the points from 31.0 cm3 to 38.0 em3 BC~4 added. Figure 4.6

shows the Gran plot for the d&ta given in Table 5.4 for the titration of 6 weak base

with a strong acid. The information concerning the concentration of the cyanide

stock solution was used as a check on the Liebig-Deniges method (see Section 2.4).
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Figure 4.6: Gran plot of the function ~'(V) for the titration of a weak

base (sodium cyanide) with a strong acid.
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4.2 COMPUTER METHODS

In this study computer methods were used for the design of experiments,

the graphical presentation and analysis of potentiometric data, the calculation of

formation constants and for calculation of the comp08ition of equilibrium mixtures

(speciation calculations). The computer programs used are described below.

4.2.1 Use of the program HALTAFALL

In this study the computer program HALTAFALL (73) was used to aid

the design of experiments (see Chapter 6) . HALTAFALL was used to simulate

titrations in a single phase by calculating the equilibrium concentrations of all

known and/or aBSumed species in equilibrium mixtures, from the overall

concentrations of all the components and from known'or estimated values of

formation constants. The speciation information obtained from HALTAFALL, WaB

used to determine the optimum combinations of reagent concentrations required, to

give optimum formation of a particular species thought to be formed. In this manner

experimental runs were designed (see Chapter 6).

Once stability constants for a particular system were known,

HALTAFALL was used to obtain values of ZM (calc) vs log{L] , as well as the

speciation of the zinc in the form of various complexes within certain concentration

ranges. These values were compared with observed values.

The sensitivity and feasibility of any proposed experimental run was

tested, using HALTAFALL, by estimating the effect on the measured p[H] of a

change of. one log unit in a particular stability constant (see Chapter 6) . An

indication could thereby be obtained of the degree of precision to which the

particular stability constant could be determined.

4.2.2 Use of the program MINI~

In the initial stages of this study the computer program MINIQUAD (41)

was used for the computation of formation constants of complex species in solution,
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from the potentiometric data.

MINIQUAD was superseded by the computer program ESTA (43,44,69,

70), which is described briefly in Section 4.2.3.

4.2.3 Use of the program ESTA

In this study the potentiometric titration data were analysed using the

computer program ESTA (43,44,69,70), which was recently described by Murray and

May (44,70).

ESTA is a flexible suite of programs which allows calculations concerned

with competitive aque0U8 solution equilibria, to be preformed on potentiometric

titration data. ESTA is used to investigate the phenomena associated with chemical

interactions in solution and for simulating equilibrium distributions of chemical

species in solutions.

In ESTA, the calculations are preformed by two main program modules,

namely the simulation module called "ESTA 1" and the optimisation module called

"ESTA 2".

ESTA I, produces results on a point to point basis. ESTA 1 can be used

to determine a single value for almost any of the parameters which characterise a

titration, by setting up and solving the mass balance equations.

The simulation facilities of ESTA 1 fall into two categories namely

speciation calculations and potentiometric titration calcula.tions. The potentiometric

titration calculations category includes the simulation of titrations and analyses of

dat& involving use of the formation function, the deprotonation function, the

point-by-point estimation of single formation constant values, the calculation of

analytical concentrations and the influence of experimental errors in the data.
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ESTA 2 is the optimisation module, which enables values of formation

constants! vessel and burette concentrations, electrode intercept and slope, and

initia.l vessel volume to be refined by a. least squares procedure, for which there is a

choice of objective functions, namely EMF residuals or total electrode ion

concentration residua.ls.

The other modules provide convenient meaJl8 of manipulating data for a

variety of purposes.

The ESTA programs are described in detail in the literature by the

authors (43,44).

ESTA was used as it represents a significant advance over other

optimisation programs, such as MINIQUAD (41) for the following reasons:

(i) ESTA allows a novel approach to be taken to the problem of

species or model selection. The presence of various possible luajor

and/or minor species can be tested for, on a. titration point by

titra.tion point basis, by making use of the BETA task in the

simulation module (ESTA 1). The value of a single possible

species formation constant is optimised to produce agreement

with the observed cell EMF at each titration point. Such

calculations may be repeated for any number of postulated or

trial species. Likely minor species can then be identified by

searching for regions in the titrations where:

(a) a fairly COTl8tant value of log f3 is calculated at a significant.

number of consecutive titration points, provided that in this

range the percentage formation of that complex is rapidly

changing, and,

(b) where the postulated species is calculated to be present in

significant amounts (between approximately 15 and 85%)

and the percentage fornlation of that complex changes
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rapidly.

When a new species is introduced into the model, the

optimisation module-ESTA 2- can be used to optimise

formation constants for all complexes, both major and

minor species, assumed to be present. The entire procedure

can then be repeated, starting with the BETA task in

ESTA 1, to find the next candidate for inclusion in the

model, and ending with an optimisation to incorpora.te the

new member fully into the model. A flow chart showing the

sequence of step8 involved in model selection is presented in

Figure 4.7. The process can continue until the fit between

experimental and calculated data (as defined by the value of

the objective function or the R-factor) can no longer be

improved significantly. In the above situation good

agreement between observed and calculated formation

function and deprotonation function plots, will also be

expected.

(ii) A sophisticated weighting procedure is used to allow for the

propagation of random experimental errors, on the objective

function used for least squares optimisation. This was felt to be

an important consideration in the present study, which involved

measurements made on solutions with reagent concentrations in

the sub-millimolar region.

(iii) The likely effect of experimental errors on the reliability of the

models proposed and the 8880ciated formation constants, can be

investigated directly using the data simulation capabilities of the

program.

(iv) ESTA, unlike MINIQUAD, allows for refinement of titration

p&r&meters such 88 cell calibration COJl8tants and reagent

concentrations as well as formation constants. This facility must

be used with discretion.
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Calculate an optimum
set of va Iues of {3' s
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i.e.OPTIMISATION Yes
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Le. TRIAL SPECIES

Introduce one of the
trial species MpLqHr ..­
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.
~ -L.. ..., •
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selected titration
parameters as well)
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species from the

model
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Have

all the trial
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tested?

·Occasionally it may be found that the "best" of the trial species is not accepted into the model at the optimisation stage.
If so, try the next best trial species etc. until one is ilcccpted (i.e. leads to successful convergence).

Figure 4.7: A flowchart showing the sequence of steps involved
in model selection.
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(v) The program allows corrections to be made for changes in ionic

strength, by using the extended Debye-Htickel expression for

calculation of activity coefficients. This feature can be useful for

investigations in which for some reason, reagent concentrations

become comparable (some 10% or more) to the concentration of

background electrolyte.

(vi) The formation constant optimisation is carried out using the

optimisation module of the program, which uses numerical

methods that are rapid and robust.

Optimisation is carried out with respect to the objective function,

U, using task OBJE of the optimisation lpodule. U is given by:

N
U= 1 E W (E0bs _ Ecalc)2N-np n:l n n 11

where

N=number of experimental points

np =number of parameters simultaneously optimised

E~b& =observed electrode potential at the nth data. point

the calculated electrode potential (from the model) at

the nth data point

Wn =the weighting f&Ctor, obtained from the formula

where' (IV and (lE represent the EStimated random errors in the

titre volumes and electrode potentials, chosen as 0.01 cm3 and 0.1

mV respectively. The derivatives are evaluated analytically.
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(vii) ESTA has excellent graphical capabilities which facilitate

production of plots of observed and calculated formation and

deprotonation functiOIl8.
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CHAPTER FM

CELL CALIBRATION

In this study, the glass electrode potentiometric method was employed to

measure protonation and metal-ligand formation constants. In the glass electrode

potentiometric method, hydrogen ion concentration8 are determined experimentally,

in order to provide information about other chemical species, which occur in the test

solution. It is therefore very important that the glass electrode system is calibrated

correctly and accurately, aB this will affect the determination of the hydrogen ion

concentration.

Despite, or perhaps as a result of the accuracy required in measuring the

hydrogen ion concentrations, considerable differences exist in the way in which glass

electrode SY8teII18 are calibrated (74). Many investigato1'8 still employ buffer

solutions of specific pH values for cell calibration in the determination of formation

constants. This method is unsatisfactory in metal-ligand equilibriwn studies owing

to,

(i) the difficulties involved in relating pH values to hydrogen ion activities

(74),

(ii) the fact that the formation constants then obtained involve a mixture

of concentration8 and activitiee (75), and
(iii) the value of the junction potential term Ej, see equation (5.5), in the

calibrating buffer solutions may differ appreciably from the value

appropriate to the test solutions (76).

A cell calibration technique employed by many researchers who employ

potentiometric methods to measure formation constants, is to use solutions of known

hydrogen. ion concentrations (74,77), This is often done by titrating strong acid

solutions with strong alkali solution8 and plottin~ the cell equilibrium EMF at each

titration point against the corresponding values of loglO[H+], where [H"] denotes the

free hydrogen ion concentration. The procedure aims to obtain a linear calibration
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curve for the electrode system. Variation to this method exists, in which the ligand

rather than the hydroxide ion is used as the base (72,74), this method could be

described M the strong acid-weak base calibration method.

Some rather sophisticated methods have been developed that allow for

the values' of the ligand pKa to be refined simultaneously with refinement to the

gl888 electrode pa.rarneters (74).

5.1 THE EMF OF CELLS HAVING A GLASS-INDICATING
ELECTRODE

The electrochemical cell used in this study consisted of a test solution

surrounding a gl888 electrode and in electrical contact with a reference electrode

through a salt bridge. The cell can be represented as follows:

(-) RE I SB I test 8olution I glass electrode (+) ,
. p l

where

RE =reference electrode

=AgJAgCl/O.Ol mol dIn-a et, 0.09 moL dIn-a 0«)4, 0.10 mol
dm-aNa,+.

SB =salt bridge =0.10 mol dm-3 NaC«>4'

l represents the liquid junction at the interface between the salt

bridge and the test solution.

p represents the liquid junction at the interface between the salt

bridge and the reference electrode.

The equilibrium EMF of electrochemical cells involving electrochemical

species in solution, is primarily a function of the activities of the electrochemical

species and therefore alao of the activity coefficients and concentrations of these

species. When the composition of the equilibrium solution is varied, the EMF of the
cell vanes.
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In the cell used in this study there are four contributions to the

measurable potential difference between the glass electrode and reference electrode.

One arises from the reference electrode. The potential of the reference electrode is

independent of the composition of the test solution and so ma.y be represented as a.

fixed potential, Eref' The glass indicating electrode contributes to the measurable

potential difference between the glass electrode and the reference electrode. Eg

represents the potential of the gl888 indicating electrode. The potential differences

generated across the boundaries p and t will depend on the activities of all the

chemical species on either side of them. These boundary potentials are represented

by Ep and Et Ep is unaffected by changes in the test solution and should remain

constant. The measured EMF of the cell is given by the equation:

(5.1)

Equation (5.1) can be simplified to give (79);

(5.2)

where, Ej i8 the surn of the junction potentials generated acr08s the liquid

boundaries between the reference electrode and salt bridge

solutions and the salt bridge and test solutions.

The potential difference acr088 a junction, J, is given by (80):

(5.3)

where,

R represents the gas constant.

T represents the absolute temperature.

F represents Faraday's constant

Zi represents the charge number of the ith'ionic species.

Ti represents the transport number of the ion i,

Ci represents the concentration of ions i in mol elm-s,

11 represents the concentration scale activity coefficient of ion i.



71

1 and 2 represent th~. bulk solutions between which the boundary is formed.

GI888 electrodes, in general, are found experiment&lly to exhibit a Nernstian or near

Nernstian response over a range of concentrations, provided that the solutions are

buffered with respect to the concentration or activity of hydrogen ions (77).

Therefore equation (5.2) may be written as:

(5.4)

where

E~ is the glass electrode potential at unit activity of hydrogen ions.

aa represents the hydrogen ion activity.

As long 88 ionic strength of the test solution remains constant, thereby

holding activity coefficients fairly constant, the activity of free hydrogen ions, ~,

should be proportional to concentration. Thus by collecting together all the

constants, equation (5.4) may be written 88 (61,74,TI-81):

where

0,
Ecell =Ecell + klog(H+] + Ej (5.5)

Ec:ell represents the cell potential for a cell containing a glass

indicating electrode.
0,

Eeef' represents a constant, which depends inte~alia on the activity

coefficient of the ions present, which are presumed to be

constant at constant ionic strength. It is usually determined

in-,itu during each titration in acid solution.

Ej represents the sum of the liquid junction potentials generated across

the junction separating the reference electrode filling 8olution

from the salt bridge, and the junction separating the salt

bridge from the test solution. The former junction potential
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should remain constant during the course of a titration, whereas

the latter contribution may well change as the composition of

the test solution cha.nges during the titration. In order to keep

Ej more or less constant through a titration, the concentration

of the inert background electrolyte must be much higher than

the concentrations of reagent ions, particularly ions of high

mobility such M H+ and OH-. In practice, this places limitations

on the degree to which one may approach the two extremes of

the pH scale while still maintaining linearity of the Ecell vs

log[H+] plot.

k represents a. constant (termed the "electrode calibration slope")

which generally has a value close ~o (but usually some­

what lower than) that expected from the Nernstian term,

i.e. 2.3026 RTIF.
[H+] represents the concentration of free (uncomplexed) hydrogen ions

in solution.

The form of equation (5.5) is the form that is appropriate to use of the

glass electrode as a concentration probe (aB distinct from an activity probe).

The liquid junction potentials in the cell should be kept as constant as

possible during the course of a titration and preferably also as small as possible.

These conditions can be achieved by making up all solutions used in the experiment

to the same ionic strength, by using the same inert background electrolyte. The

concentration of the inert background electrolyte must be much higher than the

concentrations of the reagent ions, particularly ions of high mobility, such as H+ and

OH- ions, so tha.t EJ remains more or less constant, even though the concentrations

of the reagent ions ma.y change during the titration. This ensures that the solutions

on both sides of the junction have the same ionic strength, thus keeping EJ as small

as possible and also keep EJ as constant as possible because as the experiment

proceeds, the ionic composition of the solutions change negligibly by comparison.
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The quantity of inert background electrolyte required to make up a

solution to the required ionic strength can be obtained with the aid of the following

equation:

(5.6)

where

I represents the ionic strength of a solution.

i represe ts the ith ionic apeciea.

Ci represents the concentration of the ith species in mol dm-3.

Zi represents the charge number of the ith ionic species.

01 .
When Ej is held constant, it can be incorporated with Ecell' so that equation (5.5)

can be rewritten 88 (74):

Ecell =E~ell +k log[B+] (5.7)

If the two solutions on either side of the junction contain appreciably

different concentrations of ions, particularly ions of hi~h mobility, it may not be

possible to incorporate the junction potential term into the constant E%ell as

indicated above. In such situations the value of Ej is best determined experimentally

as a function of the composition of the solution (78).

A limitation to the usefulness of equation (5.5) rests in the fact that

reliable cell EMF's can only be measured in cells of this kind when the solution is

reasonably well buffered with respect to hydrogen ions or hydroxide ions - either 88

a result of concentration buffering or the existence of equilibria in solution which can

readily generate or absorb these species. Thus, for example, it has been noted (74,82)

that a linear Ecell vs log[B+) response can only be obtained in the narrow ranges

2.3 < p[H] < 2.9 and 10.8 < p[H] < 11.8, where p[H] represents -log[H+], when

solutions of Btrong acid and strong alkali are used 88 calibrants. The ligand itself can

be used together with strong acid as a calibrant (72,74), in which case calibration

points can be obtained at values of p[H] in the vicinity of the value/s of the pK. of
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the ligand. In metal-ligand-hydrogen ion systems the solution p[H] may lie well

outside the range over which calibration points are obtainable. It is virtually

universally 88Sumed by workers in this field that calibration equations of type shown

in equation (5.5) can be used in circumstances of this kind to interpolate/extrapolate

into such regions. It is the view of ·the author that for applications in which precision

of measurement is critical

(i) the cell should be calibrated in situ at the beginning of each potentiometric

titration in order to avoid undue disturbance of the liquid junctions during

electrode transfer, cell rinsing etc.

(ii) calibration procedures involving use of strong acid calibrants only, together

with an assumption of Nernstian electrode response,,. are unacceptable.

(iii) strong acid-strong base calibration, with determination of the electrode

calibration slope k is acceptable provided measurements are made within or

between the P{H] ranges in which the response is shown to be linear. In the

non-linear region of p[H] ~ 2.3 or p[H] ~ 11.8, the dependence of Ej on [H+]

must be determined experimentally.

(iv) calibration procedures involving strong acid, strong base and ligand solution

(a weak bMe, u8U&ly) are probably the best, at least in principle. In

practice such procedures can be extremely time-consuming. Considering the
0'

unpredictable time-dependence of Ecell' very lengthy titrations are to be

avoided if possible. Some workers (83) deal with the problem of

time-coJl8UlDing calibration procedures by carrying out a full cell calibration

only occasionally, and carrying out a one point check on a daily basis to
0,

monitor d&ily changes in Ecell. Naturally, by this procedure, in situ

calibrations are not possible.

Irrespective of what reagents are used or p[B) ranges covered in the

calibration step, cell c&libration generally requires evaluation of various adjustable

parameters appearing in, or implicit in, the electrode equation. These can include
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some or all of the following quantities:-

Ot
(i) the calibration "intercept" Ecel1,

(ii) the calibration slope k,

(iii) any parameter required to describe the dependence of Ej on [H+] , e.g. ionic

conductances of species in the test and bridge solutions if the Henderson

equation is used (84) or a simplified form of that equation,

(iv) the va.lue of the ionic product of wa.ter Kw, which is used to calculate values

of [B+] from analytical values of [OB-] when excess sodium hydroxide is used

as a calibrant,

(v) Some authors (70) advocate the introduction of additional terms in the

electrode equation to take account of changing contentrations of interfering

ions in solution. This involves the introduction of ion-selectivity coefficients

as additional parameters,

(vi) In some highly sophisticated calibration procedures reported recently (74,85)

the concentrations of some or all of the reagents used in the calibration

experiment can be optimised (varied slightly) to produce an improvement of

fit to the electrode equation. Interestingly, the above authors seem to insist

that the electrode slope k must be set at the Nernstian value. In pra.ctice

however, the electrode slope k and the ionic product of water Kw and to a

lesser extent the concentration of the calibrant solutions used, are strongly

correlated so that deviations of the slope k from the Nernstian value can be

neatly incorporated into the optimised values of Kw and the reagent

concentrations. The actual values produced by this technique for quantities

like Kw should be treated with some circumspection.

5.2 METHOD OF CALCULATING THE FREE HYDROGEN ION
CONCENTRATION

In potentiometric titration studies using glass electrodes, the value of the

free hydrogen ion concentration, [H+] , is very important for calculation purposes.

The value of [H+] in a strong acid-strong base titration is affected by the

concentrations of the acid and hydroxide solutions used and any impurities present
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in these solutions, which will interfere with the acid-hydroxide equilibriwn at a

given titration point. Dissolved carbonate in the hydroxide solution is an example of

an impurity, which will affect the value of [H+]. In this study J despite the many

precautions taken, (see Section 2.1.2 and 3.1), the sodium hydroxide solutions used

were found to contain varying amounts of dissolved carbonate impuri ty (at the 1% ­

5% level). Owing to the protonation equilibria

H+ +OO~- • HOOs

H+ +HCOa *H2COa *H20 +C02

the presence of carbonate impurities will affect the calcula.ted value of [H+] during

strong acid-strong base titrations. Since the total carbonate concentration can be

estimated by Gran plots of the data obtained in the calibration titratioIlS

(59-61,63), it is possible to correct for the effect of carbonate on the calculated value

of [H+].

Since the reaction vessel was well flushed with N2 during the calibration

titration it was assumed that

(i) at p[H] values less than 10, all Coi- in the system is flushed out of the system

by virtue of the equilibria

or

OOa- +Hi) • 20H- +0021 (5.8)

(5.9)

being driven essentially completely to the right within the time scale of the

measurements (72), with consequent generation of two moles of OH- or

removal of two moles of H+ per mole of COj- originally present,

(ii) at p[H] values of greater than 10, the remaining COi- (in the instance of

titration of acid with alkali), or the coi- originally present (in the instance of
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titration of alkali with acid) is involved in the equilibriwn

(5.10)

the effect of which can be calculated from a knowledge of the corresponding

equilibrium constant.

The selection of p[H] =10 as the cut-off point in this procedure is a

practical if somewhat arbitrary measure (72) and is subject to an Wlcertainty of

N 0.5 pH unit. The error incurred as a result of this uncertainty is however second

order and negligible in these experiments. In retrospect, it is perhaps advisable not

to flush the solution continuously with N2 when sodium hydroxide is used as titrant

or titrate, and pH values of 10 or higher are involved!

The value of [H+] for various points during a strong acid-strong base

titration were calculated in the following manner:

(i) When a solution containing background electrolyte and acid is titrated with a

sodium hydroxide solution containing some dissolved carbonate, cot, the

initial data points are below a p[H] value of 10. As mentioned above, below a

p(H] value of 10 and in the presence of an N2 gas stream, all the carbonate

added to the titrate will be converted to carbon dioxide, CO2 (see equation

(5.8) and (5.9)). The equilibria are driven to the right by constant removal of

C02 in the N2gas stream. This means that for every CO~- ion present, two

H+ ions would be used to form a water molecule, so the value of [H+] would be

decreased by the presence of COa- ions in the hydroxide titrant. Therefore

below a p(H] value of 10, twice the carbonate concentration, [CO!-], has to be

deducted from the total ~ydrogen ion concentration, HT' to obtain the true

value of [H+]. In this study, when carbonate was present in the hydroxide

titrant and the p[H] value was below 10, [H+] was calculated using the
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following equation:

(5.11)

where

VA[H+]A - VB[BASE]B
- V

T
, (5.12)

VA =Volume of acid titrate.

[H +]A =Initial concentration of acid in the titrate.

VB =Volume of titrant added.

[OH-lB = Concentration of hydroxide ion in titrant.

[COa-]B =Concentration of carbonate ion in titrant.

VT = Total volume in reaction vessel.

[BASE]B = Total concentration of base in the titrant obtained from

the Gran plot method.

=[OH-lB +2[COi-lB

When a solution containing background electrolyte and acid is titrated

with a hydroxide solution containing some dissolved carbonate, and sufficient titrant

has been added to reach a p[H] value of 10, the carbonate added subsequently will

remain in solution. In this study at p[H] values equal to 10 and above, the values of

[H+] were calculated using the computer program HALTAFALL (73), 80 that the

effect of the carbonate was accounted for. The computer program data file was set

.up by treating the titrant volume that gave a p[H] value of 10, as the beginning

point of a titration, such that at this point VTITRANT = 0, [COi-]TITRATE = 0

_ VA[H+] - VX[BASE]B
and [OH ]TITRATE =--~V---­

TX
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where

vX =Volume of titrant added to reaction solution to get a p[H]

value equal to 10.

VTX =Total volume in reaction vessel at the point where the

p[H] =10.

Treating the data in the p[H] region of 10 and above as a separate

titration when using HALTAFALL, instead of combining it with the acid data

points allows the CO~- added to the titrate in the p[H] region below 10 to be totally

lost from the system, and not to be considered in the calculation of [H+] for points

above a p[H] value of 10.

(ii) When a solution containing background electrolyte and hydroxide which

contains dissolved CO~- is titrated with an acid solution, the initial points

will be above a p[H] value of 10. In this study the computer prograrn

HALTAFALL was used to calculate the value of [H+] for points equal to or

above a p[H] value of 10, so that the effect of the presence of dissolved COa­

could be accounted for.

At p[H] values of less than 10, when sufficient hydrogen ions are present,

all the carbonate present in the reaction solution would be converted to C02 gas and

removed from the system in the N2 gas stream. The value of [H+] for points below a

p[H] value of 10 was calculated using equation (5.11).

Using the methods described in this section to obtain values of [H+] at

each titration point in the cell calibration procedure, the effect of CO~- present in

the hydroxide solutions was corrected for.

5.3 CHECK FOR LINEARITY OF ELECTRODE RESPONSE

A number of experiments were carried out at a temperature of 25.0°0 and

an ionic strength of 0.10 mol dIn-s in order to check for linearity of electrode

response, i.e. to check that Eecl l varies linearly with p[H], in accordance with



80

equation (5.7). This is tantamount to determining the range/s of p[H] values in

which the junction potential term Ej is effectively a constant, and the solutions are

sufficiently concentration buffered to produce reliable cell EMF readings (see Section

5.1). The experiments described in this section also gave an indication of the order of

concentrations of acid and hydroxide solutions that could be used for cell calibration

purposes.

The ionic strength of all solutions used in these experiments were ma.de

up to 0.10 mol elm-S by the use of NaC!), as inert background electrolyte.

The experiments, in this section, were carried out in two ways:

(i) A known volume of NaC!)" (0.10 mol dm-S) , was titrated with volwne

increments of BC!)4 solutions of known hydrogen ion concentrations. A
sequence of HC!)4 titrant solutions of increasing HCtU4 concentration was

used. The concentration of the titrant ranged from about 1.0 x 10-3 mol dm-3

to about 7.5 x 10-2 mol dm-s. In these runs the cell EMF was recorded using

two glass electrodes, a RADIOMETER G202B, (low sodium ion error

electrode), and a RADIOMETER 0202C electrode. Representative data are

given in Table 5.1

(ii) A solution made up of a known volume of NaC!)4 (0.10 mol elm-3) and a

known volume of HClO, of known hydrogen ion concentration, was titrated

with volume increments of sodium hydroxide solutions. A sequence of NaOH

titrant solutions of decreasing hydroxide ion concentration was used. The

hydroxide ion concentration of the titrant solutions ranged from about 1.0 x

10-2 mol dIn-a to about 1.0 x 10-3 mol dIn-a. The concentrations of the

hydroxide solutions was determined by Gran's method, (see Section 4.1.3).

ARADIOMETER G202B electrode
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TABLE 5.1 Data obtained from the titration of NaCL04 (0.10 mol dm-3) with acid
solutions. (I =0.10 mol dIn-S).

Cone. of hydrogen Volume of titrant p[H] Ecell/mV
ions in the titrate, solution added. (G202B) (G202C)
rn+Jo, and titrant, V/ems

+T and initial volume,

Vo

[H+]o = 0mol dm-3 2.00 4.41 -22.4 -4.4
3.00 4.25 -4.9 +12.7

[H+]T = 1.002 x 10-8 mol elm-s 4.00 4.13 +4.3 +22.8
5.00 4.04 +11.4 +29.8

V0 = 50.00 em3 6.00 3.97 +16.8 +35.1
8.00 3.86 +24.8 +43.0
9.00 3.82 +27.9 +46.0

10.00 3.18 +30.6 +48.6

[H+]o =1.669 X 10-4 mol dm-a 2.00 3.29 +61.4 +19.2
4.00 3.08 +14.3 +92.0

[H+]T =1.075 x 10-2 mol dm-3 5.00 3.01 +78.7 +96.4
6.00 2.95 +82.4 +100.0

V0 =60.00 ems 8.00 2.85 +88.1 +105.6
9.00 2.81 +90.4 +101.9

10.00 2.78 +92.5 +109.9

[H+]o = 1.678 x 10-3 mol dm-S 2.00 2.43 +111.9 +129.2
4.00 2.25 +121.6 +138.8

[H+]r =7.522 x 10-2 mol dIn-a 5.00 2.18 +125.0 +142.2
6.00 2.13 +121.9 +145.0

~0 = 10.00 ems 8.00 2.04 +132.3 +149.5
9.00 2.00 +134.2 +151.2

10.00 1.96 +135.7 +152.1

*Cone. = Concentration.



82

\
140 \

q;,~
0

130 ~
0\

120 ~

\

110

100

90

80

70

60
\> \E 50'-.. \r-1

r-1

\(1)
() 40

\w

30 ~
0~

<:>

20 \
~\

10 0
\

0 \
0

2.0 3.0 p[H] 4.0 0
\

5.0
-10

\
\-20

0 \
-30 \

\
-40

Figure 5.1: Plot of cell EMF as a function of p[H] obtained when a

solution of background electrolyte is titrated with acid

solutions.



83

was used in this series of experiments. Representative data are given in Table 5.2.

Plots of Ecell against p[H], for the two kinds of titrations described are

shown in Figures 5.1 and Figure 5.2 respectively. Only one set of data from each

method was plotted for the sake of clarity.

From the results given in Table 5.1 and shown in Figure 5.1 it is

concluded, that when a glass electrode is calibrated by titrating a NaClO4 (0.10 mof

dm-3) solution with acid solutions of increasing concentrations, as in this study, a

linear Ecell against p[H] response is obtained in the region

2.4 ~ p[H] ~ 3.5 .

Below this p[H] range, deviations can be attributed to changing values of

Ej which are no longer negligible. Above this range, deviations can be attributed to

inadequate concentration buffering in solutions that are very dilute in hydrogen ions

(74,82).

The results in Table 5.2 and shown in Figure 5.2 confirm the results

obtained by method (i). Additionally the results show that when a dilute acid

solution, i.e. 3.0 x 10-4 mol dm-3 HC!)4, is titrated with a dilute hydroxide solution,

of about 1.0 x 10-3 mol cim-3, the p[H] range can be extended to 4.0, in the

low p[H] range. In the alkaline region the corresponding range appears to be

10.0 < p[H] < 11.5.

The results of these experiments indicate that in order to obtain linear

Ecell against p[H] responses in the strong acid-strong base calibration procedure, the

concentra.tion of the titra.te and titrant solutions should be in the order of 1.0 x 10-2

mol dm-3, before introduction into the reaction vessel.

Other authors (74,82) have found that the linear response occurs in the

p[H] ranges of 2.3 to 2.9 and 10.8 to 11.8.
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TABLE 5.2 Data obtained from the titration of a solution of background

electrolyte and acid with hydroxide solutions. (1 =0.10 mol drn-3).

Concentration of reactants Volume of titrant p[H] Ecell/rnV
in the titrate ~ ]0' solution added
and titrant, [ T' and V/em3

initial volume, Vo

[H+]o =1.689 X 10-3 mol dm-3 0.00 2.77 +91.5
1.00 2.82 +89.0

[OH-]T =1.009 x 10-2 mol drn-3 2.00 2.87 +86.3
3.00 2.92 +83.4

Vo=70.00 cm3 4.00 2.98 +80.1
5.00 3.04 +76.3

6.00 3.12 +72.0
7.00 3.21 +66.9
8.00 3.32 +60.6

9.00 3.46 +52.3

[H+]o =3.463 X 10-4 mol drn-3 1.00 3.48 +51.1
2.00 3.50 +49.9

[OH-]T =1.008 x 10-3 mol dm-3 4.00 3.55 +47.2
6.00 3.60 +44.3

V0 =79.00 cm3 8.00 3.65 +41.2
10.00 3.71 +37.8
12.00 3.78 +34.0
14.00 3.85 +29.8
16.00 3.93 +25.0
18.00 4.02 +19.3
20.00 4.14 +12.3
22.00 4.29 + 3.2
24.00 4.51 - 9.5
26.00 4.96 -36.3
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5.4 METHODS OF CELL CALIBRATION USED IN THIS STUDY

In this study the glass electrodes were calibrated, in situ, at the beginning

of each experimental titration. This was necessary as it is known that the standard

potential of the glass electrode membrane varies from day to day and that it is

difficult to reproduce liquid junction potentials with adequate precision (74).

In this study all the glass electrodes used were designated by a letter, so

that the electrode used in an experiment could be identified. All solutions in this

study were made up to an ionic strength of 0.10 mol dm-3 by using NaC!)4 as

background electrolyte. Hydroxide and dissolved carbonate concentrations were

determined in situ using Gran's method (see Section 4.1.3). All experiments were

carried out at a temperature of 25.0°0.

Two approaches were used to calibrate the glass electrodes in this study.

The methods used were:

(i) The first method entailed titrating a solution contaInIng background

electrolyte and a strong base (approx 1 x 10-2 mol dm-3) with a standardised

solution of a strong acid (approx. 1 x 10-2 mol dm-3). Depending on the

solution p[H] value required at the end of the calibration stage of the

experiment, the order of the titra.tion was reversed, such that a solution

containing background electrolyte and strong acid was titrated with a

solution of a strong base. NaOH was used as the base and HCl0 4 was used as

the acid. In some titrations the concentration of the acid used was

approximately 1x 10-3 mol dm-3.

The equilibrium cell EMF was recorded after addition of each increment of

titrant. Equilibrium cell EMF values were recorded in both the high and low

p[H] regions.

(ii) In the second method a similar procedure was adopted, except that more

dilute acid solutions (approx. 1.0 x 10-3 mol dm-a) were titrated with more

dilute hydroxide solutions (approx. 1.0 x 10-3 mol elm-3) , to calibrate the

glass electrodes.
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Initially, the second method was used, because of the fear of generating

large volumes of HCN(g), when NaCN was added to the reaction vessel, after the

calibration procedure WaB completed.

The Gran plot method of equivalence point determination (see Section

4.1.3) was used to determine the concentration of the NaOH solution and that of any

carbonate contamination present in it. The value of [H+], thus p[H] at each point

during the titration was calculated as described in Section 5.2

The data from the two calibration methods were treated differently, as a

consequence of the findings described in Section 5.3.

In the first calibration method, in which relatively concentrated acid and

hydroxide solution were used, the equilibrium cell EMF, Ecell' values were plotted

against the corresponding p[H] values, in both high and low p[H] regions, taking into

account the findings described in Sections 5.2 and 5.3. A typical plot of Ecell against

p[H], for the calibration of a glass electrode using perchloric acid and sodiwn

hydroxide solutions, is shown in Figure 5.3. Representative data for the plot is given

in Table 5.3. The va.lues of the constants Egell and k, required for equation (5.7)

were obtained by doing a t11east-squarestl best fit calculation on the points lying on

the linear part of the Eecll versus p[H] curve. Constant k was given by the gradient

of the line and constant Egell by the intercept of the line at p[H] =O. For the data

given in Table 5.3 and plotted in Figure 5.3, Egell =251.78 mV and k=57.58 mY.

The above calibration method has the advantage that a wide range of

p[H] values is spanned, i.e. the calibration procedure includes points both in the high

and low p[H] regions, and Egell and k can be obtained with greater accuracy than

just using points from the low p[H] region.

For the second calibration method In which relatively dilute acid

solutions were titrated with dilute hydroxide solutions, all data outside the p[H]
region of 2.8 to 4.0 was discarded as they were found to lie outside the linear region

(see Section 5.3). The value of the constant k was determined for each electrode by
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TABLE 5.3 Data obtained when a cell containing a glass electrode is calibrated by

titrating a solution containing background electrolyte and acid with a

hydroxide solution. (1 = 0.10 mol dIn-3).

Concentration of reactants Volwne of titrant p[H] Ecell/mV
~n the titrate, [ ]0, and solution added
~itrant, [ ]T' and initial V/cm3

!volume, Vo

0.00 2.88 + 86.0

"H+]o =1.320 x 10-3 mol dm-3 2.00 3.03 + 77.4

3.00 3.12 + 72.0

[OH-]T = 9.990 x 10-3 mol dm-3 4.00 3.24 + 65.4

4.50 3.31 + 61.3

rv 0 =57.00 cm3 5.00 3.39 + 56.6

5.50 3.49 + 50.9

6.00 3.62 + 43.6

9.00 10.13 - 331.5

9.50 10.25 - 338.4

10.00 10.35 - 344.2

11.00 10.49 - 352.2

12.00 10.59 - 358.0

13.00 10.67 - 362.6
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taking the mean of all k values obtained for that electrode, when it was calibrated

using more concentrated acid and hydroxide solutions. The value of Egell was

obtained by solving equation (5.7) for E~el1, for each calibration data point in the

p[H] range 2.8 to 4.0, making use of the value of k obtained as detailed above. The

E~ell value for a particular calibration run was obtained by taking the mean of the

E~e" values obtained for the data points in the p[H] range 2.8 to. 4.0 for that

particular run.

The methods used in this study for the determination of the calibration

constants k and Egell are felt by the author to be more accurate and justifiable than

some methods that have been used in the glass electrode potentiometric field. The

methods in question involve the assumption that glass. electrodes behave in a

Nernstian fashion and thus involve the assumption that k has a value of 59.16 mV at

25°0. The value of Egell is then obtained using a few points in the acid region.

5.5 CRITERIA FOR A'ITAINMENT OF EQUILIBRIUM

The potentiometric titration method for determination of formation

constants requires that electrochemical equilibrium be attained at each point during

the titration. Thus, sufficient time must be allowed £or:-

(i) the glass electrode to attain its equilibrium potential at any particular

solution p[H],

(ii) chemical equilibrium to be attained in the test solution.

A criterion for equilibrium adopted in this study was that the cell EMF

should remain constant (to :t 0.1 mV) for a minimum period of 5 minutes. To meet

this condition, "equilibration" times varied from about 6 minutes per titration point

at low p[H] values (p{H] =6 or below) to about 90 minutes per point at high p[H]

values (p[H] =8 to 11). The latter period seemed rather long and suggests that

chemical equilibrium may be approached slowly at high p[H] values - although glass

electrodes are known to require long equilibration times at high p[H].



91

As a further test for attainment of equilibrium, the direction of the titration was

occasionally reversed, i.e. after the total required volume of a sodium hydroxide

. titrant had been &dded, an acid titrant would then be used to lower the p(H] once

again, in a step-wise fashion with cell EMF readings being taken at a number of

intermediate points. If equilibrium had been attained at each titration point then
- -

calculated values of the formation function ZH or ZM (defined in Section 4.1.1)

should have the same value for both 'lforward" and "reverse" titrations at any

particular value of p[H] or log A re8pectively (also defined in Section 4.1.1). This

test for attainment of equilibrium is valid provided that no polynuclear or

hydrolysed complex species are formed.
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CHAPTER SIX -

SELECTION OF EXPERIMENTAL CONDITIONS

When investigating hydrogen ion-ligand, metal-ligand or metal-ligand­

hydroxide ion systems, data should be collected over as wide a concentration range

as possible, especially if, as in this potentiometric investigation, the concentration of

only one of the reacting species, namely the free hydrogen ion, [H+], is measured.

When determining the concentration ranges to be covered in a medium of

ionic strength 0.10 mol dIn-3, the following two factors were considered:

(i) If possible, each of the species likely to be formed should predominate at some

stage during the potentiometric titration.

(ii) In the p[H] range covered, where p[H] = -log[H+], the measured p[H] must be

a sensitive function of the stability constants to be determined.

6.1 DETERMINATION OF THE PROTONATION CONSTANT FOR
THE OYANIDE ION

The p[H] of the solution is a reasonably sensitive function of the

protonation constant, pKa, of a ligand when the p[H] lies in the region:

pK& - 1< p[H] < pK& +1

From the reported pKa values for cyanide (see Table 1.3), it can be

assumed that the important p[H] region for the cyanide ion is between 8.0 and 10.5.

This investigation involved working over a wide p[H] range, particularly

at high p[H] levels. It was decided, for safety reasons, not to work below a p[H] of 6,

as this would lead to the generation of large quantities of hydrogen cyanide vapour,

which would also introduce an error in the calculated concentration values for the

hydrogen cyanide in solution, even when working in a sealed system.
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.,
Experiments were carried out using a DRAGER gas detector and

hydrogen cyanide-detecting tubes to estimate the hydrogen cyanide content of the

vapour space above the test solution in the cell, at various p[H] levels. These showed

that with the nitrogen flow turned off and at a p[H] of 6.7, approximately 0.14% of

the total amount of hydrogen cyanide present was in the vapour phase. This

percentage increased ra.pidly as the p[H] decreased.

It was decided to titrate an acid solution into a solution of cyanide,

(CN-), ligand having an initial p[H] value of approximately 9.6. The ligand solution

was added to the cell after the calibration procedure had been completed.

Simulated titration runs in which reagent con~entrations were varied,

were carried out using HALTAFALL (73), in order to select reagent concentrations

for experimental titrations. The following stability constants, obtained from the

literature (86) and valid at 25°C and I = 0.1 mol dm-3 were used aB estimates in

HALTAFALL.

13011 = 1.0233 x 109

Kw =1.6596 x 10-14

Table 6.1, below indicates the reagent concentrations used In

HALTAFALL to calculate two sets of species distributions.

TABLE 6.1 Reagent concentrations used in HALTAFALL for simulated

titrations involving the protonation of cyanide

Calculation Cone. of Hydr~gen ion Cone. of Hydr~gen ion
No. cyanide in cone. In cyanide in cone. In

titrate titrate titrant titrant
Irnol drn-3 Irnol drn-3 Irnol drn-3 Imol dm-3

1 2.7 x 10-3 6.7 x 10-4 0.0 1.0 x 10-2
2 2.5 x 10-3 5.9 x 10-4 0.0 1.0 X 10-2

Cone. =Concentration.



94

The upper limit to the concentration of the acid solution that could be

used in the titrations, was determined by the need to avoid large changes in the

ionic strength during a titration.

The aim of these simulated titrations, using HALTAFALL, was also to

determine whether the measured p[H] would be a sensitive function of the stability

constant to be determined.

The formation curve for the hydrogen cyanide complex obtained from

calculation No. 1 is shown in Figure 6.1. The sensitivity of the measured p[H] to

changes in the hydrogen cyanide stability constant W88 tested by changing the

logarithm of the constant, up and down by one log unit. H~LTAFALL was used to

obtain the p[H] change resulting from the change in the constant. The calculated

p[B] values were plotted against the volume of titrant added. The plot for

calculation 1 is shown in Figure 6.2. Since the digit&! voltmeter that was to be used

was precise to ± 0.1 mV and 6 mV corresponds to a change of 0.1 of a p[H] unit,

Figure 6.2 indicates that there should be no difficulty in determining the pKa of

cyanide, under the simulated conditions. This kind of calculation can of course only

be usefully carried out if fairly good estimates for the desired stability constants are

available.

6.2 D~ERMINATION OF STABILITY CONSTANTS FOR THE

FORMATION OF COMPLEXES OF Zn2+ WITH THE LIGAND eN­

AT LOW p(B]

When determining the stability constants for complex formation of Zn2+

and ON-, it is possible to work over a fairly large pH range, because the Zn2+ does

not hydrolyse readily (87-94). The hydrolysis reaction of Zn2+ can be represented

by:

Zn2++nH20 =Zn(OH)~2-n)+ +oH+ (6.1)

This means that if hydrolysis occurs, a lower p[H] reading will be
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obtained than would have been the case in the absence of hydrolysis. A lower p[H]

reading will also be recorded if any of the zinc cyanide complexes hydrolyse to form

ternary complexes.

The proposed titrations to determine or check reported values (see Table

1.1) of the stability constants for the reactions of Zn2+with CN-, a.t various metal to

ligand rati08, were based on work carried out by Persson (21). These titrations were

carried out by titrating the zinc cyanide solution with acid solutions. Some of the

initial experiments in this study were designed to maintain the total metal and total

ligand concentrations constant throughout the runs, in order to facilitate a. decision

as to the presence or absence of polynuclear or ternary complexes. This was

accomplished by the simultaneous addition of more than one titrant solution during

a given titration.

Species distributions for the proposed Zn2+/CN- titrations were calculated

using HALTAFALL, on the basis of the following constants (21);

Pno =2.20 x 106

Pl20 = 1.06 x 1011

P130 =4.80 x 1016

f1140 =3.70 x 1021

and the solubility product, K,o, for Zn(CN)2

KIO Zn(CN)2 =4.20 x 10-16 (95)

All these constants were valid at 25°0 and I =3.0 moL dm-a, No f3 values

were available for all four species at an ionic strength of 0.1 mol dIn-a at 2500.

The Zn2+ hydrolysis constants (86) and the K5() for Zn(OH)2 (95) were

also included in the HALTAFALL calculations, in order to ascertain whether any of

the zinc hydroxide complex~ would be formed in appreciable concentrations.
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HALTAFALL calculations for the proposed titrations showed that the

measured p[H] was sensitive to changes in the Zn(CN)~ 2-n) +, (n =1 to 4), stability

constants, (see Figure 6.3), and so the glass electrode could be used in determining

these stability constants.

Species distribution calculations for the proposed titrations using

HALTAFALL, showed that the complexes should be formed in significant amounts.

Figure 6.4 shows the species distribution plot for one of the proposed titrations.

The HALTAFALL calculations confumed that for the p[H] range

encountered in the proposed titrations, hydrolysis of Zn2+ should be insignificant.

6.3 DETERMINATION OF STABILITY CONSTANTS
FORMATION OF TERNARY COMPLEXES OF
LIGANDS CN- AND OH- AT HIGH p[H]

FOR THE
Zn2+ WITH

One of the aims of this investigation was to detect the formation of

ternary complexes of the· form Zn(CN)q(OH)r if these are formed in solution. A

potential problem arises from the fact that both the cyanide and hydroxide ions are

quite strongly basic. The experimental method can only succeed if ligand

replacement reactions such as

Zn(CN)i- +OH-. Zn(CN)3(OH)2- +CN-

leads to a change in the p[H] of the solution that is large enough to be measured

precisely with the procedure used. It is essential to know, at the outset, whether the

proposed titrations can achieve the desired aim.

One way of 88sessing the viability of experiments such 88 these, is to

estimate a realistic value for the logarithm of the formation constant log fi of a

ternary complex such as Zn(CN)3(OH)2-, and to calculate expected solution p[H] (or

cell EMF) as a function of volume of titrant added. The estimated value of log pcan

then be changed by 1 log unit and the calculation repeated. The concentrations of
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reagents used and the p[H] range covered must be such that the p[H] values

predicted in these two titrations differ appreciably from one another.

These experimental runs involved titrating the zinc/cyanide solution in

the cell with hydroxide instead of acid (see Section 6.2).

Before HALTAFALL could be used to calculate the species distribution

for the proposed Zn2+/ON-/OH- titrations, it was necessary to estimate stability

constant values for possible Zn(CN)q(OH)r complexes, which could form at high

p[H] values. There are a large number of methods of estimating stability constants

(96-103). The estimation method used in this study was a statistical method

proposed by V.S. Sharma and J. Schubert (96).

The estimated values for constants obtained by this method are given in

Table 6.2.

TABLE 6.2 Stability constant values for mixed ligand complexes estimated using

the statistical method proposed by V.S. Sharma and J. Schubert

log ,814-1 22.6

log 1313-2 21.2

log P13-1 19.6

The values obtained by the Sharma. and Schubert method were used in

conjunction with stability constants used in Section 6.2 to calculate the species

distribution and sensitivity of the measured p[H] to changes in the stability

constants for the relevant species.

A result for a typical simulated titration calculated by means of the

HALTAFALL program is shown in Figure 6.5 It can be seen that an increase of 1

log unit in log [313-1 results in a predicted EMF decrease of approximately 0.15 p[H]

units (or approximately 9 mV) over the titration. This is an acceptable, but by no

means high, sensitivity of measured cell EMF on the value of log ,813-1 - particularly
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when it is borne in mind that it is possible that log P13-1 may be correlated with

another formation constant, say log fi140' that may be determined simultaneously.

No allowance has been made in Figure 6.5 for correlation effects. The indications

from Figure 6.5 are that, subject of course to the correctness of the estimates made,

the proposed titration would not be useful for determining log P13-2, either because

the complex Zn(CN)3(OH)~- does not form to any significant extent or because the

solution p[H] is insensitive to formation of this species from other species in solution.

Finally, it is clear that particular care should be taken to reduce experimental error

(particularly errors of a systematic nature) as far as possible, if erroneous results or

worse still "computer complexes" are to be avoided. Accordingly, care was taken to

calibrate the glass electrodes correctly and accurately (see Section 5.4). Even so, the

author feels that, owing to unavoidable diurnal variatiol1;S in E~ell and the long

duration of the titrations (up to 18 hours per titration), the reliability of Egell values

cannot be much better than ± 2mV.
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CHAPTER SEVEN

EXPERIMENTAL PROCEDURE AND DATA

This chapter describes the procedures and reports the experimental data

for the potentiometric titrations, which were carried out in this study, for the

determination of the protonation constant of cyanide and for the determination of

the formation constants of the complexes formed by zinc and cyanide ions in aqueous

solutions at moderately high p[H] values.

This study involved a series of potentiometric titrations which were

carried out at a constant temperature of 25.0 :t: 0.050C ~d employed NaCt0 4 as

background electrolyte to adjust the ionic strength to 0.10 mol dm-g.

The potentiometric apparatus was allowed to come to equilibrium over a

period of approximately 2 hours after the fust addition of calibrating titrant

solution. After each subsequent addition of titrant solution, sufficient time was

allowed to ensure that the system had come to equilibrium (see Section 5.5).

The solutions used in the titrations were prepared from stock solutions,

the preparation of which are described in Chapter 2. The NaCN solutions were

prepared freshly for each titration as described in Section 2.4. The hydroxide

containing solutions were in some instances found to be contaminated with small

quantities of carbonate impurity. The composition and concentrations of the

components of the hydroxide containing solutions were determined in situ, using the

Gran method (see Section 4.1.3).

The first step of every titration carried out in this study involved the in

situ calibration of the cell, as described in Chapter 5. Values of the cell calibration

constants Egell and k varied appreciably from day to day. However, the calibration

equation (5.7) was found to reproduce the calibration data to a precision typically of

the order of 0.6 mV. It is therefore clear that although the cell EMF was measured

to approximately 0.1 mV, the accuracy of the measurements is limited by the
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accuracy of the calibration procedure and is probably around 0.5 to 1.0 mV.

The contents of the reaction vessel were flushed with nitrogen gas during

the calibration step only. No flushing was carried out after addition of cyanide to

avoid loss of volatile HeN from the system. The system was, however, kept sealed in

the reaction vessel after flushing was discontinued.

The data from approximately half of the total number of titrations

carried out in this study were rejected, on the grounds that the cell calibration

method used in the early phase of the study involved use of dilute solutions of strong

acid and produced data in the non-linear response region (see Section 5.3) of the

glass electrode, and therefore, in retrospect was considered to be inadequate.

The titration procedures used in this study and the experimental data

found to be useful for the purpose of this study are reported below.

The values quoted in Tables 7.1, 7.2 and 7.3, for Egel l, slope (k) and

concentrations are the values used in the computations and are not to be taken as

significant to the number of digits quoted.

7.1 DETERMINATION OF THE PROTONATION CONSTANT OF

CYANIDE

The titration procedure and the experimental data for the determination

of the protonation constant of cyanide are described in the following two sections,

7.1.1 Titration procedure

In this study, three potentiometric titrations were carried out in order to

determine the protonation constant of cyanide at 25.0oC and an ionic strength of

0.10 mol dm-a,

The first step of every titration, was the in situ calibration of the cell.

The cell calibration constants Egel' and slope (k) were calculated from the
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calibration step data, as described in Section 5.4. The ligand protonation step was

then carried out.

The cell calibration step was camed out by incrementally titrating an

HC!)4 solution of approximately 1.0 x 10-2 mol dm-!, into a solution comprising

50.0 cm3 NaC!)4 (0.10 moL dIn-3) and a known volume of a hydroxide containing

solution of approximately 1.0 x 10-2 mol elm-a.

The ligand protonation titration, for the determination of the protonation

constant for cyanide, was carried out by adding a known volume of a NaCN solution,

of approximately 1.0 x 10-2 mol dm-a, to the solution remaining in the reaction

vessel, after completion of the calibration stage of the experiment. Following the

addition of NaCN solution, the solution in the reaction vessel was titrated with an

HC!)4 solution of approximately 1.0 x 10-2 mol dm-3• In titration number 3, the

direction of titration WM reversed by switching to a hydroxide titrant after

completion of the titration with acid. The reversal of the titration direction was

done in order to test for attainment of electrochemical equilibriwn.

Below is a summary of the titration procedure UBed in this study for the

determination of the protonation constant for cyanide: .

CELL
CALIBRATION

STEP

SO.O cm3 NaC«>~ (0.10 mol dm-S)
10.0 cm3 NaOH ~approx. 1.0 x 10-2 mol dm-3)

16.0 ems HC~4 (approx. 1.0 x 10-2 mol eIm-8)

[N2 GAS FLUSH: SWITQl[OFF]

PROTONATION 25.0 cmSNaCN (approx. 9.9 x 10-8mol dIn-S)

CONSTANT

DETERMINATION 18.0 cm3 HC!)4 (approx. 1.0 x 10-2 mol dIn-3)

STEP

10.0 cms NaOH (approx. 1.0 x 10-2 mol dm-S) [Reverse
Titration]

I I: instructions.
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The results obtained from the titratioIlS were used to calculate the

cyanide protonation constant using techniques described in Chapter 4.

7.1.2 Experimental data

The potentiometric titration data collected from the titrations described

in Section 7.1.1 are presented in Table 7.1.

In Table 7.1, the description of each potentiometric titration performed

in this section begins with the values for the cell calibration constants, E~ell and

slope (k) I obtained from the cell calibration stage of the titration, and the initial

volume, V0, of the titrate solution at the beginning of the cyanide protonation

constant determination stage. Following the above data is a listing of the

concentrations of the components in the titrate solution, denoted [ ]0' and the titrant

solution, denoted []T' Thus [H]o or [H]T refer to the total excess hydrogen- ion

concentration in the titrate and titrant respectively. A negative value of [H]o and

[H]T represents excess hydroxide ion.

The concentration of the background electrolyte and ionic charges have

been omitted for simplicity.

The description of the solutions is followed by a listing of the volume and

cell EMF data and some derived quantities, such 88 ZH(ohs) and p[H], for each

point in the titration under discussion. The data for each titration point are

presented as follows:

where the titrant volume, VT' and the cell EMF value, Ecell, are given in units of

cm3 and mVrespectively. Data for the various points are separated by semi-colons.
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TABLE 7.1 Experimental Data and Derived Quantities from Titrations for the

Determination of the Protonation Constant for Cyanide, at 25.00C and

an Ionic Strength of 0.10 mol dm-a.

Run 1:

E~ell =254.3801 mV; Slope =58.0844; V0 =101.00 ems;
[HH] TO =5.7721 x 10-4 mol dIn-3, !CN]o =2.4545 x 10-3 mol dIn-3,[ =9.9996 x 10-3 mol dIn-s, CN T =0.0000 mol dm-s.

0.00, -301. 70, 0.26, 9.574; 1.00, -296.00, 0.30, 9.476;
3.00, -287.30, 0.37,9.326; 4.00, -283.20, 0.41, 9.255;
6.00, -275.30, 0.49,9.119; 8.00, -267.30, 0.56, 8.981;

10.00, -258.90, 0.64, 8.837; 12.00, -249.70, 0.72, 8.678;
14.00, -238.20, 0.80, 8.480; 16.00, -222.10, 0.88, 8.203;
18.00, -187.50, 0.96,7.608.

Run 2:

E~ell =253.1447 mV; Slope =57.9327; Vo =101.00 ems;
[HHJTo =5.6968 x 10-4 mol dm-a, !CNJo =2.4545 x 10-3 mol dm-3,
[ =9.9996 x 10-S mol elm-S, ON T =0.0000 mol dm-S.

0.00, -301.50, 0.26, 9.574; 2.00, -292.10, 0.33, 9.412;
4.00, -283.70, 0.41, Q.267; 6.00, -275.90, 0.48, 9.132;
8.00, -267.90, 0.56, .994; 10.00, -259.60,0.64, 8.851;

12.00, -250.40, 0.72,8.692; 14.00, -239.20,0.80, 8.499;
16.00, -223.40, 0.88, 8.226; 18.00, - 190.80, 0.96, 7.663.

Run 3:

E~ell =253.6948 mV; Slope =58.0815; Vo =89.00 ems;
[HH] TO =6.6121 x 10-4 mol dm-3, !CN]o =2.8551 x 10-3 mol elm-3,
[ = 9.9996 x 10-smol dm-s, CN]T = 0.0000 mol dm-s.

0.00, -302.00,0.25,9.568; 2.00, -292.40,0.29,9.402;
4.00, -283.90, 0.40,9.256; 6.00, -276.10, 0.48,9.122;
8.00, -268.30, 0.55, 8.987; 10.00, -260.20,0.63, 8.848;

12.00, -251.10,0.71,8.691; 14.00, -240.00,0.78, 8.500;
16.00, -225.20, 0.86,8.245; 18.00, -196.10,0.94, 7.744.

E~eIJ =253.6948 mV; Slope =58.0815; Vo=107.00 cm3;

[HHJTo =2.2322 x 10-3 mol dm-S, [ONJo =2.3748 x 10-Smol elm-S,
[ = -1.0160 X 10-2 mol elm-3, [CN T =0.0000 mol dm-a.

2.00, -224.40, 0.86, 8.232; 4.00, -239.90, 0.78, 8.498;
6.00, -251.20, 0.70, 8.693; 9.00, -264.70, 0.59, 8.925;

10.00, -268.60, 0.55, 8.993; 12.10, -276.60, 0.47, 9.130;
13.00, -279.90, 0.43, 9.187; 15.00, -284.50,0.35, 9.266.
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7.2 D~ERMINATION OF FORMATION CONSTANTS FOR
COMPLEXES FORMED BY ZINC AND CYANIDE IONS AT
MODERATELY HIGH p[H] VALUES

The titrations described in this section were carried out to determine the

formation constants for complexes formed by zinc and cyanide ions in aqueous

solutions at moderately high p[H] values, a temperature of 25.0°0 and an ionic

strength of 0.10 mol dm-3.

The titration procedures and experimental data for twelve potentiometric

titrations, carried out at various ligand: metal ratios and at various total

(analytical) metal ion concentrations, are reported.

Table 7.2, shows the values of Znrr and CNT in the solution in the cell

just prior to the acid or alkali titrant being added in order to strip ligand off

from/add ligand onto the metal ion, these are termed initial values of Zur and

ONT. Table 7.2 also shows the ligand to metal ratios (expressed as the quotient

ONT/Znrr) , as well as the p[H] range covered, for the twelve potentiometric

titrations considered in this part of the study.

Titration procedures and experimental data are reported separately (see

Section 7.2.1 and 7.2.2).

7.2.1 Titration procedures

The titrations carried out in this section can be divided into two groups,

namely,

(i) runs at intermediate p[H] values (3.5 - 10.0) and

(ii) runs at high p[H] values (9.3 - 11.2).

The grouping depends on the titrant initially used to strip the ligand from the metal
Ion.
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TABLE 7.2. Initial. values of Znr and ONT' the ligand:metal quotient and p[H]

ranges covered for titrations considered in this study.

rI'itration ZnT/mol dm-3 eNT/mol dIn-3 CNT/Znr p[H] range

No. *

18 2.9917 x 10-4 2.9036 X 10-3 9.7 9.0 ~ 7.5 ~ 9.1

10 2.9917 x 10-4 2.9036 x 10-3 9.7 9.0 ~ 7.5 ~ 9.1

2B 1.0063 x 10-4 1.6397 x 10-3 16.3 8.6 ~ 4.8 ~ 7.9

3B 1.0063 x 10-4 1.1082 x 10-3 11.0 6.9 ~ 6.3

48 7.1414 x 10-4 4.2809 X 10-3 6:0 9.8 -. 7.2

5B 4.3409 x 10-4 1.9126 x 10-3 4.4 9.3 ~ 6.9

6B 2.5789 x 10-4 5.1969 x 10-3 20.2 10.0 ~ 4.0 ~ 6.1

7E 2.6636 x 10-4 3.9965 X 10-3 15.0 10.0 ~ 3.6

8B 2.5795 x 10-4 1.1612 X 10-3 4.5 9.4 ~ 9.8
9E 2.7131 x 10-4 2.7177 X 10-3 10.0 10.5 ~ 11.2 ~ 9.8

10E 2.8494 x 10-4 2.8486 x 10-3 10.0 10.7 ~ 11.3 ..... 9.4

lIE 2.5795 x 10-4 1.0518 x 10-2 40.8 10.6 ~ 11.2

* The letters given with the run identifiers refer to the specific glass electrodes

used (i.e. electrodes B, Cand E).
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The initial step of each titration was the in situ calibration of the cell (see

Section 5.4), from which values for the cell calibration constants Egell and k were

obtained.

The cell calibration was carried out by one of two methods, either a

solution of HCf0 4 of known concentration was titrated into a solution comprising

50.0 cm3 NaCtD 4 (0.10 mol dm-3) and a known volume of a hydroxide solut.ion of

!mown concentration, or a hydroxide solution of known concentration was titrated

into a solution comprising 50.0 cm3 NaCtD 4 (0.10 mol dm-3) and a known volume of

a HCl04 solution of known concentration. The calibration method used, was

determined by the p[H] value required at the end of the cell calibration step.

Each titration in this section of the study is identified by a combination

of a number and a letter. The numerical component identifies the titration, while the

letter indicates the particular glass electrode used. Thus 48 indicates titration No. 4

in this series, carried out using glass electrode B (see Table 7.2).

The titration procedures used in the two groups of titrations are

described below:

(i) Runs at intermediate p[W values (3.5 - 10.0):
The titrations in this group were denoted lB, lC, 2B, 3B, 4B, SB, 6B and 7E.

Titration No. I in this series was monitored using two glass electrodes

simultaneously, i.e. electrodes B and C.

In this group of titrations, HCK>4 was used as titrant to strip the ligand from

the metal ion. For titrations IB, IC, 2B and 6B the titrations were carried

out in two stages, with hydroxide added as titrant after completion of

titration with acid. This reversal of the titration direction was done in order

to test for attainment of electrochemical equilibrium (see Section 5.5).
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The titrations were carried out in two ways:

(a) The first titration method, which was used for titrations 1B I 1C, 2B and

3B, consisted of using a titrant which was a mixture of Zn(Ci04)2,

NaCN and HClO 4. The titrant solutions were added from three separate

burettes, i.e. one for each solution. The titrant solution for the titration

direction reversal was a mixture of Zn(CtD 4h, NaCN and a hydroxide

solution. Each titrant solution was once again added from a separate

burette. Asummary of the procedure for the type of titrations described

above is given below:

50.0 cm3 NaCtD 4 (0.10 mol elm-3)

6.0 em3 NaOH

13.0 cm3 HCL04

[N2 GAS FLUSH: SWITQ[lJFFJ

5.0 cm3 Zn(ClO4)2 (approx. 4.7 x 10-3 mol dm-3)

5.0 cm3 NaCN (approx. 4.6 x 10-2 mol dm-3)

10.0 em3 Zn(ClO4)2 (approx. 8.9 x 10-4 mol dm-3)

10.0 cm3 NaCN (approx. 8.7 x 10-3 mol dm-3)

10.0 cm3 HCl04 (approx 1.0 x 10-2 mol dm-3)

ITITRATE WITH: AND RECORD CEIrnITS]

10.0 cm3 Zn(C!)4)2 (approx. 8.9 x 10-4 mol dm-3)

10.0 em3 NaCN (approx. 8.7 x 10-3 mol dm-3)

10.0 cm3 NaOH (approx. 1.0 x 10-2 mol dm-3)

(b) The second titration method, which was used for titrations 4B, 5B, 6B

and 7E, involved the use of only HClO4 as the titrant. The direction of

the titration 6B was reversed after the acid addition, by using a

hydroxide titrant. A summary of the procedure for the type of titration
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described above is shown below:

50.0 em3 NaC!)4 (0.10 mol dIn-3)

10.0 cm3 HCt04

15.0 em3 NaOH

[Ra GAS FLUSB: SWITCH]JFF)

10.0 em3 Zn(C«)4)2 (approx. 2.4 x 10-3 mol dIn-3)

10.0 em3 NaON (approx. 4.9 x 10-2 mol dm-3)

12.0 cmsHCt04 (approx. 1.0 x 10-2mol ~-3)

10.0 ems NaOH (approx. 1.0 x 10-2mol dm-S)

The experimental data for titratioIl8 1B, 10, 2B, 3B, 4B, 5B, 6B and 7E are given in

Section 7.2.2.

(ii) Runs at high pOO values (9.3 -11.2}

The titratioll8 in this group were denoted 8B, 9E, 10E and 11E. These

titrations involved the use of an excess of hydroxide over any acid that may

have been present at the end of cell calibration and resulted in attaimnent of

p(B] values as high as 11.3 (see Table 7.2).

The cell calibration for the titrations, in this group, was carried out by

titrating the solution in the reaction vessel, which consisted of 50.0 em3 NaClO4

(0.10 mol dIn-3) and a known volume of HCL04 of known concentration, with a

hydroxide solution of known concentration.

Following the calibration step known volumes of Zn{C«)')2 and NaCN of

known concentrations were added to the reaction vessel. The solution in the reaction

vessel was titrated with a hydroxide solution.



114

For titrations 9E and 10E, the direction of the titration was subsequently

reversed by addition of HCt04·

A summary of the procedure for the type of titrations carried out in this

section is given below:

50.0 cm3 NaCtD4 (0.10 mol dm-3)

7.0 cm3 HClO4

EMpg]

12.0 cm3 NaOH

[Jfa GAS FLUSH: SWrrqI[QFFJ

5.0 cm3 Zn(CL04)2 (approx. 4.6 x 10-3 mol dm-3)

10.0 cm3 NaCN (approx. 2.3 x 10-2 mol dIn-3)

18.0 cm3 NaOH (approx. 1.0 x 10-2 mol dm-3)

10.0 cm3 HClO4 (approx. 1.0 x 10-2 mol dm-3)

The experimental data for titrations 8B, 9E, 10E and 11E are given in Section 7.2.2.

7.2.2 Experimental data

The cell calibration constants, E~ell, the slope (k) and the initial volume

(Vo) are presented for each titration in Table 7.3, together with the solution

concentrations. The volume and cell potential data are listed for each point in the

titration under discussion. In Table 7.3 subscripts (0) refers to the titrate and (T)

refers to the titrant. [H] refers to the total excess hydrogen ion concentration in

solution. A total excess hydroxide ion concentration, in solution, is indicated by a

negative value of [H].

The hydroxide solutions used in this study were often contaminated by

carbonate ions, thus [C03] refers to the total excess carbonate ion concentration ino
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solution and [C03]T to the total carbonate ion concentration contained in the

hydroxide titrant solution.

The concentrations of the background electrolyte and ionic charges are

omitted for simplicity.

The data for each titration point for runs IB, le, 2B and 3B are

presented as follows:

The zinc, cyanide and acid titrant solutions were added from three separate burettes

(see Section 7.2.1).

The data for each titration point for the remaining experimental runs are

presented as follows:

vT(acid/hydroxide), Ecell

The titrant value, VT' and cell EMF value, Eecll' are given in units of

cm3 and mV respectively. Data for the various points are separated by semi-colons.
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TABLE 7.3 Experimental Data from Titrations for the Determination of

Forrnation Constants for Complexes formed by Zinc and Cyanide

Ions at 25.0°0, an Ionic Strength of 0.10 mol dm-3 and Moderately

High p[H] Values.

Run 1B:

E~e" =251.0853 mV; Slope =58.1010; V0 =79.70 em3;

[Zn]o =2.9917 x 10-4 mol dm-3, [CN]o =2.9036 x 10-3 mol dm-3,

[H]o = 9.1700 x 10-4 mol dm-3, [003]0 = 0.0000 mol dm-3,

[Zn]T =8.9915 x 10-4 mol elm-3, [CN]T =8.7402 x 10-3 mol dm-3,

[H]T =1.3079 x 10-2 mol dm-3, [C03]T =0.0000 mol dm~3.

0.00, 0.00, 0.00, -274.20;
1.00, 1.00, 1.00, -266.80;
2.00, 2.00, 2.00, -259.30;
3.00, 3.00, 3.00, -251.90;
4.00, 4.00, 4.00, -244.20;
6.00, 6.00, 6.00, -227.30;
8.00, 8.00, 8.00, -207.80;

10.00, 10.00, 10.00, -184.90.

E~ell =251.0853 mV; Slope =58.1010; Vo =109.70 cm3;

[Zn] 0 =2.9932 x 10-4 mol dm-3, [CN]o =2.9063 x 10-3 mol dm-3,

[H]o =1.8585 x 10-3 mol dm-3, [003]0 =0.0000 mol dm-3,

[Zn]T =8.9915 x 10-4 mol elm-3, [CN]T =8.7402 x 10-3 mol dm-3,

[H]T = -1.8254 x 10-2 mol dm-3, [C03]T = 3.0800 x 10-4 mol dm-3.

2.00, 2.00, 2.00, -222.30;
4.00, 4.00, 4.00, -244.60;
6.00, 6.00, 6.00, -258.70;
8.00, 8.00, 8.00, -270.00;

10.00, 10.00, 10.00, -279.80.



Run le:

E~ell =264.6729 mV; Slope =58.8629; Vo =79.70 em3;

[Zn]o =2.9917 x 10-4 mol dIn-3, [CN]o =2.9036 x 10-3 mol dIn-3,

(H]o =9.1700 x 10-4 mol dm-3, (003]0 =0.0000 mol dm-3,

[Zn]T = 8.9915 x 10-4 mol dIn-3, [ON]T = 8.7402 x 10-3 mol dm-3,

.[H]T =1.3079 x 10-2 mol dm-3, [C03]T =0.0000 mol dm-3.

0.00, 0.00, 0.00, -264.80;
1.00, 1.00, 1.00, -257.60;
2.00, 2.00, 2.00, -249.90;
3.00, 3.00, 3.00, -242.30;
4.00, 4.00, 4.00, -234.70;
6.00, 6.00, 6.00, -217.70;
8.00, 8.00, 8.00, -198.20;

10.00, 10.00, 10.00, -174.80.

E~ell =264.6729 illV; Slope =58.8629; Vo =109.70 em3;

[Zn]o =2.9932 x 10-4 mol dIn-3, [CN]o =2.9063 x 10-3 mol dm-3,

(H]o = 1.8585 x 10-3 mol drn-a, [003]0 = 0.0000 mol dm-3,

[Zn]T = 8.9915 x 10-4 mol dIn-3, [ON]T = 8.7402 x 10-3 mol dm-3,

[H]T =-1.8254 x 10-2 mol dm-3, [C03]T =3.0800 x 10-4 mol dm-3,

2.00, 2.00, 2.00, -212.30;
4.00, 4.00, 4.00, -235.10;
6.00, 6.00, 6.00, -249.40;
8.00, 8.00, 8.00, -261.10;

10.00, 10.00, 10.00, -270.90.
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Run 2B:

E~ell =249.3130 mV; Slope =57.8828; V0 =79.00 cm3;

[Zn]o =1.0063 x 10-4 mol dm-3, [CN]o =1.6397 x 10-3 mol dm-3,

[H]o = 9.3949 x 10-4 mol dm-3, [003]0 = 0.0000 mol dm-3,

[Zn]T =3.0239 x 10-4 mol dm-3, [ON]T =4.9196 x 10-3 mol dm-3,

[HJT = 1.0069 x 10-2 mol dm-3, [COa]T = 0.0000 mol dm-3.

0.00, 0.00, 0.00, -250.00;
1.00, 1.00, 1.00, -237.90;
2.00, 2.00, 2.00, -223.80;
4.00, 4.00, 4.00, -181.20;
5.00, 5.00, 5.00, -157.80;
6.00, 6.00, 6.00, -141.30;
7.00, 7.00, 7.00, -130.20;
8.00, 8.00, 8.00, -120.90;
9.00, 9.00, 9.00, -110.00;

11.00, 11.00, 11.00, -26.30.

Egell =249.3130 mV; Slope =57.8828; Vo =112.00 cm3;

[Zn]o =1.0068 x 10-4 mol elm-3, [CN]o =1.6397 x 10-3 mol elm-3,

[H]o =1.6516 x 10-3 mol dm-3, [003]0 =0.0000 mol dm-3,

[Zn]T =3.0239 x 10-4 mol dm-3, [ON]T =4.9196 x 10-3 mol dm-3,

[H]T =-1.8433 x 10-2 mol dm-3, [COa]T =3.1500 x 10-4 mol dm-3.
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1.00,
2.00,
4.00,

1.00,
2.00,
4.00,

1.00,
2.00,
4.00,

-118.20;
-140.00;
-208.00.



Run 3B:

E~ell =246.9066 mV; Slope =57.9040; Vo =79.00 em3;

[Zn]o = 1.0063 x 10-4 mol dm-3, [CN]o = 1.1082 x 10-3 mol dm-3,

[H]o = 9.0701 x 10-4 mol dm-3, [C03]0 = 0.0000 mol dm-3,

[Zn]T = 3.0190 x 10-4 mol dm-3, [ON]T =3.3242 x 10-3 mol dm-3,

[H]T =5.3380 x 10-3 illol drn-3, [COa]T =0.0000 mol drn-3.
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0.00,
0.50,
1.00,
1.50,
2.50,
3.50,
4.00,
5.00,
5.50,

Run 4B:

0.00,
0.50,
1.00,
1.50,
2.50,
3.50,
4.00,
5.00,
5.50,

0.00,
0.50,
1.00,
1.50,
2.50,
3.50,
4.00,
5.00,
5.50,

-154.90;
-150.20;
-146.20;
-142.70;
-136.60;
-131.10;
-128.10;
-122.40;
-119.00.

E~ell =242.0386 mV; Slope =57.9623; Vo =105.00 em3;

[Zn]o =7.1414 x 10-4 mol dm-3, [CN]o =4.2809 x 10-3 mol dm-3,

[H]o = 6.1229 x 10-5 mol dm-3, [003]0 = 1.7048 x 10-6 mol dIn-3,

[Zn]T =0.0000 mol dm-3, [ON]T = 0.0000 mol dm-3,

[H]T =5.3720 x 10-3 mol dIn-3, [C03]T =0.0000 mol dIn-3.

0.00, -324.20;
3.00, -311.60;
6.00, -300.40;
8.00, -293.60;

10.00, -287.20;
12.00, -280.90;
14.00, -274.70;
16.00, -268.50;
18.00, -262.40;
20.00, -255.90;
23.00, -245.40;
27.00, -229.80;
30.00, -217.10;
32.00, -208.50;
34.00, -199.50;
38.00, -181.20;
40.00. -172.90.



Run 5B:

E~ell =242.5999 mV; Slope =57.9623; Vc =105.00 em3;

[Zn]o =4.3409 x 10-4 mof dm-3, [ON]c =1.9126 x 10-3 mof dm-S,

[H]t) = -2.5238 x 10-6 mol dm-3, [003]0 = 3.4571 x 10-6 mol dm-3,

[Zn]T = 0.0000 mol dm-s, [ON]T = 0.0000 mol dm-s,

[H]T = 5.2650 x 10-3 mol dIn-3, [C03]T = 0.0000 mol dm-3.

0.00, -298.80;
2.00, -279.10;
4.00, -260.10;
6.00, -242.10;
8.00, -224.80;

12.00, -193.20;
14.00, -180.90;
16.00, -171.30;
18.00, -163.50;
19.00, -160.00;
20.00, -156.90.

Run 6B:

E~ell = 234.8509 mV; Slope =57.9623; Vo =95.02 ems;

[Zn]o = 2.5789 x 10-4 mol dm-3, [CN]o = 5.1969 x 10-3 mol dm-3,

[H]o =-2.7247 x 10-5 mof dm-S, [003]0 = 5.4725 x 10-e mof dm-3,

[Zn]T = 0.0000 mol dm-3, [ON]T = 0.0000 mol dIn-3,

[H]T =4.2984 x 10-2 mol dm-S, [C03]T =0.0000 mol dm-s.

0.00, -349.20;
1.00, -329.30;
2.00, -313.90;
3.00, -301.60;
4.00, -290.90;
5.00, -280.50;
6.00, -269.50;
7.00, -256.70;
8.00, -239.10;
9.00, -206.10;

10.00, -140.30;
11.00, -105.50;
12.00, 5.50.
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E~ell =234.8509 mV; Slope =57.9623; Vo =107.02 cm3;

[Zn]o = 2.2898 x 10-4 mol dIn-3, (CN]o = 4.6142 x 10-3 mol dIn-3,

[fi]o = 4.7955 x 10-3 mol dm-3, [003]0 = 4.8589 x 10-6 mol dm-3,

[Zn]T = 0.0000 mol elm-3, [ON]T = 0.0000 mol elm-3,

[H]T = -2.1930 x 10-3 mol dm-3, [OOa]T = 1.7700 x 10-4 mol dm-3.

40.00, -113.20;
43.50, -116.10.

Run 7B:

E~ell =239.2838 mV; Slope =56.5366; Vo =92.00 em3;

[Zn]o = 2.6636 x 10-4 mol dIn-3, [CN]o = 3.996& x 10-3 mol dm-3,

[H]o = -1.1609 x 10-5 mol elm-S, [003]0 = 2.3043 x 10-6 mol dm-3,

[Zn]T = 0.0000 mol dm-3, [ON]T = 0.0000 mol dm-3,

[H]T =4.2984 x 10-2 mol dm-3, [C03]T =0.0000 mol dm-a.

0.00, -328.10;
LOO, -304.00;
1.50, -294.10;
2.00, -285.60;
2.50, -277.70;
3.00, -270.20;
3.50, -262.60;
4.00, -254.50;
4.50, -245.50;
5.00, -234.50;
5.50, -220.00;
6.00, -198.10;
6.50, -163.80;
7.00, -129.30;
7.50, -110.30;
8.00, -94.30;
8.50, -68.00;
9.00, 38.40.
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Run 8B:

E~ell = 240.3246 mY; Slope =57.9623; Vo =95.00 em3;

[Zn]o = 2.5795 x 10-4 mol drn-3, [CN]o = 1.1612 x 10-3 mol drn-3,

[H]o = -3.6105 x 10-6 mof dm-3, [003]0 = 8.0000 x 10-7 mof dm-3,

[Zn]T =0.0000 mol dm-3, [ON]T =0.0000 mol dm-3,

[H]T = -2.4720 x 10-3 mof dm-3, [003]T = 3.0000 x 10-5 mof dm-3.

0.00, -302.80;
2.00, -306.10;
4.00, -309.10;
7.00, -313.60;

10.00, -317.50;
13.00, -320.80;
17.00, -325.30;
21.00, -329.00.

Run 9E:

E~ell =245.6221 mV; Slope =56.2840; Vo = 84.00 em3;

[Zn]o =2.7131 x 10-4 mol drn-s, [CN]o =2.7177 x 10-3 mol drn-s,
[H]o =-5.9146 x 10-4 mol dm-3, [003]0 = 7.8810 x 10-6 mol dm-3,

[Zn]T = 0.0000 mol dIn-3, [ON]T = 0.0000 mol dm-3,

[H]T = -2.1430 x 10-2 mof dm-3, [003]T = 2.6600 x 10-4 mof dm-a.

0.00, -345.30;
3.00, -358.80;
6.00, -367.50;
9.00, -373.50;

12.00, -377.90;
15.00, -381.40;
18.00, -384.30.
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E~ell =245.6221 mV; Slope =56.2840; Vo =102.00 em3;

[Zn]o =2.2343 x 10-4 mol dIn-3, [CN]o =2.2381 x 10-3 mol dIn-3,

[H]o =-2.3780 x 10-3 mol dm-3, [003]0 = 2.9961 x 10-5 mol dm-3,

[Zn]T =0.0000 mol dm-3, [CN]T =0.0000 mol dm-3,

[H]T =1.0746 x 10-2 mol dm-s, [003]T = 0.0000 mol dm-s.

4.00, -376.80;
8.00, -367.40;

10.00, -361.60;
12.00, -354.40;
14.00, -345.40;
16.00, -334.20;
18.00, -320.50;
20.00, -306.50.

Run 10E:

E~ell =241.0142 mV; Slope =55.6981; Vo =86.00 em3;

[Zn]o = 2.8494 x 10-4 mol dm-s, [ON]o =2.8486 x 10-smol dm-s,
[H]o =-9.2571 x 10-4 mol dIn-S, [003]0 =2.6651 x 10-5 mol dIn-s,

[Zn]T =0.0000 mol dm-3, [ON]T =0.0000 mol dm-3,

[H]T =-2.2364 x 10-2 mol dIn-3, [COs]T = 6.3100 x 10-4 mol dm-s.

0.00, -354.60;
3.00, -364.60;
6.00, -371.50;
9.00, -376.40;

12.00, -380.30;
15.00, -383.50;
18.00, -385.90.
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E~e" =241.0142 mV; Slope =55.6981; Vo=104.00 cm3;

[Zn]o =2.3563 X 10-4 mol dIn-3, [CN]o =2.3556 x 10-3 mol dm-3,

[H]o = -2.7008 x 10-3 mol dm-3, [C03]0 = 7.6587 x 10-5 mol dm-3,

[Zn]T = 0.0000 mol dIn-3, [ON]T = 0.0000 mol dIn-3,

[H]T = 1.0746 x 10-2 mol dm-s, [003]T = 0.0000 mol dm-3.

2.00, -382.50;
4.00, -378.70;
6.00, -374.30;
8.00, -369.50;

10.00, -364.40;
14.00, -450.10;
18.00, -328.80;
20.00, -315.50;
22.00, -302.90;
24.00, -291.10;
26.00, -279.80.

Run lIE:

E%ell =251. 7842 mV; Slope =57.5784; Vo == 95.00 em3;

[Zn]o =2.5795 x 10-4 mol dm-3, [CN]o =1.0518 x 10-2 mol dm-3,

[H]o = -5.2836 x 10-4 mol dIn-3, [003]0 = 0.0000 mol dIn-3,

[Zn]T =0.0000 mol dm-3, [ON]T =0.0000 mol dm-3,

[H]T =-9.8960 x 10-3 mol dm-3, [C03]T =0.0000 mol dm-3.

0.00, -359.90;
2.00, -364.20;
4.00, -368.00;
7.00, -373.20;

10.00, -377.40;
13.00, -380.80;
16.00, -383.70;
20.00, -387.30;
25.00, -390.50.
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CHAPTER EIGHT

~ULTS AND DISCUSSION

In this chapter the results derived from the potentiometric data for the

hydrogen ion-cyanide and the zinc-cyanide systems are described and discussed.

As mentioned in Chapter 5, a criterion for attainment of electrochemica.l

equilibrium adopted in this study was that the cell EMF should remain constant (to

± 0.1 mV) for a minimum period of 5 minutes. To meet this condition,

"equilibration" times varied from about 6 minutes per titration point at low pH

values (pH =6 or below) to about 90 minutes per point ~ the highest pH values

(~ 11), encountered in the study of the zinc-cyanide system. The latter period seems

rather long and suggests that chemical equilibrium may be approached slowly at

high p[H] values - although gl888 electrodes are known to require long equilibration

times at high p[H].

The titratioDB in which the direction of titration was reversed (see

Chapter 7), were used 88 a further test of attainment of equilibrium. If equilibrium

had been attained at each titration point then calculated values of the formation- -function, ZH or ZM' should have the same value for both "forward" and "reverse"

titrations at any particular value of p[H] or pA respectively. This test of attainment

of equilibrium is valid provided that no polynuclear or hydrolysed complex species

are formed.

During this study, solutions containing mixtures of background

electrolyte (NaC!)4), cyanide and varying quantities of perchloric acid were

examined by U.V. spectroecopy. Re8ults of the U.V. spectrophotometric

examination indicated that a slow decomposition or possibly oxidation reaction

takes place, to produce a species absorbing at A.ax =298 nm. The absorption at

A",ax =298 nm was observed to increase slowly with time. It was noticed that the

"decomp08ition" reaction was light sensitive and that the reaction occurred
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relatively slowly in solutions containing either completely protonated ligand (HON)

or in solutions containing only the deprotonated form (ON-). The reaction seemed to

proceed faster in buffered solutions containing roughly equal quantities of HeN and

CN-. From the comparative stability of cell EMF values in the solutions studied it

was inferred however that the extent of the side reaction observed was fairly minor

in nature.

The contents of the reaction vessel were flushed with nitrogen gas during

the calibration step only (see Chapter 7). No flushing was carried out after addition

of cyanide, to avoid loss of volatile HeN from the system. The system was, however,

kept sealed in the reaction vessel after flushing was discontinued.

8.1 THE HYDROGEN ION-CYANIDE SYSTEM

In order to determine the formation constants of complexes formed in the

hydrogen ion-eyanide system, in the absence of any metal ions, three titrations were

carried out at slightly different initial cyanide ion to hydrogen ion ratios (see Table

8.1). The analytical (total) hydrogen ion, HT' and cyanide ion, CNT, concentrations

quoted in Table 8.1 are the values used for computations and are not to be taken as

significant to the number of digits quoted. In titration 3 the direction of the titration

was reversed by switching to a hydroxide titrant after completion of the titration

(see Table 7.1).

TABLE 8.1 Initial values of HT and ONT, ONT/HT quotients and p[H] ranges

covered for titrations in the study of the protonation of the cyanide

Ion.

Titra- HT/mol dm-3 eNT/mol dm-3 eNT/HT p[H]range Plotting

tion No. symbol

1 5.7721x10-4 2.4545x10-g 4.25 9.6 ..... 7.6 G)

2 5.6968x10-4 2.4545x10-3 4.31 9.6 ~ 7.7 [!J

3 6.6121x10-4 2.8551x10-a 4,32 9.6 ..... 7.7 A-forward
7.7 -+ 9.3 '-reverse



127

-Values of the formation function ZH(ohs) are plotted as discrete points

versus p[H] in Figure 8.1, for data collected from the above titrations in the absence

of any metal ions (see Table 7.1). Figure 8.1 also shows the plot of ZH(calc) versus

p[H], shown as a continuous line. Figure 8.1, shows that the degree of

8uperimposability of the curves for titration 3 (forward) and (reverse) is reasonable,

indicating that the system had reached chemical equilibrium.

Since the plot of ZH(obs) versus p[B] levels off at a ZH(ohs) value of just

less than one, it was assumed that no protonated species, other than HeN is found

in the hydrogen ion-cyanide system studied (66). Although agreement between

observed and calculated formation functions is not perfect, i.t is felt that particularly

in view of the sub-millimol81 concentration levels studied, the level of agreement

between observed and calculated formation functions is acceptable. This result is

consistent with the finding! of previous studies of the same system

(21,27,28,30,86,104).

From the data obtained from these potentiometric titrations and using

computer techniques (see Section 4.2) a log f3 ± 30' value of 9.08 ± 0.01 was

obtained for the pKa of HeN at an ionic strength of 0.10 mol elm-3 and a

temperature of 25.0°0. The value of pK" at an ionic strength of 0.10 mol dm-3 and a

temperature of 25.0°0 was taken to be 13.78 (86).

8.2 ZINC--CYAKIDE SY5TEM

In the study of the complexes formed by zinc and cyanide ions at

moderately high p[H] values, the data from eleven potentiometric titratioIlS were

used. The titratioll8 were carried out at various ligand:metal ratios and at various

total (analytical) metal, Znr, and cyanide, ONT, ion concentr8tions (see Table 7.2).

In titration 1, two gl888 electrodes were used, namely Band C. In some titrations

mixtures of zinc and cyanide ions were titrated with acid, in others sodium

hydroxide titrant was used, and, in a few instances the direction of titration was

reversed by switching to a hydroxide titrant on completion of the titration with acid
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and vice-versa. The initial values of ZnT and eNT' the ligand to metal ratio

(expressed as the quotient CNT/Znr), as well as the p[H] ranges covered, are given

in Table 7.2.

Titrations 1B, le, 2B, 6B, 9E and 10E involved reversal in the direction

of titration. It was found that plots of ZM versus pA for both the forward and

reverse branches of titrations lB, 10, 2B and 6B were superimposable to within

experimental error (see Figure 8.2), indicating that electrochemical equilibrium was

attained for p[H] values up to at least 9, and also that significant amounts of

hydrolysed complex species are not formed below p[H] =9 in systems having

ONT/Znrr ~ 10. This is more or less in accord with the. conclusions of previous

workers, who have rarely made measurements at p[H] values above 8.5.

Titrations 9E, IOE and lIE involved the use of an excess of hydroxide

over any acid that may have been present at the end of cell calibration, and resulted

in the attainment of p[H] values as high as 11.3. For titrations 9E and 10E, which
-involved reversals in the direction of titration, values of ZM could not be calculated,

so this test for attainment of chemical equilibriwn could not be applied.

Plots of Q(obs) versus p[H] for titrations 9E and 10E are shown in Figure
-8.3. Values of Q(ohs) obtained during the first part of the titrations, i.e. during

raising of the p[H] I are plotted as circles, while values obtained during the second

part, i.e. when the p[H] was subsequently lowered, are plotted as triangles. A

striking feature of the data from titrations 9E, 10E and l1E was that negative values

of the deprotonation function Q(ohs) were obtained at high p[H]. The formation of

complexes of the form Zn(CN)n or Zn(CN)n(OH)m should not give rise to negative

values of Q, since the processes

2+ (2-n) +
Zn +nHCN -i Zn(CN)n +nH+

(2-n) + (2-n-m) +
Zn(CN)n +mOH- -i Zn(CN)n(OH)m

( 2-n) + (2-n-m) +
Zn(CN)n +mOH- ~ ZnCNn-m(OH)m +mCN-



(a) Titration No. 1C (forward and reverse) . (b) Titration No. 28 (forward and reverse)
5.0 I i 5.0

4.5

4.51 I
40J • •

.to I • .to
4.0-1 11\1:-: 3.5 -•.A.

I 3.0-1 ••
3.5

t • t 2.5-, •
ZM(obs) ZM(obs) .A.

2.0-
3.0 I •

1.5
I •

2.5; I 1.01 .A.

•
0.5-

2.01 I
0.0 I •

15

1 I
-0.5

-1.0 I I •I I I I -----. T I I
3.0 3.5 4.0 4.5 5.0 3.6 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

pA- pA-
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all either produce H+ ions or consume OH- ions - both of which should result in

positive values of Q. Experimentation with the Qfunction however shows that at

high p[H] values, i.e. when the concentration of free (uncoordinated) OH- ions

becomes comparable to the concentration of the other species present in the system,

Qbecomes inordinately sensitive to small uncertainties in experimental variables

such as the electrode calibration slope k, the value of pK w taken, or the

hydrogen/hydroxide ion concentration. Thus an uncertainty of 0.02 log units in pK w

(or a corresponding small uncertainty in the value of k) leads to uncertainties of

approx. 0.5 units in Q. It is apparent therefore that at high pH values (> 10.5) the

Q function rapidly becomes very sensitive to small uncertainties in [H+], and

probably also in HT' and is no longer useful for graphical representation of

potentiometric data. The question of whether or not the· data may be useful for

species selection and computation of formation constants, was investigated by

determining the extent to which the calculated p[H] of the solution depends on the

formation constants of complex/es of interest (see Section 6.3). For this purpose,

values of cumulative formation constants taken from the literature (86,105) were

used for the binary Zn2+ION- and Zn2+JOH- complexes. A statistical method

proposed by Sharma and Schubert (96) was used to estimate the values of log P14-1 =
22.6, log Pt3-2 =2~:2, and log Pt3-t =19.6 for the ternary species Zn(CNMOH)3-,
and Zn(CNh(OHh and Zn(CN)3(OH)2- respectively. Simulated potentiometric

titration data were calculated by means of the HALTAFALL (73) program, using

such literature values and estimates for log p.

It was found, for example, that at P{H] values above 10.5 and at a ligand

to metal ratio of 10:1 the solution p[H] is almost totally insensitive to changes of

approx. 1 log unit in the value of the log Pta-t for the complex Zn(CN)a(OH)2-. At a

p[H] value of 10, the calculated solution p[H] changes by about 0.06 units

(corresponding to a change of cell EMF of about 3.6 mV), an amount which is

uncomfortably close to a'realistic estimate of the uncertainty in the value of Egell.

At a ligand to metal ratio of 5:1 the situation is slightly improved, but the

sensitivity of measured cell EMF to log P13-1 is still only ~ 2.5 mV, per unit variation

in log p, at p(H] =10.5.
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The indications therefore are that when the concentration of free

(uncomplexed) OH- ions becomes comparable to the concentration of free eN- ions,

very great precision of electrode calibration is required in order to dist~guish

between uncoordinated OH- and eN- ions. The fact that negative values of Q were

obtained at high p[H] (see Figure 8.3) is further indication that the precision of the

experimental technique was insufficient to allow ligand replacement reactions of the

type

to be followed reliably at p[H] values above 10.

It should also be noted that attainment of electr6chemical equilibrium at

high p[H] values has not been proven - in spite of the greater than 45 minutes

equilibration times allowed.

Consequently, the data collected in titrations 9E, IOE and lIE were not

used any further in this work, and subsequent calculations were based on data

obtained at p[H] values below 10, i.e. from titrations 1B, le, 2B, 3B, 4B, 5B, 6B, 7E

and 8B.

For the calculations involved in model selection and determination of

formation constants, allowance was made for auxiliary equilibria which may be

important in the titrations performed. From the titrations carried out in the absence

of metal ions, a value of 9.08 ± 0.01 was obtained for the pKa of HCN (see Section

8.1). It was assumed that no protonated species other than HeN is formed in such

systems. Literature values taken from various data compilations (86,105) for the

other constants involved, valid at 25.00C and at various ionic strengths, are given in

Table 8.2. Where values appropriate to I =0.1 mol drn-3 were not available, these

(denoted by an asterisk in the table) were estimated using a method described

recently by Linder and Murray (106). For these interpolations, the required values of

the ion size parameters awere either obtained from Kielland (107) or estimated as

described by Linder and Murray (106).
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Table 8.2 Literature values, and values interpolated to I = 0.1 mol dm-3 of

formation constants used to correct for auxiliary equilibria in the

model selection procedure and in calculation of formation constants.

Quantity

~Kw

og pIl(BCO;)
H

~og K 2(H2COS)

log Plo-l[Zn(OH)+]
log Pto_~Zn(OH)~

~og Pto-~Zn(0H)3]
~og ,810-4[Zn(OH)i-]
log K[Zn+Zn(0H)]

1=0

5.0

10.2

13.9

15.6

0.0

1=0.1
mol dIn-3

13.78

10.00

6.16
*4.6
*9.6
*13.3
*15.2
*0.4

1= 3.0
mol dIn-3

3.8

8.3

13:7

18.0

1.7

•Values estimated as described in the text.

Values of the formation function ZM(ohs) are plotted versus pA in Figure

8.4 for data collected at p[B] values below 10. For clarity, not all experimental

points are shown. The relationship between titration numbers and plotting symbols

used in this and 8ubsequent figures is summarised in Table 8.3.

Table 8.3 Plotting symbols used for the various titrations depicted in Figure 8.4,

8.5, 8.7 and 8.8.

Titration Symbol Titration Symbol

1B Iforw&rd) • 4B ,
1B I reverse) , 5B A
lC I forw&I'd) (i 6B ~forward) 0

le t reverse) x 6B reverse) *
2B I forward) 0 7E •2B t reverse} Ii1 8B I
3B 0
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Reading from right to left of Figure 8.4, the plot of ZM(obs) versus pA

after an initial increase begins to level off at 3.5 < ZM(obs) < 4, followed by a rapid

-
increase with decreasing values of pA. This sudden rapid increase in ZM(obs) at low

pA values (i.e. high p[H]) is fairly typical for systems in which hydrolysis takes

place. It can be easily verified that the ZM(obs) versus pA plot is very sensitive to

small uncertainties in, particularly, the analytical quantity HT in this high p[H]

region, and also to the value of the pKa, of the ligand, so too much significance

should not be accorded to the extreme left hand region of the plot. The plot also

shows a "back-fanning" feature to the data from titrations 5B and 8B, in the former
-instance occurring at pA ~ 3.9, and ZM(obs) ~ 4.0. This feature is also fairly

characteristic of hydrolysis equilibria. The fact that this "back-fanning" feature

occurs early in the plot (reading from left to right) accords with the fact that these

two titrations (58 and 8B) were carried out at the lowest ligand-to-metal ratios in

this study (see Table 7.2). The lower the ligand to metal ratio the sooner hydrolysis

can be expected to occur, when the p[H] of the solution is raised (or the pA lowered).

A reasonably complete model of the hydrolytic and other equilibria in a system such

as this one should be able to reproduce this "back-fanning" feature at pA ~ 3.9,

whereas the portion at the extreme left hand side of the figure is probably too

sensitive to small experimental errors for exact reproduction to be feasible.

Another feature of interest in connection with Figure 8.4 is the degree of
-superimposa.bility of the ZM(ohs) versus pA curves at varying values of Znrr.

Examination of Table 7.2 shows that the titrations carried out at p[H] values below

10 can be divided into three broad groupings:

(a) Titrations 2B and 3B having Znrr, ~ 1x 10-4 mol dm-a.

(b) Titrations 1B, 10, 6B, 7E and 8B having Znrr, ~ 2.7 x 10-4 mol dm-a

(c) Titrations 4B and 5B having Znrr ~ 4 x 10-4 mol dm-a.

Thus, Zrur [group (a)] < Zrur [group (b)] < Znrr [group (c)]. There does

not appear, in Figure 8.4, to be any discernable systematic separation or grouping of
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Figure 8.4: The formation function ZM(obs) plotted vs pA for

measurements carried out at p[H] values below 10. Key to

the plot symbols used is given in Table 8.~ in the text.

A value of pK
a

of ZM( obs) .

9.01 for HeN was used in the calculation
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ZM(obs) versus pA curves in terms of the value of Zrur. The indications therefore

are that polynuclear complexes do not form to any significant extent in this ternary

system at metal ion concentrations below 7 x 10-4 mof dm-3.

Values of the deprotonation function Q(obs) are plotted versus p[H] as

discrete points in Figure 8.5, for the titrations carried out below p[H] =10.0. For

clarity, not all experimental points are shown. Also included in Figure 8.5 is a plot
-*

of the hydrogen formation function ZH (defined in Section 4.1.1) for the

ligand-hydrogen ion subsystem. The latter function is shown as a continuous line in

the Figure 8.5. In contrast to the situation existing above p[H] =10.0, vir~ually all-values of Q(obs) are positive, as expected for a system where complex hydrolysis

rather than complex protonation would be expected to occur. Referring back to

Figure 8.4, an approach to a plateau is obtained at values of pA ~ 3.5, corresponding-to a value of p[H] ~ 8.5. From Figure 8.5 it can be seen that at this p[H], Q(obs) ~
-*

3.1 and ZH = 0.75. Since only mononuclear complexes (MpLqH r ) form therefore

p =1. From the relationship given in Section 4.1.1 it follows that

r = 0.75q -3.1

Accordingly, if q =3 then r =-1 and if q =4, r =O. Thus if a single

complex predominates in regions corresponding to the platea.u in Figure 8.4, this

complex is likely to be either Zn(CN)3(OH)2- or Zn(CN)i-. Previous investigations

of the zinc-cyanide system (see Table 1.1) have assumed the complex to be

Zn(CN)i-.

Model selection was carried out using a OBJE +-+ BETA cycling

procedure described in Section 4.2.3, by means of which complexes are added one by

one to the overall model and the values of all unknown formation constants are

optimised after addition of each new complex.

Likely species for incorporation into the model for this system were tested

for or ranked by use of the BETA facility for point-by-point calculation of

formation constants. The algorithm used in the model selection phase of this study is
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summarized in Figure 4.7, but is duplicated in Figure 8.6 for ease of reference. An

essential featur~ of this algorithm is that the inner of the two nested loops involves

only single parameter calculations which are much easier and quicker to carry out

than the non-linear multiparameter optimisations involved in the outer (and less

frequently traversed) loop. Thus, as many as 10 new trial species can be tested for in

about the same time as it takes to carry out a single multi-parameter optimisation

involving a single trial species. Our experience with this algorithm is that the time

taken to arrive at a. satisfactory model for the system is a. factor of 5 to lOx less than

that required by procedures like PQR analysis (46) which involve numerous

multi-parameter optimisations. Time will tell whether the models obtained using

this procedure are as "good" 88 models obtained by PQR analysis, but recent

experience in our laboratory involving variations on both approaches have been most

encouraging (72,78). The "initial model", which represented the experimenter's

guess as to what the major species in the model are likely to be, was taken to be the

set of binary species Zn(CN)2, Zn(CN)3 and Zn(CN)i-. The algorithm can then be

used to test for the presence or absence of other (presumably minor) species in the

system.

In this way, the number of complexes in the model WM increased by one

each time the outer loop was traversed, and the values of all unknown formation

constants were optimised using the 0BJE task. A total of 117 data points, grouped

into 12 titratioDB were used in these calculations.

Optimisation was carried out with respect to the objective function

OBJE, (see Section 4.2.3), given by

N
OBJE =U=J::- }; Wn(E~bs - E~alc)2 (8.1)

!,-np n ~ 1

where

Nrepresents the total number of experimental titration points;

np represents the number of parameters simultaneously optimisedj

E~ bI represents the obeerved EMF at the nth data point;

E~alc represents the calculated EMF (for the model) at the nth data point;

Wn represents a weighting factor assigned to the residual at the nth point.
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c'onvergence obtained

Rank the trial species
in accordance with

criteria for
acceptability

Yes

Delete the last species
(for which there was no
improvement) from the

model.

Carry out final
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No
Have
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'Occasionally it may be found that the "best" of the trial species is not accepted into the model at the optimisation stage.
/( so, try the next best trial species etc. until one is accepted (i.e. leads to successful convergence).

Figure 8.6: A flowchart showing the sequence of steps involved in

model selection.
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The weighting factor Wn, defined as the reciprocal of the variance in the

residual E~b& - E~alc, was calculated by the program ESTA using the error

propagation formula

where

V represents titre volume,

E represents observed EMF,
and (JV and (JE refer to estimated random errors (expressed as standard deviations)

in the titre volumes and observed EMF, respectively. In these calculations, the

values (JV =0.01 cm3 and (JE =0.1 mVwere used.

The effect of weighting the residuals in the objective function in this way

is to sharply reduce the contribution to OBJE of those residuals arising from less

reliable readings, taken at or near "end points" or points of inflection in

potentiometric titration curves - thus obviating a well recognised hazard

encountered when using objective functions based on observed and calculated cell

EMF's.

Other choices of objective functions and weighting parameters are

possible within the ESTA program and these are discussed in the ESTA Users

Manual (44). Extended Debye-Hiickel type corrections were applied (44) to correct

for ionic strength changes during the titrations, but the effect of these should be

minor in view of the submillimolar concentration levels of the reactants.

Results of these calculations are summarised in Table 8.4. Values of the

objective function, U, are given in columns 8, 9 and 10 of the table. The formation

constants given in column 3 of Table 8.2 were incorporated as fixed values (assumed

correct) in all the calculations.



ABLE 8.4 Results of model selection and calculation of formation/hydrolysis constants (expressed as logarithms to base 10).

ycles Species and formation/hydrolysis constants a Goodness of fit, U
rough

lter 117 data 94 data 94 data

)p of Zn(CNh Zn(CN)3 Zn(CN)a- Zn(CN)3(OH)2- Zn(CN)3(OHH- Zn(CNH- points points points
sorithm pKa = 9.08 pK a pKa = 9.08

optimized

0 10.94 16.04 20.53 - - - 2610 2796 2960

1 10.98 15.53 20.33 3.81 b - - 720 521 596

2 10.83 16.11 20.41 7.08 - - 597 416 447

3 10.85 16.10 20.45 6.82 -3.31 - 560 355 401

4 10.80 16.12 20.41 6.61 -3.25 22.93 399 249 c 288

~or complexes containing the hydroxide ion, e.g. Zn(CN)Il(OH)III' the values given in the table represent log (JiIl-m - mpK w.

fhis value refers to the complex Zn(CNh(OH)- which was replaced by Zn(CN)3(OH)2- at the next cycle.

;imultaneous variation of pKa (HCN) leads to significant correlation between parameters at cycle 4.

~

~
t-..:)
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Calculations were performed on two data sets: one comprising all the data obtained

for the titrations described in Table 7.2 (117 data points), and the other comprising

all the data except those obtained at p[H] values above 6.5 for titrations 6B and 7E

(giving a total of 94 data points). The omitted data from the latter two titrations
-(corresponding to the rapid increase in ZM on the extreme left-hand side in Figure

8.4) are know to be very sensitive to small uncertainties in analytical concentrations.

Also, the ligand: metal ratios for these two titrations (20.2 and 15.0 respectively) are

both rather high-making the data from these titrations more than usually sensitive

to small systematic errors.

Workers in this field sometimes allow the value of pKw to be refined in

calculations of this sort. This often serves the purpose of correcting for deficiencies in

the cell calibration procedure, since the value of pK w and the electrode calibration

slope are strongly correlated. This procedure of refining the value of pK w was not

followed in this study.

For the smaller data set, the pK a of HeN was allowed to vary in one set

of calculations (colunm 9) and was held fixed at the experimentally determined

value of 9.08 in the other set (column 10).

It is clear from Table 8.4, that a simple model comprising only the binary

species Zn(CN)21 Zn(CN)a and Zn(CN)i- fails to account adequately for the present

experimental data. The introduction of ternary Zn/CN IOH species produces a

marked improvement in fit between observed and calculated cell EMF values. A

smaller improvement in fit is obtained on introduction of the five-coordinated

species Zn(CN)3(OH)~- and Zn(CN)t but the improvement appears to be

significant, particularly when the 94 data point set is considered. It should be noted

that, perhaps not surprisingly, a significant degree of correlation (correlation

coefficient above 0.90) exists between the values of log,815o and logpo 11 , log/1t3o and

log~140, when the pKa of HCN is treated as an adjustable parameter. However, when

the pK a of HCN is fixed at 9.08, no significantly correlated parameters are found.

Attempts to introduce more species into the model were unsuccessful - irrespective
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of whether 117 or 94 data points were used in the calculation.

The evidence for inclusion of the five coordinated speCIes

Zn(CN)3(OH)~-and ZN(CN)~- in the model is not as firm as the evidence for

existence of Zn(ON)3(OH)2-. Nevertheless, in the light of other corroborating

evidence to be discussed later I the former two complexes are retained in the model.

Final results based on the 94 data point set for the species present in

solution and associated formation constants, together with estimated uncertainty

limits obtained by multiplying ESTA- calculated standard deviations by 3, are in

Table 8.5.

TABLE 8.5 Species present in Zn2+/CN-/OH-(H+) containing solutions at p[H]
values below 9.8, together with associated formation constants
(expressed as logarithms to base 10).

Species log p(±3u)

Zn(CNh 10.8 ±0.1

Zn(CN)s 16.12 ± 0.06

Zn(CN)i- 20.41 ± 0.07
Zn(CN)3(OH)2- 20.4 ± 0.3
Zn(CNh(OH)~- 24.3 ± 0.2

Zn(CN)~- 22.9 ± 0.2

HON 9.08 ± 0.01

Plots of ZM(obs) (plotted as discrete points) and ZM(calc) (plotted as

continuous lines), both versus pA, are shown in Figure 8.7. Similarly, plots of Q(obs)

and Q(calc), both plotted versus p[H], are shown in Figure 8.8. For clarity, not

all experimental points are shown in Figures 8.7 and 8.8. Although agreement
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between observed and calculated formation functions is not perfect, it is felt that,

particularly in view of the sub-millimolar concentration levels studied, the level of

agreement between observed and calculated formation functions is acceptable.

Features of the formation functions, such as the "back-fanning" displayed by-titrations 5B, 8B and 4B in the ZM plot have been reproduced, as well as the

relative positions of curves for various titrations on the low p[H] side of the Qplot,

and the levelling off of the points for titration 8B on the high p[H] side of the Qplot.

To provide a visual representation of the speciation of zinc in

zinc/cyanide/hydroxide-containing solutions, a plot of the percentage of zinc in the

form of each complex is given as a function of p[H] in Figures 8.9 and 8.10 for

solutions in which Znrr =3x 10-4 mol dm-3, and CNT/ZnT.= 5 and 10 respectively.

At a ligand to metal ratio of 5: 1 and p[H] =9.8 the highest p[H] value considered in

this study, the predominating species in solution is Zn(CN)i-, accounting for 53% of

the total zinc in solution, followed by the species Zn(CN)s(OH)~- and

Zn(CNh(OH)2- in roughly equal amounts of 17% each. The remaining zinc occurs in

the complexes Zn(CN)3 and Zn(CN)g-. Thus, at a p[H] of 9.8 and a ligand to metal

ratio of 5: 1, mixed ligand complex species account for 34% of the total zinc content

of the solution. At the same p[H] value, but at a CNT:Znrr ratio of 10:1, the binary

complexes Zn(CN)~- and Zn(CN)i- predominate in solution, at the expense largely of

the mixed ligand species, which together now account for only about 10% of the

total zinc in solution. In both instances, calculations show that binary zinc-hydroxy

complexes of the type Znm(OH)n do not from to any appreciable extent under these
conditions.

It should be noted that the cyanide concentrations used, as well as the

upper limit of p[H] attained in titrations lB to SB of Table 7.2, were substantially

lower than those used in the electrochemical studies of Nicol et al. (1). To provide

some basis for comparison however, speciation calculations were carried out for the

p[H] range 4 -+ 12 for a solution in which ZnT =3 x 10-4 mol dm-3 and CN
T

=0.01

mol dm-3, i.e. CNT/Znrr = 33. The results indicate that at the relatively

high cyanide concentration of 0.01 mol dm-3 [Zn(CN)~-] >> [Zn(CN)i-] >



_ Zn(CN)3(OH}~­

_ Zn(CN}3(OH)2-

-4_ Zn(CN)2­
4

Zn(CN}3

/ 3-Zn(CN}5:'1_

0.0 i I "-. c;:;: c:=:; ...y::: i :y- ~ i <::: I I
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

100.0
Zn2+

I
90.0

80.0

70.0
u
Z
N

60.0w
t9«
I- 50.0z
w
u
er:

40.0w
n...

30.0

20.0

10.0

p[H]

Figure 8.9: Speciation of zinc in Zn-CN-OH solutions as a function of p[H] for

ZnT = 3 x 10-4 mo~ dm-3 and CNT/ ZnT = 5. Formation percentages were

calculated using formation constants given in Table 8.5 in the text.

~

~
00



_ Zn(CN)3­
5

_ Zn(CN)2­
4

~ Lrlt\..I~/2~,-/ ~
j i "> :><;• i ,

9.0 9.5

100.0
Zn2+

I
90.0

80.0

70.0

u
z

60.0N
W
19
<1: 50.0l-
Z
w
u

40.0a:
w
a...

30.0

20.0

10.0

0.0
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

p[H]

Figure 8.10: Speciation of zinc in Zn-CN-OH solutions as a function of p[H] for

ZnT = 3 x 10-4 mo~ dm-3 and CNT/ ZnT = 10. Formation percentages were

calculated using formation constants given in Table 8.5 in the text.

I-"'"
~
<:.0



150

[Zn(CN)3(OH)~-] at p[H] values below 11.0. At p[H] values above 11.0

[Zn(CN)3(0 H)~-] > [Zn(CN)~-] > [Zn(CN) i-] ~ [Zn(CN)a(0H)2-]. It is of course

entirely possible that other species not detected in this study may appear at p[H]

values substantially above 10, and may even predominate at sufficiently high p[H]

values. Nevertheless, the relative order of concentrations of the species Zn(CN)~-,

Zn(CN)i-, Zn(CNh(OH)~- and Zn(CN)3(OH)2- given above may still be applicable.

In respect of the existence or otherwise of species of the form Zn(CN)n

with n>4, this study seems to corroborate the conclusion drawn by Pines (8) and

~terud and Prytz (12) on the basis of polarographic evidence, that such species are

formed at sufficiently high cyanide concentrations. The latter authors worked at

Znrr concentrations in the range 10-4 to 10-3 mol dm-3 as.done in this study) and

presumably, at the natural p[H] of solutions formed at various cyanide levels. They

reported a polarographic wave, assigned to Zn(CN)~-, at a CNT:ZnT ratio of 8:1

which persisted up to a ligand:metal ratio of 120:1. Speciation calculations carried

out using the constants given in Table 8.5, and the program HALTAFALL (i3),

indicate that Zn(ON )g- is formed to an extent of 20% of total zinc in solution (at a

natural p[H] of :::: 9.8) at a ligand:metal ratio of 8: 1 - in apparent accord with the

observations (and deductions) of ~terud and Prytz.

Other recent studies of the Zn2+ + ON- system involving glass elect.rode

potentiometry, such as those of Martin and Blanc (19) and Persson (21) in which the

data were interpreted in terms of complexes Zn(CN)2, Zn(CN)3 and Zn(CN)i- only

(see Table 1.1), were carried out at p[H] values not exceeding ~ 8.5. Under such

conditions one would expect, on the basis of the constants given in Table 8.5/ no

more than about 2% of the total zinc in solution to be present as the Zn(CN)g­

complex, and this may explain why these authors did not find it necessary to

postulate the existence of this and other ternary complexes.

Although the formation of the mixed ligand species Zn(CN)3(OH)2- has

been established with some confidence in this study, one can be less certain about

the five-coordinated species Zn(CN)3(OH)~- and Zn(CN)~-.
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In potentiometric titration studies of this kind, it is generally problenlatic

to decide in an objective manner when to stop introducing new complexes into the

model describing the speciation in the system/s studied (108). Thus I the decision to

stop at cycle 4 in Table 8.4 was taken in view of the fact that the value of the

objective function OBJE for the data set seemed to decrease appreciably up to that

point, and that the technique would admit no further complexes in the model. What

constitutes a significant improvemen~ in the "goodness of fit" parameter is not easy

to determine, and depends, to some degree, on the presence or absence of significant

sources of systematic error in the experimental data. Errors of a random nature that

affect individual data points are not likely to present difficulties over 94 data points.

Errors affecting complete titrations , e.g. errors in cell calibration constants, are more

serious, but the number of independent titrations considered in this study is fairly

high for studies of this kind (see, for example, references 2, 20 and 22). The most

serious systematic errors are those affecting all titrations. Instability of the ligand

species towards oxidation and/or non-equilibriurn effects at high p[H] values are

examples of error sources of this kind. Disappearance of cyanide from the system

through oxidation would, if not specifically accounted for, and if accompanied by a

reduction in solution p[H], be interpreted as additional complex formation, e.g.

would result in values of log (J that would be erroneously high or in the post.ulation

of complexes like Zn(CN)g- which involve consumption of additional cyanide ions.

Accordingly, the possibility cannot be entirely excluded that the last two minor

species introduced into the model, i.e. the five coordinate species Zn(CN)3(OH)~­

and Zn(CN)g-, may be "computer complexes", attributable to experimental error of

one 80rt or another. However, due to the large number of precautions taken to avoid

errors of the types mentioned above and considering the polarographic evidence of

~terud and Prytz, there are reasonable grounds for believing that such species do

form in dilute solutions.

It is of interest that ~terud and Prytz reported at a CNT:Znrr ratio of

600:1, (i.e. at a natural pH of ~ 11) the polarographic waves assigned to Zn(CN)g-­

and Zn(CN)~- both disappear. This observation may be significant in relation to the

observations of Ashurst et al. (22), that at free cyanide concentrations (and natural
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p[H] values) significantly higher than the highest values used by ~terud and

Prytz (12), the free cyanide concentration in solution is consistent with a

bound-cyanide:zinc ratio of 4: 1. It would seem that although the species Zn(eN )~­

(and, according to ~terud and Prytz (12), also Zn(CN)~-) may form in solutions of

sufficiently high cyanide concentrations, a point is reached when other reactions are

induced which, when sufficiently advanced, (aB they presumably may have been in

the experiments described by Ashurst et at. (22)) I the bound cyanide:metal ratio

reverts to around 4: 1.

The precise nature of the other reactions referred to above, is a matter of

speculation at present. Among the possibilities that exist, one may include:

(i) The formation of polymeric species in solution involving cyanide and zinc in

the ratio 4: 1 with cyanide or hydroxide ions acting as bridging ligands.

Polymeric hydroxy species are fairly common in aqueous solutions at high

p[H], and some of them, such as those formed by Fe3+ and A{J+ lead to

sluggish attainment of equilibrium (109), and others are known to form in a

highly irreversible fashion (110).

(ii) The formation of some form of colloidal precipitate involving cyanide and

zinc in the ratio 4: 1 and possibly also the hydroxide ion. The precipitate

would have to be of a colloidal nature since none of the workers on this

system (including Ashurst et al. who worked on quite concentrated solutions)

reported or suspected any precipitate formation.

With regard to the ternary complexes reported in Table 8.5, it is of

interest to compare the value of log {3 = 20.4 for Zn(CN)3(OH)2- with the

corresponding values of log [3 =20.41 for Zn(CN)i- and log [3 =15.2 for Zn(OH)i- ­

all values referred to an ionic strength of 0.10 mol dm-3. Other factors being equal,

mixed ligand complexes are stabilised in comparison with the corresponding binary

complexes involving the same total number of ligands, since there are statistically

more ways of making up a mixed ligand complex than the corresponding binary

complexes. As discussed by Sharma and Schubert (96) the statistical factor tending
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to stabilise the mixed ligand complex MLxL'yL"z ...... can be calculated from

S=n!/(x!y!z! ..... )

where n represents the total nwnber of ligands in the complex. If the total number of

ligands on the complexes cOIl8idered is less than the maximum possible coordination

number of the metal ion concerned, this should presumably sta.bilise both the mixed

ligand and the corresponding binary complexes to the same extent and therefore

produce no nett effect. The logarithm of the formation constant of a mononuclear

mixed ligand complex MLxLl y can then be estimated by use of the following

relation:

(8.3)

Application of this relationship leads to a prediction of

log ~Zn(CN)3(OH)2·] ~ 19.7. Comparison with the experimental value of 20.4 ± 0.3

indicates a "ligand enhancement factor" (96), ~ log P=0.7 ± 0.3 for this complex,

i.e. after correction for statistical effects, this mixed ligand complex shows an

enhanced stability of some 0.7 log unita.

The existence of a ligand enhancement factor can be rationalised from a

consideration of the stepwise formation constants log K for the formation of

successive Zn(CN)n and Zn(OB)n complexes (see Table 8.6).

It seems clear that the addition of hydroxide ion to Zn(II) inhibits

addition of further hydroxide ion to a greater extent than addition of a cyanide ion

to Zn(ll) inhibits addition of further cyanide ions. This may relate to differences in

bonding requirement!, charge distribution over the complexes or steric effects

involving water molecules of solvation on the complexes. It seems reasonable

therefore that a single hydroxide ion should form a more stable complex with

Zn(CN)a than would be expected on the basis of its affinity for the species Zn(OH)a,

88 indicated by a fairly large (96) po8itive ligand enhancement factor. This
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TABLE 8.6: Values of the logarithms of cumulative (log P) and stepwise (log K)

formation constants for the mononuclear binary complexes of Zn(II)

with cyanide and hydroxide ions. (All values given either were

determined at, or were corrected to, an ionic strength of 0.1 mol

dm-3)

Complex Cumulative
log P

Stepwise
log K =log P1nO -log Pt( n-t) 0

Zn(ON)2
5.32

Zn(CN)a

Zn(CN)i-
~2.49

Zn(CN)~-

Zn(OH)+ 4.6=
5.0

Zn(OH)2 9.6~ 3.7

Zn(OH)s 13.3~
1.9

Zn(OH)i- 15.2

observation, together with equation (8.3) may prove useful when estimating

formation constants of other mixed ligand complexes like Zn(CN)2(OH)-,

Zn(CN)(OH) etc. any or all of which may form under appropriate experimental

conditions, e.g. low cyanide:zinc ra.tios.

In conclusion, this potentiometric study of the equilibria existing in

aqueous zinc-cyanide solutions at 25.0°0, an ionic strength of 0.10 mol dm-3, high
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p[H] values. and cyanide:zinc ratios greater than 4:1 has

(i) shown that the ternary complex Zn(CN)s(OH)2- is formed in significant

amounts (5 - 20%) in solutions of p[H] > 8.5;

(ii) provided evidence for the existence in dilute solution of certain

five-coordinate complexes such as Zn(CN)3(OH)~- and Zn(CN)~- in

significant amounts (5 - 25% of total zinc) in solutions of p[H] > 8.5;

(ili) shown that the potentiometric data obtained below p[H] 9.8 are consistent

with the formation of the following species together with logaritlunic

formation constants given in parentheses, Zn(CN)2 (10.8 ± 0.1); Zn(CN)a

(16.12 ± 0.06); Zn(CN)i- (20.41 ± 0.07); Zn(CN)s(OH)2- (20.4 ± 0.3);

Zn(CN)3(OH)~- (24.3 ±0.2); Zn(ON)i- (22.9 ± 0.2), and HON (9.08 ± 0.01);

(iv) shown that experimental methods based on measurement of solution p[H]

(or a related quantity) alone are unlikely to be of value in the study of

Zn2+/CN-/OH- equilibria at p[H] values above about 10, unless the real

accuracy of these measurements can be improved by an order of magnitude

to an uncertainty level of ±0.003 p[H] units.
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