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Abstract

The focus of this thesis is on computational grid-manipulation to enhance the accuracy, conver-

gence and computational efficiency of spectral collocation methods for the solution of differential

equations in fluid mechanics. The need to develop highly accurate, convergent and computation-

ally efficient numerical techniques for solving nonlinear problems is an ever-recurring theme in

numerical mathematics. Spectral methods have been shown in the literature to be more accurate

and efficient than some common numerical methods, such as finite difference methods. However,

their accuracy deteriorates as the computational domain increases and when the number of grid

points reaches a certain critical value. The spectral collocation algorithm produces dense matrix

equations, for which there is no known efficient solution method. These deficiencies necessitate

the development of spectral techniques that produce less dense matrix equations using fewer grid

points. This thesis presents a new improvement in spectral collocation methods with particular

application to nonlinear differential equations that model problems arising in fluid mechanics. The

improvement described in this thesis requires the use of overlapping grids when descritizing the

solution domain for Chebyshev spectral collocation method. The thesis is presented in two related

subdivisions. In Part A, the overlapping grid approach is used only in space variable when solving

nonlinear ordinary and partial differential equations. Subsequently, the overlapping grid approach

is used in both the space and time variables in the solution of partial differential equations.

This thesis is also devoted to analysing solutions of fluid flow models through various practical

geometries with particular interest in non-Newtonian fluid flows. The physics of these fluid flows

is studied through parametric studies on the effects of diverse thermophysical parameters on the

fluid properties, changes in shear stresses, and heat and mass transport. Key findings, are inter

alia, that the overlapping multi-domain spectral techniques are computationally efficient, produce
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stable and accurate results using a small number of grid points in each subinterval and in the

entire computational domain. Using the overlapping grids yields less dense coefficient matrices

that invert easily. Changes in thermophysical parameters has significant consequences for the fluid

properties, and heat and mass transfer processes.
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Chapter 1

Introduction

1.1 Background and motivation

Most real life problems occurring in diverse disciplines in science, economics and engineering are

modelled using ordinary and partial differential equations [1]. In engineering for instance, differ-

ential equations are encountered in fluid dynamics. These differential equations are used in the

design of containers and funnels, in heat conduction analysis for the design of heat spreaders in

micro-electronics, and in combined heat conduction and convection on which the design of heating

and cooling chambers is dependent [2]. According to Hale and Moore [3], solutions of differential

equations are important in modelling and predicting the future state of the phenomena being stud-

ied. However, most differential equations are highly nonlinear, and thus challenging to solve using

analytic approaches. For this reason, we make use of numerical methods to tackle complex dif-

ferential equations with strong nonlinearities The challenge remains to find sufficiently accurate,

convergent and computationally efficient numerical methods for solving highly nonlinear differ-

ential equations. As a result, many researchers devote time to developing numerical techniques

that are not computationally expensive, are accurate and converge quickly, so that deficiencies

in existing methods may be alleviated. The objective of this study is to propose numerical tech-

niques that are computationally efficient and make use of the least number of possible grid points

to obtain suitably accurate solutions. The complexity in obtaining solutions to differential equa-

tions increases from ordinary to partial differential equations. For this reason, the central theme of

this thesis is the testing of the new methods on some problems modelled using partial differential
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equations, to establish the applicability and efficiency of the methods.

Flow problems, with heat and mass transport, arise in both natural and man-made practical situa-

tions. In the recent past years, a growing number of researchers have used various fluid flow mod-

els to study such problems. Among these models, are Newtonian and non-Newtonian fluid flow

models. Much research attention has been given to non-Newtonian fluids because heat and mass

transport are complicated to understand through Newtonian fluid models. Also, non-Newtonian

fluids contribute significantly in engineering, biomedical, petroleum and industrial applications.

The flow properties of non-Newtonian fluids vary from those of Newtonian fluids in many ways.

For example, a constant coefficient of viscosity is inappropriate for non-Newtonian fluids due to

the relationship between the strain rate and the shear stress being nonlinear, and time-dependent

[4]. The fluid viscosity depends on the applied shear force and, on the rate at which the resultant

shear takes place. There is, however, no single constitutive equation to describe the flow and fea-

tures of non-Newtonian fluids, due to the complexity and wide differences in the physical structure

of these fluids. Consequently, non-Newtonian fluid models take into account different constitutive

relations that model their behaviour and rheological characteristics. The equations characterizing

such relations are highly nonlinear and complex in comparison to those of a Newtonian fluid. Also,

the viscosity of non-Newtonian fluids is generally higher than that of Newtonian fluids. Accord-

ingly, in flow and heat transfer processes, the pressure drop is high and heat transfer coefficient is

particularly low [5].

To enhance heat transfer in fluids, solid nanoparticles are suspended in base fluids such as oil

and water. Nanoparticles are exceptionally small, with a diameter of the order of a nanometre.

The fluid formed is called a nanofluid [6]. When traditional fluids have these tiny solid particles

suspended in them, their thermal conductivity improves leading to their heat transfer character-

istics being enhanced [7]. According to Bhanvase et al. [8], the higher thermal conductivity

of the suspended nanoparticles accounts for the improved thermophysical properties and thermal

performance of the nanofluid compared to the base fluids. Traditional fluids with nanoparticles

incorporated into them form non-Newtonian nanofluids. Several researchers focused attention on
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flow characteristics and behaviour of non-Newtonian nanofluids due to their applications in indus-

try and transportation [9]. Since the motion of non-Newtonian nanofluids is complex and difficult

to model owing to the nonlinear relationship between the stress and the rate of strain, they are

modelled using nonlinear equations. Solving these complex nonlinear equations necessitates ap-

plying computationally efficient, fast converging and sufficiently accurate numerical methods. The

current work investigates flow, heat and mass transport and the movement of motile microorgan-

isms in various non-Newtonian fluids. We also focus on numerical solution of flow models for

nanofluids in various flow geometries and subject to different boundary conditions. The chemical

and physical behaviours of nanofluids are investigated for the the impact of various physical and

chemical parameters. In this study, efficient overlapping grid spectral collocation methods are pre-

sented and used to obtain numerical solutions. In the rest of this chapter, we give a brief discussion

of heat, mass and motile microorganisms movement, non-Newtonian fluids, nanofluids, thermal

radiation, variable fluid properties and relevant numerical approaches in the literature. We end

with a statement of the research objectives and a statement on the structure of the thesis.

1.2 Heat, mass and motile microorganisms transports

In this study, we investigate heat and mass transport, and the movement of motile microorganisms

in various fluid flow models. The importance of heat transfer in modern engineering designs cannot

be overemphasized. When designing and operating devices like air-conditioners and refrigeration

systems it is crucial to take into consideration efficiency in heat exchangers [10]. Thus, an efficient

design makes allowances for maintaining reasonable temperatures through sufficient transfer of

heat. Heat transfer involves thermal energy transfer because of temperature differences [11, 12].

There are three forms of heat transfer, namely, conduction, convection and radiation [13]. Con-

duction is a mechanism in which heat energy is transmitted from a region of higher temperature to

a region of lower temperature by kinetic molecular motion and molecular collisions, whether the

bulk medium is stationary or in motion. Heat transportation by conduction is a result of tempera-

ture differences, the material comprising the medium and its thickness [14]. In the overall layer,

the rate of heat conduction is proportionally correlated to the heat transfer region and the temper-

3



ature differences, and is inversely related to the thickness of the layer. Convection takes place in

fluids by either diffusion or advection, or a combination of both [15]. Diffusion is characterized by

random molecular motion of the fluid, while advection occurs when the fluid motion itself trans-

ports energy from one region to another in the medium. Lastly, radiation occurs when heat energy

is transported by electromagnetic waves in the absence or presence of an intervening medium [16].

Pure conduction occurs in solids whereas heat transfer by convection takes into account fluid mo-

tion and heat conduction. Convective heat transfer involves heat transfer by both conduction and

convection. Forced, natural and mixed convection are classes of convective heat transfer which

depend on how the fluid motion is started. Forced convection is due to the external forces acting

on a heated body [17]. Natural convection takes place as result of buoyancy forces which emerge

from density differences in a fluid. These differences are due to temperature and concentration

gradients in the fluid. Researchers who have considered natural convection flows include Jaluria

and Himasekhar [18], and Kraus et al. [19] to name a few. Mixed convection is a blending of

forced and free convection through an external forcing mechanism and internal volumetric forces.

Mass transfer involves the transportation of one constituent from a region of high concentration to

a region of low concentration due to difference in concentration [20]. Mass transfer is important in

countless industrial processes, such as the removal of pollutants from plant discharge streams by

absorption, the stripping of gases from waste water, or neutron diffusion within nuclear reactors.

Molecular diffusion and convection are two forms of mass transfer. Diffusion is on account of the

movement of molecules in a fluid by random motion, from a region of high concentration to one of

low concentration. Mass convection is due to a mechanical force or action to maximize the rate of

molecular diffusion. Motile microorganism transfer involves the transportation of microorganisms

through physical mechanisms. Convection, self-propelled motion and random movement are the

basic modes of motile microorganism transfer. In convective transport, microorgansisms are trans-

ported by the fluid. Self-propelled motion is due to the swimming of the microorganisms, while

the random microorgansisms motion may be due to diffusion processes.

4



1.3 Non-Newtonian fluids

Many industrial and biological fluids including synthetic lubricants display nonlinear behavioural

characteristics. The constitutive relations for non-Newtonian fluids are complex and of a higher

order to those of Newtonian equations. There is a variety of non-Newtonian fluid models [21–

23] that have been proposed to describe fluids of practical interest. Fluids demonstrating non-

Newtonian rheology have captured the attention of a lot of researchers owing to their variety of

practical use in metallurgical processes, crystal growth, fiber technology, wire drawing and food

products. To demonstrate the complete properties of these fluids, any single fluid model is not

enough since it may address only some properties and fail to predict others. The non-Newtonian

fluid models of particular interest in this study include Casson and Eyring-Powell fluid models.

1.3.1 Casson fluid

The Casson fluid model has been extensively used in several flow scenarios, after the first proposal

in Casson [24]. This model involves a plastic fluid model which exhibits shear thinning character-

istics, yield stress and higher shear viscosity. The Casson fluid model becomes a Newtonian fluid

model when the wall shear stress is considerable higher than yield stress [25]. Casson fluid model

is also suitable in approximating the rheological behaviour of other fluids involving physiological

suspensions, foams, cosmetics, and syrups. The Casson fluid model is still the most significant

non-Newtonian fluid possessing a yield value. Studies involving Casson fluids plays a significant

role in heat transfer processes, food processing, bioengineering operations, mechanical, chemi-

cal and engineering processes. Because of these applications, several researchers have considered

characteristics of Casson fluid in various geometries. For instance, Oyelakin et al. [26] solved

the problem of MHD flow of Casson nanofluid over an unsteady stretching sheet using the spec-

tral quasilinearisation method. They found that increasing the Casson fluid parameter leads to the

fluid reducing to Newtonian behaviour. Prashu and Nandkeolyar [27] applied the spectral quasi-

linearisation method in solving the equations that describe the MHD flow of a Casson fluid over a

stretching surface. Their results showed that as the yield stress increases, the momentum boundary
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layer in the x- direction becomes thinner and the change in shear stress along the x- direction di-

minished. Also, the velocity of the fluid in the z- direction increased near the surface and reduced

away from the surface with increment in the yield stress. However, the skin friction coefficient in

the z- direction enhanced with increasing the yield stress.

1.3.2 Eyring-Powell fluid

Many researchers have examined the behaviour of the Eyring-Powell fluid model [28] in various

flow geometries, owing to its particular advantages when compared with other non-Newtonian flu-

ids. Eyring-Powell fluid model is beneficial in the sense that it is deduced from kinetic theory

of liquids rather than the empirical relation. Also, it correctly reduces to Newtonian (viscous) be-

haviour for low and high shear rates. Such model signifies the behaviour of viscoelastic suspension

and polymeric solutions against extensive ranges of shear rates. The Eyring-Powell liquid can be

used to express the flows of modern industrialised equipments like powdered graphite and ethy-

lene glycol. Agbaje et al. [29] used the multi-domain bivariate spectral quasilinearisation method

to solve the equations that model the flow of Powell-Eyring nanofluid over a shrinking surface.

Their results showed that the flow velocity together with momentum boundary layer thickness ac-

celerated with Eyring-Powell fluid parameters. Ogunseye et al. [30] used the Eyring-Powell fluid

to scrutinize thermal properties and flow structure of a nanofluid over a cylinder using spectral

quasilinearisation method. They reported that the changes in shear stress decreased with increas-

ing the Eyring-Powell fluid parameter. The bivariate spectral quasilinearisation method was used

by Ogunseye et al. [31] in analyzing the flow of Eyring-Powell nanofluid through a permeable

stretching surface. Among their findings, they found that increment in the Eyring-Powell fluid

parameter caused decrement in the fluid viscosity.

1.4 Nanofluids

The relevance of nanofluids in the current study lies in their performance being significantly better

in heat and mass transfer processes when compared to traditional fluids. In the past few years,
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flow, heat and mass transmission in nanofluids have been an area of interest to a lot of scholars

owing to their valuable applications in industry, technology and medicine. These applications are

found in transportation, micro-electronics, fuel cells, hybrid-powdered engines, cancer therapy

and drug delivery [32, 33]. The notion of nanofluids was introduced by Choi and Eastman [6]

and entails the suspension of solid nanoparticles in traditional fluids like water, ethylene glycol,

kerosene and engine oil. These base fluids possess low thermal conductivity and the addition of

nano-sized metallic or non-metallic particles into the base fluids enhances their thermal conduc-

tivity. Choi and Eastman [6] found that adding as little as 1% of nanoparticles to the base fluid

doubles the thermal conductivity of the normal fluid. The heat transfer improvement technology

has been mostly utilized in heat exchangers, refrigerators, automobiles and the chemical industry.

The most significant parameters for improving the heat transfer of nanofluids are the nanoparticle

concentration and size of the particles [34]. In the Buongiorno model [34], the concentration of

nanoparticles are assumed to fluctuate, through mechanisms such as Brownian motion and particle

thermophoresis. Many researchers [35–37] have considered flow, heat and mass transfer problems

in nanofluids over various geometries.

1.5 Impact of variable fluid properties

Most existing surveys on flow, heat and mass transfer in fluids have considered constant physical

properties of the ambient fluid. Nevertheless, it is common cause that these features may vary

significantly with temperature [38]. For accurate modelling of the flow, heat and mass transport,

it is essential to regard changes in the fluid viscosity, thermal conductivity and mass diffusivity.

Flows of a viscous and incompressible fluid have been studied under various physical assumptions

such as variable fluid properties [39, 40]. By considering variable transport properties the impact

on the velocity and temperature profiles can frequently be established, thus giving better insights

into friction and heat transfer rates than could be understood if the properties were constant. Sev-

eral researchers have considered flows of non-Newtonian fluids in different geometries taking into

account fluid properties of a variable nature. Elgazery and Abd Elazem [41] studied the influence

of variable thermal conductivity on an unsteady MHD free convection in a micropolar fluid flow
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over a semi-infinite vertical porous plate using the Chebyshev collocation method. They found

that the fluid temperature increased as the thermal conductivity and radiation parameters increase.

Oyelakin and Sibanda [42] considered the importance of variable fluid properties on a tangent hy-

perbolic fluid flow past a flat impermeable surface. Their major findings included that altering the

viscosity minimizes fluid flow resistance and causes an increase in the fluid velocity whereas the

temperature and species concentration increase with the variable fluid viscosity. The Chebyshev-

spectral collocation method was used by Idowu et al. [43] in analyzing MHD free convective flow,

heat and mass transfer in dissipative Casson fluid with variable transport properties. They reported

that the introduction of variable viscosity diminishes the velocity field near the wall while improv-

ing the velocity and temperature of the fluid in the free stream region. Also, the variable thermal

conductivity enhances the temperature field throughout the entire boundary region. Flow and heat

transport in a non-Newtonian Eyring-Powell nanofluid over a stretching sheet with variable viscos-

ity and thermal conductivity was studied by Ogunseye et al. [44] via the spectral local linearization

method. Idowu and Falodun [45] applied the spectral homotopy analysis method in the numeri-

cal study of a Waters-B viscoelastic and a Casson fluid flow taking into account variable thermal

conductivity and viscosity. Their outcomes indicated that the inclusion of thermal conductivity

and viscosity of a variable nature improves the velocity and temperature distributions because of

augmentation in the Casson and Walters-B viscoelastic parameters.

1.6 Thermal radiation

Thermal radiation is radiation emitted by all bodies when the body’s internal energy is transformed

to electromagnetic radiation by the movement of electrons and protons in the material [46]. Ex-

amples of sources of thermal radiation include the sun, an open fire, heating elements on a stove

or a radiator, etc. The influence of thermal radiation on boundary layer flow problems is signif-

icant owing to its extensive applications in physics, engineering, industry and space technology.

Such applications are found in glass production, furnace design, polymer processing, gas-cooled

nuclear reactors, rockets propulsion systems, power plants and spacecraft which operate at high

temperature. In such applications, the effects of thermal radiation may not be neglected. The sig-
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nificance of thermal radiation in modelling the flow and heat transportation in a viscous fluid past

an unsteady stretched sheet was emphasized by Pal [47]. Thermal radiation is often approximated

using the Rosseland approximation [48] to describe the radiation heat flux in the energy equa-

tion. Most previous studies have considered a Rosseland approximation with a linear form, instead

of the nonlinear form, which has been recently used by several scholars. The linearized Rosse-

land approximation is appropriate only for smaller temperature variances. However, the nonlinear

Rosseland diffusion is authentic for both smaller and greater temperature variances. The current

work presents fluid flow problems that use both linear and nonlinear Rosseland approximation.

Oyelakin et al. [49] considered the importance of nonlinear radiative heat flux and variable trans-

port properties on heat and mass transport in the flow along a wedge of a bioconvective Casson

nanofluid comprising gyrotactic microorganisms. Gangadhar et al. [50] employed the spectral

quasilinearisation approach to analyze the flow of micropolar ferrofluid with thermal radiation.

They showed that the temperature field of a micropolar magnetic ferrofluid is higher than that in a

classical micropolar fluid when radiation effects are taken into account.

1.7 Numerical solution techniques

This section gives a brief review of recently developed spectral collocation methods of interest in

this study. The strengths and weaknesses of these methods are described. The deficiencies in exist-

ing methods that will be mitigated by the current work are highlighted. Many fluid flow problems

arising in science and engineering are modelled using highly nonlinear differential equations with

strong coupling. The complexity of such systems of differential equations makes it difficult to find

closed form analytic solutions. For this reason, we often resort to obtaining approximate solutions

using numerical methods. Over the years, various numerical techniques have been introduced and

used successfully for finding numerical solutions of systems of nonlinear differential equations.

These traditional methods include the Runge-Kutta method [51], finite difference method [52], fi-

nite element method [53], element free Galerkin method [54] and Keller-Box method [55]. These

methods have good properties but also have limitations such as being computationally expensive,

having low convergence rates and requiring many grid points to achieve sufficiently accurate re-
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sults. These numerical approaches have also been reported as being ineffective in problems with

discontinues, singularities or multiple solutions [56]. Consequently, the development of numerical

approaches that are computationally fast, converge quickly, and utilize fewer grid points to give

accurate solutions of nonlinear problems remains an active area of research. Spectral methods

have been established to have such desirable features. When compared to many common meth-

ods, they are computationally less expensive, converge rapidly and utilize a low number of grid

points to yield sufficiently accurate solutions, particularly when the solution is smooth. The al-

gorithm for the spectral collocation method is easy to apply to practical problems. Among the

recently developed spectral collocation-based methods, is the spectral perturbation method (SPM),

spectral homotopy analysis method (SHAM), spectral quasilinearisation method (SQLM), bivari-

ate spectral local linearisation method (BSLLM) and bivariate spectral quasilinearisation method

(BSQLM). These spectral methods converge quickly and give accurate results when the time do-

mains are small. Nevertheless, the accuracy deteriorates when the computational domain becomes

large. To overcome this limitation, utility of techniques such as the SQLM and BSQLM has been

improved by using the multi-domain technique in the time variable. In these procedure, the com-

putational time domain is partitioned into non-overlapping subintervals. A continuity condition is

utilized to advance the solution throughout the non-overlapping subintervals.

The above-mentioned spectral methods have many advantages, but there remain limitations that

need to be addressed. The spectral collocation methods lead to dense matrix equations, for which

there is no known efficient solution method. Also, the accuracy should increase with increment in

the number of grid points, however, when the number of grid points exceed a particular number, the

accuracy has been noted to deteriorate rapidly. This is explained by the large number of grid points

in the spectral method yielding bigger and fuller matrices, which require large memory for storage.

In this study, we develop spectral collocation methods with improved accuracy achieved using the

least number of grid points and through making the coefficient matrices in the matrix equation to

be less dense. The novelty of the modified algorithm involves computational grid-manipulation by

using the overlapping grids in the Chebyshev spectral collocation method. Numerous researchers

have used overlapping multi-domain approaches together with pseudo-spectral methods. Olmos
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and Shizgal [57] used the overlapping multi-domain pseudo-spectral approach in finding numer-

ical solutions of the Fisher’s equation. On the other hand, Taleei and Dehghan [58] applied the

overlapping multi-domain pseudo-spectral method to obtain the numerical solution of one and two

dimensional sine Gordon equations. Their findings showed that round-off error in the Chebyshev

spectral collocation can be reduced by decomposing the main domain into smaller subintervals.

The multi-domain technique establishes sparsity in the differential matrices, utilizes low memory

and less computational time. As a result, the overlapping multi-domain scheme yields stable and

accurate solutions. In this study, we propose using overlapping grid spectral collocation methods

for the numerical simulation of highly nonlinear differential equations modelling problems in fluid

mechanics. The overlapping grid spectral collocation scheme is used together with the SQLM and

BSQLM techniques. The solution procedure multi-faceted involves linearisation, domain decom-

position, grid manipulation and numerical discretization of the linearised equations. The applica-

bility, accuracy and reliability of these methods are verified through a determination of convergence

and residual errors. In cases where exact solutions are available, approximate solutions are collated

with analytic solutions to authenticate the accuracy of the numerical approximations. Unlike other

versions of multi-domain spectral collocation methods, solutions in the overlapping grid spectral

methods are computed simultaneously across all the overlapping subintervals.

1.7.1 Spectral quasilinearisation method

The Chebyshev spectral quasilinearisation method (SQLM) is a generalisation of the Newton-

Raphson quasilinearisation method (QLM) developed by Bellman and Kalaba [59] for numerical

solution of nonlinear differential equations. The SQLM approach [56] entails linearisation of the

nonlinear differential equations using the Taylor series by assuming that the difference between the

current and previous iteration is small. The Chebyshev spectral method is then used to solve the

resultant system of linear equations. Several studies [60–62] have successfully used the SQLM to

solve nonlinear ordinary differential equations arising in boundary layer fluid flows. Motsa et. al

[63] was the first to apply the SQLM approach in solving systems of nonlinear partial differential

equations that modelled unsteady boundary layer flows. They used the spectral collocation method
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for the numerical discretization of the space variable while the implicit finite difference method

was used to discretize the time variable. In this study, the SQLM is modified and used in Chapter

2 to solve a system of ordinary differential equations.

1.7.2 Bivariate spectral quasilinearisation method

It is known that using implicit finite difference methods to discretize in the time variable com-

promises the accuracy of the method because finite differences need much computational time

and a lot of grid points to achieve accurate solutions. To overcome this weakness, Motsa et

al. [64] established the bivariate spectral quasilinearisation method (BSQLM), which applies the

spectral collocation method independently in space and time. The BSQLM uses the QLM tech-

nique, Chebyshev spectral collocation method and bivariate Lagrange interpolation polynomial

with Chebyshev-Gauss-Lobatto grid points. It was found that the accuracy improved, particularly

for small sized computational time domains. Nevertheless, the level of accuracy was found to

deteriorate with larger time domain. Subsequently, the multi-domain bivariate spectral quasilin-

earisation method (MD-BSQLM) [65, 66] was introduced as an alternative to improve accuracy

for larger time domains. The method has been used to solve nonlinear evolution PDEs and a

system of nonlinear PDEs of boundary layer flow. It was concluded that, when compared to the

single-domain spectral method, the multi-domain spectral method is more accurate and uses less

computational time. Also, the accuracy of the multi-domain spectral method did not deteriorate

rapidly with an increase in the time domain. In this study, the BSQLM is improved and used to

obtain solutions of partial differential equations in Chapters 3 - 9.

1.8 Thesis objectives

The intention of this thesis is to present a new improvement to spectral collocation methods by

using a multi-domain technique together with an overlapping grid approach. The development of

the overlapping grid spectral collocation methods is described for highly nonlinear and coupled

differential equations with fluid mechanics applications. We also demonstrate the applicability,
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reliability and general performance in terms of efficiency, accuracy and convergence of the over-

lapping grid spectral collocation schemes in systems of nonlinear differential equations. The con-

vergence of the methods is assessed through the evaluation of error norms between two successive

iterations. The accuracy of the numerical schemes is measured through a determination of residual

errors. The results obtained are validated by comparison with those in previously published works

to evaluate the accuracy and efficiency of the new method. The study further considers the con-

struction and analysis of fluid flow models in various geometries, and subject to different source

terms and boundary conditions. The geometries include an oscillatory stretched surface, vertical

cylinder, vertical and horizontal flat plates, that pose several challenges in terms of complexities of

the flow equations. Several models of non-Newtonian fluid flows are analyzed and the equations

are solved using the overlapping grid spectral collocation methods. To gain an understanding of the

physical importance of the variables that affect the flow, a limited parametric studies are presented

focusing on the influence of key fluid and physical parameters, including variable fluid properties,

nanoparticle volume fraction, thermal radiation, cross-diffusion effects, chemical reaction, Brow-

nian motion, thermophoresis, Hall and ion-slip currents on the fluid properties including the heat

and mass transport.

1.9 Thesis structure

The main body of the thesis is divided into two related parts comprising eight chapters. Part A

comprises Chapters 2 - 7, which are concerned with the use of overlapping grid approach only in

space variable when extending the SQLM and BSQLM. Part B consists of Chapters 8 - 9, whose

purpose is to demonstrate the development and application of the overlapping grid approach in

space and time variables when extending the BSQLM. In chapter 2, the overlapping grid spectral

quasilinearisation method is developed and used to solve nonlinear ordinary differential equations

describing an unsteady three-dimensional MHD flow of Casson nanofluid over a stretching surface.

The domain is partitioned into overlapping subintervals and the solutions are computed simultane-

ously across all subintervals. Chapters 3 -7 are concerned with the application of the multi-domain

technique and the extension of the use of the overlapping grid approach for strongly coupled non-
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linear parabolic differential equations of boundary layer flow. The time domain is partitioned into

non-overlapping subintervals while the space domain is divided into overlapping subintervals of

equal length. The linearized partial differential equations are solved independently through each

time subinterval, while the solutions in the space interval are obtained simultaneously through-

out all the overlapping subintervals. Because naturally arising phenomena and their respective

dynamics are captured using partial differential equations with strong nonlinearity, the numerical

methods have been tested in systems of partial differential equations modelling some fluid flow

problems in various geometries. Chapter 3 gives a detailed presentation on the development of

the overlapping multi-domain bivariate spectral quasilinearisation method (OMD-BSQLM) and

its application in finding solutions of higher order partial differential equations. The numerical

technique has been tested on two-and three- equation coupled systems from literature. In Chapter

4, the OMD-BSQLM is used to solve the equations that describe an MHD-conjugate heat trans-

fer problem in nanofluids over both a vertical and horizontal flat plate. The study considers the

significance of heat generation and radiative heat flux on the MHD-conjugate flow of nanofluids.

Chapter 5 focuses on the use of the OMD-BSQLM in solving equations that model MHD con-

vective flow, heat and mass transport of nanofluids through a vertical cylinder. The study take

into account the impact of chemical reaction, Hall current and cross-diffusion effects on the fluid

properties in the case of nanofluid and pure fluid, and vertical cylinder and flat plate. In Chapter

6, an exploration of the performance of the OMD-BSQLM on MHD mixed convective flow for

an exponentially decreasing free stream velocity with a chemical reaction and non-uniform heat

source/sink effects is presented. The study considers the scrutiny of the flow problem subject to

suction/injection, velocity slip and convective boundary conditions. Chapter 7 demonstrates the

use of the OMD-BSQLM in finding solutions of partial differential equations that model the MHD

flow of Casson nanofluid over a vertical surface with gyrotactic microorganisms and temperature

dependent fluid properties. The zero nanoparticle flux is assumed and nonlinear thermal radiation,

chemical reaction, Brownian motion and thermophoresis effects are discussed.

In Chapters 8 - 9, the BSQLM is extended by splitting both the time and space intervals into

overlapping subintervals of equal length. The solutions are computed simultaneously across all
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overlapping subintervals. Chapter 8 focuses on testing the numerical technique on linear and non-

linear Emden-Fowler partial differential equations with applications in fluid mechanics. Chapter

9 is concerned with the use of the overlapping grid BSQLM to find solutions of coupled nonlin-

ear partial differential equations modelling the flow of Powell-Eyring fluid through an oscillatory

stretched surface. Nonlinear thermal radiation, chemical reaction, heat generation/absorption and

variable fluid properties are assumed in this study. Finally, in Chapter 10, we conclude the study

with a summary of the main findings. We highlight the main contributions of the study, with

possible future extensions.
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Part A:
Application of the overlapping grid spectral

method in one space variable

16



Chapter 2

Overlapping grid spectral collocation

method for unsteady three-dimensional

hydromagnetic radiative flow of Casson

nanofluid over a stretching surface with

variable fluid properties

In this chapter, the overlapping grid approach is introduced and used in the spectral quasilineari-

sation method to solve ordinary differential equations that model the three-dimensional hydro-

magnetic Casson nanofluid flow along a stretching sheet. In the analysis, we take into account

the effects of nonlinear thermal radiation, thermophoresis, Brownian motion, suction/injection and

Hall current. The fluid viscosity and thermal conductivity are assumed to vary with the temper-

ature. The convergence and accuracy of the numerical approximations are assessed through the

evaluation and analysis of error norms and residual errors. The influence of various dimensionless

parameters on the flow profiles, skin friction coefficient, heat and mass transfer characteristics are

studied.
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Abstract

In this work, modified spectral quasilinearisation method (SQLM) is pre-
sented and applied in the analysis of unsteady three-dimensional hydro-
magnetic flow of Casson nanofluid along a stretching sheet with nonlinear
thermal radiation, thermophoresis, Brownian motion, suction/injection and
Hall effects. The viscosity and thermal conductivity of the Casson nanofluid
are assumed to be temperature-dependent. The time dependent flow equa-
tions are first non-dimensionalized and then solved numerically using the
SQLM on overlapping grids. The convergence and accuracy of the method
are demonstrated using convergence and residual error analysis. The SQLM
on overlapping grids is computationally fast and yields accurate results after
few iterations and using less grid points in each sub-domain and the whole
domain. The overlapping grid improves accuracy through making the co-
efficient matrix in the equations resulting from the collocation process to
be less dense. The influence of important physical parameters on the flow
profiles, skin friction coefficient, heat and mass transfer characteristics are
scrutinized. We found that escalating variable fluid parameters diminishes
the velocity profiles while enhancing thermal and concentration fields. The
heat and mass transfer rates intensify when nonlinear radiation heat fluxes
and temperature dependent thermal conductivity are introduced into the sys-
tem, whereas decrease with the inclusion of variable viscosity. The impact of
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physical parameters is more sensitive with variable thermal conductivity and
unsteadiness when compared with constant thermal conductivity and steadi-
ness case. Applications of the current study arise in magnetic field control
of materials processing systems, printing industry and polymer engineering.

Keywords: Casson nanofluid, variable fluid properties, radiation, Hall
current, Spectral quasilinearisation method, multidomain overlapping grid

1. Introduction

The flow, heat and mass transfer problem due to a stretching surface has
many applications in industrial and manufacturing processes, aerodynamic
extrusion of plastic or rubber sheets, wire drawing, hot rolling, cooling of
an infinite metallic plate in a cooling bath, crude oil extrusion. Considering
that a quick stretching can damages the characteristics of the final product
because of sudden solidification, it is very important to manage the stretching
rate. Crane [1] was the first to consider the problem of boundary layer theory
for linearly stretching surface. The flow along stretching surface has been
subsequently extended by many authors [2, 3, 4, 5, 6, 7, 8] in Newtonian and
non-Newtonian flow models.

Nanofluid describes the suspension of a nanometer-size solid particles and
fibres in convectional base fluids like water, ethylene glycol, engine oil, etc.
The word “nanofluid” along with a mixture of nanoparticles and base flu-
ids such as oil, water and ethylene glycol came into existance through the
work of Choi [9]. Nanoparticles are suspended much longer than mille and
micrometer-sized particle with low gravitational properties and increase the
heat transfer rate at any physical aspects. In the era of energy saving and the
widespread use of battery operated devices, such as cellphones and laptops,
a smart technological handling of energetic resources is necessary. Nanoflu-
ids have been demonstrated to be able to play this role in some instances.
A comprehensive survey of convective transport in nanofluids was made by
Buongiorno [10] who considered seven slip mechanisms that can produce a
relative velocity between nanoparticles and the base fluid. Amongst these
mechanisms, only Brownian diffusion and thermophoresis were found to be
important. Haroun et al. [11] investigated magnetohydrodynamic (MHD)
nanofluid flow past an impulsively stretching surface with chemical reaction,
applied magnetic field, Brownian motion and thermophoresis. Makinde et
al. [12] studied the combined effects of buoyancy force, convective heating,
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Brownian motion, thermophoresis and a magnetic field on stagnation point
flow and heat transfer due to a nanofluid flow from a stretching/shrinking
sheet under the assumption that the magnetic Reynolds number was small.
Makinde and Aziz [14] obtained the similarity solution for the thermal bound-
ary layer of a nanofluid past a stretching sheet with Brownian motion and
thermophoresis effects. The importance of thermophoresis as well as Brow-
nian diffusion for the deposition of micro and nanoparticles were examined
by Zahmatkesh [15].

The study of magnetic field effects has important applications in engi-
neering and science fields. The interaction of magnetic field with nanofluids
can be utlized in overcoming problems consisting of cooling nuclear reactors
by liquid sodium and inducting the flow meter which relies on the potential
difference in the fluid along the direction perpendicular to the motion and to
the magnetic field. Sheikholeslami et al. [16] employed Lattice Boltzmann
method to analyze MHD flow of copper-water nanofluid in a concentric an-
nulus. Hayat [17] considered MHD three-dimensional flow of couple stress
nanofluid in the presence of thermophoresis and Brownian motion effects.

The importance of non-Newtonian nanofluids has attracted attention of
many researchers due to their various applications in mechanical, chemi-
cal and engineering processes. Casson fluid model [18] is one of the non-
Newtonian fluid models which gives yield stress. If shear stress is less than
yield stress, then the fluid behaves like a solid, and if shear stress is greater
than yield stress, the fluid start moving. Examples of Casson fluids include
honey, soup, jelly, tomato sauce, blood and concentrated fruit juice. Cas-
son fluid model has possible applications in polymer industries and biome-
chanics [19]. Owing to these applications, many authors have studied the
characteristics of Casson fluid along stretched surface. Mukhopadhyay [20]
analyzed MHD flow and heat transfer of Casson fluid over a stretching sur-
face. Mukhopadhyay and Vajravelu [21] considered MHD flow, heat and mass
transfer of Casson fluid over an unsteady stretching surface. Butt et al. [22]
explored unsteady three-dimensional flow of Casson fluid over a stretching
surface.

Radiative heat transfer on viscous flow occurs when there exist temper-
ature differences between the surrounding and the ambient fluid. Radiation
effects play an important role in controlling heat transfer processes in poly-
mer industry. In most studies, radiation is taken as constants in the flow
region. However, it is difficult to maintain the constant temperature in the
entire flow region, thus incorporating nonlinear radiation become necessary.
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Nonlinear thermal radiation plays a significant role in many industrial, scien-
tific and technological applications. Hall effects emerge in ionized fluid when
the conductivity normal to the magnetic field diminishes because of the spi-
ralling of electrons and ions about the magnetic lines of the force before the
collisions and a current is induced in a direction normal to both the electric
and magnetic fields. Studies on MHD flow, heat and mass transfer where
Hall current is considered can be utilized in various industrial and engineer-
ing applications. Pal [23] scrutinized the effects of Hall current and thermal
radiation on MHD flow and heat transfer of a viscous fluid over an unsteady
stretched surface. Ashraf et al. [24] studied MHD mixed convection flow
of a Casson fluid along a stretching surface with Hall effect. El-Aziz et al.
[26] examined Hall effects on MHD slip flow of Casson nanofluid along a
stretching sheet. Prashu and Nandkeolyar [25] used spectral quasilinearisa-
tion method to analyze three-dimensional flow of Casson fluid induced by a
stretched surface with radiation and Hall effects.

The efficiency of heat transfer in fluids is mostly dependent on their phys-
ical features. Among these features, viscosity and thermal conductivity are
significant factors in the heat transfer process. Viscosity and thermal con-
ductivity have been taken as constants in most studies conducted. However,
fluid properties may vary significantly with temperature. To accurately ana-
lyze flow and heat transfer processes it is necessary to consider variable vis-
cosity and thermal conductivity. Animasaun [27] investigated Casson fluid
flow past an exponentially stretching sheet with variable viscosity and ther-
mal conductivity. Animasaun [28] also studied the effects of thermophoresis,
variable viscosity and thermal conductivity on MHD Casson fluid flow along
a vertical porous plate with suction. Bisht and Sharma [29] investigated flow
of Casson nanofluid past a vertical nonlinear stretching surface with variable
viscosity and thermal conductivity. Prasad et al. [30] explored the impact
of variable viscosity and thermal conductivity on Casson nanofluid flow over
a Riga plate. Gbadeyan et al. [31] analyzed the effects of variable thermal
conductivity and viscosity on MHD Casson nanofluid flow over a vertical flat
plate.

Motivated by the aforementioned studies and the importance of obtain-
ing accurate results, the intention of this work is to investigate unsteady
MHD three-dimensional flow of Casson nanofluid past a stretching surface
under the influence of exponentially variable fluid viscosity, linearly variable
thermal conductivity, thermal radiation, suction/injection, thermophoresis,
Brownian motion and Hall current. To the authors’ best knowledge, such
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study has not been reported in literature. The governing equations are first
reduced into dimensionless ordinary differential equations (ODEs) and then
solved numerically using efficient spectral quasilinearisation method (SQLM)
on overlapping grids. The previous SQLM [32] has been applied to solve prob-
lems over a single domain and it has been found that its accuracy deteriorates
when the computational domain becomes large. However, this limitation can
be overcome by splitting the single domain into sub-domains. In the present
work, we extend the solution algorithm by using overlapping grid strategy
when splitting the main domain into sub-domains. It worth noting that in
the proposed method, the solution is computed simultaneously across all sub-
domains. The pseudospectral method that uses the multi-domain overlap-
ping technique has been considered by some researchers including Yang et al.
[33], Olmos and Shizgal [34], and Teleei and Dehghan [35]. The overlapping
grid approach can improve accuracy and minimise computational time since
it produces less dense matrices that can be inverted in a computationally
efficient manner.

2. Formulation of problem

We consider the unsteady three-dimensional hydromagnetic flow of a
viscous, incompressible and electrically conducting Casson nanofluid over
a stretching sheet with suction/injection and radiative heat transfer. The
nanofluid flow is analyzed by considering thermophoresis and Brownian ef-
fects. All the fluid properties are assumed to be constant except for the
viscosity, which varies as an exponential function of temperature and the
thermal conductivity altering as a linear function of temperature. A set of
coordinates (x, y, z) is measured normal to the sheet. The x-direction lo-
cated at the surface of the sheet is stretched with a time dependent velocity
u = uw(x, t). We assume the surface to be along the plane y = 0 and the
liquid to be confined in the region y ≥ 0. The ambient fluid temperature
and nanoparticle concentration are considered to be T∞ and C∞. The exter-
nally applied time-dependent magnetic field B(t) is acting along y−direction,
which is normal to the surface of the sheet. The Hall effect is retained in
the present study. It is assumed that the induced magnetic field is negligible
in comparison to the applied magnetic field. The rheological equation of an
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isotropic and incompressible flow of Casson fluid [28, 31] is given by

τij =





2
(
µB + Py√

2π

)
eij, if π > πc,

2
(
µB + Py√

2πc

)
eij, if π < πc,

(1)

Here, Py is the yield stress of the Casson fluid, which can be expressed in
the form

Py =
µB
√

2π

β
, (2)

π = eijeij is the product of the component of deformation rate, with eij
being the (i, j)-th component of the deformation rate, πc is critical value of
π based on the non-Newtonian model, µB is the plastic dynamic viscosity of
the non-Newtonian fluid. For the case of Casson fluid flow, where π > πc,
the dynamic viscosity is given by

µf = µB +
Py√
2π
. (3)

Substituting equation (3) into equation (2), the kinematic viscosity becomes

νf =
µf
ρf

=
µB
ρf

(
1 +

1

β

)
, (4)

By employing the boundary layer and Boussinesq’s approximations, and mak-
ing use of the above assumptions, governing equations of the unsteady in-
compressible viscous Casson nanofluid flow are [36, 25]

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (5)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
=

1

ρf

(
1 +

1

β

)
∂

∂y

(
µB(T )

∂u

∂y

)
− σB2(t)

ρf (1 +m2)
{u+mw}, (6)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
=

1

ρf

(
1 +

1

β

)
∂

∂y

(
µB(T )

∂w

∂y

)
+

σB2(t)

ρf (1 +m2)
{mu− w},(7)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
=

1

ρfcp

∂

∂y

(
kf (T )

∂T

∂y

)
+

16σ∗

3k∗ρfcp

∂

∂y

(
T 3∂T

∂y

)

+τ

[
DB

(
∂T

∂y

∂C

∂y

)
+
DT

T∞

(
∂T

∂y

)2]
, (8)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
= DB

∂2C

∂y2
+
DT

T∞

(
∂2T

∂y2

)
, (9)
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where u, v, w are fluid velocities in the x, y, z directions, T is temperature,
C is the nanoparticles volume fraction, m is Hall current parameter, cp is the
specific heat, σ fluid electrical conductivity, ρf is the density of the fluid, DB

the Brownian diffusion coefficient, DT is the thermophoretic diffusion coeffi-
cient, σ∗ is the Stefan-Boltzmann constant, k∗ is the coefficient of Rosseland
mean absorption, τ = (ρc)p

(ρc)f
is the ratio of nanoparticle heat capacity to the

base fluid, Tw and T∞ are the respective temperature of the surface and tem-
perature far away from the surface, β is the Casson fluid parameter, Cw and
C∞ are the nanoparticle concentration of the fluid at the wall and ambient,
respectively, B(t) = B0√

1−γt is the time dependent magnetic field with γ being

a constant. The temperature dependent fluid viscosity µB(T ) and thermal
conductivity kf (T ) are given by [31, 37, 38, 39, 40]

µB(T ) = µ∞e
−ξ T−T∞

Tw−T∞ , kf (T ) = k∞

[
1 + ε

T − T∞
Tw − T∞

]
, (10)

where u∞ is the value of the coefficient of viscosity away from the sheet, k∞
is the value of thermal diffusivity at the ambient, ξ is the variable viscosity
parameter which is greater than zero (ξ > 0) for liquids and less than zero
(ξ < 0) for gases, and ε(= kw−k∞

k∞
) is thermal conductivity parameter.

The boundary conditions are:

u = uw =
ax

1− γt, v = vw, w = 0, T = Tw, C = Cw at y = 0

u→ 0, w → 0, T →∞, C →∞, as y →∞ (11)

We introduce the following non-dimensional variables [25]:

u =
ax

1− γtf
′(η), v = −

√
ax

1− γtf(η)), w =
ax

1− γtg(η),

η = y

√
a

νf (1− γt)
, θ(η) =

T − T∞
Tw − T∞

, φ(η) =
C − C∞
Cw − C∞

(12)

Substituting Eq. (12) into Eqs. (5)-(9), we get the dimensionless equations
(

1 +
1

β

)
e−ξθ

[
f ′′′ − ξθ′f ′′

]
+ ff ′′ −A(f ′ +

η

2
f ′′)− f ′2 − M

1 +m2
(f ′ +mg) = 0, (13)

(
1 +

1

β

)
e−ξθ

[
g′′ − ξθ′g′

]
+ fg′ − f ′g −A(g +

η

2
g′) +

M

1 +m2
(mf ′ − g) = 0, (14)
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[
1 + εθ +

4

3
Rd (1 + (θw − 1)θ)3

]
θ′′ + 4Rd (1 + (θw − 1)θ)2 (θw − 1) θ′2 + εθ′2

+Pr
[
fθ′ +Nbθ′φ′ +Nt(θ′)2 −Aη

2
θ′
]

= 0 (15)

φ′′ + Le

[
fφ′ − A

2
ηφ′
]

+
Nt

Nb
θ′′ = 0 (16)

subject to the boundary conditions

f(0) = S, f ′(0) = 1, g(0) = 0, θ(0) = 1, φ(0) = 1,

η →∞ : f ′ → 0, g → 0, θ → 0, φ→ 0, (17)

where prime denote differentiation with respect to η, A = γ
a

is the un-

steadiness parameter, Nb = τDB(Cw−C∞)
νf

is the Brownian motion parameter,

Nt = τDT (Tw−T∞)
T∞νf

, Pr =
µf cp
kf

is the Prandtl number, Rd = 4σ∗T 3
∞

kfk∗
is the

nonlinear radiation parameter, Le =
νf
DB

is the Lewis number, M =
σB2

0

ρfa
magnetic strength parameter, S = − vw√

uw
is the suction (S > 0) or injection

(S < 0) parameter.
The skin friction coefficients, heat and mass transfer are respectively de-

fined as follows

Cfx =
τwx
ρfu2w

, Cfz =
τwz
ρfu2w

, Nux =
xqw

k∞(Tw − T∞)
, Shx =

xqm
DB(Tw − T∞)

,(18)

where the shearing stress component τwx, τwz at the plate, the rate of heat
transfer qw and the rate of mass transfer qm at the surface are given by

τwx = µB(T )

(
1 +

1

β

)(
∂u

∂y

)

y=0

, τwz = µB(T )

(
1 +

1

β

)(
∂w

∂y

)

y=0

,

qw = −kf (T )

(
∂T

∂y

)

y=0

, qm = −DB

(
∂C

∂y

)

y=0

, (19)

Substituting the dimensionless variables (12) into Eq. (19) and using Eq.
(18), the dimensionless skin friction coefficients, local Nusselt number and
Sherwood number are obtained as

CfxRe
1/2
x =

(
1 +

1

β

)
e−ξθ(0)f ′′(0), CfzRe

1/2
x =

(
1 +

1

β

)
e−ξθ(0)g′(0),

NuxRe
−1/2
x = −

[
1 + εθ(0) +

4

3
Rd (1 + (θw − 1)θ(0))3

]
θ′(0),

ShxRe
−1/2
x = −φ′(0) (20)
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where Rex = xuw
νf

is the Reynolds number.

3. Solution procedure

In this section, we present the overlapping grid SQLM and its application
in solving the nonlinear ODEs (13)-(16). The solution algorithm uses the
notion of multi-domain overlapping grid, quasilinearisation method (QLM)
[42], spectral collocation method and Lagrange interpolation polynomials
with Gauss-Lobatto grid points [43]. Since, the problem is defined on the
semi-infinite domain [0,∞), for implementing the numerical method, we use
the truncated interval of integration [0, η∞]. To apply the overlapping grid
SQLM, we let η ∈ I, then the interval I = [0, η∞] is split into p overlapping
sub-domains denoted by

Iι = [ηι0, η
ι
Nη ], ι = 1, 2, 3, ..., p, (21)

where each sub-interval will be further discretized into Nη + 1 collocation
points. The grid describing how the truncated interval is decomposed into p
overlapping sub-domains is shown in Figure 1. For the overlap to be possible,
the sub-domains must have same length defined as

L =
η∞

p+ (1− p)(1− cos π
Nη

)/2
, (22)

To derive Eq. (22), we note that the total length of the domain is

η∞ = 2L− κ+ (2L− 2κ)

(
p

2
− 1

)

= 2L− κ+ (L− κ)(p− 1) = κ(1− p) + pL, (23)

where κ is the overlapping distance between two intervals. Also, we note
that κ = η0 − η1. Considering the first interval I1 in which η ∈ [0, L],
the linear transformation η = L

2
(z + 1), can be used to transform the in-

terval [0, L] to [−1, 1]. Thus, using the Gauss-Lobatto collocation points

zi = cos

(
πi
Nη

)
, i = 0, 1, 2, 3, ..., Nη, we obtain η0 − η1 = L

2
(z0 − z1) =

L
2

(
1− cos

(
π
Nη

))
. Finally,

η∞ = κ(1− p) + pL =
L

2

(
1− cos

(
π

Nη

))
(1− p) + pL, (24)
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which upon rearranging gives Eq. (22).

I1
I2 Ip−1 Ip

η10

0

η20

η1Nη−1

η1Nη

η21

η30

η2Nη−1

η2Nη

η31

ηp−10

ηp−2Nη−1

ηp−2Nη

ηp−11

ηp0

ηp−1Nη−1

ηp−1Nη

ηp1

ηpNη

η∞

Figure 1: Overlapping grid.

In each sub-interval Iι, we must solve

(
1 +

1

β

)
e−ξθ

ι d3f ι

dη3
− ξ
(

1 +
1

β

)
e−ξθ

ι dθι

dη

d2f ι

dη2
+ f ι

d2f ι

dη2
−A(

df ι

dη
+
ηι

2

d2f ι

dη2
)

−
(
df ι

dη

)2

− M

1 +m2
(
df ι

dη
+mgι) = 0, (25)

(
1 +

1

β

)
e−ξθ

ι d2gι

dη2
− ξ
(

1 +
1

β

)
e−ξθ

ι dθι

dη

dgι

dη
+ f ι

dgι

dη
−A(gι +

ηι

2

dgι

dη
)

−df
ι

dη
gι +

M

1 +m2
(m

df ι

dη
− gι) = 0, (26)

[
1 + εθι +

4

3
Rd (1 + (θw − 1)θι)3

]
d2θι

dη2
+ Pr

[
Nb

dθι

dη

dφι

dη
+Nt

(
dθι

dη

)2
]

(27)

+Prf ι
dθι

dη
+
[
ε+ 4Rd (1 + (θw − 1)θι)2 (θw − 1)

](dθι
dη

)2

− PrAη
ι

2

dθι

dη
= 0,

d2φι

dη2
+ LePr

[
f ι
dφι

dη
− A

2
ηι
dφι

dη

]
+
Nt

Nb

d2θι

dη2
= 0. (28)

To solve Eqs. (25)-(28), we first linearize the nonlinear boundary value
problem using the QLM. The QLM assumes that the difference between ap-
proximate solutions at two successive iterations is very small. Applying QLM

10



on Eqs. (25)-(28) yields the following iterative sequence of linear ODEs:

α
(1,ι)
1,3,r

d3f ιr+1

dη3
+ α

(1,ι)
1,2,r

d2f ιr+1

dη2
+ α

(1,ι)
1,1,r

df ιr+1

dη
+ α

(1,ι)
1,0,rf

ι
r+1 + α

(1,ι)
3,1,r

dθιr+1

dη

+α
(1,ι)
2,0,rg

ι
r+1 + α

(1,ι)
3,0,rθ

ι
r+1 = Rι1,r, (29)

α
(2,ι)
2,2,r

d2gιr+1

dη2
+ α

(2,ι)
2,1,r

dgιr+1

dη
+ α

(2,ι)
2,0,rg

ι
r+1 + α

(2,ι)
3,1,r

dθιr+1

dη
+ α

(2,ι)
3,0,rθ

ι
r+1

+α
(2,ι)
1,1,r

df ιr+1

dη
+ α

(2,ι)
1,0,rf

ι
r+1 = Rι2,r, (30)

α
(3,ι)
3,2,r

d2θιr+1

dη2
+ α

(3,ι)
3,1,r

dθιr+1

dη
+ α

(3,ι)
3,0,rθ

ι
r+1 + α

(3,ι)
4,1,r

dφιr+1

dη
+ α

(3,ι)
1,0,rf

ι
r+1 = Rι3,r,(31)

α
(4,ι)
4,2,r

d2φιr+1

dη2
+ α

(4,ι)
4,1,r

dφιr+1

dη
+ α

(4,ι)
3,2,r

d2θιr+1

dη2
+ α

(4,ι)
1,0,rf

ι
r+1 = Rι4,r, (32)

where f ι, gι, θι and φι are the solutions at ιth interval, r and r+1 symbolize
previous and current iterations, and the variable coefficients are given by

α
(1,ι)
1,3,r =

(
1 +

1

β

)
e−ξθ

ι
r , α

(1,ι)
1,2,r = f ιr −

ηι

2
A−

(
1 +

1

β

)
ξe−ξθ

ι
r
dθιr
dη

, α
(1,ι)
1,1,r = A

−2
df ιr
dη
− M

1 +m2
, α

(1,ι)
1,0,r =

d2f ιr
dη2

, α
(1,ι)
2,0,r = − mM

1 +m2
,

α
(1,ι)
3,1,r = −

(
1 +

1

β

)
ξe−ξθ

ι
r
d2f ιr
dη2

, α
(1,ι)
3,0,r = −

(
1 +

1

β

)
ξe−ξθ

ι
r
d3f ιr
dη3

+ξ2e−ξθ
ι
r
dθιr
dη

d2f ιr
dη2

, α
(2,ι)
2,2,r =

(
1 +

1

β

)
e−ξθ

ι
r , α

(2,ι)
2,1,r = f ιr −

ηι

2
A

−
(

1 +
1

β

)
ξe−ξθ

ι
r
dθιr
dη

, α
(2,ι)
2,0,r = −A− df ιr

dη
− M

1 +m2
, α

(2,ι)
1,1,r = −gιr +

mM

1 +m2
,

α
(2,ι)
1,1,r =

dgιr
dη

, α
(2,ι)
3,1,r = −

(
1 +

1

β

)
ξe−ξθ

ι
r
dgιr
dη

, α
(2,ι)
3,0,r = −

(
1 +

1

β

)
ξe−ξθ

ι
r
d2gιr
dη2

+ξ2e−ξθ
ι
r
dθιr
dη

dgιr
dη

, α
(3,ι)
3,2,r = 1 + εθιr +

4

3
Rd+ 4Rd(θw − 1)θιr

+4Rd(θw − 1)2 (θιr)
2 +

4

3
Rd(θw − 1)3 (θιr)

3 , α
(3,ι)
3,1,r = 2ε

dθιr
dη

+Prf ιr + PrNb
dφιr
dη

+ 2PrNt
dθιr
dη
− 1

2
APrηι + 8Rd(θw − 1)

dθιr
dη

+16Rd(θw − 1)2θιr
dθιr
dη

+ 8Rd(θw − 1)3 (θιr)
2 dθ

ι
r

dη
, α

(3,ι)
3,0,r = ε

d2θιr
dη2

+4Rd(θw − 1)
d2θιr
dη2

+ 8Rd(θw − 1)2θιr
d2θιr
dη2

+ 4Rd(θw − 1)3 (θιr)
2 d

2θιr
dη2
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+8Rd(θw − 1)2
(
dθιr
dη

)2

+ 8Rd(θw − 1)3θιr

(
dθιr
dη

)2

, α
(3,ι)
1,0,r = Pr

dθιr
dη

,

α
(3,ι)
4,1,r = PrNb

dθιr
dη

, α
(4,ι)
4,2,r = 1, α

(4,ι)
4,1,r = Lef ιr −

1

2
LeAηι, α

(4,ι)
1,0,r = Le

dφιr
dη

,

α
(4,ι)
3,2,r =

Nt

Nb
,Rι1,r = ξ2e−ξθ

ι
rθιr

dθιr
dη

d2f ιr
dη2

−
(

1 +
1

β

)
ξe−ξθ

ι
r

[
θιr
d3f ιr
dη3

+
dθιr
dη

d2f ιr
dη2

]

+f ιr
d2f ιr
dη2

−
(
df ιr
dη

)2

, Rι2,r = ξ2e−ξθ
ι
rθιr

dθιr
dη

dgιr
dη

+ f ιr
dgιr
dη
− df ιr
dη
gιr

−
(

1 +
1

β

)
ξe−ξθ

ι
r

[
θιr
d2gιr
dη

+
dθιr
dη

dgιr
dη

]
, Rι3,r = εθιr

d2θιr
dη2

+ ε

(
dθιr
dη

)2

+Prf ιr
dθιr
dη

+ PrNb
dθιr
dη

dφιr
dη

+ PrNt

(
dθιr
dη

)2

+ 4Rd(θw − 1)θιr
d2θιr
dη2

+8Rd(θw − 1)2 (θιr)
2 d

2θιr
dη2

+ 4Rd(θw − 1)3 (θιr)
3 d

2θιr
dη2

+ 4Rd(θw − 1)

(
dθιr
dη

)2

+16Rd(θw − 1)2θιr

(
dθιr
dη

)2

+ 12Rd(θw − 1)3 (θιr)
2

(
dθιr
dη

)2

, Rι4,r = Lef ιr
dφιr
dη

,

Before the spectral collocation method is applied at each sub-interval,
the interval Iι = [ηι0, η

ι
Nη

] is converted into z ∈ [−1, 1] utilizing the linear
transformation

ηιi =
L

2
(zi + 1) , zi = cos

(
πi

Nη

)
. (33)

Applying the pseudospectral method on Eqs. (29)-(32) gives

α
(1,ι)
1,3,rΛ

3

Nη∑

j=0

[
D

(ι)
i,j

]3
f ιj,r+1 + α

(1,ι)
1,2,rΛ

2

Nη∑

j=0

[
D

(ι)
i,j

]2
f ιj,r+1 + α

(1,ι)
1,1,rΛ

Nη∑

j=0

D
(ι)
i,j f

ι
j,r+1

+α
(1,ι)
1,0,rf

ι
i,r+1 + α

(1,ι)
2,0,rg

ι
i,r+1 + α

(1,ι)
3,1,rΛ

Nη∑

j=0

D
(ι)
i,j θ

ι
j,r+1 + α

(1,ι)
3,0,rθ

ι
i,r+1 = Rι1,r, (34)

α
(2,ι)
2,2,rΛ

2

Nη∑

j=0

[
D

(ι)
i,j

]2
gιj,r+1 + α

(2,ι)
2,1,rΛ

Nη∑

j=0

D
(ι)
i,j g

ι
j,r+1 + α

(2,ι)
2,0,rg

ι
i,r+1 + α

(2,ι)
1,0,rf

ι
i,r+1

+α
(2,ι)
1,1,rΛ

Nη∑

j=0

D
(ι)
i,j f

ι
j,r+1 + α

(2,ι)
3,1,r

Nη∑

j=0

D
(ι)
i,j θ

ι
j,r+1 + α

(2,ι)
3,0,rθ

ι
i,r+1 = Rι2,r, (35)
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α
(3,ι)
3,2,rΛ

2

Nη∑

j=0

[
D

(ι)
i,j

]2
θιj,r+1 + α

(3,ι)
3,1,rΛ

Nη∑

j=0

D
(ι)
i,j θ

ι
j,r+1 + α

(3,ι)
3,0,rθ

ι
i,r+1

+α
(3,ι)
4,1,rΛ

Nη∑

j=0

D
(ι)
i,jφ

ι
j,r+1 + α

(3,ι)
1,0,rf

ι
i,r+1 = Rι3,r, (36)

α
(4,ι)
4,2,rΛ

2

Nη∑

j=0

[
D

(ι)
i,j

]2
φιj,r+1 + α

(4,ι)
4,1,rΛ

Nη∑

j=0

D
(ι)
i,jφ

ι
j,r+1

+α
(4,ι)
3,2,rΛ

Nη∑

j=0

[
D

(ι)
i,j

]2
θιj,r+1 + α

(4,ι)
1,0,rf

ι
i,r+1 = Rι4,r, (37)

where Λ = 2
L
.

The boundary conditions become

f 1
r+1(zNη) = S,

Nη∑

j=0

D
(1)
Nη ,j

φ1
j,r+1 = 0, g1r+1(zNη) = 0,

θ1r+1(zNη) = 1, φ1
r+1(zNη) = 1,

Nη∑

j=0

D
(p)
0,jφ

p
j,r+1 = 0, gpr+1(z0) = 0, θpr+1(z0) = 0, φpr+1(z0) = 0, (38)

In terms of original variable η, the collocation points are arranged as

{ηk}Nk=0

=
{
η10, ..., η

1
Nη−1 = η20, η

1
Nη = η21, ..., η

ι
0, ..., η

ι
Nη−1 = ηι+1

0 , ηιNη = ηι+1
1 , ..., ηpNη

}

=
{
η10, ..., η

1
Nη−1, η

2
1, ..., η

2
Nη−1, ..., η

ι
1, ..., η

ι
Nη−1, ..., η

p
1 , ..., η

p
Nη

}
, (39)

where N = Nη + (Nη − 1)(p− 1) represent the total number of collocation
points in [0, η∞]. It is easy to show that the grid points can be obtained as

η1i =
L

2

[
1− cos

(
πi

Nη

)]
, i = 0, 1, ..., Nη − 1,

ηιi = ηι−1Nη−1 +
L

2

[
1− cos

(
πi

Nη

)]
, i = 0, 1, ..., Nη − 1, ι = 2, 3, ..., p− 1,

ηpi = ηp−1Nη−1 +
L

2

[
1− cos

(
πi

Nη

)]
, i = 1, ..., Nη, (40)
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In terms of transformed variable z, the collocation points are arranged as

{zk}Nk=0 =
{
z1Nη , ..., z

1
1 = z2Nη , z

1
0 = z2Nη−1, ..., z

ι
Nη , ..., z

ι
1 = zι+1

Nη
, zι0 = zι+1

Nη−1, ..., z
p
0

}

=
{
z1Nη , ..., z

1
1 , z

2
Nη−1, ..., z

2
1 , ..., z

ι
Nη−1, ..., z

ι
1, ..., z

p
Nη−1, ..., z

p
0

}
, (41)

The unknown functions can be expressed in terms of the global indexing as

{fk} =
{
f1Nη , ..., f

1
1 , f

2
Nη−1, ..., f

2
1 , ..., f

ι
Nη−1, ..., f

ι
1, ..., f

p
Nη−1, ..., f

p
0

}
(42)

=
{
fp0 , ..., f

p
Nη−1, f

p−1
1 , ..., fp−1Nη−1, ..., f

ι
1, ..., f

ι
Nη−1, ..., f

2
1 , ..., f

2
Nη−1, f

1
1 , ..., f

1
Nη

}
,

{gk} =
{
gp0 , ..., g

p
Nη−1, g

p−1
1 , ..., gp−1Nη−1, ..., g

ι
1, ..., g

ι
Nη−1, ..., g

2
1, ..., g

2
Nη−1, g

1
1, ..., g

1
Nη

}
,

{θk} =
{
θp0, ..., θ

p
Nη−1, θ

p−1
1 , ..., θp−1Nη−1, ..., θ

ι
1, ..., θ

ι
Nη−1, ..., θ

2
1, ..., θ

2
Nη−1, θ

1
1, ..., θ

1
Nη

}
,

{φk} =
{
φp0, ..., φ

p
Nη−1, φ

p−1
1 , ..., φp−1Nη−1, ..., φ

ι
1, ..., φ

ι
Nη−1, ..., φ

2
1, ..., φ

2
Nη−1, φ

1
1, ..., φ

1
Nη

}
,

where the size of each vector is N+1. The first derivative at the sub-interval
Iι, for f(η) is evaluated as

df ι

dz
=

Nη∑

j=0

D
(ι)
i,j f

ι(zj), where D
(ι)
i,j =

2

ηιNη − ηι0
D̂i,j, i = 0, 1, 2, ..., N,(43)

Here, D̂i,j is the first order differential operator in a single domain [−1, 1].
The global structure of the first derivative df ι

dz
can be expressed in the form




D
(1)
0,0 D

(1)
0,1 · · · D

(1)
0,Nη−1 D

(1)
0,Nη

D
(1)
1,0 D

(1)
1,1 · · · D

(1)
1,Nη−1 D

(1)
1,Nη

. . . . . . . . . . . . . . .

D
(1)
Nη−1,0 D

(1)
Nη−1,1 · · · D

(1)
Nη−1,Nη−1 D

(1)
Nη−1,Nη

D
(2)
1,0 D

(2)
1,1 · · · D

(2)
1,Nη−1 D

(2)
1,Nη

D
(2)
2,0 D

(2)
2,1 · · · D

(2)
2,Nη−1 D

(2)
2,Nη

. . . . . . . . . . . . . . .

D
(2)
Nη−1,0 D

(2)
Nη−1,1 · · · D

(2)
Nη−1,Nη−1 D

(2)
Nη−1,Nη

. . . . . .

D
(p)
1,0 D

(p)
1,1 · · · D

(p)
1,Nη−1 D

(p)
1,Nη

D
(p)
2,0 D

(p)
2,1 · · · D

(p)
2,Nη−1 D

(p)
2,Nη

. . . . . . . . . . . . . . .

D
(p)
Nη ,0

D
(p)
Nη ,1

· · · D
(p)
Nη ,Nη−1 D

(p)
Nη ,Nη







f 1
0

f 1
1
...

f 1
Nη−1
f 2
1

f 2
2
...

f 2
Nη−1
. . .

fp1
fp2
...

fpNη−1
fpNη




(44)

where the derivative coefficient matrix is of order (N+1)×(N+1). It is worth
noting that the empty entries in the coefficient matrix are zeros, which makes
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the matrix less dense or sparse. We remark that the derivative operator
become a full matrix if only a single domain is utilized in the computation.
The nth order derivative at the sub-interval Iι is evaluated as

dnf ι

dzn
=

Nη∑

j=0

[
D

(ι)
i,j

]n
f ι(zj), i = 0, 1, 2, ..., N, (45)

The derivatives of the other functions at the sub-interval Iι are evaluated in
the similar manner. Expanding, the discretized form of the ODEs (34)-(37)
gives matrix equations with unknown vectors

F =
{
f ι(z0), f

ι(z1), ...., f
ι(zNη−1), f

ι(zNη)
}
,

G =
{
gι(z0), g

ι(z1), ...., g
ι(zNη−1), g

ι(zNη)
}
,

Θ =
{
θι(z0), θ

ι(z1), ...., θ
ι(zNη−1), θ

ι(zNη)
}
,

Φ =
{
φι(z0), φ

ι(z1), ...., φ
ι(zNη−1), φ

ι(zNη)
}
, (46)

Taking into account that the last two points in the ιth sub-interval and

the first two points in the (ι+1)th sub-interval overlap and remain common,

there will be a duplicate of equations which can be removed from the set of

equations to be solved. After removing the duplicate equations, the left hand

side of the equations becomes




A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44







Fι
k,r+1

Gι
k,r+1

Θι
k,r+1

Φι
k,r+1


, (47)

where each matrix A%,ς(% = 1, 2, 3, 4; ς = 1, 2, 3, 4) is of order (N+1)× (N+
1), vectors Fι

k,r+1,G
ι
k,r+1,Θ

ι
k,r+1, Φι

k,r+1 are each of order (N + 1) × 1, and

A11, for example, is given by
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A11 =




A
(11,p)
0,0 A

(11,p)
0,1 · · · A

(11,p)
0,Nη−1 A

(11,p)
0,Nη

A
(11,p)
1,0 A

(11,p)
1,1 · · · A

(11,p)
1,Nη−1 A

(11,p)
1,Nη

. . . . . . . . . . . . . . .

A
(11,p)
Nη−1,0 A

(11,p)
Nη−1,1 · · · A

(11,p)
Nη−1,Nη−1 A

(11,p)
υ−1,υ

A
(11,p−1)
1,0 A

(11,p−1)
1,1 · · · A

(11,p−1)
1,Nη−1 A

(11,p−1)
1,Nη

A
(11,p−1)
2,0 A

(11,p−1)
2,1 · · · A

(11,p−1)
2,Nη−1 A

(11,p−1)
2,Nη

. . . . . . . . . . . . . . .

A
(11,p−1)
Nη−1,0 A

(11,p−1)
Nη−1,1 · · · A

(11,p−1)
Nη−1,Nη−1 A

(11,p−1)
Nη−1,Nη

. . . . . .

A
(11,1)
1,0 A

(11,1)
1,1 · · · A

(11,1)
1,Nη−1 A

(11,1)
1,Nη

A
(11,1)
2,0 A

(11,1)
2,1 · · · A

(11,1)
2,Nη−1 A

(11,1)
2,Nη

. . . . . . . . . . . . . . .

A
(11,1)
Nη ,0

A
(11,1)
Nη ,1

· · · A
(11,1)
Nη ,Nη−1 A

(11,1)
Nη ,Nη




(48)

with A11,ι
q,ω = α

(1,ι)
1,3,rΛ

3
[
D

(ι)
q,ω

]3
+ α

(1,ι)
1,2,rΛ

2
[
D

(ι)
q,ω

]2
+ α

(1,ι)
1,1,rΛD

(ι)
q,ω + α

(1,ι)
1,0,rI, and I

is an (N + 1)× (N + 1) identity matrix. The rest of the coefficient matrices
(A%,ς) are defined in the similar manner. Imposing the boundary conditions
on the equations gives the following less dense matrix system:




D
(p)
0,0 D

(p)
0,1 · · · D

(p)
0,Nη

0 0 · · · 0 0 0 · · · 0 0 0 · · · 0

A11 A12 A13 A14

D
(1)
Nη−1,0 D

(1)
Nη−1,1 · · · D

(1)
Nη−1,Nη

0 0 · · · 0 0 0 · · · 0 0 0 · · · 0

0 0 · · · 1 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 1 0 · · · 0 0 0 · · · 0 0 0 · · · 0

A21 A22 A23 A24

0 0 · · · 0 0 0 · · · 1 0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0 1 0 · · · 0 0 0 · · · 0

A31 A32 A33 A34

0 0 · · · 0 0 0 · · · 0 0 0 · · · 1 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 0 · · · 0

A41 A42 A43 A44

0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 1







fp0,r+1
...

f1Nη−1,r+1

f1Nη,r+1

gp0,r+1
...

g1Nη,r+1

θp0,r+1
...

θ1Nη,r+1

φp0,r+1
...

φpNη,r+1




=




0
...
0
S
0
...
0
0
...
1
0
...
1




(49)
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Starting from suitable initial approximations, expressed in the form

f0(η) = 1−e−η+S, g0(η) = e−η−e−2η, θ0(η) = e−η, φ0(η) = e−η,(50)

the approximate solutions can be obtained iteratively by solving the matrix
system (49).

4. Results and discussion

The nonlinear ODEs (13)-(16) were solved numerically using the over-
lapping grid SQLM. In the entire numerical computational process, the base
amount of the parameters were chosen as β = 1, ξ = 0.5, ε = 0.3, Nt =
0.5, Nb = 0.5, S = 0.5, P r = 1, A = 0.01,M = 6,m = 0.1, Rd = 0.2, θw =
1.2, Le = 0.6, unless otherwise stated. It the present study, p = 4 overlap-
ping sub-domains and Nη = 20 collocation points in each sub-domain were
sufficient to give accurate and consistent results, since a further increase in
the number of collocation points did not change the numerical results. The
domain was truncated to η∞ = 20. To benchmark the proposed method,
our numerical results for the particular case were compared with previously
published results obtained by Prashu and Nandkeolyar [25] using the single
domain SQLM. The results are presented in Table 1, which indicates that
the two set of results are in satisfactory accordance. It is also noted that
the overlapping grid SQLM give comparable results using few grid points
when compared to the single domain SQLM. It is clear that the overlapping
grid SQLM is much faster compared to the single domain SQLM in comput-
ing the comparable numerical results. These observations suggests that the
overlapping grid SQLM is computational efficiency and highly accurate than
the single domain SQLM. This is due to the fact that the overlapping grid
produces less dense or sparse coefficient matrices (in the matrix equations
that results from collocation process) with a lot of zero entries. The spar-
sity of matrices minimizes the storage of large matrices and make it easy to
perform matrix-vector multiplications. This is because there will be a lot of
multiplication by zero, thus the matrices take less time to invert.

4.1. Residual error and convergence error analysis

To understand the convergence of the proposed method, we have consid-
ered solution errors, which are defined as the difference between approximate
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values of the functions at two successive iterations. The following infinity
norms are used to illustrate the convergence of the method:

Ef = max
0≤j≤N

||F(ι)
j,r+1−F

(ι)
j,r||∞, Eg = max

0≤j≤N
||G(ι)

j,r+1−G
(ι)
j,r||∞,

Eθ = max
0≤j≤N

||Θ(ι)
j,r+1−Θ

(ι)
j,r||∞, Eφ = max

0≤j≤N
||Φ(ι)

j,r+1−Φ
(ι)
j,r||∞. (51)

It is noted in Fig. 2 that the error norms decrease rapidly with an increase
in the number of iterations. This is an indication that the single domain
SQLM and overlapping grid SQLM converge after about 5 iterations with
the size of the error close to 10−11 and 10−14, respectively. The smaller values
of error norms for the overlapping grid SQLM is due to the few number of
grid points used.
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Figure 2: Error norm graphs

To gain insights as to the accuracy of the proposed method, we have
calculated residual errors, which measure the extent to which the numerical
solution approximates the genuine solution. Consequently, the residual errors
are defined as

||Res(ς)||∞ = ||∆ς

[
F
(ι)
j,r+1,G

(ι)
j,r+1,Θ

(ι)
j,r+1,Φ

(ι)
j,r+1

]
||∞, ς = {f, g, θ, φ} ,(52)

where ∆ς represents the nonlinear ODEs (13)-(16), F
(ι)
j ,G

(ι)
j ,Θ

(ι)
j and Φ

(ι)
j

are the overlapping grid SQLM solutions. The change in residual errors
against the number of iterations has been studied for various flow parame-
ters such as Casson fluid parameter, variable viscosity parameter, variable
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thermal conductivity parameter and Brownian motion parameter as seen in
Fig. 3. The residual errors are observed to decrease significantly with the
increase in the number of iterations and converge with errors of close to 10−15

after about 4 iterations. The smaller values of the residual errors imply the
accuracy of the method. The above results sufficiently confirm the accuracy
and convergence of the overlapping grid SQLM, thus the method can be
trusted.
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Figure 3: Residual error graphs

In this study, we have also examined the effect of varying the number of
sub-domains and the number of collocation points. Table 2 shows that the
residual errors for the overlapping grid SQLM is always smaller than those
errors from single domain SQLM. Indeed, the use of overlapping grid in the
proposed method significantly improves the performance and accuracy of the
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method. Table 2 and Table 3 indicate that increasing the number of overlap-
ping sub-domains improves the accuracy and computational efficiency of the
method. This is evident from diminishing residual errors as the number of
sub-domains increases. Interestingly, as the number of subintervals increases,
the total number of collocation points in the entire interval decreases. This
suggests that the accurate results are obtained using few grid points in each
sub-domain and the entire domain of integration. Table 3 also depicts that
the single domain SQLM on single domain produce instability for N = 600.
However, the overlapping grid SQLM generate good results with increasing
number of sub-domains and using fewer grid points.

Table 1: Comparison of single domain SQLM (p =1) with overlapping grid SQLM (p =4)
for the values of skin friction coefficients when Rd = 0.5, θw = 1, P r = 10, ξ = ε = Nt =
Nb = S = 0 = Le = 0

M m A β Prashu and Nandkeolyar [25] Present results
−CfxRe1/2x CfzRe

1/2
x Nη −CfxRe1/2x CfxRe

1/2
x Nη

6 0.1 0.1 0.3 5.51874456 0.23905696 150 5.51874456 0.23905696 20
2 0.1 0.1 0.3 3.63997437 0.12517671 150 3.63997437 0.12517671 20
8 0.1 0.1 0.3 6.24973648 0.27988605 150 6.24973648 0.27988605 20

CPU Time(s) 0.537642 0.537642 0.112738 0.112738
6 0.1 0.1 0.3 5.51874456 0.23905696 150 5.51874456 0.23905696 20
6 0.5 0.1 0.3 5.15310039 1.03810463 150 5.15310038 1.03810463 20
6 1 0.1 0.3 4.47154368 1.50968576 150 4.47154369 1.50968576 20

CPU Time(s) 0.505501 0.505501 0.119190 0.119190
6 0.1 0.1 0.3 5.51874456 0.23905696 150 5.51874456 0.23905696 20
6 0.1 0.13 0.3 5.52749427 0.23866458 150 5.52749426 0.23866458 20
6 0.1 0.15 0.3 5.53332180 0.23840377 150 5.53332180 0.23840377 20

CPU Time(s) 0.504099 0.504099 0.125541 0.125541
6 0.1 0.1 0.3 5.51874456 0.23905696 150 5.51874456 0.23905696 20
6 0.1 0.1 1 3.74924863 0.16240722 150 3.74924863 0.16240722 20
6 0.1 0.1 2.3 3.17557443 0.13755722 150 3.17557443 0.13755722 20

CPU Time(s) 0.578798 0.578798 0.111359 0.111359

Table 2: Residual errors for different number of sub-domains and collocation points

p Nη N ||Res(f)||∞ ||Res(g)||∞ ||Res(θ)||∞ ||Res(φ)||∞ CPU Time(s)
1 150 150 2.48579e-08 1.08189e-09 8.28448e-09 5.45453e-09 0.539001
2 75 149 1.49750e-010 1.62830e-012 1.01762e-011 2.75853e-012 0.463883
3 50 146 1.00797e-010 2.50352e-013 6.03160e-012 8.86478e-013 0.438762
5 30 148 2.47139e-011 6.03505e-014 3.92769e-013 1.74071e-012 0.424025
6 25 145 1.34972e-011 3.48253e-014 3.04333e-013 2.37144e-013 0.414315
10 15 141 3.46177e-012 3.04114e-014 5.84290e-014 4.70131e-013 0.362145
15 10 136 9.37221e-013 2.11527e-014 2.33390e-014 4.35138e-014 0.347288
25 6 126 2.03657e-013 5.12967e-015 3.49061e-014 3.29667e-014 0.301444
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Table 3: Residual errors for different number of sub-domains and collocation points

p Nη N ||Res(f)||∞ ||Res(g)||∞ ||Res(θ)||∞ ||Res(φ)||∞ CPU Time(s)
1 600 600 NAN NAN NAN NAN -
10 60 591 1.23787e-008 1.93328e-011 1.56635e-010 3.15281e-011 17.966692
12 50 589 7.05924e-009 3.04149e-011 6.31122e-011 1.61040e-011 17.591444
15 40 586 4.37061e-009 1.54583e-010 3.93456e-011 2.46298e-011 17.313163
20 30 581 2.69678e-009 4.40096e-011 2.30873e-011 6.11119e-012 16.916099
25 24 576 1.10545e-009 4.51961e-012 1.32917e-011 4.15594e-012 16.514835
30 20 571 6.12933e-010 3.20320e-011 2.61675e-012 1.22301e-011 15.904365
40 15 561 2.93832e-010 9.62040e-012 5.87679e-012 4.73957e-012 15.719455
50 12 551 1.63476e-010 1.83267e-012 9.51635e-013 1.23945e-012 15.484445
60 10 541 8.91546e-011 5.37796e-012 8.47239e-013 1.04693e-012 13.922720
100 6 501 2.02419e-011 1.29579e-012 4.43978e-013 3.95448e-013 11.292669
150 4 451 4.50318e-012 5.93313e-013 1.71280e-013 1.34281e-013 8.504460

4.2. Velocity profiles

Fig. 4-6 depicts the impact of notable flow parameters on the velocity
distribution for constant(ξ = 0) and variable (ξ = 1) viscosity. It is noted
that the velocity profiles and momentum boundary layer thickness reduce
when the variable viscosity parameter increases. This is due to the fact that
higher values of variable viscosity parameter suggests higher temperature
difference between the surface and the ambient fluid. The figures suggest
that the consequence of introducing the variable viscosity into the system
has a remarkable effect on the velocity fields. Fig. 4a and Fig. 4b shows
the effect of the Hall parameter on the velocity distribution. From Fig.
4a, it is noted that the fluid flow velocity displays an increasing trend with
escalating values of the Hall parameter. This is because the effective thermal
conductivity diminishes with the increase in Hall parameter which decreases
the magnetic damping force. The fall in the magnetic damping force is
coupled with the fact that magnetic field has a propelling effect on fluid
velocity. An increase in the magnetic strength leads to a thinner boundary
layer that is caused by the magnetic force, thereby augmenting the velocity
in both primary and secondary velocity.

Fig. 5a and Fig. 5b present the repercussion of the Casson fluid param-
eter on the velocity profiles. Physically, the inverse relation of Casson fluid
number with yield stress causes the large values of the Casson fluid parame-
ter to diminish the yield stress, thus reducing the momentum boundary layer
thickness. Both figures show that as the Casson fluid parameter intensifies,
the primary and secondary velocity decline. An augmentation in the Casson
fluid number strengthen viscosity and causes resistance to the fluid motion,
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which in turn reduces the fluid velocity. The velocity fields are noted to be
elevated in the case of Casson fluid than in Newtonian fluid case (β → ∞).
It is evident in Fig. 6a and Fig. 6b that velocity profiles are more suppressed
in the case of suction than in the case of injection. When the suction param-
eter escalate, the amount of fluid particles are drawn into the surface, thus
diminishing the velocity field.
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Figure 4: Velocity profiles
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Figure 5: Velocity profiles
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Figure 6: Velocity profiles

4.3. Temperature profiles

Fig. 7-9 elucidate the impact of important parameters on the tempera-
ture profiles for constant (ε = 0) and variable (ε = 2) thermal conductiv-
ity. It is seen that the temperature fields augment with increasing values of
the variable thermal conductivity parameter. In accordance with Eq. (10),
large values of the variable thermal conductivity parameter results to more
thermal conductivity coefficient, which causes additional thermal diffusion
through the fluid. Thus, the values of dimensionless temperature in the
thermal boundary layer escalate and temperature gradient on the wall and
heat transfer rate from the sheet decrease. The influence of flow parame-
ters on the temperature is very sensitive with variable thermal conductivity
when compared with constant thermal conductivity. It can be concluded
that the inclusion of temperature-dependent thermal conductivity in the en-
ergy equation has a potential of rising the fluid temperature significantly,
thus it cannot be neglected. Fig. 7a shows that the temperature profiles
increase as thermal radiation parameter increases. This is because increase
in radiation parameter releases heat energy into the flow. The heat transfer
from the heated wall to the fluid thermal boundary layer thickness increases,
fluid absorbs its own radiations. Fig. 7b shows that the temperature profiles
augment with increasing values of the temperature ratio parameter. This is
because increasing temperature ratio parameter indicate larger wall tempera-
ture compared to ambient temperature. It is noted in Fig. 8a that increasing
the Casson fluid parameter enhances the thermal field and associated bound-
ary layer thickness. This is because rising values of Casson fluid parameter
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increases the viscous forces, and these forces generate some heat energy in
the flow, thus increasing the fluid temperature. The thermal boundary layer
thickness is seen to be thicker in the case of Newtonian fluid than in the case
of Casson fluid. Fig. 8b shows that the thermal boundary layer thickness
enhances as the unsteady parameter increases. This is due to an upsurge in
convection currents with unsteadiness, which assist in intensifying thermal
diffusion through the boundary layer. Fig. 9a and Fig. 9a shows that ther-
mal fields and boundary layer thickness enhance as the variable viscosity and
Brownian motion parameters increase. As the Brownian motion parameter
shoot up, nanoparticles collide with the base fluid molecules, which enhance
the kinetic energy and elevate the fluid temperature.
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Figure 7: Temperature profiles
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Figure 8: Temperature profiles
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(a) Effect of variable viscosity parameter
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Figure 9: Temperature profiles

4.4. Nanoparticle concentration profiles

Fig. 10-11 present the effect of pertinent parameters on the nanoparticle
concentration profiles for the steadiness (A = 0) and unsteadiness (A = 0.06)
case. It is observed noted that considering the unsteadiness case enhances
the concentration profiles significantly. This is because a growth in the un-
steadiness parameter causes the concentration boundary layer to be thick.
The impact of flow parameters on nanoparticle concentration is noted to
be very sensitive in the case of unsteadiness than in the case of steadiness.
Fig. 10a and Fig. 10b display an elevation in the nanoparticle concentration
profiles with the enhancement in variable viscosity parameter and Casson
fluid parameter. Moreover, the nanoparticle concentration boundary layer
thickness is seen to be thicker in Newtonian fluid than in Casson fluid.

The Brownian motion and thermophoresis parameters appear due to pres-
ence of nanoparticles. As the Brownian motion parameter increases, the
species diffusion is suppressed, thus nanoparticle concentration boundary
layer thickness shrink as seen in Fig. 11a . This is due to the fact that when
Brownian motion parameter increases, nanoparticles collisions and random
motion accelerate, which generate more heat and lessen the concentration of
fluid. For thermophoresis parameter, the opposite trend is true for nanopar-
ticle concentration as noted in Fig. 11b. This is because elevation of the
thermophoresis force cause nanoparticles to move away from the hot surface
resulting in increment of the concentration field.
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(a) Effect of variable viscosity parameter
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(b) Effect of Casson fluid parameter

Figure 10: Concentration profiles
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(a) Effect of Brownian motion parameter
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Figure 11: Concentration profiles

Table 4 shows that the skin friction coefficients on both primary and
secondary flow at the wall decrease with increasing values of Casson fluid
parameter, temperature ratio parameter, variable viscosity parameter, ther-
mophoresis parameter and Brownian motion parameter. The Nusselt number
and Sherwood number increase with radiation parameter, temperature ratio
parameter and variable thermal conductivity, while decrease with Casson
fluid parameter, thermophoresis parameter and variable viscosity parameter.
It is also found that increasing the Brownian motion parameter reduce the
Nusselt number while augmenting the Sherwood number.
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Table 4: Overlapping grid SQLM results for skin friction coefficients, Nusselt Number
and Sherwood number for various values of Rd, θw, β, ξ, ε,Nt and Nb when Pr = 1, A =
0.01,M = 6,m = 0.1, S = 0.5 and Le = 0.6

Rd θw β ξ ε Nt Nb −CfxRe1/2x CfzRe
1/2
x NuxRe

−1/2
x ShxRe

−1/2
x

0.2 1.2 1 0.5 0.3 0.5 0.5 3.22031297 0.12670781 0.64335216 0.14437506
0.4 1.2 1 0.5 0.3 0.5 0.5 3.21098042 0.12666449 0.66837321 0.20419754
0.6 1.2 1 0.5 0.3 0.5 0.5 3.20446812 0.12663928 0.68758160 0.24559418
0.2 1 1 0.5 0.3 0.5 0.5 3.22548296 0.12675186 0.63335388 0.10800497
0.2 1.5 1 0.5 0.3 0.5 0.5 3.21149289 0.12664298 0.66141459 0.20473605
0.2 2 1 0.5 0.3 0.5 0.5 3.19736709 0.12657761 0.69570873 0.29550147
0.2 1.2 0.3 0.5 0.3 0.5 0.5 4.66799135 0.18714475 0.72997195 0.19434966
0.2 1.2 1.5 0.5 0.3 0.5 0.5 2.95770772 0.11555730 0.62382297 0.13545775
0.2 1.2 ∞ 0.5 0.3 0.5 0.5 2.34352830 0.08919796 0.57315115 0.11548926
0.2 1.2 1 0 0.3 0.5 0.5 3.98967102 0.16273988 0.69561684 0.17035645
0.2 1.2 1 0.4 0.3 0.5 0.5 3.36310952 0.13324077 0.65367941 0.14917204
0.2 1.2 1 1 0.3 0.5 0.5 2.58773056 0.09844238 0.59376503 0.12355675
0.2 1.2 1 0.5 0 0.5 0.5 3.22883353 0.12677895 0.62673610 0.08488114
0.2 1.2 1 0.5 0.6 0.5 0.5 3.21385230 0.12666628 0.65747129 0.18747213
0.2 1.2 1 0.5 1.5 0.5 0.5 3.20137995 0.12661154 0.68967083 0.26716760
0.2 1.2 1 0.5 0.3 0.1 0.5 3.22400779 0.12672123 0.68686265 0.41578510
0.2 1.2 1 0.5 0.3 0.5 0.5 3.22031297 0.12670781 0.64335216 0.14437506
0.2 1.2 1 0.5 0.3 0.7 0.5 3.21857072 0.12670177 0.62283873 0.02152817
0.2 1.2 1 0.5 0.3 0.5 0.5 3.22031297 0.12670781 0.64335216 0.14437506
0.2 1.2 1 0.5 0.3 0.5 0.8 3.21585229 0.12666734 0.58275111 0.29375215
0.2 1.2 1 0.5 0.3 0.5 1.5 3.20653109 0.12659056 0.45856407 0.40654170

5. Conclusion

In this work, a numerical analysis on unsteady MHD radiative flow of
Casson nanofluid with variable fluid properties over an inclined stretching
sheet in the presence of suction/injection, thermophoresis, Brownian motion
and Hall current is presented. The dimensionless conservation equations have
been solved using the overlapping grid SQLM. The influence of significant
non-dimensional flow parameters on the fluid properties has been established
both qualitatively and quantitatively. We have carried out convergence and
residual error analysis to assess the accuracy and convergence of the method.
The method converges to the desired accurate solution after few iterations
and using minimal number of grid points in each sub-domain as well as in
the whole domain. The accuracy improves as the number of overlapping sub-
domains increases. An increase in the number of overlapping sub-domains
significantly minimizes the number of grid points required in the whole do-
main. The accuracy improvement is attributed to the overlapping grid which
makes the coefficient matrices to be less dense. The rest of interesting find-
ings are summarised as follows:
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• Increasing Casson parameter and variable viscosity parameter deceler-
ates the velocity flow and the flow characteristics, whereas the opposite
is true for the temperature and concentration fields.

• The fluid velocity amplify significantly with Hall parameter while di-
minish with suction/injection parameter.

• The inclusion of temperature dependent thermal conductivity and non-
linear thermal radiation into the system enhances the fluid temperature
along with heat and mass transfer rate.

• Thermophoresis parameter tends to appreciate the nanoparticle con-
centration distribution but suppressing the mass transfer rate. The
opposite trend occurs for the Brownian motion parameter.

• Improving the unsteadiness parameter enhances temperature and con-
centration profiles together with associated thermal and nanoparticle
concentration boundary layer thickness.

• The influence of flow parameters is more sensitive with variable thermal
conductivity and unsteadiness compared to constant thermal conduc-
tivity and steadiness.

• The thermal and concentration boundary layer is thicker for Newtonian
fluid while the velocity boundary layer is thicker for Casson fluid.
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Chapter 3

Overlapping multi-domain bivariate spec-

tral method for systems of nonlinear PDEs

with fluid mechanics applications

In Chapter 2, we discussed the development and application of the overlapping grid spectral col-

location method for the purpose of solving ordinary differential equations. In this chapter, we

introduce the overlapping multi-domain bivariate spectral quasilinearisation method and use the

method to solve coupled nonlinear partial differential equations of non-similar boundary layer

flow. The solution procedure involves the decomposition of the domains into overlapping and non-

overlapping subintervals, discretization, linearisation using the quasilinearisation method (QLM),

domain transformation into [−1,1] where the spectral method is valid. Also, the bivariate La-

grange interpolating polynomial is used to approximate the functions, and the Chebyshev spectral

collocation method is applied through evaluating the linearised equations at the collocation points.

Error norms and residual errors are used to analyze the convergence and accuracy of the numerical

approximations. Lastly, series solutions are used to validate the accuracy of the numerical method.
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Overlapping Multi-domain Bivariate
Spectral Method for Systems of
Nonlinear PDEs with Fluid Mechanics
Applications

Musawenkhosi Mkhatshwa, Sandile Motsa, and Precious Sibanda

Abstract An efficient overlapping multi-domain bivariate spectral quasilineariza-
tionmethod (OMD-BSQLM) is introduced for non-similar boundary layer equations
arising in fluid mechanics. Previously, the multi-domain approach has been applied
to either space or time interval but not both. The new method applies the multi-
domain technique in both space and time interval. The time interval is decomposed
into non-overlapping sub-intervals, and the space interval is split into overlapping
sub-domains. Numerical experiments are carried out to highlight the accuracy and
efficiency of the method. An analysis of the convergence and accuracy of the OMD-
BSQLM is given using error norms and residual errors. The series solutions are used
to validate the accuracy of the OMD-BSQLM results. The new method converges
rapidly and gives accurate results after a few iterations and using a few grid points.
Moreover, the accuracy does not worsen when a large time domain is considered.

Keywords Multi-domain overlapping technique · Bivariate interpolation ·
Spectral quasilinearisation method

1 Introduction

Most heat and mass transfer problems arising in fluid dynamics are modelled by
non-similar boundary layer partial differential equations (PDEs). These differential
equations are often difficult to solve analytically or their exact solutionsmay not exist.
In such instances, we have to solve the differential equations using numerical meth-
ods. Analytical solutions can give an insight into the influence of various parameters
that have a bearing on the solution, which is not generally the case with numerical
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methods. However, numerical methods are efficient tools that can be used in solv-
ing highly nonlinear differential equations that are complex and even impossible to
solve analytically. The challenge of finding more accurate, robust and computation-
ally efficient numerical methods for solving strongly nonlinear problems still exists.
The development of numerical methods that converge quickly and most accurate is
currently attracting the attention of a growing number of researchers. Traditional
methods such as the finite difference method require a large number of grid points
to produce accurate results. Their accuracy also deteriorates fast as the time domain
increases for parabolic nonlinear PDEs.

Spectral collocation-based methods have been used to solve many non-similar
boundary layer differential equations. They have shown to be reliable and efficient in
solving nonlinear systems of ordinary differential equations (ODEs) and PDEs. Spec-
tral methods have many advantages over traditional methods such as high accuracy
and efficiency [1].When applied to problemswith smooth solutions, they use fewgrid
points and require minimal computational time to generate accurate solutions, thus
better than traditional methods. Motsa et. al [2] applied the spectral method in space
and finite differences in time when solving non-similar boundary layer differential
equations. To improve the accuracy and computational speed of spectral methods
several researchers [3–5] applied spectral collocation method independently in both
space and time. The method gives accurate results for smaller time domains. The
accuracy of the method decreases with an increase in the time domain. One of the
effective techniques to overcome this problem is using a multi-domain grid. Motsa et
al. [6] introduced a non-overlapping multi-domain bivariate spectral quasilineariza-
tion method (MD-BSQLM) to increase the accuracy of spectral collocation-based
methods for large time variable. The non-overlappingMD-BSQLMapplies themulti-
domain technique only in the time interval. Following the discretization process, the
multi-domain technique can help to make the matrices to be less dense. This means
that most of the elements will be zeros. The sparsity of matrices can help to minimize
storage for large matrices and make it easy to perform matrix-vector multiplications.
This is because there will be a lot of multiplication by zero which reduces the com-
putational time and enable the matrices to be stored efficiently. Yang [7] introduced
an overlapping multi-domain technique and used it to solve PDEs exhibiting dis-
continuous solutions. The technique was found to give accurate results compared
to existing numerical methods. The concept of overlapping sub-domains has been
discussed by several researchers [8–10].

The need to continually improve on existing spectral collocation-based methods
for solving nonlinear differential equations that cannot be solved analytically can-
not be overstated. Most studies in the literature used the multi-domain technique in
either space or time but not both. However, applying the multi-domain technique in
both space and time interval and further utilizing the strategy of overlapping sub-
domains can increase the accuracy of spectral collocation-based methods for small
and large time variable. The objective of the study is to introduce a method that uses
the multi-domain technique, spectral collocation method, bivariate Lagrange inter-
polation polynomials based on Chebyshev–Gauss Lobatto grid points [11, 12] and
quasilinearization method (QLM) [13] in finding solutions of coupled non-similar
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boundary layer PDEs over a large time interval. Themulti-domain technique employs
the strategy of non-overlapping and overlapping sub-domains. Thus, the time interval
is partitioned into non-overlapping sub-domains, and the space interval is decom-
posed into overlapping sub-intervals. The applicability, accuracy and reliability of
the proposed method have been tested by solving systems of n coupled non-similar
boundary layer partial differential equations arising in fluid mechanics.

2 The Overlapping Multi-domain Bivariate Spectral
Quasilinearization Method (OMD-BSQLM)

In this section, we introduce the OMD-BSQLM for a system of n nonlinear PDEs
expressed in the form

Γ1[F1, F2, . . . , Fn] = 0, (1)

Γ2[F1, F2, . . . , Fn] = 0, (2)
...

Γn[F1, F2, . . . , Fn] = 0, (3)

where the operators Fi (i = 1, 2, 3, . . . , n) are given by

F1 =
{

g1,
∂g1
∂η

,
∂2g1
∂η2

, . . . ,
∂s g1
∂ηs

,
∂g1
∂ξ

,
∂

∂ξ

(
∂g1
∂η

)}

...

Fn =
{

gn,
∂gn

∂η
,
∂2gn

∂η2
, . . . ,

∂s gn

∂ηs
,
∂gn

∂ξ
,

∂

∂ξ

(
∂gn

∂η

)}
. (4)

We denote the order of differentiation by s, and the required solution by gk(η, ξ) and
Γk denotes the nonlinear operators containing all the spatial and time derivatives of
gk(η, ξ). The Chebyshev–Gauss–Lobatto grid points and their corresponding differ-
entiation are defined in the interval [−1, 1]. In order to apply the OMD-BSQLM, the
time interval ξ ∈ [0, T ] is decomposed into q non-overlapping sub-intervals defined
as

Jυ = (ξυ−1, ξυ), υ = 1, 2, 3, . . . , q. (5)

The space interval [a, b] is decomposed into p overlapping sub-intervals of length
L , denoted by

Iμ = [ημ
0 , η

μ

Nη
], μ = 1, 2, 3, . . . , p, (6)
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Fig. 1 Overlapping grid

where each Iμ interval is further discretized into Nη + 1 collocation points. For the
overlap to be possible, the sub-intervals must be of equal length given by

L = b − a

p + 1
2 (1 − p)(1 − cos π

Nη
)
. (7)

In the overlappingmulti-domain grid, the first two points of the interval Iμ+1 coincide
with the last two points of the interval Iμ as shown in Fig. 1. To derive the result in
Eq. (7), we note that the total length of the domain is

b − a = 2L − ε + (2L − 2ε)
( p

2
− 1

)
= 2L − ε + (L − ε)(p − 2) = ε(1 − p) + pL , (8)

where ε is the overlapping distance between two intervals. We remark that ε = η0 −
η1. Considering the first interval I1 in which η ∈ [a, η1

Nη
], we can define the length

L = η1
Nη

− a. The linear transformation η = L
2 z + a+η1

Nη

2 can be used to transform

the interval [a, η1
Nη

] to [−1, 1]. Thus, using the Gauss–Lobatto collocation points

zi = cos
(

π i
Nη

)
, where i = 0, 1, 2, 3, . . . , Nη, we obtain η0 − η1 = L

2 (z0 − z1) =
L
2

(
1 − cos π

Nη

)
. Therefore, Eq. (8) becomes

b − a = L

2

(
1 − cos

π

Nη

)
(1 − p) + pL , (9)

and making L the subject in Eq. (9) yields Eq. (7).
Generally, before the spectral collocation method is applied at each sub-interval,

the time interval ξ ∈ Jυ and space interval η ∈ Iμ are transformed into τ ∈ [−1, 1]
and z ∈ [−1, 1] using the linear transformations
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ξ j = 1

2
(ξυ − ξυ−1)τ j + 1

2
(ξυ + ξυ−1), τ j = cos

(
π j

Nξ

)
, (10)

η
μ

i = L

2
(zi + 1), zi = cos

(
π i

Nη

)
. (11)

In terms of the original variable η, the collocation points are arranged as

{ηr }M
r=0 =

{
η10, . . . , η

1
Nη−1 = η20, η

1
Nη

= η21, . . . , η
μ
k , . . . , η

μ
Nη−1 = η

μ+1
0 , η

μ
Nη

= η
μ+1
1 , . . . , η

p
Nη

}
,

=
{
η10, . . . , η

1
Nη−1, η

2
1, . . . , η

μ
k , . . . , η

μ
Nη−1, η

μ+1
1 , . . . , η

p
Nη

}
,

(12)
where M = Nη + (Nη − 1)(p − 1) is the total number of collocation points over the
entire space interval. It can be shown that the grid points can be obtained as follows

η1i = a + L

2
(zi + 1), i = 1, 2, 3, . . . , Nη,

η
p−μ
i = L

2
(zi − 1) + b − Lμ

2

[
1 + cos

(
π

Nη

)]
, i = 1, 2, . . . , Nη − 1, μ = 2, 3, . . . , p − 1,

η
p
i = a + L

2
(1 + zi ), i = 0, 1, 2, . . . , Nη − 1. (13)

In terms of the transformed variables z and τ, the collocation points are arranged
as

{zr }M
r=0 =

{
z1Nη

, . . . , z11 = z2Nη
, z10 = z2Nη−1, . . . , zμ

k , . . . , zμ
1 = zμ+1

Nη
, zμ

0 = η
μ+1
Nη−1, . . . , η

p
0

}
,

=
{

z1Nη
, . . . , z11, z2Nη−1, . . . , zμ

k , . . . , zμ
1 , zμ+1

Nη−1, . . . , z p
0

}
,

{τr }Nξ

r=0 =
{
τ 1Nξ

, . . . , τ 11 , τ 2Nξ
, . . . , τ υ

k , . . . , τ υ
1 , τυ+1

Nξ
, . . . , τ

q
0

}
. (14)

We assume that at each sub-interval, the solution can be approximated by a bivariate
Lagrange interpolation polynomial of the form

g(μ,υ)

k (η, ξ) ≈
Nη∑

i=0

Nξ∑
j=0

g(μ,υ)

k (ηi , ξ j )Li (η)L j (ξ), (15)

where the bivariate interpolation polynomial interpolates g(μ,υ)

k (η, ξ) at selected
points (ηi , ξ j ) in both η and ξ directions. Applying the QLM on Γk gives

Γk [F1, F2, . . . , Fn ] ≈ (F1,r+1 − F1,r , F2,r+1 − F2,r , . . . , Fn,r+1 − Fn,r ).∇Γk [F1,r , F2,r , . . . , Fn,r ]
+Γk [F1,r , F2,r , . . . , Fn,r ], (16)

where r and r + 1 denote previous and current iteration, respectively. The vector of
the partial derivatives denoted by ∇ is defined as

∇ = {∇g1 ,∇g2 , . . . ,∇gn

}
, (17)
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and

∇g1 =
⎧⎨
⎩ ∂

∂g1
, ∂

∂g′
1
, ∂

∂g′′
1
, . . . , ∂

∂g(s)
1

, ∂

∂
(

∂g1
∂ξ

) , ∂

∂

(
∂g′

1
∂ξ

)
⎫⎬
⎭ , (18)

...

∇gn =
{

∂
∂gn

, ∂
∂g′

n
, ∂

∂g′′
n
, . . . , ∂

∂g(s)
n

, ∂

∂
(

∂gn
∂ξ

) , ∂

∂
(

∂g′
n

∂ξ

)
}

, (19)

where the prime denotes differentiation with respect to η. The linearized Eq. (16)
can be expressed in a compact form as

n∑
l=1

Fl,r+1 · ∇ fl Γk
[
F1,r , F2,r , . . . , Fn,r

] =
n∑

l=1

Fl,r · ∇ fl Γk
[
F1,r , F2,r , . . . , Fn,r

]

− Γk
[
F1,r , F2,r , . . . , Fn,r

]
, (20)

for k = 1, 2, . . . , n. Equation (20) forms a system of n coupled linear PDEs which
are solved iteratively for g(μ,υ)

1,r+1(η, ξ), g(μ,υ)
2,r+1(η, ξ), . . . , g(μ,υ)

n,r+1(η, ξ). Equation (20)
can further be expressed as

n∑
ν=1

[
s∑

l=0

α
(1,μ,υ)
ν,l,r g(l,μ,υ)

ν,r+1 + β(1,μ,υ)
ν,r

∂g(μ,υ)
ν,r+1

∂ξ
+ γ (1,μ,υ)

ν,r
∂

∂ξ

(
∂g(μ,υ)

ν,r+1

∂η

)]
= R(μ,υ)

1

n∑
ν=1

[
s∑

l=0

α
(2,μ,υ)
ν,l,r g(l,μ,υ)

ν,r+1 + β(2,μ,υ)
ν,r

∂g(μ,υ)
ν,r+1

∂ξ
+ γ (2,μ,υ)

ν,r
∂

∂ξ

(
∂g(μ,υ)

ν,r+1

∂η

)]
= R(μ,υ)

2

.

.

.

n∑
ν=1

[
s∑

l=0

α
(n,μ,υ)
ν,l,r g(l,μ,υ)

ν,r+1 + β(n,μ,υ)
ν,r

∂g(μ,υ)
ν,r+1

∂ξ
+ γ (n,μ,υ)

ν,r
∂

∂ξ

(
∂g(μ,υ)

ν,r+1

∂η

)]
= R(μ,υ)

n ,

(21)

where α
(k,μ,υ)
n,s,r (η, ξ), β

(k,μ,υ)
ν,r (η, ξ) and γ

(k,μ,υ)
ν,r (η, ξ) are variable coefficients of

g(s,μ,υ)
n,r+1 ,

∂g(μ,υ)
ν,r+1

∂ξ
and ∂

∂ξ

(
∂gν,r+1

∂ξ

)
, respectively. These variable coefficients correspond

to the kth equation, for k = 1, 2, . . . , n. The variable coefficients are obtained as

α(k,μ,υ)
n,s,r = ∂Γk

∂g(s,μ,υ)
n,r

, β(k,μ,υ)
ν,r = ∂Γk

∂

(
∂g(μ,υ)

ν,r
∂ξ

) , γ (k,μ,υ)
ν,r = ∂Γk

∂

(
∂
∂ξ

(
∂g(μ,υ)

ν,r
∂η

)) .

Equation (21) is evaluated at the Chebyshev–Gauss–Lobatto grid points ξ j ( j =
0, 1, 2, . . . , Nξ ) and ηi (i = 0, 1, 2, . . . , Nη).The time derivatives at the Chebyshev–
Gauss–Lobatto points (ηi , ξ j ) is computed as
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∂g(μ,υ)
n

∂ξ

∣∣∣∣∣
(ηi ,ξ j )

=
(

2

ξυ − ξυ−1

) Nξ∑
τ=0

d j,τ g(μ,υ)
n (ηi , ξτ ), (22)

The sth order space derivative is computed as

∂s g(μ,υ)
n

∂ηs

∣∣∣∣∣
(ηi ,ξ j )

=
(

2

η
μ
Nη

− η
μ
0

)s Nη∑
ν=0

[
D(μ)

i,ν

]s
g(μ,υ)

n (ην, ξ j ) =
[
D(μ)

]s
G(μ,υ)

n, j , (23)

where the vector G(μ,υ)

n, j is defined as

G(μ,υ)

n, j =
[
g(μ,υ)

n (η
(μ)
0 , ξ

(υ)
j ), g(μ,υ)

n (η
(μ)
1 , ξ

(υ)
j ), . . . , g(μ,υ)

n (η
(μ)

Nη
, ξ

(υ)
j )
]T

(24)

and T denotes matrix transpose. Substituting Eqs. (22) and (23) into Eq. (21) yields

n∑
ν=1

⎡
⎣A(i,μ,υ)

1,ν G(μ,υ)
ν,i + βββ(1,μ,υ)

ν,r

Nξ∑
j=0

di, jG
(μ,υ)
ν, j + γγγ (1,μ,υ)

ν,r

Nξ∑
j=0

di, jD(μ)G(μ,υ)
ν, j

⎤
⎦ = R(μ,υ)

1,i ,

n∑
ν=1

⎡
⎣A(i,μ,υ)

2,ν G(μ,υ)
ν,i + βββ(2,μ,υ)

ν,r

Nξ∑
j=0

di, jG
(μ,υ)
ν, j + γγγ (2,μ,υ)

ν,r

Nξ∑
j=0

di, jD(μ)G(μ,υ)
ν, j

⎤
⎦ = R(μ,υ)

2,i ,

.

.

.

n∑
ν=1

⎡
⎣A(i,μ,υ)

n,ν G(μ,υ)
ν,i + βββ(n,μ,υ)

ν,r

Nξ∑
j=0

di, jG
(μ,υ)
ν, j + γγγ (n,μ,υ)

ν,r

Nξ∑
j=0

di, jD(μ)G(μ,υ)
ν, j

⎤
⎦ = R(μ,υ)

n,i ,

(25)

where A(i,μ,υ)

k,ν = ∑s
l=0 α

(k,μ,υ)

ν,l,r

[
D(μ)

]l
.

3 Numerical Experiments

We first consider the problem of steady two-dimensional laminar free convection
flow past a non-isothermal vertical porous cone with variable temperature [14].

f ′′′ + n + 7

4
f f ′′ − n + 1

2
f ′2 + θ + ξ f ′′ = 1 − n

4
ξ

(
f ′ ∂ f ′

∂ξ
− f ′′ ∂ f

∂ξ

)
(26)

1

Pr
θ ′′ + n + 7

4
f θ ′ − n f ′θ + ξθ ′ = 1 − n

4
ξ

(
f ′ ∂θ

∂ξ
− θ ′ ∂ f

∂ξ
,

)
(27)

f (0, ξ) = 0, f ′(0, ξ) = 0, θ(0, ξ) = 1, f ′(∞, ξ) = 0, θ(∞, ξ) = 0. (28)

In this example, the highest order of differentiation is s = 3, and the number of
equations is n = 2. Applying OMD-BSQLM to Eqs. (26) and (27) yields
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2∑
ν=1

⎡
⎣A(i,μ,υ)

1,ν G(μ,υ)
ν,i + βββ(1,μ,υ)

ν,r

Nξ∑
j=0

di, jG
(μ,υ)
ν, j + γγγ (1,μ,υ)

ν,r

Nξ∑
j=0

di, jD(μ)G(μ,υ)
ν, j

⎤
⎦ = R(μ,υ)

1,i ,(29)

2∑
ν=1

⎡
⎣A(i,μ,υ)

2,ν G(μ,υ)
ν,i + βββ(2,μ,υ)

ν,r

Nξ∑
j=0

di, jG
(μ,υ)
ν, j + γγγ (2,μ,υ)

ν,r

Nξ∑
j=0

di, jD(μ)G(μ,υ)
ν, j

⎤
⎦ = R(μ,υ)

2,i ,(30)

In order to apply the OMD-BSQLM, we let f (η, ξ) = g1(η, ξ) and θ(η, ξ) =
g2(η, ξ). Imposing the boundary conditions for j = 0, 1, 2, . . . , Nξ − 1, Eqs. (29)
and (30) can be expressed as the following Nξ (M + 1) × Nξ (M + 1) matrix system

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(1,1,p,υ)
0,0 · · · A(1,1,p,υ)

0,Nξ
A(1,2,p,υ)
0,0 · · · A(1,2,p,υ)

0,Nξ

A(1,1,p,υ)
1,0 · · · A(1,1,p,υ)

1,Nξ
A(1,2,p,υ)
1,0 · · · A(1,2,p,υ)

1,Nξ

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

A(1,1,p,υ)
Nξ −1,0 · · · A(1,1,p,υ)

Nξ −1,Nξ
A(1,2,p,υ)

Nξ −1,0 · · · A(1,2,p,υ)
Nξ −1,Nξ

A(1,1,p−1,υ)
1,0 · · · A(1,1,p−1,υ)

1,Nξ
A(1,2,p−1,υ)
1,0 · · · A(1,2,p−1,υ)

1,Nξ

A(1,1,p−1,υ)
2,0 · · · A(1,1,p−1,υ)

2,Nξ
A(1,2,p−1,υ)
2,0 · · · A(1,2,p−1,υ)

2,Nξ

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

A(1,1,p−1,υ)
Nξ −1,0 · · · A(1,1,p−1,υ)

Nξ −1,Nξ
A(1,2,p−1,υ)

Nξ −1,0 · · · A(1,2,p−1,υ)
Nξ −1,Nξ

.
.
.

.
.
.

A(1,1,1,υ)
1,0 · · · A(1,1,1,υ)

1,Nξ
A(1,2,1,υ)
1,0 · · · A((1,2,1,υ)

1,Nξ

A(1,1,1,υ)
2,0 · · · A(1,1,1,υ)

2,Nξ
A((1,2,1,υ)
2,0 · · · A(1,2,1,υ)

2,Nξ

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

A(1,1,1,υ)
Nξ ,0 · · · A(1,1,1,υ)

Nξ ,Nξ
A(1,2,1,υ)

Nξ ,0 · · · A(1,2,1,υ)
Nξ ,Nξ

A(2,1,p,υ)
0,0 · · · A(2,1,p,υ)

0,Nξ
A(2,2,p,υ)
0,0 · · · A(2,2,p,υ)

0,Nξ

A(2,1,p,υ)
1,0 · · · A(2,1,p,υ)

1,Nξ
A(2,2,p,υ)
1,0 · · · A(2,2,p,υ)

1,Nξ

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

A(2,1,p,υ)
Nξ −1,0 · · · A(2,1,p,υ)

Nξ −1,Nξ
A(2,2,p,υ)

Nξ −1,0 · · · A(2,2,p,υ)
Nξ −1,Nξ

A(2,1,p−1,υ)
1,0 · · · A(2,1,p−1,υ)

1,Nξ
A(2,2,p−1,υ)
1,0 · · · A(2,2,p−1,υ)

1,Nξ

A(2,1,p−1,υ)
2,0 · · · A(2,1,p−1,υ)

2,Nξ
A(2,2,p−1,υ)
2,0 · · · A(2,2,p−1,υ)

2,Nξ

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

A(2,1,p−1,υ)
Nξ −1,0 · · · A(2,1,p−1,υ)

Nξ −1,Nξ
A(2,2,p−1,υ)

Nξ −1,0 · · · A(2,2,p−1,υ)
Nξ −1,Nξ

.
.
.

.
.
.

A(2,1,1,υ)
1,0 · · · A(2,1,1,υ)

1,Nξ
A(2,2,1,υ)
1,0 · · · A((2,2,1,υ)

1,Nξ

A(2,1,1,υ)
2,0 · · · A(2,1,1,υ)

2,Nξ
A((2,2,1,υ)
2,0 · · · A(2,2,1,υ)

2,Nξ

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

A(2,1,1,υ)
Nξ ,0 · · · A(2,1,1,υ)

Nξ ,Nξ
A(2,2,1,υ)

Nξ ,0 · · · A(2,2,1,υ)
Nξ ,Nξ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G(p,υ)
1,0

G(p,υ)
1,1

.

.

.

G(p,υ)
1,Nξ −1

G(p−1,υ)
1,1

G(p−1,υ)
1,2

.

.

.

G(p−1,υ)
1,Nξ −1

.
.
.

G(1,υ)
1,1

G(1,υ)
1,2

.

.

.

G(1,υ)
1,Nξ

G(p,υ)
2,0

G(p,υ)
2,1

.

.

.

G(p,υ)
2,Nξ −1

G(p−1,υ)
2,1

G(p−1,υ)
2,2

.

.

.

G(p−1,υ)
2,Nξ −1

.
.
.

G(1,υ)
2,1

G(1,υ)
2,2

.

.

.

G(1,υ)
2,Nξ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K(p,υ)
1,0

K(p,υ)
1,1

.

.

.

K(p,υ)
1,Nξ −1

K(p−1,υ)
1,1

K(p−1,υ)
1,2

.

.

.

K(p−1,υ)
1,Nξ −1

.
.
.

K(1,υ)
1,1

K(1,υ)
1,2

.

.

.

K(1,υ)
1,Nξ

K(p,υ)
2,0

K(p,υ)
2,1

.

.

.

K(p,υ)
2,Nξ −1

K(p−1,υ)
2,1

K(p−1,υ)
2,2

.

.

.

K(p−1,υ)
2,Nξ −1

.
.
.

K(1,υ)
2,1

K(1,υ)
2,2

.

.

.

K(1,υ)
2,Nξ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(31)

where

A(1,1,p,υ)
i,i = α

(1,μ,υ)
1,3,r

[
D(μ)

]3 + α
(1,μ,υ)
1,2,r

[
D(μ)

]2 + α
(1,μ,υ)
1,1,r

[
D(μ)

]1 + α
(1,μ,υ)
1,0,r

+ βββ
(1,μ,υ)
1,r di,i I + γγγ

(1,μ,υ)
1,r di,iD(μ), i = j

A(1,2,p,υ)
i,i = α

(1,μ,υ)
2,0,r I, A(2,1,p,υ)

i,i = α
(2,μ,υ)
1,1,r

[
D(μ)

]1 + α
(2,μ,υ)
1,0,r + βββ

(2,μ,υ)
1,r di,i I, i = j

A(2,2,p,υ)
i,i = α

(2,μ,υ)
2,2,r

[
D(μ)

]2 + α
(2,μ,υ)
2,1,r

[
D(μ)

]1 + α
(2,μ,υ)
2,0,r + βββ

(2,μ,υ)
2,r di,i I, i = j

A(1,1,p,υ)
i, j = βββ

(1,μ,υ)
1,r di, j I + γγγ

(1,μ,υ)
1,r di, jD(μ), A(1,2,p,υ)

i, j = 0, i �= j

A(2,1,p,υ)
i, j = βββ

(2,μ,υ)
1,r di, j I, A(2,2,p,υ)

i, j = βββ
(2,μ,υ)
2,r di, j I, i �= j,
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K(μ,υ)
1,i = R(μ,υ)

1,i − βββ
(1,μ,υ)
1,r di,Nξ G

(μ,υ)
1,Nξ

− γγγ
(1,μ,υ)
1,r di,Nξ D

(μ)G(μ,υ)
1,Nξ

K(μ,υ)
2,i = R(μ,υ)

2,i − βββ
(2,μ,υ)
1,r di,Nξ G

(μ,υ)
1,Nξ

− βββ
(2,μ,υ)
2,r di,Nξ G

(μ,υ)
2,Nξ

,

and I is an (M + 1) × (M + 1) identity matrix. The matrix system (31) can be
solved iteratively for G(μ,υ)

k,δ for k = 1, 2 and δ = 0, 1, 2, . . . Nξ − 1.
We also consider a two-dimensional steady free convective flow of a viscous

incompressible fluid over a vertical plate in the presence of soluble species [15].

f ′′′ + n + 3

4
f f ′′ − n + 1

2
f ′2 + ξ f ′′ + (1 − w)g + wh

= 1 − n

4
ξ

(
f ′ ∂ f ′

∂ξ
− f ′′ ∂ f

∂ξ

)
(32)

1

Pr
g′′ + n + 3

4
f g′ + ξg′ = 1 − n

4
ξ

(
f ′ ∂g

∂ξ
− g′ ∂ f

∂ξ

)
(33)

1

Sc
h′′ + n + 3

4
f h′ + ξh′ = 1 − n

4
ξ

(
f ′ ∂h

∂ξ
− h′ ∂ f

∂ξ

)
, (34)

f (0, ξ) = f ′(0, ξ) = 0, g(0, ξ) = h(0, ξ) = 1, f ′(∞, ξ) = g(∞, ξ) = h(∞, ξ) = 0,

For the sake of brevity, details on the application of OMD-BSQLM are omitted for
this problem.

4 Results and Discussion

In this section, we present and analyse the numerical results of the system of non-
similar boundary layer equations obtained using the OMD-BSQLM. In the entire
calculations, we have taken the edge of the boundary to be η∞ = 4. Grid indepen-
dence tests revealed that Nξ = 5 collocation points in time were sufficient to give
accurate and consistent results. The time interval was decomposed into q = 40 non-
overlapping sub-intervals. The series solutions obtained usingMathematicaNDSolve
were used to validate the accuracy of the OMD-BSQLM results. The convergence
and stability of the proposed method were determined by considering the norm of
the difference in the values of the approximate solution of the unknown function
between two subsequent iterations. For brevity, we define the solution errors for the
two equation system as

E f = max
0≤k≤Nξ

||F(μ,υ)

r+1,k − F(μ,υ)

r,k ||∞, Eθ = max
0≤k≤Nξ

||Θ (μ,υ)

r+1,k − Θ
(μ,υ)

r,k ||∞, (35)

The decrease in the solution errors as the number of iteration increases shows that the
OMD-BSQLM converges. It can be seen from Fig. 2 that full convergence is reached
after approximately three iterationswith a solution error near 10−12.The node [100,1]
represents 100 collocationpoints andone interval in space,while the other node [20,5]
stands for 20 collocation points and five overlapping sub-intervals in space. There-
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(b) Three equation system

Fig. 2 Solution errors against iterations at different nodes

fore, [100,1] correspond to non-overlappingMD-BSQLM [6], and [20,5] correspond
to the OMD-BSQLM. We remark that the total number of collocation points used
over the entire space domain was Nη = 100 and M = 20 + (20 − 1)(5 − 1) = 96
in the MD-BSQLM and OMD-BSQLM, respectively. Figure2 shows that the errors
resulting from the OMD-BSQLM were smaller compared to those from the MD-
BSQLM. Hence, the OMD-BSQLM provides high accuracy and uses fewer grid
points compared to the MD-BSQLM.

The accuracy of the OMD-BSQLM can also be evaluated by considering the
residual errors which measure the extent to which the numerical solutions approxi-
mate the true solution of the flow PDEs. For the two equation system, we define the
residual error functions

Res( f ) = ||Γ f [F(μ,υ)

i ,Θ
(μ,υ)

i ]||∞, Res(θ) = ||Δθ [F(μ,υ)

i ,Θ
(μ,υ)

i ]||∞, (36)

where,Γ f andΓθ represent the nonlinear PDEs (26) and (27), respectively, andF
(μ,υ)

i

and Θ
(μ,υ)

i are the OMD-BSQLM approximate solutions at the time collocation
points ξi . To calculate the residual errors, we have considered the maximum infinity
over all the collocation points. The decrease in the residual errors across the time scale
ξ depicts the convergence of the method as observed in Fig. 3. It can also be noted
from the figure that the residual error is nearly uniform across ξ. This implies that
the accuracy of the OMD-BSQLM does not deteriorate when ξ becomes large. The
residual error graphs were plotted using Nη = 120([20, 1]), M = 117([30, 40]) and
M = 115([20, 6]) collocation points over the whole space domain. Figure3 exhibits
the effect of varying the number of sub-intervals and the number of points. It is seen
from the figure that increasing the number of overlapping sub-intervals minimizes
the total number of grid points required. However, the accuracy is improved since
increasing the number of sub-intervals produces smaller residual errors as observed
in Fig. 3. Since the solution and residual errors are always smaller for the OMD-
BSQLM, the method can provide accurate, rapidly convergent results with relatively
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Fig. 3 Residual errors against ξ at different nodes

few grid points compared to existing numerical methods including theMD-BSQLM.
The above analysis of the convergence and accuracy of the method shows that we
can trust the numerical solutions obtained using the OMD-BSQLM.
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To validate the OMD-BSQLM results, values of the skin friction, Nusselt and
Sherwood Number were compared with those obtained using the series solution
method in Tables1 and 2. Three iterations were enough for the OMD-BSQLM to
give comparable results. It can be seen from the tables that the OMD-BSQLM gives
accurate results which are in excellent agreement with those obtained using the series
solutionmethod, thus validating the accuracy of the proposedmethod.Moreover, few
grid points were needed to generate comparable results in the OMD-BSQLM than
in the non-overlapping MD-BSQLM.We remark that the OMD-BSQLM has a great
potential to produce highly accurate numerical solutions for bigger time variables
ξ with the minimal number of grid points and few iterations compared to existing
numerical methods.

5 Conclusion

In this work, we introduced the OMD-BSQLM and applied it in solving non-similar
boundary equations to assess its accuracy, robustness and effectiveness. The method
applies the QLM technique to linearize the nonlinear PDEs. The space domain is
split into overlapping sub-domains, and the time interval is partitioned into non-
overlapping sub-intervals. The discretization process is then implemented on both
space and time using the spectral collocation method. The approximate solution is
obtained by solving the resultant linear matrix system. We have shown the con-
vergence behaviour and accuracy of the OMD-BSQLM scheme. The method was
found to be convergent and uses minimal grid points and iterations to produce accu-
rate results. Moreover, the accuracy did not worsen when a large time domain was
considered. The results obtained were validated against series solutions and were
found to be in excellent concurrence, thus confirming the accuracy of the method
over smaller and larger domains. The overlapping grid can improve the accuracy of
spectral collocation-based methods by making the coefficient matrix in the matrix
equation resulting from the collocation process to be less dense. This work has added
to literature an efficient technique for solving the nonlinear system of PDEs defined
in smaller and larger domains.
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Chapter 4

Overlapping multi-domain spectral method

for conjugate problems of conduction and

MHD free convection flow of nanofluids over

flat plates

In Chapter 3, we only focused on the applicability, accuracy and reliability of the overlapping

multi-domain spectral method on some common problems from literature through a determination

of convergence and residual errors. In this chapter, we construct and analyze a fluid flow models in

different geometries. The conjugate heat transfer problems in nanofluids over both a vertical and

horizontal flat plate are solved using the overlapping multi-domain spectral method. Numerical

computations are carried out to investigate the behaviour of fluid properties for various emerging

dimensionless parameters. The variations of the skin friction coefficient and the heat transport are

presented for different parameter values. The results are compared with those in the literature as a

mechanism to validate the accuracy of the method.
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Abstract: An efficient overlapping multi-domain spectral method is used in the analysis of conjugate
problems of heat conduction in solid walls coupled with laminar magnetohydrodynamic (MHD) free
convective boundary layer flow of copper (Cu) water and silver (Ag) water nanofluids over vertical
and horizontal flat plates. The combined effects of heat generation and thermal radiation on the
flow has been analyzed by imposing a magnetic field along the direction of the flow to control the
motion of electrically conducting fluid in nanoscale systems. We have assumed that the nanoparticle
volume fraction at the wall may be actively controlled. The dimensionless flow equations are solved
numerically using an overlapping multi-domain bivariate spectral quasilinearisation method. The
effects of relevant parameters on the fluid properties are shown graphically and discussed in detail.
Furthermore, the variations of the skin friction coefficient, surface temperature and the rate of heat
transfer are shown in graphs and tables. The findings show that the surface temperature is enhanced
due to the presence of nanoparticles in the base fluid and the inclusion of the thermal radiation, heat
generation and transverse magnetic field in the system. An increase in the nanoparticle volume
fraction, heat generation, thermal radiation, and magnetic field parameter enhances the nanofluid
velocity and temperature while reducing the heat transfer rate. The results also indicate that the
Ag–water nanofluid has higher skin friction and surface temperature than the Cu–water nanofluid,
while the opposite behaviour is observed in the case of the rate of heat transfer. The computed
numerical results are compared with previously published results and found to be in good agreement.

Keywords: multi-domain overlapping technique; bivariate spectral quasilinearisation method;
conjugate heat transfer; MHD free convection; radiation; heat generation; nanofluid; vertical and
horizontal flat plates

1. Introduction

Conjugate heat transfer (CHT) is the interaction between the conduction and the buoyancy
forced flow of fluid along a solid surface. In numerous applications, the effect of conduction within
the solid wall is significant and thus must be taken into account. Such applications include heat
exchangers, heaters, nuclear reactors, and pipe insulation systems. In these applications, the analysis
of CHT mechanisms, the coupling of the conduction in the solid body and the convection in the
fluid surrounding is important [1]. CHT problems, in which the coupled heat transfer processes
between conduction and convection mechanisms are considered simultaneously, have been studied
by several researchers in the case of Newtonian fluids. For example, Miyamoto et al. [2] reviewed
the early theoretical and experimental work of conjugate free convection including the methods and

Math. Comput. Appl. 2019, 24, 75; doi:10.3390/mca24030075 www.mdpi.com/journal/mca
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the principal results in the previously obtained solutions of conjugate problems. Miyamoto et al. [2]
considered CHT problems of free convection from a vertical plate with a uniform temperature or a
uniform heat flux on the outside surface of the plate. Sparrow and Chyu [3] studied CHT problems
for a vertical fin with forced convection. Merkin and Pop [4] analyzed CHT over a vertical flat plate
using an efficient finite-difference scheme. Pop et al. [5] presented a detailed numerical study of the
conjugate mixed convection flow along a vertical flat plate. Luna et al. [6] investigated CHT across a
thin horizontal wall separating two fluids at different temperatures numerically and asymptotically.
Vasquez and Bula [7] studied the CHT process in cooling a horizontal plate in a steady state condition.
Hajmohammadi and Nourazar [8] investigated conjugate forced convection heat transfer from a good
conducting horizontal plate with temperature-dependent thermal conductivity. The horizontal plate
was heated with uniform heat flux at the lower surface and cooled at the upper surface under laminar
forced convection flow. Findings showed that, for a good conducting plate with a finite thickness,
the distribution of the conjugate heat flux at the upper surface is significantly affected by the plate
thickness. Yu and Lin [9] analyzed conjugate free convection over a vertical and horizontal plate
using Keller’s finite-difference method. They proposed the new conjugate parameters and novel
dimensionless coordinates to solve the conjugate free convection problem on vertical and horizontal
plates. Hsiao [10] analysed the conjugate problems of conduction in solid and free convection in fluid
flow using a novel improved formula. The flow equations were solved numerically using the finite
difference, Runge–Kutta and Shooting method.

Many studies have been performed on magnetic field and heat generation effects on
magnetohydrodynamic (MHD)-conjugate heat transfer. Azim and Chowdhury [11] investigated
MHD-conjugate free convection from an isothermal horizontal circular cylinder with Joule heating
and heat generation in the presence of a magnetic field. Azim et al. [12] studied the problem of
steady CHT through an electrically-conducting fluid for a vertical flat plate with a transverse uniform
magnetic field. Kaya [13] investigated mixed convection heat transfer about a thin vertical plate with
magneto and CHT effects in a porous medium. Kaya [14] studied the effect of CHT on MHD mixed
convection about a vertical slender hollow cylinder. Mamun et al. [15] studied the effects of conduction
and viscous dissipation on natural convection flow of an incompressible, viscous and electrically
conducting fluid with a transverse magnetic field. Mamun et al. [16] investigated the magnetic field,
viscous dissipation and heat generation effects on natural convection flow of incompressible, viscous
and electrically conducting fluid along a vertical flat plate with conduction. Hosain and Azim [17]
studied the effects of viscous dissipation and heat generation on MHD conjugate free convection flow
from an isothermal horizontal circular cylinder when the magnetic field was applied.

In the studies mentioned above, the fluid was assumed to be regular. However, traditional fluids
such as water, oil and ethylene glycol might not have enough thermal conductivity to provide the
desired efficiency. A good way to overcome this limitation is to add some solid nanoparticles with high
thermal conductivity to the fluid. The resulting fluid is a suspension of the solid nanoparticles in the
base fluid, which is called nanofluid. The thermal conductivities of nanofluids are believed to be greater
than those of the base fluid due to the high thermal conductivity of the nanoparticles. Numerous
investigations have been done on the effect of nanoparticles on thermal performance. For example,
Choi et al. [18] experimentally studied the effective thermal conductivity of a nano-solid-liquid
mixture. Their results revealed that the dispersion of a small amount (<1% by volume) of carbon
nanotubes in a liquid increases its thermal conductivity remarkably (nearly 200%). Nanofluids have
many applications in heat transfer such as microelectronics, fuel cells, Pharmaceutical processes,
Hybrid-powered engines, engine cooling vehicles, domestic refrigerator, heat exchanger, nuclear
reactor coolant, space technology, and boiler flue gas temperature reduction. Nanoparticles can exist
in a variety of types such as metals, metal oxides, carbides, and carbon. The most common types of
nanofluids available commercially include Aluminium oxide (Al2O3), Titanium oxide (TiO2), Copper
(Cu), and Silver (Ag)–water nanofluid [19].
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The study of CHT in nanofluids has attracted the interest of many researchers. Jafarian et al. [20]
studied CHT in MHD mixed convective flows of nanofluid about a vertical slender hollow Cylinder
embedded in a porous medium. Nimmagadda and Venkatasubbaiah [21] analyzed CHT in a
micro-channel using novel hybrid nanofluids (Al2O3 + Ag/Water). Patrulescu and Grosan [22] studied
CHT in a vertical channel filled with a nanofluid adjacent to a heat generating solid domain. Zahan
and Alim [23] investigated the problem of developing laminar CHT of copper water nanofluid in a
rectangular enclosure. Malvandi et al. [24] studied fluid flow and heat transfer of nanofluids over a flat
plate with conjugate heat transfer by including the fluid effects of thermal resistance of the plate in the
formulation. Zahan et al. [25] also studied the problem of MHD conjugate natural convection flow in a
rectangular frame filled with a copper water nanofluid. Alsabery et al. [26] investigated the conjugate
natural convection of Al2O3-water nanofluid in a square cavity using Buongiorno’s two-phase model.
Amongst their findings, they reported that, when the heat conduction is dominated, the heat transfer
is increased with the increment of the nanoparticles volume fraction.

High temperatures are required to perform many engineering processes. Nuclear power plants,
gas turbines, missiles, satellites, different types of equipment for aircraft, to name a few, can be included
in such processes. Accordingly, radiation heat transfer knowledge is very important to design relevant
devices. Furthermore, radiation has a significant effect on MHD flow and heat transfer characteristics
from an industrial point of view. Industrial applications of thermal radiation include polymer
technology, food production, engineering and spinning of fibers and advanced energy conversion in
heat transfer at high temperatures. The effect of thermal radiation on MHD convection flow has been
investigated by many researchers in the case of regular fluids and nanofluids. Takhar et al. [27] studied
the effect of radiation on natural convection flow and heat transfer for a semi-infinite vertical plate
with the transverse magnetic field. Emad [28] investigated free convection heat transfer characteristics
of an electrically conducting fluid along an isothermal sheet with a transverse magnetic field. In this
analysis, the simultaneous effects of buoyancy and radiation with internal heat generation or absorption
were considered over the linearly stretched sheet taking into account a uniform free stream of
constant velocity and temperature. El-Naby et al. [29] investigated natural convection unsteady
flow over a semi-finite vertical plate with variable temperature, radiation, and transverse magnetic
field. Ali et al. [30] investigated thermal radiation effects on the time-independent hydromagnetic
forced convective flow of an electrically conducting and heat generating-absorbing fluid over a
non-isothermal wedge. Mbeledogu et al. [31] obtained the perturbation solutions of the problem
formed by the simultaneous action of buoyancy and transverse magnetic field on free convection flow
of compressible Boussinesq fluid past a moving vertical plate. The viscosity and thermal conductivity
of the fluid were a function of temperature and the radiative flux was confirmed using the Rosseland
approximation. Ali et al. [32] analyzed the effect of thermal radiation and heat generation on viscous
Joule heating MHD-conjugate heat transfer along a vertical flat plate. Their results showed that thermal
radiation, viscous Joule heating and internal heat generation in the presence of conduction effects
have a significant effect on MHD natural convection flow and thermal fields. In the case of nanofluids,
Elazem et al. [33] considered the effect of radiation on the steady MHD flow and heat transfer of
Cu–water and Ag–water nanofluids flow over a stretching sheet. Raju et al. [34] investigated the
influence of the magnetic field, radiation, and non-uniform heat source/sink on Cu–Ethyline glycol
and Ag–Ethyline glycol nanofluids flow over a moving vertical plate in a porous medium. The results
from these studies reveal that, as thermal radiation increases, the rate of energy transported to the
fluid increases, consequently an increase in temperature occurs.

The thermal radiation effect on the MHD-conjugate flow of nanofluids over flat plates with
internal heat generation can be important in many industrial and theoretical applications. However,
the literature review shows that no significant study investigated the combined effects of thermal
radiation and heat generation on MHD-conjugate heat transfer flow on natural convection in a
nanofluid filled enclosure. The objective of this study is to extend the work of Yu and Lin [9] by
analyzing the conjugate heat transfer in MHD free convective flow of Cu–water and Ag–water
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nanofluids along the vertical and horizontal plates with internal heat generation and thermal radiation.
This study is theoretical and can have practical significance in designing and operation of plate heat
exchangers. It is worth mentioning that the problem considered has applications in industries such
as flat fins and cooling of electronic boards due to the inclusion of nanoparticles. The flow is subject
to a uniform magnetic field imposed along the direction of the flow. We further demonstrate the
application of efficient overlapping multi-domain bivariate spectral quasilinearisation method in
solving a nonlinear system of partial differential equations (PDEs) modeling CHT problems. This
method is more accurate than the non-overlapping multi-domain bivariate spectral quasilinearisation
method (MD-BSQLM) [35]. The non-overlapping MD-BSQLM applies the multi-domain technique only
in the time interval. However, the method considered in the present work applies the multi-domain
technique in both space and time intervals. In addition to that, the method uses the overlapping
multi-domain technique in the space interval. The overlapping grid strategy can improve the accuracy
of spectral collocation based methods. The accuracy improvement is achieved through making the
coefficient matrix in the matrix equation (resulting from the collocation process) less dense. This means
that the coefficient matrix will be sparse. The sparsity of matrices caused by overlapping sub-domains
can help to minimize the storage of large matrices and make it easy to perform matrix-vector
multiplications. This is because there will be a lot of multiplication by zero which reduces the
computational time and enables the matrices to be stored efficiently. Since the method combines the
bivariate spectral quasilinearisation method [36], non-overlapping and overlapping multi-domain
technique, for reference purposes, we shall refer to the method as the overlapping multi-domain
bivariate spectral quasilinearisation method (OMD-BSQLM). The use of spectral collocation-based
methods such as the OMD-BSQLM for solving systems of PDEs can be a most promising tool in the
study of conjugate heat transfer problems. From the literature review, several studies [2,9] concluded
that it is very difficult to obtain analytical solutions of conjugate heat transfer problems due to the
matching conditions at the solid–fluid interface. These studies proposed the use of numerical methods
such as finite difference schemes as the most promising procedures for performing this matching.
However, the finite difference methods have a lot of limitations when compared to spectral methods.
Spectral methods are highly accurate and more efficient than traditional methods such as the finite
difference methods [37]. When applied to problems with smooth solutions, they use few grid points
and require minimal computational time to generate accurate solutions, thus they are better than
traditional methods. The spectral method algorithm is easy to implement in scientific computing
software. To establish the accuracy of the OMD-BSQLM, certain limiting solutions of the flow equations
are studied.

2. Mathematical Formulation

Let us consider the viscous, steady, incompressible, electrically conducting and free convection
flow of nanofluid over a vertical flat plate and a horizontal flat plate of finite length l and thickness
b. The thickness of the plates is assumed to be smaller than the length. The base fluid is water and
nanoparticles (Cu and Ag) are in thermal equilibrium with no slip between them. The thermophysical
properties of the base fluid and different nanoparticles are shown in Table 1. It is assumed that the
left side of the vertical plate and the lower side of the horizontal plate are maintained at the constant
temperature Tb, such that Tb > T∞, where T∞ is the temperature of the ambient nanofluid. Heat is
transferred by conduction from the outside surface of the solid plates coupled with the free convection
in the nanofluid, while the axial heat conduction in the plates is neglected. A uniform magnetic
field B(x) is imposed along the direction of flow. The applied transverse magnetic field can be
chosen in its special form as B(x) = B0α1/2

f x−1, where B0 is the steady strength of the magnetic field
towards the y-axis. It is assumed that the induced magnetic field and the external electric field are
negligible. Thermal radiation and internal heat generation terms are included in the energy equation.
The geometry and coordinate system for the vertical and horizontal flat plates are shown in Figure 1.
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With the above assumptions, equations of the conservation of mass, momentum, and energy are given
by

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

= − 1
ρn f

∂p
∂x

+ νn f
∂2u
∂y2 + gβn f (T − T∞) sin ϕ−

σn f B2(x)
ρn f

u, (2)

0 = − 1
ρn f

∂p
∂y

+ gβn f (T − T∞) cos ϕ, (3)

u
∂T
∂x

+ v
∂T
∂y

=
kn f

(ρCp)n f

∂2T
∂y2 +

Q0

(ρCp)n f
(T − T∞)− 1

(ρCp)n f

∂qr

∂y
, (4)

where u and v are the velocity components in the x- and y- directions, p is the pressure, g is the
acceleration due to gravity, T is the fluid temperature near the plate, qr is the radiative heat flux, Q0

is the rate of heat generation, σn f is the electrical conductivity, νn f is the kinematic viscosity, µn f is
the dynamic viscosity, ρn f is the effective density, αn f is the thermal diffusivity, kn f is the effective
thermal conductivity, βn f is the thermal expansion coefficient and (ρCp)n f is the heat capacity of
the nanofluid. The term Q0(T − T∞) represents the amount of heat generated or absorbed per unit
volume, where Q0 is a constant which may be either positive for a heat sink or negative for a heat
source. The radiative heat flux qr with Rosseland approximation has the form qr = − 4σ∗

3k∗
∂T4

∂y , where
σ∗ is the Stefan–Boltzmann constant and k∗ is the mean absorption coefficient. The temperature
differences within the flow are assumed to be sufficiently small such that T4 may be expressed as a
linear function of temperature. Expanding T4 using Taylor series and neglecting higher order terms
yields T4 ∼= 4T3

∞T − 3T4
∞. The nanofluid constants are defined as [38–40]

νn f =
µn f

ρn f
, µn f =

µ f

(1− φ)2.5 ,
kn f

k f
=

[
(ks + 2k f )− 2φ(k f − ks)

(ks + 2k f ) + φ(k f − ks)

]
,

σn f

σf
=


1 +

3
(

σs
σf
− 1
)

φ
(

σs
σf

+ 2
)
−
(

σs
σf
− 1
)

φ


 ,

ρn f = (1− φ)ρ f + φρs, (ρCp)n f = (1− φ)(ρCp) f + φ(ρCp)s, βn f = (1− φ)β f + φβs, αn f =
kn f

(ρCp)n f
, (5)

where φ is the solid volume fraction of nanoparticles, β is the thermal expansion, subscripts f ,s and

n f denote fluid, solid and nanofluid, respectively. For the vertical plate, the angle ϕ is π/2 and
∂p/∂x, and ∂p/∂y are both equal to zero. For the horizontal plate, the angle ϕ to the horizontal is
equal to zero. In formulating Equations (1)–(4), viscous dissipation and compression work have been
neglected. Moreover, the physical properties of the fluid are assumed to be constant except for the
density variation that induces a buoyancy force. The boundary conditions for Equations (1)–(4) are

u = 0, v = 0, at y = 0, (6)

u → 0, p → 0, T → T∞ as y→ ∞. (7)

Table 1. Thermophysical properties of the base fluid and the nanoparticles [38].

Base Fluid Nanoparticles

Physical Properties Water Copper (Cu) Silver (Ag)

Cp (J/kgK) 4179 385 235
ρ (Kg/m3) 997.1 8933 10,500
k (W/mK) 0.613 401 429
σ (Sm−1) 0.05 5.96× 107 6.3× 107

β× 105 (K−1) 21 1.67 1.89
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Figure 1. Physical model and coordinate system. (a) vertical plate; (b) horizontal plate.

2.1. Dimensionless Equations for the Vertical Plate

Yu and Lin [9] developed the following non-dimensional variables:

ψ(x, y) = α f λ f (ξ, η), η(x, y) = (y/x)λ, ξ(x) =
[
1 + σRat /(σRah )

4/5
]−1

, θ(ξ, η) =
T − T∞

Tb − T∞
ξ−1, (8)

where Rat = gβ(Tb − T∞)x3/α f ν is the Rayleigh number, Rah = gβ(qhx/kr)x3/α f ν is the Reyleigh

number for a plate with constant wall flux qh = ks(Tb − T∞)/b, λ =
[
(σRat)

−1 + (σRah)
−4/5

]−1/4
,

σ = Pr/(1 + Pr), ψ(x, y) is the stream function defined by u = ∂ψ/∂y and v = −∂ψ/∂x, η(x, y) and
ξ(x) are the dimensionless coordinates, f (ξ, η) is the dimensionless stream function and θ(ξ, η) is
the dimensionless temperature. By using Equation (8), Equations (1)–(4) along with the boundary
conditions (6) and (7) are reduced to the following two-point boundary value problem:

Pr f ′′′ + φ1

[
16− ξ

20
f f ′′ − 6− ξ

10
f ′2 −M2φ2 f ′ + φ3(1 + Pr)θ

]
=

φ1
5

ξ(1− ξ)

[
f ′

∂ f ′

∂ξ
− f ′′

∂ f
∂ξ

]
, (9)

(
1 +

k f

kn f
Rd

)
θ′′ + φ4

[
16− ξ

20
f θ′ − 1− ξ

5
f ′θ
]
+

k f

kn f
Qξθ =

φ4
5

ξ(1− ξ)

[
f ′

∂θ

∂ξ
− θ′

∂ f
∂ξ

]
, (10)

where M2 =
σf B2

0
ρ f λ2 is the magnetic field parameter, Pr =

ν f
α f

is the Prandtl number, Rd = 16σ∗T3
∞

3k∗k f
is

the radiation parameter and Q = Q0x2

k f λ2 is the heat generation parameter. The nanoparticle volume

fractions φ1, φ2, φ3 and φ4 depend on the thermal properties of the nanofluid and are defined as

φ1 = [1− φ]2.5

(
1− φ + φ

ρs

ρ f

)
, φ2 =

(
1 +

3(σs/σf − 1)φ
(σs/σf + 2)− (σs/σf − 1)φ

)
1(

(1− φ) + φ(
ρs
ρ f
)
) ,

φ3 = (1− φ) + φ(βs/β f ), φ4 =

[
ks + 2k f + φ(k f − ks)

ks + 2k f − 2φ(k f − ks)

](
(1− φ) + φ

(ρCp)s

(ρCp) f

)
. (11)

The corresponding boundary conditions in dimensionless form are

f (ξ, 0) = 0, f ′(ξ, 0) = 0, ξθ(ξ, 0)− (1− ξ)5/4θ′(ξ, 0) = 1,

f ′(ξ, ∞) = 0, θ(ξ, ∞) = 0. (12)
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2.2. Dimensionless Equations for the Horizontal Plate

Using the following non-dimensional variables in [9], namely

ψ(x, y) = α f λ f (ξ, η), η(x, y) = (y/x)λ, ξ(x) =
[
1 + σRat/(σRah)

5/6
]−1.5

, (13)

θ(ξ, η) =
T − T∞

Tb − T∞
ξ−1, ω(ξ, η) = σpx2/ρα f νλ4, (14)

where λ =
[
(σRat)−1 + (σRah)

−5/6
]−1.5

and ω(ξ, η) is the dimensionless pressure. Equations (1)–(4)
along with their boundary conditions (6) and (7) for the horizontal plate are reduced to

Pr f ′′′ + φ1

[
10− ξ

15
f f ′′ − 5− 2ξ

15
f ′2 − φ2 M2 f ′

]
+

(1− φ)2.5

15
(1 + Pr)[(5 + ξ)ηω′ − (10− 4ξ)ω]

=
φ1
3

ξ(1− ξ)

[
f ′

∂ f ′

∂ξ
− f ′′

∂ f
∂ξ

+ (1 + Pr)
∂ω

∂ξ

]
, (15)

ω′ = θ, (16)(
1 +

k f

kn f
Rd

)
θ′′ + φ4

[
10− ξ

15
f θ′ − 1− ξ

3
f ′θ
]
+

k f

kn f
Qξθ =

φ4
3

ξ(1− ξ)

[
f ′

∂θ

∂ξ
− θ′

∂ f
∂ξ

]
. (17)

The corresponding boundary conditions in dimensionless form are

f (ξ, 0) = 0, f ′(ξ, 0) = 0, ξθ(ξ, 0)− (1− ξ)6/5θ′(ξ, 0) = 1, (18)

f ′(ξ, ∞) = 0, θ(ξ, ∞) = 0, ω(ξ, ∞) = 0. (19)

3. Solution Procedure

In this section, we describe the application of the OMD-BSQLM to find numerical solutions
of the transformed nonlinear PDEs. The method uses the overlapping multi-domain technique,
Chebyshev–Gauss–Lobatto grid points [41,42], and the quasilinearisation method [43], together with
spectral collocation on approximate functions defined as bivariate Lagrange interpolation polynomials.
The multi-domain approach divides the time interval into non-overlapping sub-intervals and the
space interval into overlapping sub-intervals. The quasilinearisation technique helps to linearise the
nonlinear PDEs. The spectral collocation method is applied independently both in space and time
variables in the linearized equations. In order to apply the OMD-BSQLM, the time interval ξ ∈ [0, ξF]

is decomposed into q non-overlapping sub-intervals defined as

Jυ = (ξυ−1, ξυ), υ = 1, 2, 3, . . . , q, with 0 = ξ0 < ξ1 < ξ2 < · · · < ξq−1 < ξq = ξF, (20)

For the semi-finite space domain [0, ∞), a truncated grid [0, η∞] is used. We choose a finite value
of η∞ that is large enough such that the flow properties at η∞ resemble those at ∞. The truncated space
interval [0, η∞] is decomposed into p overlapping sub-intervals of length L, denoted by

Iµ = [η
µ
0 , η

µ
Nη
], µ = 1, 2, 3, . . . , p, (21)

where each Iµ interval is further discretized into Nη + 1 collocation points. Without loss of generality,
we will consider that each subinterval has the same length given by

L =
η∞

p + 1
2 (1− p)(1− cos π

Nη
)

(22)

for the overlap to be possible, and the same number of collocation points (Nη + 1) is used in each
subinterval. In the domain decomposition scheme, we use overlapping subintervals Iµ, where the
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first two points of the interval Iµ+1 coincide with the last two points of the interval Iµ, that is, η1
0 = 0,

η
p
Nη

= η∞, η
µ
Nη−1 = η

µ+1
0 and η

µ
Nη

= η
µ+1
1 . The non-overlapping and overlapping multi-domain grids

are shown in Figures 2 and 3, respectively.

ξ0 ξ1 ξ2 ξ3 ξυ−1 ξυ ξq−1 ξq

J1 J2 J3 Jυ Jq

ξυ−1 ξυ

ξ
(υ)
0 ξ

(υ)
1 ξ

(υ)
2 ξ

(υ)
e−1 ξ

(υ)
e

Figure 2. Non-overlapping grid (ξ-domain).

I1
I2 Ip−1 Ip

η1
0

0

η2
0

η1
Nη−1

η1
Nη

η2
1

η3
0

η2
Nη−1

η2
Nη

η3
1

η
p−1
0

η
p−2
Nη−1

η
p−2
Nη

η
p−1
1

η
p
0

η
p−1
Nη−1

η
p−1
Nη

η
p
1

η
p
Nη

η∞

Figure 3. Overlapping grid (η-domain).

3.1. Numerical Solution for the Vertical Plate

Applying the quasilinearisation method in each sub-interval to Equations (9) and (10) gives the
following system of linear PDEs:

α
(1,µ,υ)
1,3,r

∂3 f (µ,υ)
r+1

∂η3 + α
(1,µ,υ)
1,2,r

∂2 f (µ,υ)
r+1

∂η2 + α
(1,µ,υ)
1,1,r

∂ f (µ,υ)
r+1
∂η

+ α
(1,µ,υ)
1,0,r f (µ,υ)

r+1 + α
(1,µ,υ)
2,0,r θ

(µ,υ)
r+1

+γ
(1,µ,υ)
1,r

∂

∂ξ


∂ f (µ,υ)

r+1
∂η


+ β

(1,µ,υ)
1,r

∂ f (µ,υ)
r+1
∂ξ

= R(µ,υ)
1,r , (23)

α
(2,µ,υ)
2,2,r

∂2θ
(µ,υ)
r+1

∂η2 + α
(2,µ,υ)
2,1,r

∂θ
(µ,υ)
r+1
∂η

+ α
(2,µ,υ)
2,0,r θ

(µ,υ)
r+1 + α

(2,µ,υ)
1,1,r

∂ f (µ,υ)
r+1
∂η

+ α
(2,µ,υ)
1,0,r f (µ,υ)

r+1

+β
(2,µ,υ)
2,r

∂θ
(µ,υ)
r+1
∂ξ

+ β
(2,µ,υ)
1,r

∂ f (µ,υ)
r+1
∂ξ

= R(µ,υ)
2,r , (24)
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where the variable coefficients are given by

α
(1,µ,υ)
1,3,r = Pr, α

(1,µ,υ)
1,2,r =

φ1(16− ξ)

20
f (µ,υ)
r +

φ1ξ(1− ξ)

5
∂ f (µ,υ)

r
∂ξ

, α
(1,µ,υ)
1,0,r =

φ1(16− ξ)

20
∂2 f (µ,υ)

r
∂η2 ,

α
(1,µ,υ)
1,1,r = −φ1(6− ξ)

5
∂ f (µ,υ)

r
∂η

−Mφ1φ2 −
φ1ξ(1− ξ)

5
∂

∂ξ

(
∂ f (µ,υ)

r
∂η

)
, α

(1,µ,υ)
2,0,r = φ1φ3(1 + Pr),

α
(2,µ,υ)
2,2,r = 1 +

(
1 +

k f

kn f
Rd

)
, α

(2,µ,υ)
2,0,r =

kk
kn f

Qξ − φ4(1− ξ)

5
∂ f (µ,υ)

r
∂η

, α
(2,µ,υ)
2,1,r =

φ4(16− ξ)

20
f (µ,υ)
r

+
φ4ξ(1− ξ)

5
∂ f (µ,υ)

r
∂ξ

, α
(2,µ,υ)
1,1,r = −φ4(1− ξ)

5
θ
(µ,υ)
r − φ4ξ(1− ξ)

5
∂θ

(µ,υ)
r
∂ξ

, α
(2,µ,υ)
1,0,r =

φ4(16− ξ)

20
∂θ

(µ,υ)
r
∂η

,

γ
(1,µ,υ)
1,r = −φ1ξ(1− ξ)

5
∂ f (µ,υ)

r
∂η

, β
(1,µ,υ)
1,r =

φ1ξ(1− ξ)

5
∂2 f (µ,υ)

r
∂η2 , β

(2,µ,υ)
2,r = −φ4ξ(1− ξ)

5
∂ f (µ,υ)

r
∂η

,

β
(2,µ,υ)
1,r =

φ4ξ(1− ξ)

5
∂θ

(µ,υ)
r
∂η

, R(µ,υ)
1,r =

φ1(16− ξ)

20
f (µ,υ)
r

∂2 f (µ,υ)
r

∂η2 − φ1(6− ξ)

10

(
∂ f (µ,υ)

r
∂η

)2

−φ1ξ(1− ξ)

5
∂ f (µ,υ)

r
∂η

∂

∂ξ

(
∂ f (µ,υ)

r
∂η

)
+

φ1ξ(1− ξ)

5
∂2 f (µ,υ)

r
∂η2

∂ f (µ,υ)
r
∂ξ

, R(µ,υ)
2,r =

φ4(16− ξ)

20
f (µ,υ)
r

∂θ
(µ,υ)
r
∂η

−φ4(1− ξ)

5
θ
(µ,υ)
r

∂ f (µ,υ)
r
∂η

− φ4ξ(1− ξ)

5
∂ f (µ,υ)

r
∂η

∂θ
(µ,υ)
r
∂ξ

+
φ4ξ(1− ξ)

5
∂θ

(µ,υ)
r
∂η

∂ f (µ,υ)
r
∂ξ

,

subject to boundary conditions

f (µ,υ)
r+1 (ξ, 0) = 0,

∂ f (µ,υ)
r+1
∂η

(ξ, 0) = 0, ξθ
(µ,υ)
r+1 (ξ, 0)− (1− ξ)5/4 ∂θ

(µ,υ)
r+1
∂η

(ξ, 0) = 1,

∂ f (µ,υ)
r+1
∂η

(ξ, ∞) = 0, θ
(µ,υ)
r+1 (ξ, ∞) = 0. (25)

The constants r and r + 1 denote previous and current iterations, respectively. The system of
linear PDEs (23) and (24) is discretized using the spectral collocation method in both η and ξ directions.
Before applying the spectral method on the sub-intervals, the time interval ξ ∈ [ξυ−1, ξυ] is transformed
to τ ∈ [−1, 1] using the linear transformation

ξυ
j =

1
2
(ξυ − ξυ−1)τj +

1
2
(ξυ + ξυ−1), τj = cos

(
π j
Nξ

)
, (26)

and the space region η ∈ [η
µ
0 , η

µ
Nη
] is transformed to z ∈ [−1, 1] using the linear transformation

η
µ
i =

L
2
(zi + 1), zi = cos

(
πi
Nη

)
. (27)

We assume that, at each sub-interval, the required solution, say f (η, ξ), can be approximated by a
bivariate Lagrange interpolation polynomial of the form

f (µ,υ)(η, ξ) ≈
Nη

∑
i=0

Nξ

∑
j=0

f (µ,υ)(zi, τj)Li(z)Lj(τ), (28)

for µ = 1, 2, 3, . . . , p and υ = 1, 2, 3, . . . , q. The bivariate interpolation polynomial interpolates
f (µ,υ)(z, τ) at selected points (zi, τj) in both z and τ directions, for i = 0, 1, 2, . . . , Nη and
j = 0, 1, 2, . . . , Nξ . The function Li(z) and Lj(τ) are the well known characteristic Lagrange cardinal
polynomial based on the Chebyshev–Gauss–Lobatto points. The required solution for θ(η, ξ) can be
approximated in a similar manner. The solution procedure requires that the derivatives of Li(z) and
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Lj(τ) with respect to z and τ, respectively be evaluated at the Chebyshev–Gauss–Lobatto grid points.
The derivatives of f (µ,υ)(η, ξ) with respect to η and ξ at the Chebyshev–Gauss–Lobatto points (zk, τi),
are computed as

∂ f (µ,υ)

∂η

∣∣∣∣∣
(zk ,τi)

=
Nη

∑
ω

Nξ

∑
j=0

f (µ,υ)(zω, τj)
dLω(zk)

dz
Lj(τi) (29)

=
Nη

∑
ω=0

D(µ)
k,ω f (µ,υ)(zω, τi) =

[
D(µ)

]
F(µ,υ)

i , (30)

∂ f (µ,υ)

∂ξ

∣∣∣∣∣
(zk ,τi)

=
Nη

∑
ω

Nξ

∑
j=0

f (µ,υ)(zω, τj)Lω(zk)
dLj(τi)

dτ

=
Nξ

∑
j=0

di,j f (µ,υ)(zk, τj) =
Nξ

∑
j=0

di,jF
(µ,υ)
j , (31)

where di,j =
dLj(τi)

dτ is the ith and jth entry of the standard first derivative Chebyshev–Gauss–Lobatto
based differentiation matrix d = [di,j], for i, j = 0, 1, 2, 3, . . . , Nξ , of size (Nξ + 1) × (Nξ + 1),

D(µ)
k,ω = 2

η
µ
Nη
−η

µ
0

Dk,ω with Dk,ω = dLω(zk)
dz being the kth and ωth entries of the standard first

derivative Chebyshev–Gauss–Lobatto differentiation matrix of size (M + 1) × (M + 1), where
M = Nη + (Nη − 1)(p− 1) is the total number of collocation points over a single domain [−1, 1].
In general, to find an sth order derivative with respect to η, we have

∂s f (µ,υ)

∂ηs

∣∣∣∣∣
(zk ,τi)

=
Nη

∑
ω=0

[
D(µ)

k,ω

]s
f (µ,υ)(zω, τi) =

[
D(µ)

]s
F(µ,υ)

i . (32)

The vector F(µ,υ)
i is defined as

F(µ,υ)
i =

[
f (µ,υ)(z(µ)0 , τ

(υ)
i ), f (µ,υ)(z(µ)1 , τ

(υ)
i ), f (µ,υ)(z(µ)2 , τ

(υ)
i ), . . . , f (µ,υ)(z(µ)Nη

, τ
(υ)
i )

]T
, (33)

where T denotes the matrix transpose. The derivatives d and
[
D(µ)

]s
are scaled by multiplying by

the factors Λ = 2
ξυ−ξυ−1

and Ωs =

(
2

η
µ
Nη
−η

µ
0

)s
=
( 2

L
)s

, respectively. The space and time derivatives

of θ at each sub-interval can be transformed to discrete matrix form in a similar manner. Applying
the spectral collocation method by evaluating Equations (23) and (24) at the collocation points and
making use of the derivative matrices as well as incorporating the initial condition which corresponds
to ξNξ

= −1 gives

A(µ,υ)
1,1 F(µ,υ)

i,r+1 + A(µ,υ)
1,2 Θ

(µ,υ)
i,r+1 + γ

(1,µ,υ)
1,r

Nξ−1

∑
j=0

di,jD(µ)F(µ,υ)
j + β

(1,µ,υ)
1,r

Nξ−1

∑
j=0

di,jF
(µ,υ)
j = K(µ,υ)

1,i , (34)

A(µ,υ)
2,1 F(µ,υ)

i,r+1 + A(µ,υ)
2,2 Θ

(µ,υ)
i,r+1 + β

(2,µ,υ)
1,r

Nξ−1

∑
j=0

di,jF
(µ,υ)
j + β

(2,µ,υ)
2,r

Nξ−1

∑
j=0

di,jΘ
(µ,υ)
j = K(µ,υ)

2,i , (35)

where

K(µ,υ)
1,i = R(µ,υ)

1,i − γ
(1,µ,υ)
1,r di,Nζ

D(µ)F(µ,υ)
Nξ
− β

(1,µ,υ)
1,r di,Nξ

F(µ,υ)
Nξ

,

K(µ,υ)
2,i = R(µ,υ)

2,i − β
(2,µ,υ)
1,r di,Nζ

F(µ,υ)
Nξ
− β

(2,µ,υ)
2,r di,Nξ

Θ
(µ,υ)
Nξ
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For i = 0, 1, 2, . . . Nξ , Equations (34) and (35) form an Nξ(M + 1)× Nξ(M + 1) matrix system




A(1,1,p,υ)
0,0 · · · A(1,1,p,υ)

0,Nξ
A(1,2,p,υ)

0,0 · · · A(1,2,p,υ)
0,Nξ

A(1,1,p,υ)
1,0 · · · A(1,1,p,υ)

1,Nξ
A(1,2,p,υ)

1,0 · · · A(1,2,p,υ)
1,Nξ

. . .
. . .

. . .
. . .

. . .
. . .

A(1,1,p,υ)
Nξ−1,0 · · · A(1,1,p,υ)

Nξ−1,Nξ
A(1,2,p,υ)

Nξ−1,0 · · · A(1,2,p,υ)
Nξ−1,Nξ

A(1,1,p−1,υ)
1,0 · · · A(1,1,p−1,υ)

1,Nξ
A(1,2,p−1,υ)

1,0 · · · A(1,2,p−1,υ)
1,Nξ

A(1,1,p−1,υ)
2,0 · · · A(1,1,p−1,υ)

2,Nξ
A(1,2,p−1,υ)

2,0 · · · A(1,2,p−1,υ)
2,Nξ

. . .
. . .

. . .
. . .

. . .
. . .

A(1,1,p−1,υ)
Nξ−1,0 · · · A(1,1,p−1,υ)

Nξ−1,Nξ
A(1,2,p−1,υ)

Nξ−1,0 · · · A(1,2,p−1,υ)
Nξ−1,Nξ

. . .
. . .

A(1,1,1,υ)
1,0 · · · A(1,1,1,υ)

1,Nξ
A(1,2,1,υ)

1,0 · · · A((1,2,1,υ)
1,Nξ

A(1,1,1,υ)
2,0 · · · A(1,1,1,υ)

2,Nξ
A((1,2,1,υ)

2,0 · · · A(1,2,1,υ)
2,Nξ

. . .
. . .

. . .
. . .

. . .
. . .

A(1,1,1,υ)
Nξ ,0 · · · A(1,1,1,υ)

Nξ ,Nξ
A(1,2,1,υ)

Nξ ,0 · · · A(1,2,1,υ)
Nξ ,Nξ

A(2,1,p,υ)
0,0 · · · A(2,1,p,υ)

0,Nξ
A(2,2,p,υ)

0,0 · · · A(2,2,p,υ)
0,Nξ

A(2,1,p,υ)
1,0 · · · A(2,1,p,υ)

1,Nξ
A(2,2,p,υ)

1,0 · · · A(2,2,p,υ)
1,Nξ

. . .
. . .

. . .
. . .

. . .
. . .

A(2,1,p,υ)
Nξ−1,0 · · · A(2,1,p,υ)

Nξ−1,Nξ
A(2,2,p,υ)

Nξ−1,0 · · · A(2,2,p,υ)
Nξ−1,Nξ

A(2,1,p−1,υ)
1,0 · · · A(2,1,p−1,υ)

1,Nξ
A(2,2,p−1,υ)

1,0 · · · A(2,2,p−1,υ)
1,Nξ

A(2,1,p−1,υ)
2,0 · · · A(2,1,p−1,υ)

2,Nξ
A(2,2,p−1,υ)

2,0 · · · A(2,2,p−1,υ)
2,Nξ

. . .
. . .

. . .
. . .

. . .
. . .

A(2,1,p−1,υ)
Nξ−1,0 · · · A(2,1,p−1,υ)

Nξ−1,Nξ
A(2,2,p−1,υ)

Nξ−1,0 · · · A(2,2,p−1,υ)
Nξ−1,Nξ

. . .
. . .

A(2,1,1,υ)
1,0 · · · A(2,1,1,υ)

1,Nξ
A(2,2,1,υ)

1,0 · · · A((2,2,1,υ)
1,Nξ

A(2,1,1,υ)
2,0 · · · A(2,1,1,υ)

2,Nξ
A((2,2,1,υ)

2,0 · · · A(2,2,1,υ)
2,Nξ

. . .
. . .

. . .
. . .

. . .
. . .

A(2,1,1,υ)
Nξ ,0 · · · A(2,1,1,υ)

Nξ ,Nξ
A(2,2,1,υ)

Nξ ,0 · · · A(2,2,1,υ)
Nξ ,Nξ







F(p,υ)
0,r+1

F(p,υ)
1,r+1

...

F(p,υ)
Nξ−1,r+1

F(p−1,υ)
1,r+1

F(p−1,υ)
2,r+1

...

F(p−1,υ)
Nξ−1,r+1

. . .

F(1,υ)
1,r+1

F(1,υ)
2,r+1

...

F(1,υ)
Nξ ,r+1

Θ
(p,υ)
0,r+1

Θ
(p,υ)
1,r+1
...

Θ
(p,υ)
Nξ−1,r+1

Θ
(p−1,υ)
1,r+1

Θ
(p−1,υ)
2,r+1

...

Θ
(p−1,υ)
Nξ−1,r+1

. . .

Θ
(1,υ)
1,r+1

Θ
(1,υ)
2,r+1
...

Θ
(1,υ)
Nξ ,r+1




=




K(p,υ)
1,0

K(p,υ)
1,1
...

K(p,υ)
1,Nξ−1

K(p−1,υ)
1,1

K(p−1,υ)
1,2

...

K(p−1,υ)
1,Nξ−1

. . .

K(1,υ)
1,1

K(1,υ)
1,2
...

K(1,υ)
1,Nξ

K(p,υ)
2,0

K(p,υ)
2,1
...

K(p,υ)
2,Nξ−1

K(p−1,υ)
2,1

K(p−1,υ)
2,2

...

K(p−1,υ)
2,Nξ−1

. . .

K(1,υ)
2,1

K(1,υ)
2,2
...

K(1,υ)
2,Nξ




, (36)
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where

A(1,1,p,υ)
i,i = α

(1,µ,υ)
1,3,r

[
D(µ)

]3
+ α

(1,µ,υ)
1,2,r

[
D(µ)

]2
+ α

(1,µ,υ)
1,1,r D(µ) + α

(1,µ,υ)
1,0,r + βββ

(1,µ,υ)
1,r di,iI +γγγ

(1,µ,υ)
1,r di,iD

(µ),

A(1,2,p,υ)
i,i = α

(1,µ,υ)
2,0,r I, A(2,1,p,υ)

i,i = α
(2,µ,υ)
1,1,r D(µ) + α

(2,µ,υ)
1,0,r + βββ

(2,µ,υ)
1,r di,iI, (37)

A(2,2,p,υ)
i,i = α

(2,µ,υ)
2,2,r

[
D(µ)

]2
+ α

(2,µ,υ)
2,1,r D(µ) + α

(2,µ,υ)
2,0,r + βββ

(2,µ,υ)
2,r di,iI, when i = j

and

A(1,1,p,υ)
i,j = βββ

(1,µ,υ)
1,r di,jI +γγγ

(1,µ,υ)
1,r di,jD

(µ), A(1,2,p,υ)
i,j = 0, A(2,1,p,υ)

i,j = βββ
(2,µ,υ)
1,r di,jI,

A(2,2,p,υ)
i,j = βββ

(2,µ,υ)
2,r di,jI, when i 6= j. (38)

The vectors F(µ,υ)
i,r+1, and Θ

(µ,υ)
i,r+1 denote the values of f and θ approximated at the collocation

points, and I is the standard (M + 1)× (M + 1) identity matrix. Starting from suitable initial guesses,
the numerical solution for f (η, ξ) and θ(η, ξ) are obtained by solving matrix Equation (36) iteratively
for r = 1, 2, . . . , σ, where σ is the number of iterations to be used.

3.2. Numerical Solution for the Horizontal Plate

Applying a quasilinearisation method in each subinterval to the system of nonlinear PDEs
(15)–(17) gives the following system of linear PDEs:

α
(1,µ,υ)
1,3,r

∂3 f (µ,υ)
r+1

∂η3 + α
(1,µ,υ)
1,2,r

∂2 f (µ,υ)
r+1

∂η2 + α
(1,µ,υ)
1,1,r

∂ f (µ,υ)
r+1
∂η

+ α
(1,µ,υ)
1,0,r f (µ,υ)

r+1 + α
(1,µ,υ)
2,1,r

∂ω
(µ,υ)
r+1

∂η
,

+α
(1,µ,υ)
2,0,r ω

(µ,υ)
r+1 + γ

(1,µ,υ)
1,1,r

∂

∂ξ


 ∂ f (µ,υ)

r+1
∂η


+ β

(1,µ,υ)
1,1,r

∂ f (µ,υ)
r+1
∂ξ

+ β
(1,µ,υ)
2,1,r

∂ω
(µ,υ)
r+1
∂ξ

= R(µ,υ)
1,r , (39)

α
(2,µ,υ)
2,1,r

∂ω
(µ,υ)
r+1

∂η
+ α

(2,µ,υ)
3,0,r θ

(µ,υ)
r+1 = 0, (40)

α
(3,µ,υ)
3,2,r

∂2θ
(µ,υ)
r+1

∂η2 + α
(3,µ,υ)
3,1,r

∂θ
(µ,υ)
r+1
∂η

+ α
(3,µ,υ)
3,0,r θ

(µ,υ)
r+1 + α

(3,µ,υ)
1,1,r

∂ f (µ,υ)
r+1
∂η

+ α
(3,µ,υ)
1,0,r f (µ,υ)

r+1

+β
(3,µ,υ)
3,1,r

∂θ
(µ,υ)
r+1
∂ξ

+ β
(3,µ,υ)
1,1,r

∂ f (µ,υ)
r+1
∂ξ

= R(µ,υ)
3,r , (41)
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where the variable coefficients are given by

α
(1,µ,υ)
1,3,r = Pr, α

(1,µ,υ)
1,2,r =

φ1(10− ξ)

15
f (µ,υ)
r +

φ1ξ(1− ξ)

3
∂ f (µ,υ)

r
∂ξ

, α
(1,µ,υ)
1,0,r =

φ1(10− ξ)

15
∂2 f (µ,υ)

r
∂η2 ,

α
(1,µ,υ)
1,1,r = −φ1(10− 4ξ)

15
∂ f (µ,υ)

r
∂η

−M2φ1φ2 −
φ1ξ(1− ξ)

3
∂

∂ξ

(
∂ f (µ,υ)

r
∂η

)
,

α
(1,µ,υ)
2,1,r = − (1− φ)2.5

15
(1 + Pr)(10− 4ξ),

(1− φ)2.5

15
(1 + Pr)(5 + ξ)η, α

(2,µ,υ)
2,1,r = 1, α

(2,µ,υ)
3,0,r = −1,

α
(3,µ,υ)
3,2,r = 1 +

(
1 +

k f

kn f
Rd

)
, α

(3,µ,υ)
3,1,r =

φ4(10− ξ)

15
f (µ,υ)
r +

φ4ξ(1− ξ)

3
∂ f (µ,υ)

r
∂ξ

, α
(3,µ,υ)
3,0,r =

k f

kn f
Qξ

−φ4(1− ξ)

3
∂ f (µ,υ)

r
∂η

, α
(3,µ,υ)
1,1,r = −φ4(1− ξ)

3
θ
(µ,υ)
r − φ4ξ(1− ξ)

3
∂θ

(µ,υ)
r
∂ξ

, α
(3,µ,υ)
1,0,r =

φ4(10− ξ)

15
∂θ

(µ,υ)
r
∂η

,

γ
(1,µ,υ)
1,1,r = −φ1ξ(1− ξ)

3
∂ f (µ,υ)

r
∂η

, β
(1,µ,υ)
1,1,r =

φ1ξ(1− ξ)

3
∂2 f (µ,υ)

r
∂η2 , β

(1,µ,υ)
2,1,r = −φ1ξ(1− ξ)

3
(1 + Pr),

β
(3,µ,υ)
3,1,r = −φ4ξ(1− ξ)

3
∂ f (µ,υ)

r
∂η

, β
(3,µ,υ)
1,1,r =

φ4ξ(1− ξ)

5
∂θ

(µ,υ)
r
∂η

, R(µ,υ)
1,r =

φ1(10− ξ)

15
f (µ,υ)
r

∂2 f (µ,υ)
r

∂η2

−φ1(5− 2ξ)

15

(
∂ f (µ,υ)

r
∂η

)2

− φ1ξ(1− ξ)

3
∂ f (µ,υ)

r
∂η

∂

∂ξ

(
∂ f (µ,υ)

r
∂η

)
+

φ1ξ(1− ξ)

3
∂2 f (µ,υ)

r
∂η2

∂ f (µ,υ)
r
∂ξ

,

R(µ,υ)
2,r = 0, R(µ,υ)

3,r =
φ4(10− ξ)

15
f (µ,υ)
r

∂θ
(µ,υ)
r
∂η

− φ4(1− ξ)

3
θ
(µ,υ)
r

∂ f (µ,υ)
r
∂η

−φ4ξ(1− ξ)

5
∂ f (µ,υ)

r
∂η

∂θ
(µ,υ)
r
∂ξ

+
φ4ξ(1− ξ)

5
∂θ

(µ,υ)
r
∂η

∂ f (µ,υ)
r
∂ξ

,

subject to boundary conditions

f (µ,υ)
r+1 (ξ, 0) = 0,

∂ f (µ,υ)
r+1
∂η

(ξ, 0) = 0, ξθ
(µ,υ)
r+1 (ξ, 0)− (1− ξ)6/5 ∂θ

(µ,υ)
r+1
∂η

(ξ, 0) = 1,

∂ f (µ,υ)
r+1
∂η

(ξ, ∞) = 0, ω
(µ,υ)
r+1 (ξ, ∞) = 0 θ

(µ,υ)
r+1 (ξ, ∞) = 0. (42)

We apply the Chebyshev spectral collocation method that uses bivariate Lagrange interpolation
polynomials as basic functions as in the vertical plate. Thus, evaluating Equations (39) and (41) at
the collocation points and making use of the derivative matrices as well as incorporating the initial
conditions which corresponds to ξNξ

, we obtain

A(µ,υ)
1,1 F(µ,υ)

i,r+1 + A(µ,υ)
1,2 Ω

(µ,υ)
i,r+1 + A(µ,υ)

1,3 Θ
(µ,υ)
i,r+1 + γ

(1,1,µ,υ)
1,r

Nξ

∑
j=0

di,jD
(µ)F(µ,υ)

j + β
(1,µ,υ)
1,1,r

Nξ

∑
j=0

di,jF
(µ,υ)
j ,

+β
(1,µ,υ)
2,1,r

Nξ

∑
j=0

di,jΩ
(µ,υ)
j = R(µ,υ)

1,i , (43)

A(µ,υ)
2,1 F(µ,υ)

i,r+1 + A(µ,υ)
2,2 Ω

(µ,υ)
i,r+1 + A(µ,υ)

2,3 Θ
(µ,υ)
i,r+1 = R(µ,υ)

2,i , (44)

A(µ,υ)
3,1 F(µ,υ)

i.r+1 + A(µ,υ)
3,2 Ω

(µ,υ)
i,r+1 + A(µ,υ)

3,3 Θ
(µ,υ)
i,r+1 + β

(3,µ,υ)
1,1,r

Nξ

∑
j=0

di,jF
(µ,υ)
j + β

(3,µ,υ)
3,1,r

Nξ

∑
j=0

di,jΘ
(µ,υ)
j = R(µ,υ)

3,i . (45)

The vectors F(µ,υ)
i,r+1, Ω

(µ,υ)
i,r+1 and Θ

(µ,υ)
i,r+1 denote the values of f , ω and θ approximated at the

collocation points. Imposing boundary conditions for i = 0, 1, 2, 3, . . . , Nξ − 1, Equations (43)–(45) can
be expressed as a matrix system of size Nξ(M + 1)× Nξ(M + 1) as in the previous subsection.
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4. Results and Discussion

The transformed nonlinear PDEs for the vertical and horizontal plates were solved numerically
using the OMD-BSQLM for Cu–water and Ag–water nanofluids. Numerical computations are carried
out using Pr = 0.7 [9], M = 0.5 and Q = 0.01 [12,16]. However, the parametric values of the radiation
parameter and nanoparticle volume fraction were chosen as Rd = 0.6 and φ = 0.3. All of these values
are treated the same in the entire study except the varied values in respective figures. The space domain
η was truncated to η∞ = 15. The numerical results were generated using Nξ = 5, Nη = 20 collocation
points. The number of sub-intervals in both space and time are taken as p = q = 5. In order to obtain a
clear understanding of the physics of the problem, a parametric study was undertaken to determine
the impact of the different physical parameters on the fluid properties and flow characteristics.

To determine the accuracy of our numerical results, the local skin friction coefficient and the
surface temperature are compared with the non-overlapping MD-BSQLM and published results by Yi
and Lin [9] in Table 2. The table gives a comparison of the OMD-BSQLM results when ξ = M = φ = 0
for different values of the Prandtl number Pr. It is observed that, for increasing values of the Prandtl
number, the results are in good agreement with values in the literature and those obtained using
the non-overlapping MD-BSQLM. Hence, the use of the present method is justified. It is also noted
that the OMD-BSQLM can give accurate results with a minimal number of grid points compared to
the non-overlapping MD-BSQLM. Table 3 presents results for the local skin friction f ′′(ξ, 0), surface
temperature θ(ξ, 0) and heat transfer rate −θ′(ξ, 0) for varying values of the dimensionless streamwise
coordinate ξ and different nanofluids. The table shows clearly that the skin friction, interfacial
temperature, and heat transfer rate decrease with increasing values of ξ. This is due to the increase of
the momentum boundary layer thickness and thermal boundary layer thickness.

Table 2. Comparison of the OMD-BSQLM results with MD-BSQLM, Yi and Lin [9] for f ′′(0, 0) and
θ(0, 0) at different values of Pr when ξ = M = φ = 0.

Yi and Lin [9] MD-BSQLM OMD-BSQLM

η∞ Pr f ′′(0, 0) θ(0, 0) f ′′(0, 0) θ(0, 0) Nη f ′′(0, 0) θ(0, 0) Nη

Vertical plate
12 0.001 54.745 1.3345 54.7463521 1.3344356 100 54.7463521 1.3344356 20
12 0.01 16.929 1.3759 16.9295516 1.3758562 100 16.9295516 1.3758562 20
12 0.1 5.2502 1.4824 1.2502342 1.4823999 100 1.2502342 1.4823999 20
15 0.7 2.3123 1.6132 2.3123480 1.6129166 100 2.3123480 1.6129166 20
15 7 1.5748 1.6520 1.5743519 1.6518940 100 1.5743519 1.6518940 20

Horizontal plate
12 0.001 47.166 1.2258 47.2048673 1.2257703 100 47.2048673 1.2257703 20
12 0.01 14.549 1.2720 14.5501264 1.2720149 100 14.5501264 1.2720149 20
12 0.1 4.5424 1.3944 4.5423369 1.3943724 100 4.5423369 1.3943724 20
15 0.7 2.0205 1.5583 2.0757356 1.5530446 100 2.0757356 1.5530446 20
15 7 1.3622 1.6410 1.3618515 1.6413464 100 1.3618515 1.6413464 20
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Table 3. OMD-BSQLM results for the skin friction coefficient, heat transfer rate and surface temperature
at different values of ξ when Pr = 0.7, φ = 0.3, M = 0.5, Q = 0.01 and Rd = 0.6.

Vertical Plate

Cu-Water Nanofluid Ag-Water Nanofluid

ξ f ′′(ξ, 0) −θ′(ξ, 0) θ(ξ, 0) f ′′(ξ, 0) −θ′(ξ, 0) θ(ξ, 0)

0.1 3.1502197 0.8886284 2.2102538 3.4901209 0.8859706 2.2335515
0.2 2.9783142 0.7836947 2.0353093 3.2954705 0.7791175 2.0526246
0.3 2.8055275 0.6874567 1.8661087 3.1006493 0.6816661 1.8784674
0.4 2.6354158 0.6013814 1.7060758 2.9096575 0.5949833 1.7145224
0.5 2.4711001 0.5260086 1.5576812 2.7259292 0.5194660 1.5631829
0.6 2.3149074 0.4610286 1.4222383 2.5519493 0.4546541 1.4256179
0.7 2.1681887 0.4055214 1.2999488 2.3890815 0.3994990 1.3018590
0.8 2.0312907 0.3582374 1.1901080 2.2375714 0.3526578 1.1910409
0.9 1.9034739 0.3177938 1.0912546 2.0964877 0.3126913 1.0915734
1 1.7808520 0.2824192 1.0000000 1.9615149 0.2778150 1.0000000

Horizontal plate

0.1 2.0929952 0.8768285 2.2730937 2.1709163 0.8703743 2.3299696
0.2 1.9147577 0.7603163 2.0914784 1.9651128 0.7490266 2.1346661
0.3 1.7431456 0.6537272 1.9129913 1.7696198 0.6393135 1.9443078
0.4 1.5857671 0.5595096 1.7422446 1.5936813 0.5435780 1.7638210
0.5 1.4492674 0.4788634 1.5831252 1.4450572 0.4627300 1.5971702
0.6 1.3381426 0.4116324 1.4381961 1.3286458 0.3962184 1.4467514
0.7 1.2542162 0.3565745 1.3084563 1.2459879 0.3424128 1.3132268
0.8 1.1970874 0.3118610 1.1934924 1.1960098 0.2991830 1.1957896
0.9 1.1656347 0.2755951 1.0917901 1.1770321 0.2644615 1.0925707
1 1.1674280 0.2464322 1.0000000 1.2005270 0.2370678 1.0000000

Figures 4–7 depict the effects of nanoparticle volume fraction, thermal radiation, heat generation
and magnetic field parameter on the velocity profiles for both Ag and Cu nanofluids. It is observed
from the figures that Ag–water nanofluid shows better enhancement in the velocity profiles than
Cu–water nanofluid. This is because the viscosity of the Ag–water nanofluid is higher compared to
that of Cu–water nanofluid. The effect of using different types of nanofluids is more significant in the
vertical plate than on the horizontal plate. Figure 4 shows the influence of the magnetic parameter
on the dimensionless velocity. It is noted that the velocity is higher near the wall and lower far from
the wall for hydrodynamic flows (M = 0). The opposite trend is observed for the hydromagnetic
flows (M 6= 0). Moreover, increasing the magnetic parameter reduces the velocity distribution near
the wall. The magnetic parameter is known to represent the Lorentz force that opposes the flow.
The peak velocity decreases with the increasing values of the magnetic parameter due to the retarding
effect in the boundary layer region. As a result, the separation of the boundary layer occurs earlier
since the momentum boundary layer becomes thick. These findings concur with results reported by
Mamun et al. [12] and Azim et al. [16] in regular fluids.

Figure 5 shows the effect of nanoparticle volume fraction on the velocity profiles. It is seen that the
flow velocity increases around the vertical and horizontal plates with an increase in the nanoparticle
volume fraction. For both the vertical and horizontal plates, it is clear that the flow velocity is
significantly low for the conventional fluid (φ = 0) than for nanofluids (φ 6= 0). As expected, for the
conventional fluid, there is no change in velocity profiles for both plates. However, as the volume
fraction of nanoparticles increases, the velocity distribution also increases. This is due to an increase in
the momentum boundary layer thickness which is attributed to adding nanoparticles to the base fluid.
The nanoparticles enhance the velocity profiles due to the higher thermal conductivity of nanofluids.
For the horizontal plate, we also observe that, near the wall, the momentum boundary layer thickness
decreases as the volume fraction of silver particles increases and away from the wall, the boundary
layer thickness increases. Figure 6 is presented to show the effect of the heat generation parameter on
the dimensionless velocity. It is observed that more heat is generated within the boundary as the heat
generation parameter increases and, consequently, the fluid velocity increases as well. The increase in
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velocity is consistent with the physical consequence as the internal energy generation resulted from the
heat generation increases the buoyancy forces, which in turn enhance more flow along both the vertical
and horizontal plates. The effect of the thermal radiation parameter on the velocity distribution is
shown in Figure 7 for both Ag–water and Cu–water nanofluids. We observe that the velocity increases
within the boundary layer thickness as the thermal radiation parameter increases. Radiation accelerates
the fluid motion, thus enhancing the velocity of nanofluids.
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Figure 4. Velocity profiles for various values M. (a) vertical plate; (b) horizontal plate.
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Figure 5. Velocity profiles for various values φ. (a) vertical plate; (b) horizontal plate.
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Figure 6. Velocity profiles for various values Q. (a) vertical plate; (b) horizontal plate.
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Figure 7. Velocity profiles for various values Rd. (a) vertical plate; (b) horizontal plate.

Figures 8–11 show the influence of thermal radiation, nanoparticle volume fraction, heat
generation and magnetic field parameter on the temperature profiles for both nanofluids.
The temperature distribution in the case of Ag–water nanofluid is relatively higher than in the case
of Cu–water nanofluid. This is because the thermal conductivity of silver nanoparticles is higher
than that of Copper nanoparticles. The effect of using different types of nanofluids is more clear on
the horizontal plate than for the vertical plate. Figure 8 depicts the influence of the magnetic field
parameter on the temperature profiles. The figure shows that the magnetic field enhances the thickness
of the thermal boundary layer, thus increasing the temperature profiles. The effect of nanoparticle
volume fraction on the temperature profiles is shown in Figure 9. For the vertical and horizontal plates,
the thermal boundary layer thickness is enhanced when the nanoparticle volume fraction increases.
Physically, increasing the nanoparticle volume fraction causes an increase in the thermal conductivity
of the nanofluid, which in turn enhances the boundary layer thickness and an augmentation in the
temperature profiles. Similar results were reported by Shahzad et al. [44]. It is worth mentioning that
the temperature is significantly higher in the case of nanofluids than in the regular fluid (φ = 0). This
is due to the presence of high conductive silver and copper nanoparticles.

Figure 10 illustrates the effect of the heat generation parameter on the temperature profiles. It
is seen that the thermal boundary layer is enhanced when the heat generation parameter increases.
The energy resulted from internal heat generation increases the temperature of the fluid within the
boundary and increases the motion of the fluid. The influence of thermal radiation on the temperature
profiles is shown in Figure 11. The figure depicts that an increase in the thermal radiation parameter
improves the temperature profiles. As the temperature increases with increasing radiation parameter,

the thickness of the thermal boundary layer is enhanced. The larger values of the amount of
k∗kn f

4σ∗T3
∞

in
the radiation parameter indicate dominance in the thermal radiation over conduction. Thus, there is a
large amount of radiative heat energy being poured into the system. The fluid within the boundary
layer absorbs imitated heat from the heated plate because of the radiation effect. The radiated heat
ultimately increases the temperature of the fluid. The greater values of thermal radiation parameter
generate higher temperature and, consequently, the fluid motion is accelerated. Similar results were
obtained by Ali et al. [32] in the case of regular fluid.
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Figure 8. Temperature profiles for various values of M. (a) vertical plate; (b) horizontal plate.
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Figure 9. Temperature profiles for various values φ. (a) vertical plate; (b) horizontal plate.
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Figure 10. Temperature profiles for various values of Q. (a) vertical plate; (b) horizontal plate.
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Figure 11. Temperature profiles for various values Rd. (a) vertical plate; (b) horizontal plate.

Figures 12–15 present the variation of the local skin friction at different values of the thermal
radiation, heat generation, nanoparticle volume fraction and magnetic parameter for the Ag–water
and Cu–water nanofluids. The skin friction coefficient is higher in the Ag–water nanofluid compared
to the Cu–water nanofluid. Hence, the Ag–water nanofluid gives a high drag force in opposition to
the flow compared to the Cu–water nanofluid. For the vertical plate, the skin friction is higher for
the Ag–water nanofluid throughout the surface. However, for the horizontal plate, the skin friction
is higher for a Ag–water nanofluid close to the wall and higher for a Cu–water nanofluid far from
the wall. The effect of the magnetic parameter on the skin friction coefficient is shown in Figure 12.
The figure shows that, when the magnetic parameter increases, the skin friction coefficient decreases.
The magnetic force that opposes the flow decreases the shear stress at the wall, thus reducing the skin
friction coefficient.

The behaviour of the skin friction coefficient against the streamwise coordinate ξ for different
values of the nanoparticle volume fraction is plotted in Figure 13. The figure shows that an increase
in the nanoparticle volume fraction causes a decrease in the skin friction at the plates. In Figure 14,
the impact of the heat generation parameter on the local skin friction is exhibited. The figure reflects
that the skin friction factor increases with increasing heat generation parameter. As mentioned earlier,
increasing the heat generation parameter accelerates the flow and generates greater buoyancy force
and thus increases the skin friction coefficient. The influence of the thermal radiation parameter on the
skin friction coefficient is shown in Figure 15. The increase in the fluid motion due to thermal radiation
enhances the shear stress at the wall which in turn causes an increase in the skin friction coefficient.
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Figure 12. Skin friction coefficient for various values of M. (a) vertical plate; (b) horizontal plate.
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Figure 13. Skin friction coefficient for various values of φ. (a) vertical plate; (b) horizontal plate.
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Figure 14. Skin friction for various values of Q. (a) vertical plate; (b) horizontal plate.
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Figure 15. Skin friction coefficient for various values of Rd. (a) vertical plate; (b) horizontal plate.

Figures 16–19 show the effects of the thermal radiation, heat generation, nanoparticle volume
fraction and magnetic field parameter on the rate of heat transfer for both Ag and Cu nanofluids.
The rate of heat transfer is observed to be higher in the Cu–water nanofluid than in the Ag–water
nanofluid for both vertical and horizontal plates. An increase in the magnetic parameter reduces the
rate of heat transfer as seen in Figure 16. The increasing magnetic field parameter enhances the thermal
boundary layer thickness and consequently the heat transfer rate decreases due to an increase in the
magnetic field strength. In addition, the rate of heat transfer depends on the gradient of temperature
and, as the temperature gradient decreases with increasing values of the magnetic parameter, the heat
transfer rate also decreases.

Figure 17 depicts the impact of the nanoparticle volume fraction on the skin friction for the
different nanofluids. Increasing the nanoparticle volume fraction enhances the thermal conductivity of
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the nanofluids, which reduces the thermal boundary layer thickness and the temperature gradient
at the wall as observed from the figure. The influence of the heat generation on the heat transfer
rate is depicted in Figure 18. The figure shows that the heat transfer rate decreases with increasing
heat generation parameter. Since higher values of the heat generation parameter create a hot layer of
fluid near the surface which results in the temperature of the fluid to exceed the surface temperature,
accordingly, the rate of heat transfer from the surface decreases. Figure 19 depicts that increasing
values of the thermal radiation parameter enhances the fluid interfacial temperature, which in turn
makes the flow of the heat rate slower.
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Figure 16. Heat transfer rate for various values of M. (a) vertical plate; (b) horizontal plate.
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Figure 17. Heat transfer rate for various values of φ. (a) vertical plate; (b) horizontal plate.
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Figure 18. Heat transfer rate for various values of Q. (a) vertical plate; (b) horizontal plate.
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Figure 19. Heat transfer rate for various values of Rd. (a) vertical plate; (b) horizontal plate.

Figures 20–23 display the influence of the thermal radiation, heat generation, nanoparticle volume
fraction and magnetic field parameter on the surface temperature for the Ag–water and Cu–water
nanofluids. The surface temperature is noted to be higher in the Ag–water nanofluid than in the
Cu–water nanofluid for both the vertical and horizontal plates. In Figure 20, we observe that, when the
magnetic field is applied in the system, the surface temperature is enhanced for both the vertical and
horizontal plates. As the magnetic field increases, the surface temperature is enhanced. The interaction
between the magnetic field and the fluid motion increases the temperature of the fluid within the
boundary layer which in turn increases the thermal boundary layer thickness as well as the surface
temperature. Figure 21 shows that adding nanoparticles to the fluid enhances the surface temperature
since the surface temperature increases with increasing nanoparticle volume fraction. The surface
temperature increases with increasing values of the heat generation parameter as observed in Figure 22.
This is because the temperature within the boundary layer increases for increasing heat generation
parameter and thus enhances the surface temperature. Figure 23 shows that increasing the thermal
radiation parameter also enhances the surface temperature.
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Figure 20. Surface temperature for various values of M. (a) vertical plate; (b) horizontal plate.
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Figure 21. Surface temperature for various values of φ. (a) vertical plate; (b) horizontal plate.
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Figure 22. Surface temperature for various values of Q. (a) vertical plate; (b) horizontal plate.
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Figure 23. Surface temperature for various values of Rd. (a) vertical plate; (b) horizontal plate.

5. Conclusions

The multi-domain bivariate spectral quasilinearisation method was used to analyze conjugate heat
transfer in MHD free convection flow of copper water and silver water nanofluids over vertical and
horizontal plates. The comparison with previously published results was performed and the results
were in good agreement. The effects of nanofluids, heat generation, thermal radiation, nanoparticle
volume fraction and magnetic field parameter on the fluid properties and flow characteristics were
discussed appropriately with numerical computations. The results obtained in the present study can
have practical importance in various problems such as ablation or perspiration cooling problems.
The results of the paper are of engineering interest where heat transfer processes are controlled in
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polymer processing and nuclear reactor cooling systems. and designing and operation of plate heat
exchangers. From the obtained results and discussion, the following conclusions can be drawn:

• The Ag–water nanofluid has higher velocity and temperature profiles, skin friction coefficient,
and surface temperature than the Cu–water nanofluid. However, the reverse is true for the rate
of heat transfer.

• Heat generation, thermal radiation, nanoparticle volume fraction and magnetic field parameter
enhance the velocity of the nanofluid far from the wall. However, an increase in the magnetic
field parameter significantly decreases the velocity of the nanofluid near the wall.

• Increasing the heat generation, thermal radiation, nanoparticle volume fraction and magnetic field
parameter improves the temperature distribution and the surface temperature while reducing
the rate of heat transfer.

• The overlapping multi-domain bivariate spectral quasilinearisation method holds great potential
for solving highly nonlinear conjugate heat transfer problems since the method gives accurate
results using a minimal number of grid points.
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Abbreviations

The following abbreviations are used in this manuscript:
B(x) External uniform magnetic field
B0 Magnetic strength
p Pressure
Ra Rayleigh number
g Gravitational acceleration
k Thermal conductivity (W/m K)
Cp Specific heat capacity
T Fluid temperature (K or ◦C )
qh Heat flux
f Dimensionless stream function
(u, v) Velocity component in Cartesian coordinate
Tb Constant temperature
T∞ Ambient temperature
Q0 Rate of heat generation
qr Radiative heat flux
M Magnetic field parameter
Pr Prandtl number
Rd Radiation parameter
Q Heat generation parameter
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Greek Symbols
η Scaled boundary layer coordinate
ξ Streamwise coordinate
σ Electrical conductivity (S m−1)
α Thermal diffusivity m2s−1

µ Dynamic viscosity kg m−1s−1

θ Dimensionless temperature
φ Nanoparticle volume fraction parameter
ψ Stream function m2s−1

ρ Density of the fluid ( Kg/m3)
β Thermal expansion coefficient
ν Kinematic viscosity m2s−1

Subscripts
n f Nanofluid phase
f Fluid phase
s Solid phase
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Chapter 5

MHD mixed convective nanofluid flow about

a vertical slender cylinder using overlapping

multi-domain spectral collocation approach

This chapter extends from the work in Chapter 4 by considering a curved surface instead of a flat

plate. We present the analysis of MHD flow of a nanofluid through a vertical slender cylinder.

The impact of different flow variables on nanofluid velocity, temperature and concentration is pre-

sented. From an engineering point of view, values of local skin friction coefficient, Nusselt and

Sherwood numbers are important, and are presented and analyzed. The dimensionless conserva-

tion equations are solved using the overlapping multi-domain bivariate spectral quasilinearisation

method.
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A B S T R A C T   

This paper investigates the magnetohydrodynamic flow, heat and mass transfer characteristics in 
a silver water nanofluid about a vertical slender cylinder by considering diffusion-thermal, 
thermo-diffusion, chemical reaction and Hall effects. The nonlinear partial differential equa-
tions modelling the flow problem are non-dimensionalized and the overlapping multi-domain 
bivariate spectral quasilinearisation method is used to solve the dimensionless equations. The 
impact of flow parameters on the fluid properties and physical quantities of interest are deter-
mined. Amongst other findings, we found that increment in the nanoparticle volume fraction, 
Hall current and curvature parameter augments the skin friction coefficient and diminishes the 
heat transfer rate, while the introduction of chemical reaction, silver nanoparticles, Hall current 
and Soret effect into the system enhances the mass transfer rate. Also, the fluid properties am-
plifies in the curved surface than in the flat plate.   

1. Introduction 

Base fluids, for instance, water, mineral oils and ethylene glycol have low thermal conductivity and these fluids find applications in 
heat transfer processes in industries. When used as cooling tools, they maximize manufacturing and operating costs. To enhance 
thermal conductivity of base fluids, several researchers have suspended micro/nano particles in liquids. However, there is no single 
fluid model found to be efficient in enhancing thermal conductivity. For that reason, different fluid models have been suggested as 
alternatives to enrich thermal conductivity of fluids in the recent past years. Amongst these fluids, we have the nanofluid which was 
introduced by Choi [1]. The inclusion of small amount (less than 1% by volume) of nanoparticles in the conventional heat transfer 
liquids can boost the thermal conductivity of the fluids about two times [1]. Therefore, nanofluid can be regarded as a special sort of 
multi-component fluid containing nanometer-sized particles (diameter less than 100 nm) or fibers suspended in an ordinary fluid. 
Nanoparticles are available in forms of metals including Copper (Cu), Gold (Au) and Silver (Ag), metal oxides such as Aluminium oxide 
(Al2O3), Magnetite (Fe3O4) and Titanium oxide (TiO2), non-metals involving graphite and carbon nanotubes, and Carbides. Nanofluids 
are more stable, have acceptable viscosity, better wetting, spreading and dispersion properties [2]. Many researchers [3–5] have 
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studied thermal properties of nanofluids by taking into account two definite approaches reported by Das et al. [6] and Buongiorno [7]. 
The study of hydromagnetic flow, heat and mass transfer over stretched surfaces with applied transverse magnetic field has 

received much attention from researchers due to their industrial applications involving metallurgical processes (drawing, annealing 
and tinning of copper wires). Making use of an electrically-conducting fluid with applied magnetic field help to control the cooling rate 
in these processes, thus affecting the properties of the end product. Several researchers extended the study of hydromagnetic flow, heat 
and mass transfer over stretching surfaces with uniform magnetic field to the case of nanofluids. Taseer et al. [8] investigated the 

Nomenclature 

u;v Velocity components in x� and r� directions 
x; r Axial coordinate and radius of the cylinder 
L Length of the cylinder 
g Gravitational acceleration 
T;C Temperature and concentration of the fluid 
u∞ Free stream velocity 
T∞;C∞ Ambient temperature and concentration 
Tw;Cw Wall temperature and concentration 
KT Thermal diffusion ratio 
Dm Coefficient of diffusion 
Cs Concentration susceptibility 
Tm Mean fluid temperature 
DB Brownian diffusion coefficient 
k1 Chemical reaction rate 
B0 Magnetic field flux density 
f Dimensionless stream function 
Ri Richardson number 
Pr Prandtl number 
Re Reynolds number 
N Buoyancy ratio parameter 
Gr;G�r Thermal and mass Grashof numbers 
Ec Eckert number 
Df Dufour number 
Sr Soret number 
K Chemical reaction parameter 
Sc Schmidt number 
Mn Magnetic field parameter 
Cf Skin friction coefficient 
Nux Local Nusselt number 
Shx Local Sherwood number 

Greek Symbols 
ν;μ Kinematic and dynamic viscosities 
k Thermal conductivity 
ρ Density of the fluid 
σ Electrical conductivity 
Cp Specific heat capacity 
βT;βC Coefficient of thermal and concentration expansions 
βi;βh Ion-slip and Hall current parameters 
ϕ Nanoparticle volume fraction 
λ Curvature parameter 
η Dimensionless coordinate 
θ;φ Dimensionless temperature and concentration 

Subscripts 
w Wall condition 
∞ Ambient 
f Base fluid 
s Solid nanoparticles 
nf Nanofluid  
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magnetohydrodynamic (MHD) flow of Maxwell nanofluid over a stretching surface with uniform applied magnetic field. Hayat et al. 
[9] studied MHD flow, heat and mass transfer of viscous nanofluid along a stretched surface in the presence of non-uniform applied 
magnetic field. Hayat et al. [10] analyzed MHD flow of couple stress nanofluid over a stretching sheet by taking into account the effect 
of constant applied magnetic field. Hayat et al. [11] investigated MHD flow of an Oldroyd-B nanofluid along stretching surface with 
uniform applied magnetic field. 

There has been much interest in studying hydromagnetic flow, heat and mass transfer over a vertical slender cylinder in regular 
fluids. Aydin and Kaya [12] studied MHD mixed convection heat transfer over a vertical slender cylinder with viscous dissipation and 
uniform magnetic field. Kaya [13] considered MHD mixed convection heat transfer about a vertical slender hollow cylinder with 
applied uniform magnetic field. Aydin and Kaya [14] studied MHD mixed convection heat transfer about a heated or cooled vertical 
slender cylinder by taking into account the effects of transverse curvature, viscous dissipation and uniform magnetic field. The study of 
hydromagnetic flow, heat and mass transfer characteristics along a vertical slender cylinder in nanofluids has attracted the interest of 
some researchers in the recent past years. Gholinia et al. [15] investigated MHD mixed convection flow of ethylene glycol-based 
nanofluid containing Ag and Cu nanoparticles over a vertical permeable circular cylinder with magnetic field effect. Jafarian et al. 
[16] analyzed MHD mixed convection flow and conjugate heat transfer of Cu-water nanofluid about a vertical slender hollow cylinder 
in porous media. 

When heat and mass transfer take place concurrently in fluid motion, the connections between the fluxes and the driving potentials 
are very complicated. In addition to temperature gradients, it has been reported that energy flux can also be produced by concentration 
gradients. The Soret effect (thermal-diffusion) can be noticed in mixtures of mobile particles where the different particles show distinct 
responses to the cause of a temperature gradient. Regularly, the name Soret effect relates to aerosol mixtures, but sometimes refer to 
the phenomenon in all phases of matter. The Soret effect, for example, has been used for isotope separation in mixtures between gases 
with very light molecular weight (H2, He). For medium molecular weight (N2, air), the diffusion-thermo effect (Dufour number) was 
observed to be of significant magnitude and for that reason it cannot be neglected [17]. El-Kabeir and Chamkha [18] investigated 
mixed convection flow, heat and mass transfer over a vertical slender cylinder with chemical reaction, Soret and Dufour effects. 
Diffusion rates can be extremely changed by chemical reactions. Chemical reactions can be classified as either heterogeneous or 
homogeneous processes. This rely on whether they occur at an interface or as a single phase volume reaction. In well-mixed systems, 
the reaction is heterogeneous if it occurs at an interface and homogeneous if it occurs in the solution. Muhammad et al. [19] studied 
MHD flow of viscous fluid in the presence of chemical reaction and viscous dissipation. Hayat et al. [20] investigated chemical reaction 
effects in nanofluid flows over a stretching sheet. Sharma and Konwar [21] studied MHD flow, heat and mass transfer over a moving 
cylinder with thermal diffusion and chemical reaction. Chamkha [22] explored hydromagnetic flow, heat and mass transfer over a 
moving cylinder with chemical reaction and uniform magnetic field. 

In view of these facts, the present study focuses on the numerical investigation of hydromagnetic flow, heat and mass transfer of Ag- 
water nanofluid over a vertical slender cylinder with Hall current, chemical reaction and cross-diffusion effects. To the best of the 
author’s knowledge, no attempt has been made so far to analyze this problem. The results obtained in the current study have realistic 
significance in industrial applications involving heating and cooling (electronic devices) processes due to the inclusion of nanoparticles 
with high thermal conductivity. The boundary layer equations are first non-dimensionalized and then solved using the overlapping 
multi-domain bivariate spectral quasilinearisation method (OMD-BSQLM) [23]. This method remains to be generalised and its 
robustness remains to be tested in the case of highly nonlinear partial differential equations (PDEs) with strong coupling. 

2. Mathematical analysis 

We consider the steady, two-dimensional, laminar and MHD mixed convective boundary layer flow of an incompressible viscous 
Ag-water nanofluid along a vertical slender cylinder of length L and outer radius r0ðL ≫ roÞ. It is assumed that the conventional fluid 
and silver nanoparticles are in thermal equilibrium with no slippage occurring between them. Table 1 presents the thermophysical 
properties of the base fluid and silver nanoparticles. The gravitational acceleration, g, acts in the downward direction. The ambient 
nanofluid velocity, temperature and concentration far away from the cylinder are denoted by u∞, T∞ and C∞, respectively. The 
cylinder surface has a uniform temperature Tw (Tw > or < T∞ i.e the cylinder is either heated or cooled) and constant concentration 
CwðCw > C∞Þ: A uniform magnetic field is applied in the r-direction causing a flow resistive force in the x-direction. It is assumed that 
the induced magnetic field, the external or imposed electric field are negligible. The relative movement of the particles in the fluid can 
take place and the electron-atom collision frequency is assumed to be sufficiently high for Hall and ion-slip currents to be important. 
The chemical reaction and cross-diffusion effects have been incorporated in the mathematical flow model. Under the aforementioned 
assumptions and considering the Boussinesq approximation and the boundary layer approximation, the continuity, momentum, 

Table 1 
Thermophysical properties of the base fluid and the nanoparticles [25].  

Physical properties Pure water Silver (Ag) 

Cp  ðJ =kgKÞ 4179 235 

ρ ðKg =m3Þ 997.1 10,500 

k  ðW =mKÞ 0.613 429 

σ ðSm� 1Þ 0.05 6:3� 107   
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energy and concentration equations are [13,14,18]. 

∂ðruÞ
∂x
þ

∂ðrvÞ
∂r
¼ 0; (2.1)  
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where u and v are the velocity constituents in the x and r directions, respectively, T and C are the respective temperature and species 
concentration of the fluid, βT and βC are the respective coefficients of thermal and concentration expansions, g is the acceleration due to 
gravity, B0 is the magnetic flux density, αe ¼ 1þ βhβi; βh is the Hall current parameter, βi is the Ion-slip parameter, KT is the thermal 
diffusion ratio, Dm is the coefficient of diffusivity, Cs is the concentration susceptibility, Tm is the mean fluid temperature, DB is the 
Brownian diffusion coefficient and k1 is the rate of chemical reaction. Furthermore, νnf is the kinematic viscosity, knf is the thermal 
conductivity, μnf is the dynamic viscosity, ρnf is the density, σnf is the electrical conductivity and ðρCpÞnf is the specific heat capacity of 
the nanofluid which are given as [24]. 

μnf ¼
μf

ð1 � ϕÞ2:5
;
knf

kf
¼

��
ks þ 2kf

�
� 2ϕ

�
kf � ks

�

�
ks þ 2kf

�
þ ϕ

�
kf � ks

�

�

; ρnf ¼ð1 � ϕÞρf þ ϕρs;

νnf ¼
μnf

ρnf
;
�
ρCp

�

nf ¼ð1 � ϕÞ
�
ρCp
�

f þϕ
�
ρCp

�

s;
σnf

σf
¼

2

41þ
3
�

σs
σf
� 1
�

ϕ
�

σs
σf
þ 2
�

�

�
σs
σf
� 1
�

ϕ

3

5; (2.5)  

where ϕ is the nanoparticle volume fraction and subscripts nf ; f and s denote the thermo physical properties of the nanofluid, base fluid 
and solid nanoparticles, respectively. 

The boundary value problem (2.1)–(2.4) is subject to the following boundary conditions 

r¼ r0; u ¼ v ¼ 0; T ¼ Tw; C ¼ Cw; (2.6)  

r → ∞; u → u∞; T → T∞; C → C∞; (2.7) 

We introduce the following dimensionless variables to obtain non-dimensional equations 

ξ¼
�

x
r0

�

; η¼
�

r2 � r2
0

2r0

��
u∞

νf x

�1=2

; θ¼
T � T∞

Tw � T∞
; φ¼

C � C∞

Cw � C∞
; (2.8)  

ψðx; rÞ¼ r0
�
νf xu∞

�1=2f ðξ; ηÞ; r
2

r2
0
¼ ½1þ λη�; u¼

�
1
r

�
∂ψ
∂r
; v¼ �

�
1
r

�
∂ψ
∂x
: (2.9) 

In view of equations (2.8)-(2.9), we find that the continuity equation (2.1) is trivially satisfied and the non-dimensional form of the 
momentum, energy and concentration equations are given as 

ϕ1

h
ð1þ ληÞf ’’’þ

λ
2

f ’’
i
þ

1
2

ff ’’� ξRiðθþNφÞ � ϕ2ξMn
αe

α2
e þ β2

h
½f ’ � 1� ¼ ξ

�

f ’
∂f ’
∂ξ
� f ’’

∂f
∂ξ

�

(2.10)  

ϕ3

Pr

h
ð1þ ληÞθ’’ þ

λ
2

θ’
i
þ

1
2

f θ’ þ ϕ4Ecð1þ ληÞf ’’2 þ ϕ5EcMnξ
αe

α2
e þ β2

h
½f ’ � 1�

2

þ
1

ð1 � ϕÞ þ ϕ
�
ρCp
�

s

.�
ρCp

�

f

Df
h
ð1þ ληÞφ’’þ

λ
2

φ’
i
¼ ξ
�

f ’
∂θ
∂ξ
� θ’

∂f
∂ξ

� (2.11)  

1
Sc

h
ð1þ ληÞφ’’þ

λ
2

φ’
i
þ

1
2

f φ’þ Sr
h
ð1þ ληÞθ’’þ

λ
2

θ’
i
� Kφ¼ ξ

�

f ’
∂φ
∂ξ
� φ’

∂f
∂ξ

�

(2.12) 
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with the boundary conditions: 

η¼ 0; f þ ξ
∂f
∂ξ
¼ 0; f ’ ¼ 0 θ ¼ 1 φ ¼ 1 (2.13)  

η → ∞; f ’ ¼ 1; θ ¼ 0; φ ¼ 0; (2.14)  

where 

Ri¼
Gr

Re2;N¼
G�r
Gr
;Gr ¼

gβTðTw � T∞Þr3
0

ν2
f

;G�r ¼
gβCðCw � C∞Þr3

0

ν2
f

;Re¼
u∞r0

νf
;Pr¼

μf
�
Cp
�

f

kf
;

Ec¼
u2

∞

CpðTw � T∞Þ
;Df ¼

DmKTðCw � C∞Þ

CsCpνf ðTw � T∞Þ
; Sr¼

DmKTðTw � T∞Þ

Tmνf ðCw � C∞Þ
;K¼

k1r0

u∞
; Sc¼

νf

DB
;

ϕ1¼
1

ð1 � ϕÞ2:5
�

ð1 � ϕÞ þ φ
�

ρs
ρf

��; ϕ2¼

�

1þ
3
�
σs
�

σf � 1
�
ϕ

�
σs
�

σf þ 2
�
�
�
σs
�

σf � 1
�
ϕ

�
1

�

ð1 � ϕÞ þ ϕ
�

ρs
ρf

��;

ϕ3¼

�
ks þ 2kf

�
� 2ϕ

�
kf � ks

�

��
ks þ 2kf

�
þ ϕ

�
kf � ks

��
 

ð1 � ϕÞ þ ϕ ð
ρCpÞs
ðρCpÞf

!; ϕ4¼
1

ð1 � ϕÞ2:5
"

ð1 � ϕÞ þ ϕ ð
ρCpÞs
ðρCpÞf

#;

ϕ5¼

�

1þ
3
�
σs
�

σf � 1
�
ϕ

�
σs
�

σf þ 2
�
�
�
σs
�

σf � 1
�
ϕ

�
1

 

ð1 � ϕÞ þ φ ð
ρCpÞs
ðρCpÞf

!; Mn¼
σf B2

0r2
0

μf Re
; λ¼ 2

� ξ
Re

�1=2
:

Here, Ri is the mixed convection parameter (Richardson number), N is the buoyancy ratio parameter, Gr and G�r are respective 
thermal and mass Grashof numbers, Ec is the Eckert number, Df is the Dufour number, Sr is the Soret number, Re is the Reynolds 
number, K is the chemical reaction parameter, Mn is the magnetic field parameter, Pr is the Prandtl number, Sc is the Schmidt number, 
ϕεðε¼ 1; 2;3; 4; 5Þ are the nanoparticle volume fractions and λ is the transverse curvature parameter. 

The quantities of engineering interest are the skin friction coefficient Cf , local Nusselt number Nux and Sherwood number Shx 
defined in dimensionless form as 

CfRe1=2
x ¼

1
ð1 � ϕÞ2:5

f ’’ðξ; 0Þ;NuxRe� 1=2
x ¼ �

knf

kf
θ’ðξ; 0Þ; ShxRe� 1=2

x ¼ � φ’ðξ; 0Þ; (2.15)  

where Rex ¼ u∞x=νf 

3. Numerical solution 

In this section we present the application of the OMD-BSQLM in solving the system of nonlinear PDEs (2.10)–(2.12). The basic 
principle of this numerical technique is decomposing the intervals of integration into non-overlapping and overlapping sub-intervals. 
Consequently, the time interval ½0; ξp� and the truncated interval of integration in space ½0; η∞� are respectively split into p non- 
overlapping and s overlapping sub-intervals denoted by 

Jω¼ðξω� 1; ξωÞ; ω¼ 1; 2; 3;…; p; (3.1)  

Iε¼
�
ηε

0; ηε
Nη

�
; ε ¼ 1; 2; 3;…; s: (3.2) 

For the overlap to be possible, the sub-intervals must be of equal length given by 

Lx¼
η∞

sþ 1
2 ð1 � sÞ

�

1 � cos π
Nη

�; (3.3)  

and each sub-interval make use of ðNηþ1Þ collocation points. To derive equation (3.3), we note that the total length of the domain of 
integration is 

η∞¼ 2Lx � ϱþð2Lx � 2ϱÞ
�s

2
� 1
�
¼ 2Lx � ϱþðLx � ϱÞðs � 2Þ¼ ϱð1 � sÞ þ sLx; (3.4)  

where ϱ is the overlapping distance between two sub-intervals. Considering the first interval I1 in which η 2 ½0; η1
Nη
�; we can define the 
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length Lx ¼ η1
Nη
: The linear transformation η ¼ Lx

2 bη þ
η1

Nη
2 can be used to transform the interval ½0; η1

Nη
� to ½ � 1;1�: Thus, using the Gauss- 

Lobatto collocation points bηi ¼ cos
�

πi
Nη

�

[26], where i ¼ 0; 1;2; 3;…;Nη; we obtain 

η0 � η1¼
Lx

2
ðbη0 � bη1Þ¼

Lx

2

�

1 � cos
π

Nη

�

: (3.5) 

Therefore, equation (3.4) becomes 

η∞¼
Lx

2

�

1 � cos
π
Nη

�

ð1 � sÞ þ sLx; (3.6)  

which upon rearranging gives 

Lx¼
η∞

sþ 1
2 ð1 � sÞ

�

1 � cos π
Nη

�: (3.7) 

Applying the quasilinearisation method (QLM) [27] at each sub-interval, we obtain the following linear equations: 

ϑð1;ε;ωÞ1;3;ι
∂3f ðε;ωÞιþ1

∂η3 þ ϑð1;ε;ωÞ1;2;ι
∂2f ðε;ωÞιþ1

∂η2 þ ϑð1;ε;ωÞ1;1;ι
∂f ðε;ωÞιþ1

∂η þ ϑð1;ε;ωÞ1;0;ι f ðε;ωÞιþ1 þ ϑð1;ε;ωÞ2;0;ι θðε;ωÞιþ1

þϑð1;ε;ωÞ3;0;ι φðε;ωÞιþ1 þ ϑð1;ε;ωÞ4;0;ι χðε;ωÞιþ1 þ γð1;ε;ωÞ1;ι
∂
∂ξ

�
∂f ðε;ωÞιþ1

∂η

�

þ βð1;ε;ωÞ1;ι
∂f ðε;ωÞιþ1

∂ξ
¼ Rðε;ωÞ1;ι ;

(3.8)  

ϑð2;ε;ωÞ2;2;ι
∂2θðε;ωÞιþ1

∂η2 þ ϑð2;ε;ωÞ2;1;ι
∂θðε;ωÞιþ1

∂η þ ϑð2;ε;ωÞ3;2;ι
∂2φðε;ωÞιþ1

∂η2 þ ϑð2;ε;ωÞ3;1;ι
∂φðε;ωÞιþ1

∂η þ ϑð2;ε;ωÞ1;2;ι
∂2f ðε;ωÞιþ1

∂η2

þϑð2;ε;ωÞ1;1;ι
∂f ðε;ωÞιþ1

∂η þ ϑð2;ε;ωÞ1;0;ι f ðε;ωÞιþ1 þ βð2;ε;ωÞ2;ι
∂θðε;ωÞιþ1

∂ξ
þ βð2;ε;ωÞ1;ι

∂f ðε;ωÞιþ1

∂ξ
¼ Rðε;ωÞ2;ι ;

(3.9)  

ϑð3;ε;ωÞ3;2;ι
∂2φðε;ωÞιþ1

∂η2 þ ϑð3;ε;ωÞ3;1;ι
∂φðε;ωÞιþ1

∂η þ ϑð3;ε;ωÞ3;0;ι φðε;ωÞιþ1 þ ϑð3;ε;ωÞ2;2;ι
∂2θðε;ωÞιþ1

∂η2 þ ϑð3;ε;ωÞ2;1;ι
∂θðε;ωÞιþ1

∂η

þϑð3;ε;ωÞ1;1;ι
∂f ðε;ωÞιþ1

∂η þ ϑð3;ε;ωÞ1;0;ι f ðε;ωÞιþ1 þ βð3;ε;ωÞ3;ι
∂φðε;ωÞιþ1

∂ξ
þ βð3;ε;ωÞ1;ι

∂f ðε;ωÞιþ1

∂ξ
¼ Rðε;ωÞ3;ι ;

(3.10)  

where ι and ιþ 1 stand for previous and current iterations, respectively. For details on approximating the functions fðη; ξÞ; θðη; ξÞ;
φðη; ξÞ and computing the derivatives, the reader is refereed to the paper by Mkhatshwa et al. [23]. Applying the spectral method by 
evaluating equations (3.8)-(3.10) at the collocation points, using the derivative matrices and imposing the boundary conditions gives 

½½DðεÞ�3 þ ϑð1;ε;ωÞ1;2;ι
�
DðεÞ

�2
þ ϑð1;ε;ωÞ1;1;ι DðεÞ þ ϑð1;ε;ωÞ1;0;ι

i
Fðε;ωÞj;ιþ1 þ

h
ϑð1;ε;ωÞ2;0;ι

i
Θðε;ωÞj;ιþ1 þ

h
ϑð1;ε;ωÞ3;0;ι

i
Φðε;ωÞj;ιþ1

                       þ γð1;ε;ωÞ1;r

X

m¼0

Nξ� 1

dj;mDðεÞFðε;ωÞm þ βð1;ε;ωÞ1;ι

X

m¼0

Nξ� 1

dj;mFðε;ωÞm ¼ Kðε;ωÞ1;j

(3.11)  

�
ϑð2;ε;ωÞ1;2;ι

�
DðεÞ

�2
þ ϑð2;ε;ωÞ1;1;ι DðεÞ þ ϑð2;ε;ωÞ1;0;ι

i
Fðε;ωÞj;ιþ1 þ

h
ϑð2;ε;ωÞ2;2;ι

h
DðεÞ

i2
þ ϑð2;ε;ωÞ2;1;ι DðεÞ

�

Θðε;ωÞj;ιþ1

þ
�
ϑð2;ε;ωÞ3;2ι

�
DðεÞ

�2
þ ϑð2;ε;ωÞ3;1;ι DðεÞ

i
Φðε;ωÞj;ιþ1 þ βð2;ε;ωÞ1;ι

X

m¼0

Nξ� 1

dj;mFðε;ωÞm þ βð2;ε;ωÞ2;ι

X

m¼0

Nξ� 1

dj;mΘðε;ωÞm ¼ Kðε;ωÞ2;j ;

(3.12)  

h
ϑð3;ε;ωÞ1;1;ι DðεÞ þ ϑð3;ε;ωÞ1;0;ι

i
Fðε;ωÞj;ιþ1 þ

h
ϑð3;ε;ωÞ2;2;ι

h
DðεÞ

i2
þ ϑð3;ε;ωÞ2;1;ι DðεÞ;

i
Θðε;ωÞj;ιþ1 þ βð3;ε;ωÞ1;ι

X

m¼0

Nξ� 1

dj;mFðε;ωÞm

þ
�
ϑð3;ε;ωÞ3;2;ι

�
DðεÞ

�2
þ ϑð3;ε;ωÞ3;1;ι DðεÞ þ ϑð3;ε;ωÞ3;0;ι

i
Φðε;ωÞj;ιþ1 þ βð3;ε;ωÞ3;ι

X

m¼0

Nξ� 1

dj;mΦðε;ωÞm ¼ Kðε;ωÞ3;j ;

(3.13)  

where 

Kðε;ωÞ1;j ¼Rðε;ωÞ1;j � γð1;ε;ωÞ1;ι dj;Nξ DðεÞFðε;ωÞNξ
� βð1;ε;ωÞ1;ι dj;Nξ Fðε;ωÞNξ

;

Kðε;ωÞ2;j ¼Rðε;ωÞ2;j � βð2;ε;ωÞ1;ι dj;Nξ Fðε;ωÞNξ
� βð2;ε;ωÞ2;ι dj;Nξ Θðε;ωÞNξ

;
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Kðε;ωÞ3;j ¼Rðε;ωÞ3;j � βð3;ε;ωÞ1;ι dj;Nξ Fðε;ωÞNξ
� βð3;ε;ωÞ3;ι dj;Nξ Φðε;ωÞNξ

;

Equations (3.11)-(3.13) can be converted into NξðMþ1Þ � NξðMþ1Þ matrix system of the form 

2

6
4

A11 A12 A13

A21 A22 A23

A31 A32 A33

3

7
5

2

6
6
6
4

Fðμ;υÞj;ιþ1

Θðμ;υÞj;ιþ1

Φðμ;υÞj;ιþ1

3

7
7
7
5
¼

2

6
6
6
4

Kðμ;υÞ1;j

Kðμ;υÞ2;j

Kðμ;υÞ3;j

3

7
7
7
5
; (3.14)  

where M ¼ Nη þ ðNη � 1Þðs � 1Þ is the total number of collocation points over a single domain ½ � 1;1�: The coefficient of matrices 
Aδ;σ ðδ; σ¼ 1; 2; 3Þ has the following structure 

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

AðsÞ0;0 AðsÞ0;1 ⋯ AðsÞ0;Nη � 1 AðsÞ0;Nη

AðsÞ1;0 AðsÞ1;1 ⋯ AðsÞ1;Nη � 1 AðsÞ1;Nη

⋱ ⋱ ⋱ ⋱ ⋱
AðsÞNη � 1;0 AðsÞNη � 1;1 ⋯ AðsÞNη � 1;Nη � 1 AðsÞυ� 1;υ

Aðs� 1Þ
1;0 Aðs� 1Þ

1;1 ⋯ Aðs� 1Þ
1;Nη � 1 Aðs� 1Þ

1;Nη

Aðs� 1Þ
2;0 Aðs� 1Þ

2;1 ⋯ Aðs� 1Þ
2;Nη � 1 Aðs� 1Þ

2;Nη

⋱ ⋱ ⋱ ⋱ ⋱
Aðs� 1Þ

Nη � 1;0 Aðs� 1Þ
Nη � 1;1 ⋯ Aðs� 1Þ

Nη � 1;Nη � 1 Aðs� 1Þ
Nη � 1;Nη

⋱ ⋱
Að1Þ1;0 Að1Þ1;1  ⋯ Að1Þ1;Nη � 1  Að1Þ1;Nη

Að1Þ2;0 Að1Þ2;1  ⋯ Að1Þ2;Nη � 1 Að1Þ2;Nη

⋱  ⋱  ⋱  ⋱  ⋱ 
Að1ÞNη ;0 Að1ÞNη ;1 ⋯ Að1ÞNη ;Nη � 1 Að1ÞNη ;Nη

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(3.15)  

4. Results and discussion 

The OMD-BSQLM has been used to solve the nonlinear flow equations (2.10)-(2.12). Numerical solutions were obtained using Nξ ¼

5 and Nη ¼ 20 collocation points in time and space, respectively. The value of η∞ was chosen as 15. Throughout the entire calculations, 
we have fixed the parametric values as Ri ¼ 5; Pr ¼ 1; Ec ¼ 0:1; Sc ¼ 0:6; λ ¼ 0:5;Mn ¼ 0:5;Df ¼ 0:15; Sr ¼ 0:4;K ¼ 0:5; βh ¼ 1:2; βi ¼

0:5;N ¼ 0:3;ϕ ¼ 0:05 and ξ ¼ 1: All plotted graphs and presented tables correspond to these values unless otherwise stated. To 
validate the accuracy of the applied method, the present results are compared with previously published results. The set of results 
corresponding to values of skin friction and heat tranfer rate in case of pure fluid is presented in Table 2. The results are in satisfactory 
accordance, thus give assurance that the obtained numerical results are accurate. 

In order to understand the behaviour of the flow fields and quantities of engineering interest under the influence of various physical 
parameters, numerical computations have been carried out. The nanoparticle volume fraction was considered in the range of 0 � ϕ �
0:2: When ϕ ¼ 0; the study reduces the conservation equations to those of a regular Newtonian fluid and ϕ > 0:2 is not physically 
realizable due to accumulation. In the present study, we have considered spherical nanoparticles with thermal conductivity and dy-
namic viscosity given in equation (2.5). The effects of selected physical parameters on flow, thermal and concentration fields for both 
Ag-water nanofluid and pure fluid (ϕ ¼ 0) are depicted in Figs. 1–3. It is clear that the velocity and temperature of the Ag-water 
nanofluid are greater than that of the regular fluid while the concentration of Ag-water nanofluid is exceeded by that for pure 

Table 2 

Comparison of f ’’ðξ; 0Þ and � θ’ðξ; 0Þ for Pr ¼ 0:7; ϕ ¼ Df ¼ Mn ¼ Sr ¼ Sc ¼ Ec ¼ Ri ¼ N ¼ K ¼ 0 and different value of ξ ¼
4
r0

�νf x
u∞

�1=2 
with Chen 

and Mucoglu [28], Chang [29], Aydin and Kaya [14] and Kabeir and Chamkha [18].  

ξ [28] [29] [14] [18] Present results 

f ’’ðξ;0Þ � θ’ðξ;0Þ f ’’ðξ;0Þ � θ’ðξ;0Þ f ’’ðξ;0Þ � θ’ðξ;0Þ f ’’ðξ;0Þ � θ’ðξ;0Þ f ’’ðξ;0Þ � θ’ðξ;0Þ

0 1.3282 0.5854 1.3280 0.5852 1.3281 0.5856 1.329103 0.5856271 1.3281580 0.5856834 
1 1.9172 0.8669 1.933 0.8658 1.9134 0.8659 1.913843 0.8657098 1.9134982 0.8659768 
2 2.3981 1.0986 2.3900 1.0940 2.3922 1.0958 2.391991 1.094318 2.3922251 1.0958167 
3 2.8270 1.3021 2.8159 1.2982 2.8198 1.2988 2.814610 1.296471 2.8198761 1.2988832 
4 3.2235 1.4921 3.2187 1.4925 3.2212 1.4918 3.217243 1.489833 3.2212544 1.4918923  
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fluid. This observation suggests that the introduction of silver nanoparticles into the system has an ability to improve the velocity and 
temperature while diminishing the concentration field. It is also evident that the influence of controlling parameters on the velocity, 
temperature and concentration profiles are more pronounced in the vertical cylinder ðλ¼ 1Þ than in the flat plate ðλ¼ 0Þ due the large 
lateral surface area. The velocity profile is noted to be higher near the surface of the cylinder compared to the edge of the boundary 
layer. This is because the buoyancy force that enhances the motion acts as pressure gradient and increase the momentum boundary 
layer which in turn overshoots the velocity near the surface, and thereafter the velocity falls to 1 at the edge of the boundary layer. As 
expected from the boundary conditions, the temperature and concentration profiles reach their maximum values near the surface of 
the cylinder and their minimum values at the end of the boundary layer region. 

The velocity distribution of Ag-water nanofluid and regular fluid for various values of the Richardson number, Hall current 
parameter, nanoparticle volume fraction and curvature parameter are shown in Fig. 1. The Richardson number serves as a measure of 
the buoyancy effect in comparison with that of inertia of the external forced or free stream flow on the heat and fluid flow. It is worth 
mentioning that when Ri > 1; the flow is dominated by natural convection, when Ri < 1; the flow is leading forced convection and Ri ¼
0 corresponds to pure forced convection. Fig. 1(a) shows that increasing values of the Richardson number accelerates the velocity 
gradients at the wall, thus suppressing the momentum boundary layer thickness. For greater values of the Richardson number ðRi¼ 5Þ;
the velocity is observed to overshoot near the surface of the cylinder. Similar results were reported by Aydin and Kaya [14] in the 
absence of the ratio of buoyancy forces. From Fig. 1(b) it is observed that the velocity profile enhances with escalating values of the 
Hall current parameter. The Hall current produces the cross flow effect in magnetohydrodynamics. This observation suggests that the 
occurrence of the Hall current parameter through the cross-flow coupling terms, � ϕ2ξMn αe

α2
eþβ2

h
½f’ � 1� and ϕ5EcMnξ αe

α2
eþβ2

h
½f’ � 1�2 has an 

ability to increase the velocity since the inclusion of Hall current parameter in the system lowers the effective conductivity, thus 
decelerating the magnetic resistive force. It can be observed in Fig. 1(c) that the velocity increases with nanoparticle volume fraction. 
This is because increasing the nanoparticle volume fraction leads to enhancement in the energy transportation, which in turn ac-
celerates the fluid flow. Fig. 1(d) shows that the velocity also augments with the curvature parameter since a rise in the curvature 
parameter lessen the radius of the cylinder, hence the contact area of the fluid decreases. 

Fig. 2 presents the impact of Dufour number, magnetic field, curvature parameter and nanoparticle volume fraction on the 

Fig. 1. Velocity profiles.  
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temperature field for both nanofluid and regular fluid. The Dufour number produces thermal energy flux through the concentration 
gradients. The Dufour term arise in the energy equation and give rise to the fluid temperature. It is clear in Fig. 2(a) that rising the 
Dufour number enriches the thermal boundary layer thickness. Fig. 2(b) shows that the temperature augments with strengthening the 
magnetic field. This is because the strong Lorentz force tends to slow down the fluid flow, thus causing more collision between the 
molecules of the fluid. As a result, more heat is produced, hence improving the temperature of the fluid. It is evident in Fig. 2(c) that 
thermal field and thickness of the boundary layer augment due to the surface curvature. Growing values of the transverse curvature 
increases the heat transport, thus causes a rise in the temperature field. Fig. 2(d) shows that the temperature and thermal boundary 
layer thickness enrich with accumulating values of the nanoparticle volume fraction. This is because increasing the silver nanoparticles 
enhances the thermal conductivity. 

Fig. 3 exhibits the influence of chemical reaction parameter, Soret number, transverse curvature and buoyancy ratio parameter on 
the concentration profile for Ag-water nanofluid and regular fluid. Fig. 3(a) demonstrates that the concentration decreases with 
increasing values of destructive chemical reaction ðK> 0Þ: This is caused by the slight reduction in the solutal boundary layer thickness 
and the negative wall slope of the concentration profile. Similar observation was reported by Sharma and Konwar [21]. Fig. 3(b) shows 
that the concentration field augments with a rise in the Soret number. This is due to the fact that the Soret effect produces a mass flux 
from lower to higher concentration driven by the concentration gradient. The Soret term occurs in the concentration equation, thus it is 
expected to enhance the species concentration significantly. It is clear in Fig. 3(c) that as the curvature parameter intensify, solutal 
concentration enriches because the thickness of concentration boundary layer improves with escalating curvature. Fig. 3(d) shows that 
the concentration decline as the buoyancy ratio parameter escalates. As the fluid moves faster, the species are removed, thus causing 
stabilization and reduction in growth of the diffusion boundary layers along the vertical walls of the cylinder. 

Table 3 shows the behaviour of flow characteristics when significant parameters are varied. It is noted that the skin friction co-
efficient rises with the curvature parameter, nanoparticle volume fraction, Soret number and Hall current but diminish with chemical 
reaction. The heat transfer coefficient augments with the Hall current while decreasing with Soret number, curvature parameter, 
nanoparticle volume fraction and chemical reaction. The rate of mass transfer amplifies when nanoparticle volume fraction, Soret 
number, Hall current and chemical reaction parameter escalates but fall when the curvature intensify. 

Fig. 2. Temperature profiles.  
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5. Conclusion 

In this article, we have investigated Hall current, chemical reaction and cross-diffusion effects on MHD mixed convective flow, heat 
and mass transfer over a vertical slender cylinder in a water-based silver nanofluid. Amongst other results, we found that the fluid 
properties were elevated for the vertical slender cylinder than for the flat plate. The incorporation of silver nanoparticles into the base 

Fig. 3. Concentration profiles.  

Table 3 
Numerical values of skin friction coefficient, heat and mass transfer rates.  

λ  φ  Sr  βh  K  1
ð1 � φÞ2:5

f ’’ðξ;0Þ �
knf

kf
θ’ðξ;0Þ � φ’ðξ;0Þ

0 0.05 0.4 1.2 0.5 5.6753426 0.1819607 0.8410197 
0.3 0.05 0.4 1.2 0.5 5.7800846 0.1220118 0.8384166 
1 0.05 0.4 1.2 0.5 5.8966682 0.0464319 0.8337267 

0.5 0 0.4 1.2 0.5 4.2628704 0.2136086 0.7885252 
0.5 0.02 0.4 1.2 0.5 4.8889589 0.1688260 0.8094784 
0.5 0.08 0.4 1.2 0.5 6.7822860 0.0068364 0.8610880 

0.5 0.05 0.05 0.4 0.5 5.8115596 0.1046210 0.7827361 
0.5 0.05 0.3 0.4 0.5 5.8234648 0.0961420 0.8210689 
0.5 0.05 0.8 0.4 0.5 5.8474534 0.0778335 0.9057702 

0.5 0.05 0.4 0 0.5 5.8137606 0.0906011 0.8326568 
0.5 0.05 0.4 0.5 0.5 5.8208506 0.0916620 0.8349326 
0.5 0.05 0.4 10 0.5 5.8383907 0.0937826 0.8399162 

0.5 0.05 0.4 1.2 0 5.9207613 0.1125123 0.5765439 
0.5 0.05 0.4 1.2 0.5 5.8282439 0.0926281 0.8371263 
0.5 0.05 0.4 1.2 2 5.7139965 0.0471790 1.3056787  
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fluid significantly improved the velocity and temperature fields, while suppressing the concentration field. The outcomes of this work 
can be useful in industrial and engineering applications such as nuclear reaction cooling, geothermal power extraction, cooling of 
electronic devices, automobile fuels and smart fluids. The OMD-BSQLM was employed in solving the dimensionless conservation 
equations. Comparisons of the numerical results with earlier published work disclosed that the numerical method can be effective and 
accurate in solving nonlinear coupled PDEs. The rest of the findings are outlined as follows:  

� The flow accelerates due to increasing values of the Richardson number, Hall current parameter, nanoparticle volume fraction and 
transverse curvature parameter.  
� Temperature distribution amplifies with rising magnetic field parameter, Dufour number, curvature parameter and nanoparticle 

volume fraction.  
� The solute concentration diminishes due to increasing buoyancy effect and destructive chemical reaction, whereas amplifies with 

curvature and Soret effect.  
� The function of the Hall current is to enhance the flow characteristics in the system.  
� Increasing the curvature parameter, nanoparticle volume fraction and Soret number augments the coefficient of skin friction while 

reducing the heat transfer rate.  
� The introduction of chemical reactive species, nanoparticle volume fraction and Soret effect into the system leads to enhancement 

of the mass transfer characteristics. 
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Appendix A 

The coefficients are defined as 

ϑð1;ε;ωÞ1;3;ι ¼ 1þ λη; ϑð1;ε;ωÞ1;2;ι ¼
1
2

λþ
1
2
f ðε;ωÞι þ ξ

∂f ðε;ωÞι
∂ξ

;ϑð1;ε;ωÞ1;0;ι ¼
1
2

∂2f ðε;ωÞι
∂η2 ;

ϑð1;ε;ωÞ1;1;ι ¼ �
ξMnϑe

α2
e þ β2

h
� ξ

∂
∂ξ

�
∂f ðε;ωÞι

∂η

�

;ϑð1;ε;ωÞ2;0;ι ¼ ξRi;ϑð1;ε;ωÞ3;0;ι ¼ ξRiN;

ϑð2;ε;ωÞ2;2;ι ¼
1

Pr
ð1þ ληÞ; ϑð2;ε;ωÞ2;1;ι ¼

1
2Pr

λþ
1
2
f ðε;ωÞι þ ξ

∂f ðε;ωÞι
∂ξ

;ϑð2;ε;ωÞ3;2;ι ¼Df ð1þ ληÞ;

ϑð2;ε;ωÞ3;1;ι ¼
1
2

Df λ; ϑð2;ε;ωÞ1;2;ι ¼ 2Ecð1þ ληÞ ∂
2f ðε;ωÞι
∂η2 ; ϑð2;ε;ωÞ1;0;ι ¼

1
2

∂θðε;ωÞι
∂η ;

ϑð2;ε;ωÞ1;1;ι ¼
2EcMnξαe

α2
e þ β2

h
f ðε;ωÞι �

2EcMnξαe

α2
e þ β2

h
� ξ

∂θðε;ωÞι
∂ξ

;ϑð3;ε;ωÞ2;2;ι ¼
1
Sc
ð1þ ληÞ;

ϑð3;ε;ωÞ3;1;ι ¼
1

2Sc
þ

1
2
f ðε;ωÞι þ ξ

∂f ðε;ωÞι
∂ξ

;ϑð3;ε;ωÞ3;0;ι ¼ � K; ϑð3;ε;ωÞ1;1;ι ¼ � ξ
∂φðε;ωÞι

∂ξ
;

ϑð3;ε;ωÞ1;0;ι ¼
1
2

∂φðε;ωÞι
∂η ;ϑð3;ε;ωÞ2;2;ι ¼ Srð1þ ληÞ; ϑð3;ε;ωÞ2;1;ι ¼

1
2

Srλ; γð1;ε;ωÞ1;ι ¼ � ξ
∂f ðε;ωÞι

∂η ;

βð1;ε;ωÞ1;ι ¼ ξ
∂2f ðε;ωÞι

∂η2 ; βð2;ε;ωÞ2;ι ¼ � ξ
∂f ðε;ωÞι

∂η ; βð2;ε;ωÞ1;ι ¼ ξ
∂θðε;ωÞι

∂η ; βð3;ε;ωÞ3;ι ¼ � ξ
∂f ðε;ωÞι

∂η ;

M.P. Mkhatshwa et al.                                                                                                                                                                                                



Case Studies in Thermal Engineering 18 (2020) 100598

12

βð3;ε;ωÞ1;ι ¼ ξ
∂φðε;ωÞι

∂η ;Rðε;ωÞ1;ι ¼
1
2
f ðε;ωÞι

∂2f ðε;ωÞι
∂η2 �

ξMnαe

α2
e þ β2

h
� ξ

∂f ðε;ωÞι
∂η

∂
∂ξ

�
∂f ðε;ωÞι

∂η

�

βð3;ε;ωÞ1;ι ¼ ξ
∂φðε;ωÞι

∂η ;Rðε;ωÞ1;ι ¼
1
2
f ðε;ωÞι

∂2f ðε;ωÞι
∂η2 �

ξMnαe

α2
e þ β2

h

� ξ
∂f ðε;ωÞι

∂η
∂
∂ξ

�
∂f ðε;ωÞι

∂η

�

þξ
∂2f ðε;ωÞι

∂η2
∂f ðε;ωÞι

∂ξ
;Rðε;ωÞ2;ι ¼

1
2
f ðε;ωÞι

∂θðε;ωÞι
∂η þ Ecð1þ ληÞ

�
∂2f ðε;ωÞι

∂η2

�2  

þ
EcMnξαe

α2
e þ β2

h

�
∂f ðε;ωÞι

∂η

�2

� ξ
∂f ðε;ωÞι

∂η
∂θðε;ωÞr

∂ξ
þ ξ

∂θðε;ωÞι
∂η

∂f ðε;ωÞι
∂ξ

;

Rðε;ωÞ3;ι ¼
1
2

f ðε;ωÞι
∂φðε;ωÞι

∂η � ξ
∂f ðε;ωÞι

∂η
∂φðε;ωÞι

∂ξ
þ ξ

∂φðε;ωÞι
∂η

∂f ðε;ωÞι
∂ξ

;
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Chapter 6

Overlapping multi-domain spectral method

for MHD mixed convection slip flow over an

exponentially decreasing mainstream with

non-uniform heat source/sink and convective

boundary conditions

The work presented in this chapter is an extension of the work in previous chapters and consid-

ers an exponentially decreasing free stream velocity, suction/blowing, velocity slip and convective

boundary conditions. These pose additional challenges in terms of the complexities of the flow

equations. This chapter gives an application of the overlapping multi-domain spectral quasilineari-

sation method to the MHD mixed convection flow with viscous dissipation, a chemical reaction

and a non-uniform heat source/sink. To check that the iterative scheme converges and is accurate,

we have analyzed the convergence and residual error results. The fluid properties, skin friction,

heat and mass transfer coefficients are given for numerous values of the fluid parameters.
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Overlapping multi-domain bivariate spectral quasilinearisation method is applied on

magnetohydrodynamic mixed convection slip flow over an exponentially decreasing main-
stream with convective boundary conditions and non-uniform heat source/sink effects.

The method is employed in solving the transformed flow equations. The convergence
properties and accuracy of the method are determined. The method gives highly ac-

curate results after few iterations and using few grid points in each space subinterval

and the entire interval. The use of minimal numbers of grid points at each subinterval
minimizes the effects of round-off errors that can lead to instabilities. The accuracy in-

creases as the number of overlapping subintervals increases. The accuracy improvement

is achieved through making the coefficient matrices less dense. The effects of controlling
parameters on the flow fields and physical quantities of interest are studied. Results

show that increasing Biot number and non-uniform heat source/sink enhances the flow

fields while reducing skin friction and heat transfer rate. The fluid properties improve
with injection whereas the flow characteristics augment with suction. The considered

exponentially decreasing external flows have particular applications in diverging channel

flows. The current study has practical significance in various boundary layer problems
such as in controlling and delaying boundary layer separation on control surfaces and in
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suppressing recirculating bubbles.

Keywords: Overlapping multi-domain bivariate spectral quasilinearisation method; Non-

uniform heat source/sink; Chemical reaction; Suction/blowing; Slip and convective

boundary conditions.

1. Introduction

The combined heat and mass transfer in between flows over exponentially stretching

surface has a lot of practical implications in science and engineering. Most often,

the end product depend on the heat transfer coefficient at the stretching continu-

ous surface along with exponential differences of the stretching velocity. According

to Merkin et al. [2017], annealing and thinning of copper wires can exhibit such

characteristics and that becomes a possible application of exponentially stretching

surface. In such cases, the simultaneous heating and cooling, and the kinematics of

the stretching surface can influence the quality of the final product. Curle [1981]

considered the steady two-dimensional laminar boundary layer flow with the ex-

ternal flow velocity ue = u0(1 − εeξ), where u0 is constant, ε is a decelerating

parameter and ξ is the stream-wise coordinate. The smaller values of ε and ξ cause

weaker effects of εeξ and consequently, ue is approximated as a constant. However,

higher values of ξ enhance the influence of εeξ. As the stream-wise coordinate ξ

approaches to log(ε−1), the external flow velocity ue suddenly decreases exponen-

tially and causes boundary layer separation. This imply that smaller values of ue
establish the adverse pressure gradient. Extensive studies have been carried out

on the characteristics of boundary layer separation and control of flow separation.

This is due to its various applications in polymer fibre coating, coating of wires and

film cooling as mentioned by Patil et al. [2017a]. According to Mukhopadhyay and

Layek [2008], the occurrence of separation can enhance the pressure drag during

the exponentially stretching phenomenon and that may affect the fluid flow. Hence,

to overcome the boundary layer separation in the study of mixed convection over

an exponentially stretching surface, one may require various techniques.

In the present work, magnetohydrodynamics(MHD), suction/injection and non-

uniform heat source/sink are considered as controlling tools to study the separation

of the boundary layer over an exponentially decreasing flow velocity. Mukhopadhyay

[2013a] reported that applications of MHD flow involve metallurgical processes, nu-

clear industry, military submarines, geophysics, astrophysics, drug delivery, power

generator design and petroleum industries. Since MHD can delay the boundary

layer separation, it is used in various engineering and industrial applications as a

controlling factor. The technique of suction/blowing is one of the powerful tools in

controlling the boundary layer separation. Suction/blowing can be found in appli-

cations such as enhancing the inner portion of the boundary in adverse pressure

gradient (see Roy and Saikrishman [2004]), thermal protection (see Datta et al.

[2006]), and skin-friction over control surfaces (see Roy et al. [2009]). The process

of suction/blowing manages the boundary layer growth and in turn helps in delay-
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ing the boundary layer separation. The heat source/sink is another technique that

can help accomplish the process of controlling the boundary layer separation.

Several studies have been carried out on the influence of MHD, suction/blowing

and heat source/sink on steady mixed convection flow over an exponentially stretch-

ing surface. Patil et al. [2017b] studied the steady mixed convection flow over

an exponentially decreasing free stream velocity with suction/injection and heat

source/sink. Patil et al. [2018a] investigated the influence of chemically reactive

species and a volumetric heat source/sink on steady mixed convection over an ex-

ponentially decreasing mainstream with suction/blowing. The present work attempt

to study the combined effects of suction/blowing and non-uniform heat source/sink

on steady mixed convection over an exponentially decreasing velocity. Little work

has been reported on the effect of non-uniform heat source/sink on mixed convec-

tion along exponentially stretching surface. Patil and Kumbarwadi [2017], and Patil

et al. [2018b] studied MHD mixed convection flow over an exponentially stretching

vertical sheet with non-uniform heat source/sink. Both studies have ignored the

effect of suction/injection in controlling the boundary layer separation.

Most studies found in the literature on steady mixed convection flow over an

exponentially stretching surface have been carried out with no-slip boundary con-

ditions. For a viscous fluid, when the wall is impermeable, the overall boundary

condition at a wall is such that there will be no relative motion between the wall,

and the fluid immediately become in contact with the wall. According to Day [2004],

when such motion is perpendicular, then the condition will be impermeable, and if it

is a tangential motion, then the condition will be called no-slip condition. The pres-

ence of permeable wall causes various regimes in some extents. Bhattacharyya et al.

[2011] concluded that the no-slip condition becomes inconsistent for all physical

situations. That means, in fluid flows, the no-slip condition should be replaced with

velocity slip or partial slip boundary conditions. Velocity slip is the non-adherence

of the fluid to a solid boundary. In the present paper, the permeability condition is

included at the boundary constraints to assist the investigation of partial slip flow.

When the fluid is particulate such as polymer solutions, blood, emulsions, foams

and suspensions, the partial slip at the exponential stretching surface can be ex-

pected. The fluid slip flow has industrial and technological applications such as in

the polishing of artificial heart valves and internal cavities. Mukhopadhyay [2013b]

replaced no-slip conditions with velocity slip at the boundary when studying MHD

boundary layer flow over an exponentially stretching sheet with suction/blowing

and thermal radiation. Patil and Shashikant [2018] considered the influence of slip

flow and thermal jump on mixed convection over an exponentially stretching sur-

face with suction/injection and volumetric heat source/sink. Another mechanism

in the study of viscous fluids is the thermal convective boundary condition at the

boundary wall. A lot of literature is devoted to constant wall temperature and

constant heat flux at the wall. However, consideration of convective heat transfer

at the temperature wall is more practical. The convective heat transfer involves
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engineering procedures, gas turbines, nuclear plants, storage of thermal energy to

name a few. These processes obtain high temperature when the flow is subject to

the convective boundary condition. Isa et al. [2017] studied the effect of convective

boundary condition on MHD mixed convection flow over an exponentially stretch-

ing vertical sheet. Srinivasacharya and Jagadeeshwar [2017] analyzed the effects

of velocity slip on boundary layer flow on an exponentially stretching sheet with

suction/injection and convective heat boundary conditions. Hayat et al. [2014] in-

vestigated MHD three-dimensional flow by an exponentially stretching surface with

convective boundary conditions.

The purpose of this study is to analyze partial slip flow, thermal convective

boundary conditions and non-uniform heat source/sink effects on steady MHD

mixed convection over an exponentially decreasing mainstream with viscous dis-

sipation, suction/injection and chemical reaction. According to the author’s best

knowledge, this work has not been reported so far in the literature. An effective

and powerful overlapping multi-domain bivariate spectral quasilinearisation method

(OMD-BSQLM) recently developed by Mkhatshwa et al. [2019] is used to obtain

numerical solutions of the problem. The need to develop numerical methods that are

computationally fast, converge quickly and uses fewer grid points to give accurate

solutions for nonlinear partial differential equations (PDEs) cannot be overstated.

Spectral methods have been found to have such qualities since they require minimal

computational time and uses few grid points to achieve a high degree of numeri-

cal accuracy. Motsa et al. [2014a] introduced spectral quasilinearisation method

(SQLM) for solving nonlinear PDEs describing unsteady boundary layer flow. The

SQLM uses the quaslinearisation method (QLM) developed by Bellman and Kal-

aba [1965] to simplify the nonlinear problems into linear equations. The spectral

collocation method is used to descretize in space and the implicit finite difference

method is implemented in time. From the literature, it has been noted that the im-

plicit finite difference method in combination with the QLM are the commonly used

numerical methods in the analysis of mixed convection flow over an exponentially

stretched surface. However, finite differences generally require more computational

time and use many grid points for accurate solutions. This implies that applying

spectral method in space and finite difference in time leads to slower and less accu-

rate solution. Motsa et al. [2014b] introduced the bivariate spectral quasilinearisa-

tion method (BSQLM) which uses the spectral collocation method independently

in both space and time to improve the accuracy and computational speed. It was

found that the BSQLM gives accurate results for smaller time domains and the level

of accuracy deteriorates with an increase in the time domain. To overcome this limi-

tation, Magagula et al. [2017] extended the work of Motsa et al. [2014b] by using the

multidomain technique only in the time domain. The resulting method was termed

multidomain bivariate spectral quasilinearisation method (MD-BSQLM) and it was

found to improve the accuracy of the method for large time domain. In the MD-

BSQLM, the time domain is divided into small non-overlapping subintervals. The
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continuity condition is used to advance the solution across the subintervals. Re-

cently, Mkhatshwa et al. [2019] and Mkhatshwa et al. [2020] extended the work of

Motsa et al. [2014b] by applying the multi-domain technique in both space and time

to improve accuracy. In addition to that, they introduced the overlapping grid strat-

egy in the spatial domain. The method was abbreviated using OMD-BSQLM and

it was found to use few grid points to achieve highly accurate results. It is known

that the accuracy of spectral methods increases with an increase in grid points but

beyond a certain number of grid points, the accuracy rapidly deteriorates. However,

the findings by Mkhatshwa et al. [2019] can help to overcome this limitation. It is

worth noting that convergence and residual error analysis of the OMD-BSQLM were

not performed in the previous studies. In the present work, applicability, accuracy

and reliability of the method are confirmed using convergence and residual error

analysis. The use of OMD-BSQLM in the current work is motivated by the benefits

of the spectral method, multi-domain technique, overlapping grid and QLM which

is known to have a quadratic rate of convergence.

2. Mathematical analysis

We consider the steady mixed convection flow of electrically conducting and chem-

ically reacting incompressible viscous fluid over an exponentially decreasing main-

stream when the surface mass transfer vw(x) occurs along the vertical surface. The

influence of suction/injection, velocity slip and convective conditions are explored

by considering the respective terms in the boundary conditions. The magnetic field,

non-uniform heat source/sink and viscous dissipation effects are introduced in the

energy equation to control the system. The surface moves with velocity uw(x) in an

exponentially free stream velocity ue along the positive x−direction. The blowing

rate of the fluid is assumed to be small and it does not affect the inviscid flow at

the edge of the boundary layer. It is also assumed that the injected fluid preserves

the same physical properties as the boundary layer fluid. Figure 1 shows the flow

model and coordinate system, where the normal coordinate y is measured from the

vertical surface and the coordinate x is measured vertically upwards so that x = 0

corresponds to the leading edge. The temperature and concentration far away from

the surface are denoted as T∞ and C∞, respectively. The surface temperature is

maintained by convective heat transfer at a certain value Tw. The differences in the

density of the fluid flow results in a body force term in momentum equation and

other all thermo-physical properties are assumed to be the constants. To conjoin

the temperature field [gβt(T − T∞)] and concentration field [gβc(C − C∞)] to the

flow model, the changes in the density are related by employing the Boussinesq

approximation for the energy and species concentration (see Schlichting and Ger-

sten [2000]). A uniform magnetic field B0 is applied normal to the surface. There

is no applied power and this imply that the electrical field is absent. The magnetic

Reynolds number of the flow is assumed to be small enough so that the induced

magnetic field is negligible. With the above assumptions, the governing equations
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for conservation of mass, momentum, energy and species concentration are given as

(Patil et al. [2017b] Patil et al. [2018a] Patil et al. [2017c])

∂u

∂x
+
∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= ue

due
dx

+ ν
∂2u

∂y2
+ gβt (T − T∞) + gβc (C − C∞) , (2)

u
∂T

∂x
+ v

∂T

∂y
= αm

∂2T

∂y2
+

1

ρCp
q′′′ +

µ

ρCp

(
∂u

∂y

)2

+
σB2

0

ρCp
(ue − u)2 (3)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
−R(C − C∞), (4)

where u and v are the velocity components in the x and y directions, T is the

fluid temperature, C is the concentration, g is the acceleration due to gravity, ρ is

the fluid density, βt is the coefficient of thermal expansion, βc is the coefficient of

concentration expansion, DB is the Brownian diffusion coefficient, Cp is the specific

heat capacity, αm is the thermal diffusivity, ν is the kinematic viscosity, µ is the

dynamic viscosity, R is the variable chemical reaction rate, q′′′ is the non-uniform

heat source/sink defined as

q′′′ =
kuw
xν

[A∗(Tw − T∞)f ′(ξ, η) + (T − T∞)B∗] , (5)

where A∗ and B∗ are the coefficients of space and temperature dependent heat

source/sink, respectively. The case A∗ > 0, B∗ > 0 represents heat source or heat

generation and A∗ < 0, B∗ < 0 corresponds to heat sink or heat absorption.

The physical boundary conditions are given by

u(x, 0) = ue + k1ν
∂u

∂y
, v(x, 0) = vw(x), − kw

∂T

∂y
= hw(Tw − T ), C = Cw, at y = 0,

u(x,∞) = ue(x), T (x,∞)→ T∞, C(x,∞)→ C∞ at y =∞, (6)

where vw(x) > 0 is the velocity of suction and vw(x) < 0 is the velocity of blowing,

k1 is the velocity slip factor, kw is the thermal conductivity of the fluid and hw
is the convective heat transfer coefficient. We introduce the following non-similar

transformations:

ue(x) = u∞(1− εeξ), ξ =
x

L
, η =

( ue
νx

)0.5
y, ψ(x, y) = (νuex)

0.5
f(ξ, η),

u = uef
′(ξ, η), G(ξ, η) =

T − T∞
Tw − T∞

, H(ξ, η) =
C − C∞
Cw − C∞

, f ′(ξ, η) = F (ξ, η),

v = −1

2

(νue
x

)0.5{
2ξ
∂f

∂ξ
+ η

(
x

ue

due
dx
− 1

)
f ′ +

(
x

ue

due
dx

+ 1

)
f

}
, (7)

where ue is the external flow velocity at the edge of the boundary layer defined

by Curle [1981], ξ is a scaled stream-wise coordinate, u∞ is a constant, L is the

characteristic length, ε denotes the decelerating small parameter such that 0 < ε <

1, ψ is the physical stream function defined by u = ∂ψ
∂y and v = −∂ψ∂x .
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y, η, v

ue = u∞(1− εeξ), T∞, C∞

x, ξ, u

g

Tw, Cw

B0

vw(ξ) = v0ξ
−1/2

−kw ∂T∂y = hw(Tw − T )

Fig. 1. Schematic diagram and coordinate system

The continuity Eq. (1) satisfies identically and introducing similarity variables

(7) into Eqs. (2)-(4), we obtain the following dimensionless system of PDEs:

F ′′ +
1

2
(m+ 1)fF ′ +m(1− F 2) +

ξRe

(1− εeξ) (1− F ) +
ξRi

(1− εeξ)2 [G+NH]

= ξ

(
F
∂F

∂ξ
− F ′ ∂f

∂ξ

)
, (8)

G′′ +
Pr

2
(m+ 1)fG′ + PrEc(1− εeξ)2F ′2 +M2EcPrReξ(1− εeξ)(1− F )2

+A∗F +B∗G = Prξ

(
F
∂G

∂ξ
−G′ ∂f

∂ξ

)
, (9)

H ′′ +
Sc

2
(m+ 1)fH ′ − ScKξRe

(1− εeξ)H = Scξ

(
F
∂H

∂ξ
−H ′ ∂f

∂ξ

)
, (10)

where m = ξ
ue

due
dξ = −ξεeξ

1−εeξ is the dimensionless pressure gradient defined by Curle

[1981] and Chiam [1998]). Here, f(ξ, η) =
∫ η
0
Fdη+fw and fw can be obtained from

the following equation

v = −∂ψ
∂x

= −(νuex)1/2
{
∂f

∂ξ

dξ

dx
+
∂f

∂η

∂η

∂x
+

1

2ue

du

dx
f +

1

2x
f

}
, (11)

where dξ
dx = ∂ξ

∂x = 1
L and ∂η

∂x = − η
2x

[
1+ε(ξ−1)eξ

1−εeξ
]
. Thus, at the surface y = 0 i.e at
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η = 0, v can be expressed as

vw(ξ) = −
(u∞ν

L

)1/2 [ d
dξ

(
[ξ(1− εeξ)]1/2

)
f(ξ, 0) + [ξ(1− εeξ)]1/2 ∂f

∂ξ
(ξ, 0)

]
(12)

i.e vw(ξ) = −
(
u∞ν
L

)1/2 d
dξ

(
[ξ(1− εeξ)]1/2f(ξ, 0)

)
. Integrating from 0 to ξ with

respect to ξ, we get

f(ξ, 0) = fw(ξ) = −
(u∞ν

L

)−1/2
[ξ(1− εeξ)]−1/2

∫ ξ

0

vw(ξ)dξ, (13)

i.e fw(ξ, 0) = A(1 − εeξ)−1/2, where vw(ξ) = v0ξ
−1/2 and A = −2v0

(
u∞ν
L

)−1/2
=

constant is the wall suction/injection parameter so that A < 0 indicates injection

(blowing), A > 0 represents suction and A = 0 implies an impermeable surface.

The transformed boundary conditions are expressed as

F (ξ, 0) = 1 + δξ−1/2(1− εeξ)1/2F ′(ξ, 0), f(ξ, 0) = A
(
1− εeξ

)−1/2
,

G′(ξ, 0) = −Biξ1/2(1− εeξ)−1/2(1−G(ξ, 0)), H(ξ, 0) = 1, (14)

F (ξ,∞) = 1, G(ξ,∞) = 0, H(ξ,∞) = 0,

The parameters are defined as

Gr =
gβt(Tw − T∞)L3

ν2
, Gr∗ =

gβc(Cw − C∞)L3

ν2
, Re =

u∞L
ν

,

δ = k1

√
νu∞
L

, Bi =
hw
kw

√
νL

u∞
, Ri =

Gr

Re2
, N =

Gr∗

Gr
, Pr =

ν

αm
,

Ec =
u2∞

Cp(Tw − T∞)
, Sc =

ν

DB
, K =

Rν

u2∞
,M =

B0

u∞

√
σν

ρ
,

where Ri (Richardson number) is the dimensionless parameter that characterizes

the mixed convection effects arising from the buoyancy force with Ri > 0(Tw > T∞)

corresponding to the heated source (assisting flow), Ri < 0(Tw < T∞) indicating

the cooled surface (opposing flow) and Ri = 0(Tw = T∞) representing the forced

convection flow, Re is the Reynolds number, Gr is the Grashof number indicating

the exponentially stretching wall temperature, Gr∗ is the solutal Grashof number in-

dicating the exponentially stretching wall concentration, Pr is the Prandtl number,

Ec is the Eckert number, Sc is the Schmidt number, K is the chemical reaction

parameter with K < 0 representing generative reaction and K > 0 representing

destructive reaction, N is the ratio between the thermal and the solutal buoyancy

forces, δ is the velocity slip parameter, Bi is the Biot number and M is the magnetic

field parameter.

The physical quantities of interest are the local skin friction Cf , Nusselt number

Nu and Sherwood number Sh which are defined as

Cf = µ
2(∂u/∂y)y=0

ρu2e
, Nu = −x (∂T/∂y)y=0

(Tw − T∞)
, Sh = −x (∂C/∂y)y=0

(Cw − C∞)
. (15)
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Using the similarity variables (7), the skin friction coefficient, local Nusselt number

and local Sherwood number become

Re1/2Cf = 2ξ−1/2(1− εeξ)−1/2F ′(ξ, 0),

Re−1/2Nu = −ξ1/2(1− εeξ)1/2G′(ξ, 0),

Re−1/2Sh = −ξ1/2(1− εeξ)1/2H ′(ξ, 0), (16)

3. Solution procedure

This section provides a description of the OMD-BSQLM and its application in solv-

ing the nonlinear PDEs (8)-(10). It is worth mentioning that the method applies

the multi-domain approach in both space and time intervals. Moreover, the over-

lapping grid strategy is utilized in the spatial domain. To apply the OMD-BSQLM,

we let ξ ∈ J, where the time interval J = [0, ξp] is split into p equal non-overlapping

subintervals (see Figure 2) defined as

Jυ = (ξυ−1, ξυ), υ = 1, 2, 3, ..., p, 0 = ξ0 < ξ1 < ξ2 < ... < ξp−1 < ξp = 1, (17)

where each subinterval is discretized into Nξ + 1 collocation points (Chebyshev-

Gauss-Lobatto points). For the semi-finite space domain [0,∞), a truncated grid

[0, η∞] is used. The truncated spatial domain [0, η∞] is decomposed into s overlap-

ping subintervals Lη, denoted by

Iµ = [ηµ0 , η
µ
Nη

], µ = 1, 2, 3, ..., s, (18)

where each subinterval Iµ is further discretized into Nη + 1 collocation points. The

subintervals are decomposed by overlapping one grid point. It is worth noting that

the first two grid points of the interval Iµ+1 coincide with the last two grid points

of the interval Iµ as seen in Figure 3. For the overlap to be possible, we consider

that each subinterval has the same length given by

Lη =
η∞

s+ 1
2 (1− s)(1− cos π

Nη
)
, (19)

and the same number of collocation points (Nη + 1) are used in each sub-interval.

To derive the formula for the length in Eq. (19), we remark that the total length of

the space domain is

η∞ = 2Lη − σ + (2Lη − 2σ)
(s

2
− 1
)

(20)

= 2Lη − σ + (Lη − σ)(s− 2) = σ(1− s) + sLη, (21)

where σ is the overlapping distance between two subintervals. Considering the first

interval I1 in which η ∈ [0, η1Nη ], we can define the length Lη = η1Nη . The linear

transformation η =
Lη
2 η̂ +

η1Nη
2 can be used to transform the interval [0, η1Nη ] to
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[−1, 1]. Thus, using the Gauss-Lobatto collocation points η̂i = cos
(
πi
Nη

)
, where

i = 0, 1, 2, 3, ..., Nη, we obtain

η0 − η1 =
Lη
2

(η̂0 − η̂1) =
Lη
2

(
1− cos

π

Nη

)
. (22)

Therefore, equation (21) becomes

η∞ =
Lη
2

(
1− cos

π

Nη

)
(1− s) + sLη, (23)

and making Lη the subject of the formula in Eq. (23) gives equation (19).

ξ0 ξ1 ξ2 ξ3 ξυ−1 ξυ ξp−1 ξp

J1 J2 J3 Jυ Jp

ξυ−1 ξυ

ξ
(υ)
0 ξ

(υ)
1 ξ

(υ)
2 ξ

(υ)
e−1 ξ

(υ)
e

Fig. 2. Non-overlapping grid (ξ− domain )

I1
I2 Is−1 Is

η10

0

η20

η1Nη−1

η1Nη

η21

η30

η2Nη−1

η2Nη

η31

ηs−10

ηs−2Nη−1

ηs−2Nη

ηs−11

ηs0

ηs−1Nη−1

ηs−1Nη

ηs1

ηsNη

η∞

Fig. 3. Overlapping grid (η− domain )

Applying the QLM at each subinterval Iµ, the nonlinear PDEs (8)-(10) are
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replaced by the following set of linear PDEs:

∂3f
(µ,υ)
r+1

∂η3
+ α

(1,µ,υ)
1,2,r

∂2f
(µ,υ)
r+1

∂η2
+ α

(1,µ,υ)
1,1,r

∂f
(µ,υ)
r+1

∂η
+ α

(1,µ,υ)
1,0,r f

(µ,υ)
r+1 + α

(1,µ,υ)
2,0,r G

(µ,υ)
r+1

+α
(1,µ,υ)
3,0,r H

(µ,υ)
r+1 + γ

(1,µ,υ)
1,r

∂

∂η

(
∂f

(µ,υ)
r+1

∂ξ

)
+ β

(1,µ,υ)
1,r

∂f
(µ,υ)
r+1

∂ξ
= R

(µ,υ)
1,r , (24)

∂2G
(µ,υ)
r+1

∂η2
+ α

(2,µ,υ)
2,1,r

∂G
(µ,υ)
r+1

∂η
+ α

(2,µ,υ)
2,0,r G

(µ,υ)
r+1 + α

(2,µ,υ)
1,2,r

∂2f
(µ,υ)
r+1

∂η2
+ α

(2,µ,υ)
1,1,r

∂f
(µ,υ)
r+1

∂η

+α
(2,µ,υ)
1,0,r f

(µ,υ)
r+1 + β

(2,µ,υ)
2,r

∂G
(µ,υ)
r+1

∂ξ
+ β

(2,µ,υ)
1,r

∂f
(µ,υ)
r+1

∂ξ
= R

(µ,υ)
2,r , (25)

∂2H
(µ,υ)
r+1

∂η2
+ α

(3,µ,υ)
3,1,r

∂H
(µ,υ)
r+1

∂η
+ α

(3,µ,υ)
3,0,r H

(µ,υ)
r+1 + α

(3,µ,υ)
1,1,r

∂f
(µ,υ)
r+1

∂η
+ α

(3,µ,υ)
1,0,r f

(µ,υ)
r+1

+β
(3,µ,υ)
3,r

∂H
(µ,υ)
r+1

∂ξ
+ β

(3,µ,υ)
1,r

∂f
(µ,υ)
r+1

∂ξ
= R

(µ,υ)
3,r , (26)

where the linearisation coefficients are given by

α
(1,µ,υ)
1,2,r =

1

2

(
−ξεeξ
1− εeξ + 1

)
f
(µ,υ)
r + ξ

∂f
(µ,υ)
r

∂ξ
, α

(1,µ,υ)
1,0,r =

1

2

(
−ξεeξ
1− εeξ + 1

)
∂2f

(µ,υ)
r

∂η2
,

α
(1,µ,υ)
1,1,r =

2ξεeξ

1− εeξ
∂f

(µ,υ)
r

∂η
− ξRe

(1− εeξ) − ξ
∂

∂η

(
∂f

(µ,υ)
r

∂ξ

)
, α

(1,µ,υ)
2,0,r =

ξRi

(1− εeξ)2 ,

α
(1,µ,υ)
3,0,r =

ξRiN

(1− εeξ)2 , α
(2,µ,υ)
2,1,r =

1

2
Pr

(
−ξεeξ
1− εeξ + 1

)
f
(µ,υ)
r + Prξ

∂f
(µ,υ)
r

∂ξ
, α

(2,µ,υ)
2,0,r = B∗,

α
(2,µ,υ)
1,2,r = 2PrEc(1− εeξ)2 ∂

2f
(µ,υ)
r

∂η2
, α

(2,µ,υ)
1,1,r = A∗ − 2M2EcPrReξ(1− εeξ)∂f

(µ,υ)
r

∂η

−ξPr ∂G
(µ,υ)
r

∂ξ
, α

(2,µ,υ)
1,0,r =

1

2
Pr

(
−ξεeξ
1− εeξ + 1

)
∂G

(µ,υ)
r

∂η
, α

(3,µ,υ)
3,1,r = ξSc

∂f
(µ,υ)
r

∂ξ

+
1

2
Sc

(
−ξεeξ
1− εeξ + 1

)
f
(µ,υ)
r , α

(3,µ,υ)
3,0,r = − ScKξRe

(1− εeξ) , α
(3,µ,υ)
1,1,r = −ξSc∂H

(µ,υ)
r

∂ξ
,

α
(3,µ,υ)
1,0,r =

1

2
Sc

(
−ξεeξ
1− εeξ + 1

)
∂H

(µ,υ)
r

∂η
, γ

(1,µ,υ)
1,r = −ξ ∂f

(µ,υ)
r

∂η
, β

(1,µ,υ)
1,r = ξ

∂2f
(µ,υ)
r

∂η2
,

β
(2,µ,υ)
2,r = −ξPr ∂f

(µ,υ)
r

∂η
, β

(2,µ,υ)
1,r = ξPr

∂G
(µ,υ)
r

∂η
, β

(3,µ,υ)
3,r = −ξSc∂f

(µ,υ)
r

∂η
,

β
(3,µ,υ)
1,r = ξSc

∂H
(µ,υ)
r

∂η
, R

(µ,υ)
1,r =

1

2

(
−ξεeξ
1− εeξ + 1

)
f
(µ,υ)
r

∂2f
(µ,υ)
r

∂η2
− −ξεe

ξ

1− εeξ

ξεeξ

1− εeξ

(
∂f

(µ,υ)
r

∂η

)2

− ξ ∂F
(µ,υ)
r

∂η

∂

∂η

(
∂f

(µ,υ)
r

∂ξ

)
+ ξ

∂2f
(µ,υ)
r

∂η2
∂f

(µ,υ)
r

∂ξ
,

R
(µ,υ)
2,r =

1

2
Pr

(
−ξεeξ
1− εeξ + 1

)
f
(µ,υ)
r

∂G
(µ,υ)
r

∂η
−M2EcPrReξ(1− εeξ)

(
∂f

(µ,υ)
r

∂η

)2
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−M2EcPrReξ(1− εeξ)− ξPr ∂f
(µ,υ)
r

∂η

∂G
(µ,υ)
r

∂ξ
+ ξPr

∂G
(µ,υ)
r

∂η

∂f
(µ,υ)
r

∂ξ

+PrEc(1− εeξ)2
(
∂2f

(µ,υ)
r

∂η2

)2

, R
(µ,υ)
3,r =

1

2
Sc

(
−ξεeξ
1− εeξ + 1

)
f
(µ,υ)
r

∂H
(µ,υ)
r

∂η

−ξSc∂f
(µ,υ)
r

∂η

∂H
(µ,υ)
r

∂ξ
+ ξSc

∂H
(µ,υ)
r

∂η

∂f
(µ,υ)
r

∂ξ
.

The constants r and r + 1 denote previous and current iterations, respectively.
The system of linear PDEs (24)-(26) is discretized using the spectral collocation
method in both η and ξ directions. It is important to mention that the linearized
PDEs are solved independently over each time subinterval, while the approximate
solutions in space direction are obtained simultaneously across all subintervals. Gen-
erally, before the spectral collocation method is applied at each subinterval, the time

interval Jυ and space interval Iµ are transformed into ξ̂ ∈ [−1, 1] and η̂ ∈ [−1, 1]
using the linear transformations

ξυj =
1

2
(ξυ − ξυ−1)ξ̂j +

1

2
(ξυ + ξυ−1),

{
ξ̂j

}Nξ
j=0

= cos

(
πj

Nξ

)
, (27)

ηµi =
L

2
(η̂i + 1), { η̂i}Nηi=0 = cos

(
πi

Nη

)
. (28)

We assume that at each subinterval, the required solution, say f(η, ξ) can be
approximated by a bivariate Lagrange interpolation polynomial of the form

f (µ,υ)(η, ξ) ≈ F (µ,υ)(η, ξ) =

Nη∑

k=0

Nξ∑

τ=0

F (µ,υ)(ηk, ξτ )Lk(η)Lτ (ξ), (29)

where the function Lk(η) and Lτ (ξ) are the well known characteristic Lagrange
cardinal polynomial based on the Chebyshev-Gauss-Lobatto points (see Trefethen
[2000]). The required solution for G(η, ξ) and H(η, ξ) are approximated in a similar
manner. The solution procedure requires that the derivatives of Lk(η) and Lτ (ξ)
with respect to η and ξ, respectively be evaluated at the Chebyshev-Gauss-Lobatto
grid points. The derivatives of f (µ,υ)(η, ξ) with respect to η and ξ at the Chebyshev-

Gauss-Lobatto points (η̂i, ξ̂j), are computed as

∂F (µ,υ)

∂η

∣∣∣∣∣
(η=ηi,ξ=ξj

=

Nη∑

k=0

Nξ∑

τ=0

F (µ,υ)(ηk, ξτ )Lτ (ξj)
dLk(η)

dη

∣∣∣∣
η=ηi

=

Nη∑

k=0

D̂
(µ)
i,k F

(µ,υ)(ηk, ξj) =
[
D(µ)

]
F
(µ,υ)
j , i = 0, 1, 2, ...,Mη, (30)

∂F (µ,υ)

∂ξ

∣∣∣∣∣
(η=ηi,ξ=ξj)

=

Nη∑

k=0

Nξ∑

τ=0

F (µ,υ)(ηk, ξτ )Lk(ηi)
dLτ (ξ)

dξ

∣∣∣∣
ξ=ξj

=

Nξ∑

τ=0

dj,τF
(µ,υ)(ηi, ξτ ) =

Nξ∑

τ=0

dj,τF
(µ,υ)
τ , j = 0, 1, 2, ..., Nξ, (31)
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Overlapping multi-domain spectral method for MHD mixed convection slip flow 13

where

D̂
(µ)
i,k =

2

ηµNη − η
µ
0

Di,k, (32)

and Di,k is the standard first order differential operator of size (Nη+1)×(Nη+1) in a
single domain [−1, 1], dj,τ is the standard first derivative Chebyshev differentiation
matrices of size (Nξ + 1)× (Nξ + 1), Mη = Nη + (Nη− 1)(s− 1) is the total number

of collocation points in the whole domain, F
(µ,υ)
j is the vector defined as

F
(µ,υ)
j =

[
f (µ,υ)(η

(µ)
0 , ξj), f

(µ,υ)(η
(µ)
1 , ξj), . . . , f

(µ,υ)(η
(µ)
Nη
, ξj)

]T
, (33)

where T denotes the matrix transpose, D(µ) is an (Mη + 1)× (Mη + 1) derivative

operator with a global structure given by

D(µ) =




D̂
(s)
0,0 D̂

(s)
0,1 · · · D̂

(s)
0,Nη−1 D̂

(s)
0,Nη

D̂
(s)
1,0 D̂

(s)
1,1 · · · D̂

(s)
1,Nη−1 D̂

(s)
1,Nη

. . .
. . .

. . .
. . .

. . .

D̂
(s)
Nη−1,0 D̂

(s)
Nη−1,1 · · · D̂

(s)
Nη−1,Nη−1 D̂

(s)
Nη−1,Nη

D̂
(s−1)
1,0 D̂

(s−1)
1,1 · · · D̂

(s−12)
1,Nη−1 D̂

(s−1)
1,Nη

D̂
(s−1)
2,0 D̂

(s−1)
2,1 · · · D̂

(s−1)
2,Nη−1 D̂

(s−1)
2,Nη

. . .
. . .

. . .
. . .

. . .

D̂
(s−1)
Nη−1,0 D̂

(s−1)
Nη−1,1 · · · D̂

(s−1)
Nη−1,Nη−1 D̂

(s−1)
Nη−1,Nη

. . .
. . .

D̂
(1)
1,0 D̂

(1)
1,1 · · · D̂

(1)
1,Nη−1 D̂

(1)
1,Nη

D̂
(1)
2,0 D̂

(1)
2,1 · · · D̂

(1)
2,Nη−1 D̂

(1)
2,Nη

. . .
. . .

. . .
. . .

. . .

D̂
(1)
Nη,0

D̂
(1)
Nη,1

· · · D̂(1)
Nη,Nη−1 D̂

(1)
Nη,Nη




(34)

and the entries of D̂
(µ)
i,k are obtained from equation (10). It is worth noting that

the derivative operator becomes a full matrix if only a single domain is used in
the computation. Since the last two points in the µth subinterval and the first two
points in the (µ+ 1)th subinterval overlap and remains common, the differentiation

matrix D(µ) for overlapping grid is assembled by carefully discarding the rows cor-
responding to the recurrent points as shown in equation (34). The empty entries of
the coefficient matrix are zeros, which makes the matrix to be less dense or sparse.
The nth order derivative with respect to η is obtained as

∂nF (µ,υ)

∂ηn

∣∣∣∣∣
(η=ηi,ξ=ξj)

=

Nη∑

k=0

[
D̂

(µ)
i,k

]n
F (µ,υ)(ηk, ξj) =

[
D(µ)

]n
F
(µ,υ)
j , (35)

The derivatives dj,τ and
[
D(µ)

]n
are scaled by multiplying by the factors Λ =

2
ξυ−ξυ−1

and Ωn =

(
2

ηµNη−η
µ
0

)n
, respectively. These factors result from applying

the chain rule of differentiation due to the transformation used in equation (27)-
(28) to map the computational domains to [−1, 1]. The space and time derivatives of
G and H at each subinterval can be transformed to discrete matrix form in a similar
manner. Applying the spectral collocation method by evaluating Eqs. (24)-(26) at
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the collocation points and using the derivative matrices as well as incorporating the
initial conditions which correspond to ξNξ = −1 gives

[[
D(µ)

]3
+ α

(1,µ,υ)
1,2,r

[
D(µ)

]2
+ α

(1,µ,υ)
1,1,r D(µ) + α

(1,µ,υ)
1,0,r

]
F
(µ,υ)
j,r+1 +

[
α

(1,µ,υ)
2,0,r

]
G

(µ,υ)
j,r+1

+
[
α

(1,µ,υ)
3,0,r

]
H

(µ,υ)
j,r+1 + γ

(1,µ,υ)
1,r

Nξ−1∑

τ=0

dj,τD
(µ)F

(µ,υ)
τ + β

(1,µ,υ)
1,r

Nξ−1∑

τ=0

dj,τF
(µ,υ)
τ = K

(µ,υ)
1,j (36)

[
α

(2,µ,υ)
1,2,r

[
D(µ)

]2
+ α

(2,µ,υ)
1,1,r D(µ) + α

(2,µ,υ)
1,0,r

]
F
(µ,υ)
j,r+1 + β

(2,µ,υ)
1,r

Nξ−1∑

τ=0

dj,τF
(µ,υ)
τ

+

[[
D(µ)

]2
+ α

(2,µ,υ)
2,1,r D(µ) + α

(2,µ,υ)
2,0,r

]
G

(µ,υ)
j,r+1 + β

(2,µ,υ)
2,r

Nξ−1∑

τ=0

dj,τG
(µ,υ)
τ = K

(µ,υ)
2,l (37)

[
α

(3,µ,υ)
1,1,r D(µ) + α

(3,µ,υ)
1,0,r

]
F
(µ,υ)
j,r+1 +

[[
D(µ)

]2
α

(3,µ,υ)
3,1,r D(µ) + α

(3,µ,υ)
3,0,r

]
H

(µ,υ)
j,r+1

+ β
(3,µ,υ)
1,r

Nξ−1∑

τ=0

dj,τF
(µ,υ,)
τ + β

(3,µ,υ)
3,r

Nξ−1∑

τ=0

dj,τH
(µ,υ)
τ = K

(µ,υ)
3,j , (38)

where

K
(µ,υ)
1,j = R

(µ,υ)
1,j − γ

(1,µ,υ)
1,r dj,NξD

(µ)F
(µ,υ)
Nξ

− β
(1,µ,υ)
1,r dj,NξF

(µ,υ)
Nξ

,

K
(µ,υ)
2,j = R

(µ,υ)
2,j − β

(2,µ,υ)
1,r dj,NξF

(µ,υ)
Nξ

− β
(2,µ,υ)
2,r dj,NξG

(µ,υ)
Nξ

,

K
(µ,υ)
3,j = R

(µ,υ)
3,j − β

(3,µ,υ)
1,r dj,NξF

(µ,υ)
Nξ

− β
(3,µ,υ)
3,r dj,NξH

(µ,υ)
Nξ

,

Equations (36)-(38) can be expressed as a matrix system of size Nξ(Mη + 1) ×
Nξ(Mη + 1)




A11 A12 A13

A21 A22 A23

A31 A32 A33







F
(µ,υ)
j,r+1

G
(µ,υ)
j,r+1

H
(µ,υ)
j,r+1


 =




K
(µ,υ)
1,j

K
(µ,υ)
2,j

K
(µ,υ)
3,j


, (39)

Starting from suitable initial approximations, which are chosen to satisfy the bound-

ary conditions, the approximate solutions are obtained by iteratively solving the

matrix system. The initial guesses are given as

f0(η) = η − 1

4
A(1− ε)−1/2e−2η +A(1− ε)−1/2e−η +

1

4
A(1− ε)−1/2,

G0(η) =
1

2
e−2η − e−η, H0(η) = e−η. (40)

The OMD-BSQLM can be summarised in five main steps:

• Domain decomposition and descretization: Time interval is decomposed into

equal non-overlapping subintervals and truncated space domain is split into

overlapping subdomains of equal length. Each time and each space subin-

terval is discretized into Nξ + 1 and Nη + 1 collocation points, respectively.
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• Linearisation: The QLM is used to simplify the nonlinear PDEs to obtain

the linear iterative scheme.

• Domain transformation: Both space and time domain are transformed into

the interval [−1, 1], where the spectral collocation method is implemented.

• Bivariate interpolation: At each subinterval, the functions are approxi-

mated by a bivariate Lagrange interpolation polynomial.

• Spectral collocation: The spectral differentiation matrices are introduced

and used to approximate the derivatives of unknown functions at the col-

location points as matrix vector product. Then approximate functions and

differentiation matrices are substituted into the linearized iterative scheme

to obtain a matrix system. The boundary conditions are then imposed on

the matrix system. Starting from suitable initial guesses, approximate so-

lutions are obtained by solving this matrix system.

4. Results and discussion

The numerical results obtained using the OMD-BSQLM are presented and dis-

cussed in this section. The spectral quasilinearisation method combined with im-

plicit finite difference method has been used as a benchmarking tool to test

the accuracy, and hence the reliability of the OMD-BSQLM results. In the en-

tire computational process, the values of pertinent parameters were chosen as

Re = 10, Ri = 10, P r = 1, ε = 0.01, Ec = 0.1, Sc = 0.94, N = 1,K = 0.1, A∗ =

0.5, B∗ = 0.5, Bi = 1, A = 1,M = 0.01, δ = 1, and ξ = 1. All these values were

treated the same in the entire numerical study except the varied values in respective

graphs and tables. The edge of the boundary has been taken as η∞ = 5. The number

collocation points was assigned as Nη = 20 and Nξ = 5 in space and time, respec-

tively. These values were sufficient to give accurate and consistent results, since a

further increase in the number of collocation points did not change the numerical

results. The space and time intervals were decomposed into s = 5 and p = 40 subin-

tervals, respectively. The proposed numerical scheme is validated by comparing the

present results of F ′(ξ, 0) with previously published work by Chiam [1998]) for the

particular case when ε = 0.1, Re = 0, A = 0, and Ri = 0. The results are depicted

in Figure 4 and good agreement is observed between the two set of results. Hence,

the use of the present method is justified. In addition, Table 1 is presented for the

skin friction, heat and mass transfer coefficients obtained using SQLM with finite

differences, BSQLM, MD-BSQLM and OMD-BSQLM. It is noted that the methods

that use the spectral method is both space and time uses few grid grid points to

give comparable results. In all the methods, the OMD-BSQLM uses the minimal

number of grid points in space since Nη = 20 collocation points is enough in each

subinterval. The formula Mη = Nη + (Nη − 1)(s − 1) also reduces the number of

collocation points used when the number of overlapping subintervals are increased.

In the table, a total number of Mη = 20 + (20 − 1)(5 − 1) = 96 collocation points

is eventually used instead of the 100 collocation points from the other methods.

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in IJCM

In
t. 

J.
 C

om
pu

t. 
M

et
ho

ds
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
N

E
W

 E
N

G
L

A
N

D
 o

n 
09

/2
2/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



May 9, 2020 19:14 WSPC/INSTRUCTION FILE
NONUNIFORM˙PAPAER˙REVISED˙VERSION

16 M. P. Mkhatshwa, S. S. Motsa & P. Sibanda

Thus, it can be concluded that the OMD-BSQLM gives stable and accurate results

using few grid points in each space subinterval and the whole domain. The use of

less grid points at each subinterval minimizes the effects of round-off errors that are

attributed to approximating functions with an interpolating polynomial of higher

degrees.
The numerical solutions are also tested for convergence and accuracy using con-

vergence and residula error analysis. The convergence error norm is the difference
between successive approximations, while the residual error measures the extent to
which the numerical solutions approximate the true solution of the flow equations
(8)-(10). To assess the convergence of the iteration scheme, we have considered the
L∞ and L2 error norms between two successive iterations, define as

||EΦ||∞ = max
0≤j≤Nξ

||Φj,r+1 −Φj,r||∞, ||EΦ||2 =



Nξ∑

j=0

|Φj,r+1 −Φj,r|2



1
2

, (41)

where Φ =
{

F(µ,υ),G(µ,υ),H(µ,υ)
}
. Figure 5 shows the variation in the error

norms against the number of iterations. It can be seen that the error norms de-

crease monotonically with increasing number of iterations. This is an indication

that the method converges as the number of iterations increases. Full convergence

is achieved after about four iterations for all solutions with error norms close to

10−12. Figure 6 depicts the effect of the number of time collocation points(at each

subinterval in ξ) on the convergence of the solutions. Figure 6a represents a case

where the multidomain technique (overlapping) is applied only in space. Figure 6b

corresponds to the BSQLM case (no use of multidomain). The case of MD-BSQLM

and OMD-BSQLM are represented in Figure 6c and Figure 6d, respectively. Usually,

an increase in the number of collocation points results in a reduction of the con-

vergence error. However, after a certain point (a point at which full convergence is

reached), an increase in the number of collocation points does not have a significant

effect on the convergence error. Similar behaviour is noted in the figure. However,

the MD-BSQLM and OMD-BSQLM shows that full convergence can be reached

using 2 collocation points in ξ with solution error of up to 10−7 and 10−11, respec-

tively. This shows that the multi-domain technique in time indeed plays a significant

role in improving convergence. The small solution errors for the OMD-BSQLM can

attributed to the few space collocation points used.

On the other hand, the accuracy of the OMD-BSQLM can be estimated by

considering the residual errors defined as

||Res(w)||∞ = ||∆w

[
F

(µ,υ)
j,r+1,G

(µ,υ)
j,r+1,H

(µ,υ)
j,r+1

]
||∞, w = {f,G,H} , (42)

where ∆w represents the nonlinear PDEs (8) -(10), F
(µ,υ)
j ,G

(µ,υ)
j and H

(µ,υ)
j are the

OMD-BSQLM solutions at the time collocation points ξj . Figure 7(a) depicts the

residual errors against the time scale ξ for both OMD-BSQLM and MD-BSQLM.

It is seen that the residual errors are nearly uniform across ξ. This observation

suggests that the accuracy of the method does not deteriorates when ξ becomes
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large. It is also evident that the residual errors resulting from the OMD-BSQLM

are always smaller compared to those residual errors from the MD-BSQLM when

the same number of iterations are used in both methods. Moreover, the number of

collocation points used over the entire spatial domain are Nη = 100 and Mη = 96

in the MD-BSQLM and OMD-BSQLM, respectively. Figure 7 shows the effect of

varying the number of overlapping subdomains and the number of space collocation

points on the accuracy of the solutions obtained. It is clear from the figure that

the residual errors for the OMD-BSQLM is always smaller than those errors from

the MD-BSQLM. Indeed, the use of multidomain overlapping grid in the proposed

method significantly improves the accuracy of the method. This is due to the fact

that the overlapping grid produces less dense or sparse matrices with a lot of zero

elements. The use of sparse matrices can help to minimize the storage of large

matrices and make it easy to perform matrix-vector multiplications since there is

a lot of multiplication by zero. From the figure, we also notice that increasing the

number of overlapping subdomains improves the accuracy of the method. This is

evident from diminishing residual errors as the number of subdomains increases.

Based on these observations, it can be deduced that the OMD-BSQLM provides

high accuracy and uses minimal number of grid points compared to other methods

such as the MD-BSQLM. Increasing the number of overlapping subdomains in space

minimizes the number of collocation points used in the collocation process.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ξ

F
′ (
ξ,
0)

Fig. 4. Comparison of current results (− − −) of F ′(ξ, 0) with Chiam [1998] (+ + +) for ε =

0.1, Re = 0, A = 0, and Ri = 0.

In order to gain an insight into the physics of the flow problem, the influence of

various parameters on the flow fields are presented in Figures 8-16. Figure 8 shows
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Fig. 5. Convergence error graphs for the OMD-BSQLM

Table 1. Comparison of the SQLM, BSQLM, MD-BSQLM and OMD-BSQLM results for the skin

friction coefficient, Nusselt number and Sherwood number when A = 1, N = 1, Ri = 10,M =

0.1, Re = 10, P r = 1, ε = 0.01, Ec = 0.1 and Sc = 0.94.

ξ |Re1/2Cf | |Re−1/2Nu| |Re−1/2Sh| Nη Nξ |Re1/2Cf | |Re−1/2Nu| |Re−1/2Sh| Nη Nξ

SQLM BSQLM

0.2 0.0175172 3.9362184 1.5643919 60 200 0.0175171 3.9362184 1.5643919 100 10

0.4 0.0188221 4.0813009 1.6159583 60 200 0.0188222 4.0813009 1.6159584 100 10

0.6 0.0822637 4.1176114 1.6627046 60 200 0.0822637 4.1176114 1.6627045 100 10
0.8 0.1595088 4.1237206 1.7111452 60 200 0.1595089 4.1237206 1.7111452 100 10

1 0.2439225 4.1212948 1.7627782 60 200 0.2439227 4.1212949 1.7627783 100 10

1.2 0.3323398 4.1183033 1.8178491 60 200 0.3323397 4.1183032 1.8178491 100 10
1.4 0.4235000 4.1182703 1.8764234 60 200 0.4235002 4.1182703 1.8764235 100 10

1.6 0.5172776 4.1232973 1.9387512 60 200 0.5172776 4.1232972 1.9387512 100 10

1.8 0.6143349 4.1352420 2.0054139 60 200 0.6143350 4.1352421 2.0054137 100 10

2 0.7160290 4.1563051 2.0774319 60 200 0.7160289 4.1563052 2.0774319 100 10

MD-BSQLM OMD-BSQLM

0.2 0.0175171 3.9362184 1.5643919 100 5 0.0175171 3.9362184 1.5643919 20 5
0.4 0.0188222 4.0813009 1.6159584 100 5 0.0188222 4.0813009 1.6159584 20 5

0.6 0.0822637 4.1176114 1.6627046 100 5 0.0822637 4.1176114 1.6627046 20 5

0.8 0.1595089 4.1237206 1.7111452 100 5 0.1595089 4.1237206 1.7111452 20 5
1 0.2439227 4.1212948 1.7627783 100 5 0.2439227 4.1212948 1.7627783 20 5

1.2 0.3323397 4.1183033 1.8178491 100 5 0.3323397 4.1183033 1.8178491 20 5

1.4 0.4235002 4.1182704 1.8764235 100 5 0.4235002 4.1182704 1.8764235 20 5
1.6 0.5172777 4.1232972 1.9387511 100 5 0.5172777 4.1232972 1.9387511 20 5

1.8 0.6143349 4.1352420 2.0054138 100 5 0.6143349 4.1352420 2.0054138 20 5

2 0.7160289 4.1563052 2.0774319 100 5 0.7160289 4.1563052 2.0774319 20 5

the effect of the velocity slip parameter on the velocity and concentration profiles in

the presence of suction. From Figure 8(a), the fluid velocity is observed to decrease

with increasing values of both positive and negative velocity slip parameters near the

wall. This is due to the fact that when slip occurs, the flow velocity near the wall is

no longer equal to the exponentially decreasing mainstream velocity. Away from the
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Fig. 6. Effect of the number of collocation points at each subinterval in ξ on the convergence errors

wall, the velocity is enhanced with increasing values of the velocity slip parameter.

This is because increasing the velocity slip parameter permits more fluids to slip

over the surface due to which the flow near the wall reduces and the slip effect

away from the wall is less pronounced. It can be inferred from Figure 8(b) that an

increase in both positive and negative values of the velocity slip parameter enriches

the species concentration and associated boundary layer thickness. Furthermore,

it can be concluded that the presence of surface slipperiness in the system can

significantly affect the velocity and concentration of the fluid.

Figure 9(a) depicts the influence of the Richardson number on the velocity pro-

files in the case of suction. The fluid velocity is seen to increase with increasing

values of the mixed convection parameter. The Richardson number represents the

ratio of the Grashof number and Reynolds number such that increasing values of the
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Fig. 7. Graphs of residual errors plotted against ξ

mixed convection parameter can enhance the momentum boundary layer thickness,

thus increasing the fluid velocity. The positive values of the Richardson number

indicate that the fluid velocity is accelerated in the direction of the mainstream

due to pressure gradient. The negative values of the Richardson number depict the

back-flow due to buoyancy forces opposing the induced flow, which reduces the

magnitude of the fluid velocity within the exponentially decreasing main stream

boundary layer flow. Similar results were reported by Patil et al. [2018a]. For larger

values of the Richardson number (Ri = 10), the fluid velocity is noted to overshoot

near the wall and this observation concur with those from El-Aziz [2013]. In the

absence of the mixed convection parameter (Ri = 0) the velocity is observed to

remain constant throughout the surface and this corresponds to pure forced con-

vection flow. From Figure 9(b), we observe that the influence of the Biot number
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Fig. 8. Velocity and concentration profiles in case of suction

is more pronounced near the wall in the case of suction. Biot numbers are related

with convective boundary conditions of the model near the surface. Thus, convec-

tive boundary conditions reduce the fluid temperature near the wall. Away from

the boundary, both thermal boundary layer thickness and temperature profiles are

enhanced by increasing values of the Biot number. Physically, an increase in the

strength of the Biot number results to an increase in the convective heat transfer

coefficient hw due to the strong convection. The rise in the heat transfer coefficient

is responsible for enhancing the thermal boundary layer thickness, thus increasing

the fluid temperature. These results are in good agreement with the results obtained

by Hayat et al. [2014] in the absence of suction/injection. It is also noted that the

temperature remain almost the same at the surface vicinity for high values of the

Biot number (Bi = 10, 30). This is connected with the convective heat transfer from

the surface to its surrounding at high Biot numbers. Since the Biot number is high,

the heat transfer from the surface become comparable to that attained from the

irradiation field. This, in turn suppresses the temperature increase at the surface.

The influence of the Biot number on the velocity and concentration profiles is

plotted in Figure 10 in the presence of suction. From Figure 10(a) it is observed that

the influence of the Biot number on the velocity profiles is higher near the boundary,

where increasing values of the thermal Biot number decreases the velocity. Away

from the boundary, the fluid velocity is enhanced with increasing values of the Biot

number. Figure 10(b) shows that concentration increases with increasing values of

the Biot number throughout the boundary layer regime. High Biot numbers are

expected to promote deeper penetration of the concentration due to the fact that

the concentration profiles are driven by the temperature field. Figure 10 implies

that the velocity and concentration boundary layer thickness slightly increase with

an increase in the Biot number due to convective heat transfer at the surface.
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Fig. 9. Velocity and temperature profiles in case of suction
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Fig. 10. Velocity and concentration profiles in case of suction

Figure 11 provides the analysis for various values of the space and temperature

dependent heat source or sink parameters on the velocity distribution in the case

of injection and suction. We observe a mixed response in velocity profile, where the

profile takes a reverse action at η∞ ≈ 1. The inclusion of space and temperature heat

source or sink has an ability to reduce the velocity of the fluid near the boundary.

Away from the wall, the fluid velocity is observed to increase with increasing values

of the non-uniform heat source or sink parameters. This is due to the fact that

an increase in the heat source (A∗ > 0, B∗ > 0) enhances the velocity boundary

layer thickness while the heat sink (A∗ < 0, B∗ < 0) reduces the velocity boundary

layer thickness. From Figure 11(a), we observe that the influence of the space-
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dependent heat source parameter is more effective in the injection case compared

with the suction case. The opposite trend in seen with the effect of space-dependent

heat absorption. Figure 11(b) depicts that the effect of temperature-dependent heat

source/sink parameter is more sensitive in the case of injection than in suction. The

velocity boundary layer thickness is enhanced with the injection parameter while

reduced with the suction parameter.
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Fig. 11. Velocity profiles

Figure 12 shows the influence of the space and temperature dependent heat

source or sink parameters on the temperature field in the presence of both injection

and suction. The fluid temperature decreases near the boundary when the space

and temperature heat source or sink coefficients increase. Away from the wall, the

temperature is noted to be boosted with increasing values of the non-uniform heat

source or sink parameters. As expected, the temperature is enhanced with heat gen-

eration (A∗ > 0, B∗ > 0) and reduced with heat absorption (A∗ < 0, B∗ < 0). These

observation coincides with the general physical behaviour of the heat source/sink

that positive values of A∗ and B∗ acts like heat generators and negative values

of A∗ and B∗ operate like heat absorbers. An increase in the heat generation pa-

rameters significantly enhance the thermal boundary layer thickness. The boundary

layer generates heat energy to the flow which enhances the temperature field as the

heat source parameter increases. The reverse effects is true in the case of heat ab-

sorption. Also, the thickness of the thermal boundary layer thickness increases with

the injection parameter. This is because the injection parameter reduces the fluid

temperature and heat energy, whereas suction reduces the temperature, thus caus-

ing a thin thermal boundary layer. This observation concurs with findings reported

by Patil and Kumbarwadi [2017]. Figure 13 shows the effects of the non-uniform

heat source/sink parameters A∗ and B∗ on the concentration profile in the case
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of injection and suction. It is clear that increasing values of A∗ and B∗ enhances

the concentration boundary layer thickness. The solutal boundary layer thickness

is enhanced by the energy released to the flow. Moreover, the injection parameter

improves the concentration profiles while suction reduces the concentration.
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Fig. 12. Temperature profiles
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Fig. 13. Concentration profiles

The effect of the magnetic field parameter and buoyancy ratio parameter on the

temperature field is depicted in Figure 14 in the presence of both for suction and

injection. We observe from Figure 14(a) that near the wall, the fluid temperature

decreases with increasing values of the magnetic field parameter. Away from the
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boundary, the thermal boundary layer thickness increases, which in turn enhances

the fluid temperature. An increase in the magnetic field parameter implies the in-

crement in the strength of Lorentz force. Due to the stronger Lorentz force, the fluid

becomes hot and causes the fluid temperature to rise. As expected, the temperature

and thermal boundary layer thickness are noted to be higher for hydromagnetic flow

(M 6= 0) compared to hydrodynamic (M = 0) case. Figure 14(b) shows that the

temperature increases with increasing values of the buoyancy ratio parameter (N)

near the wall. Away from the wall, the temperature and thermal boundary layer

thickness decrease with increase in the ratio of buoyancy forces. Since the buoy-

ancy ratio parameter is the concentration and thermal buoyancy forces ratio, the

increment of the buoyancy ratio parameter minimizes the thermal buoyancy force

which in turn reduces the fluid temperature. It is worth mentioning that here we

used N > 0 and that means the thermal and concentration buoyancy forces act in

the same direction. It is also noted that the magnetic field strength and buoyancy

forces are more influential in the case of injection in contrast with suction.
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Fig. 14. Temperature profiles

Figure 15 depicts the influence of the chemical reaction and buoyancy ratio

parameters on the concentration profiles. From Figure 15(a), it is noted that the

concentration increases with destructive chemical reaction (K < 0) and decreases

with the constructive chemical reaction (K > 0). This is due to the fact that in-

troducing chemical reaction in the system produces consumption of the chemical,

thus reducing the concentration profiles. It is worth noting that destructive chem-

ical reaction overshoots the concentration profiles in the solutal boundary layer.

Figure 15(b) shows that the increase in the buoyancy ratio parameter reduces the

concentration buoyancy force, thus reducing concentration profiles. Figure 15 shows

that concentration is higher in the injection case compared to the suction case. It
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is important to mention that the influence of chemical reaction is clearly high in

the presence of injection and similar findings were reported by Raju et al. [2018].

Figure 16 elucidate the repercussions of the Reynolds number on the velocity and

concentration profiles. It is noted that the velocity increases for some distance from

the wall and then decreases away from the wall as seen in Figure 16a. The veloc-

ity profile is also observed to be parabolic and symmetric. On the other hand, the

concentration profile and associated boundary layer thickness also diminish with

intensifying Reynolds number as shown in Figure 16b.
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Fig. 15. Concentration profiles
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Fig. 16. Velocity and concentration profiles
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Figures 17 - 23 illustrate the behaviours of some important controlling parame-

ters on the skin friction, heat and mass transfer characteristics in the case of suction.

An increase in the values of the non-uniform heat source/sink helps to depreciate

the local skin friction as seen in Figure 17. From these observation, it can be de-

duced that the heat sink parameter has ability to increase the friction between the

wall and the fluid layers. Due to the increase in friction, the fluid velocity decreases

while the skin friction coefficient enhances. The opposite trend occurs in the case

of heat source parameter. Figure 18 displays the influence of the Biot number and

velocity slip parameter on the skin friction coefficient. The skin friction coefficient is

found to increase significantly with increasing values of the velocity slip parameter

and decreases with increasing values of the Biot number.
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Fig. 17. Skin friction coefficient in case of suction

Figure 19 shows the effect of the space-dependent and temperature-dependent

heat source/sink on the heat transfer rate. The heat transfer rate decreases with

increasing values of the non-uniform heat source/sink parameter. As mentioned

earlier, for the case of heat source, the thermal boundary layer generates the energy

which causes a fall in the rate of heat transfer within the thermal boundary layer. As

a result, the thickness of the boundary layer is enhanced with space-dependent and

temperature-dependent parameter. For the case of heat sink, the thermal energy

is absorbed causing enhancement in the heat transfer rate and similar results were

reported by Patil et al. [2018b]. Figure 20 exhibits the rate of heat transfer as a

function of the Biot number and buoyancy ratio parameter. It is clear from the

figure that rate of heat transfer decreases with increasing values of the Biot number

and buoyancy ratio parameter.

Figure 21 depicts the nature of the Sherwood number with the space and tem-

perature dependent heat source/sink parameters. It is observed that the Sherwood
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Fig. 18. Skin friction coefficient in case of suction
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Fig. 19. Heat transfer coefficient in case of suction

number decreases with the heat source and increases with the heat sink. The mass

transfer characteristics is weakly influenced by the presence of the temperature

dependent heat source/sink coefficient. The impact of chemical reaction and buoy-

ancy ratio parameter on the Sherwood number is shown in Figure 22. The Sherwood

number decreases with increasing the constructive chemical reaction and enhances

with the destructive chemical reaction. This is because as the chemical reaction

parameter increases, the concentration difference between the surface and the fluid

decreases, thus enhancing the rate of mass transfer. On the other hand, the mass

transfer rate also enhances with increasing the buoyancy ratio parameter. This is

because the flow is assisted by the concentration buoyancy effects. Figure 23 indi-
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Fig. 20. Heat transfer coefficient in case of suction

cate that as the Reynolds number increases the local skin friction coefficient decays

exponentially. This means that escalating Reynolds number leads to fluctuation in

the magnitude of the skin friction coefficient. The opposite trend is true for the

local Sherwood number as it is an increasing function of the Reynolds number.
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Fig. 21. Mass transfer coefficient in case of suction

Table 2 presents the numerical results for dimensionless skin friction, Nusselt

number and Sherwood number for suction and injection cases. The table shows that

the suction plays a significant role in improving the skin friction, heat and mass

transfer coefficients compared to the injection. This is evident from higher values

of the skin friction, heat and mass transfer coefficients in the suction case.
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Fig. 22. Mass transfer coefficient in case of suction
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Fig. 23. Skin friction and Sherwood number in the case of suction

5. Conclusion

In this study, steady MHD mixed convection slip flow, heat and mass transfer along

an exponentially decreasing mainstream with first order chemical reaction, non-

uniform heat source/sink and convective boundary conditions were analyzed using

overlapping multi-domain bivariate spectral quasilinearisation method. Numerical

simulations were carried out to determine the convergence and accuracy of the

numerical method. The main advantage of the proposed method is that it generate

accurate results using few iterations and minimal number of grid points in each

space subinterval as well as the entire interval. The use of minimal numbers of grid
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Table 2. Skin friction coefficient, Nusselt Number and Sherwood number for the case of suction

(A = 1) and injection (A = −1) when N = 1, Ri = 10,M = 0.1, Re = 10, P r = 1, ε = 0.01, Ec =
0.1, Sc = 0.94 and ξ = 1.

δ Bi A∗ B∗ |Re1/2Cf | |Re−1/2Nu| |Re−1/2Sh| |Re1/2Cf | |Re−1/2Nu| |Re−1/2Sh|

Suction Injection

1 1 0.5 0.5 0.2439227 4.1212948 1.7627783 0.2008870 0.6398087 0.6849361

5 1 0.5 0.5 0.0584304 4.0828993 1.7524138 0.0494957 0.6232413 0.6814297

10 1 0.5 0.5 0.0299579 4.0769098 1.7507928 0.0254877 0.6206566 0.6808708

1 1 0.5 0.5 0.2439227 4.1212948 1.7627783 0.2008870 0.6398087 0.6849361
1 2 0.5 0.5 0.3236331 4.1794524 1.7460563 0.2036866 0.6291255 0.6845098

1 15 0.5 0.5 0.3935490 4.2214230 1.7320557 0.2060662 0.6202246 0.6841433

1 1 -0.5 0.5 0.9844270 5.2483552 2.0398501 1.3074576 1.9166681 0.9289285

1 1 0.4 0.5 0.1002207 3.4003299 1.7999717 0.0697824 0.6175523 0.7062063
1 1 0.8 0.5 0.7282864 5.6581648 1.6240270 0.5283801 0.5009251 0.6347123

1 1 0.5 -0.5 0.0335763 3.5063021 1.8161290 0.0128988 1.1404192 0.7182340

1 1 0.5 0.4 0.2165867 4.0576015 1.7698482 0.1794568 0.7138252 0.6887694
1 1 0.5 0.9 0.3380287 4.3054004 1.7380890 0.2670998 0.3731032 0.6730068

points at each subinterval minimizes the effects of round-off errors that can lead

to instabilities. The accuracy improves as the number of overlapping subdomains

increases. An increase in the number of overlapping subdomains minimizes the

number of grid points required in the whole domain. The accuracy improvement is

attributed to the overlapping grid which makes the coefficient matrices (in matrix

equations that results from collocation process) to be less dense. The following

conclusions are drawn from the obtained results:

• The higher values of the velocity slip parameter enhance the velocity, con-

centration profiles and the skin friction coefficient.

• The higher values of the thermal Biot number and non-uniform heat

source/sink augment the velocity, temperature and concentration distri-

butions while reducing the skin friction and heat transfer coefficients.

• The introduction of chemical reactive species in the system diminishes the

concentration field while enhancing the rate of mass transfer.

• The influence of magnetic field strength, buoyancy forces, chemical reactive

species and non-uniform heat source/sink coefficients is more sensitive in

the case of injection than in suction.

• The presence of suction parameter in the system can significantly improve

the skin friction coefficient, heat transfer and mass transfer rate.

The success of the study provokes the need for extending the application of the

method to complex problems, which include problems modelling unsteady mixed

convection flows with two-time dependent variables. Thus, future investigations

will consider unsteady mixed convection from exponentially decreasing mainstream

velocity, where we will also examine the computational efficiency and stability of

the method.
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Chapter 7

MHD bioconvective radiative flow of chem-

ically reactive Casson nanofluid from a ver-

tical surface with variable transport proper-

ties

This chapter extends the work in previous chapters to a non-Newtonian fluid flow which is de-

scribed by partial differential equations. The movement of motile microoganisms in non-Newtonian

fluid flow model is also taken into account. This chapter provides an analysis of MHD bioconvec-

tive flow of Casson nanofluid past a vertical surface by considering fluid properties of a variable

nature. The conservation equations are solved using the overlapping multi-domain bivariate spec-

tral quasilinearisation method. The solution error and residual errors are presented to gain an

understanding of the convergence rate and accuracy of the numerical scheme. The solutions of

dimensionless velocity, temperature, concentration and density of motile microorganisms are pre-

sented for various flow parameters.
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vertical surface with variable transport properties

Musawenkhosi Patson Mkhatshwa ,a, Sandile Motsaa,b and Precious Sibandaa

aSchool of Mathematics, Statistics & Computer Science, University of Kwazulu Natal, Scottsville, South Africa; bDepartment of Mathematics, University
of Eswatini, Kwaluseni, Kingdom of Eswatini

ABSTRACT
In this paper, we analysemagnetohydrodynamic bioconvective flow of Casson nanofluid comprising gyro-
tactic microorganisms from a vertical surface with variable thermo-physical features, nonlinear radiation,
chemical reaction, Hall and ion-slip currents. The Casson fluid model incorporates zero nanoparticle mass
flux at the boundary along with aspects of Brownian motion and thermophoresis to improve the motion
of nanoparticles. The inclusion of motile microorganisms is considered to be beneficial for the stability of
the nanoparticles. The model equations are first reduced into dimensionless form and then solved numer-
ically using overlapping multi-domain bivariate spectral quasilinearisation method. Numerical analysis of
the residual error and convergence properties of the method are discussed. For validation, our numerical
results were compared with those available in the literature, and an excellent agreement was found. The
impact of significant parameters on the flow fields, skin friction coefficients, heat, mass andmotilemicroor-
ganism transfer rates are analysed. We found that the flow fields improve due to enhancement of variable
thermal conductivity, whereas retard with increment in variable viscosity and Casson fluid parameter. The
inclusionof variable thermal conductivity andnonlinear radiativeheat flux augments the fluid temperature,
heat andmass transfer rates. An increment in variable fluid viscosity and Casson fluid parameter enhances
heat and motile microorganism transfer rates, whereas diminishes the mass transfer rate. The reported
observations find applications in enrobing processes for electric-conductive nano-materials, can be used
in aerospace, smart coating transport situation, polymer processing and other industries. This type of flow
can efficiently be utilised in solar energy system, enhancement of extrusion systems, and improvement of
heat transfer devices as well as microbial fuel cells.

ARTICLE HISTORY
Received 5 June 2020
Accepted 27 August 2020

KEYWORDS
Overlapping multi-domain
bivariate spectral
quasilinearisation method;
variable fluid properties;
casson nanofluid; nonlinear
thermal radiation; hall/ion
slip currents; chemical
reaction

1. Introduction

The topic of nanofluids was introduced by Choi (1995) and it
involves tiny nanoparticleswith variousmetallic elements,metal
oxides, Carbides or carbon nanotubes having particular chem-
ical and physical properties, which are suspended in the base
fluid such as water, ethylene glycol and engine oil. Nanoflu-
ids have been a subject of interest to many researchers due to
their extensive need for efficient heat transfer fluid as it pos-
sesses high thermal conductivity properties than the base fluids.
According to Eastman et al. (2001), the inclusion of nanoparti-
cles in the base fluid produce a significant improvement in heat
transfer capabilities and stability of suspensions. Due to high
thermal conductivity, nanofluids have many industrial applica-
tions including power generation, wire drawing, metal spin-
ning, extrusion, lubricant, glass fibre production, hot rolling and
cooling process. Nanofluids are also utilised in crucial fields
in modern science and technology as nuclear reactors, elec-
tronics, biomedicine and transportation. A comprehensive sur-
vey of convective transport in nanofluids was made by Buon-
giorno (2006) who considered seven slip mechanisms that can
produce a relative velocity between nanoparticles and the base
fluid. Amongst these mechanisms, only Brownian diffusion and

CONTACT Musawenkhosi Patson Mkhatshwa patsonmkhatshwa@gmail.com

thermophoresiswere found tobe themost significant slipmech-
anisms in nanofluids. For further understanding of nanofluids
one can read (Ibrahim and Khan 2020; Gireesha et al. 2020; Khan
et al. 2019; Hayat et al. 2018; Rashid et al. 2018).

In recent past years, flow, heat and mass transfer of non-
Newtonian nanofluids from a vertical flat surface has attracted
attention of several researchers due their valuable applications
inmechanical, chemical and engineeringprocesses. These appli-
cations include polymer, biological solutions, manufacturing
crude soft material, greases, glues, chemicals, paints, petroleum
and oil reservoir engineering. Unfortunately, there is no spe-
cific constitutive equation available that describes the entire
non-Newtonian materials. Thus, researchers have used various
constitutive equations according to their rheological proper-
ties about non-Newtonian behaviour. Javed et al. (2019) con-
sidered the flow of Jeffrey nanofluid over a variable thick sur-
face with Joule heating and nonlinear radiative heat flux. It
was noted that the temperature increase for higher values of
radiative heat flux and Eckert number. Javed et al. (2019) scru-
tinised nonlinear radiative nanofluid flow of power law model
inducedby a stretched surfacewith heat generation/absorption,
Joule heating, viscous dissipation and chemical reaction. Von

© 2020 Informa UK Limited, trading as Taylor & Francis Group
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Kármán swirling analysis of Oldroyd-B nanofluid flow under the
influence of heat generation/absorption, thermophoresis and
Brownian motion aspects was discussed by Abbas et al. (2019).
Amongst their findings, they found that increment in Brow-
nian motion enhances temperature, while nanoparticle con-
centration intensifies with escalating thermophoresis param-
eter. Qayyum et al. (2018) explored flow characteristics of
Williamson fluid between two rotating disks with Viscous dis-
sipation, thermal radiation and heat source/sink effects. Two-
dimensional flow of second grade fluid between two parallel
plates in the presence of temperature-dependent viscosity and
heat source/sink was considered by Hayat et al. (2017) and they
reported that fluid temperature enhances in the case of vari-
able thermal conductivity. Hayat et al. (2018) also studied flow
of third grade nanofluid due to stretching rotating disk by taking
into account chemical reactionand internal heat generation. The
concentration field was observed to diminish for stronger ther-
mophoretic force and higher chemical reaction. Gaffar, Prasad,
and Reddy (2016) analysed mgnetohydrodynamic (MHD) free
convection flow of Eyring-Powell fluid from a vertical surface in a
non-Darcyporousmedium.Gaffar, Prasad, andReddy (2016) also
studied MHD free convection flow of tangent hyperbolic fluid
over a vertical surface. Both studies used the Darcy-Forchheimer
model to describe the inertia effects in porous media, and take
into account the effects of Joule heating, viscous dissipation,
Hall and ion-slip currents. Their critical findings include that
increasing Hall and ion-slip parameter improves primary veloc-
ity, skin friction, heat and mass transfer rates while decreasing
secondary velocity, temperature and concentration. Hall and
ion-slip effects play a significant role in many geophysical and
astrophysical applications in addition to thermal engineering
problems.

Amongst the classes of non-Newtonian nanofluids, Casson
fluid is one of the most acceptable non-Newtonian fluid to sim-
ulate shear thinning liquids containing rod-like solids and is well
known in analysing inks, emulsions, food stuffs, certain gels and
paints. Casson fluid model is able to accommodate complex
rheological properties of a fluid when compared to other fluid
models such as the power law, second, third or fourth-grade
models (Andersson et al. 1996; Sajid et al. 2009). According to
Casson (1959) and Dash, Mehta, and Jayaraman (1996), Casson
fluid is a shear thinning liquid which is assumed to have an infi-
nite viscosity at zero rate of shear, a yield stress below which no
flow occurs, and a zero viscosity at an infinite rate of shear. It is
based on the structure of liquid phase and interactive behaviour
of solid of a two-phase suspension. Examples of Casson fluids
include Jelly, honey, tomato sauce and concentrated fruit juices.
Possible applications of Casson fluids involve fibrinogen, cancer
homeo-therapy, protein and red blood cells form a chain type
structure. Casson fluid theory has also been used in advanced
polymeric flow processing (Pham and Mitsoulis 1994). Casson
fluid flow problems on various geometries have been exten-
sively consideredbecause of the significant effect of Casson fluid
on heat transfer rate and its possible applications in food pro-
cessing and bioengineering operations. Amanulla, Nagendra,
and Reddy (2018) analysed the boundary layer flow of Casson
nanofluid over a semi-infinite vertical plate surface and con-
cluded that the velocity, temperature and nanoparticle concen-
tration fields decreasewith increment in Casson fluid parameter.

Ghadikolaei et al. (2018) studiedmagneto Casson nanofluid flow
past a stretching sheet by considering the effects of nonlinear
thermal radiation, Joule heating, chemical reaction, heat genera-
tion/absorption, viscous dissipation, Brownianmotion and ther-
mophoresis. The influence of Casson fluid parameter on tem-
perature and concentration profiles is noted to be opposite to
that reported by Amanulla, Nagendra, and Reddy (2018). Other
relevant results include that increment in temperature profile
increase with radiation parameter and nanoparticle concen-
tration diminish with chemical reaction parameter. Gbadeyan,
Titiloye, and Adeosun (2020) pondered the combined influence
of variable thermal conductivity, variable fluid viscosity andnon-
linear radiation on MHD Casson nanofluid flow over a verti-
cal flat plate and concluded that velocity increases, whereas
both temperature and nanoparticle volume fraction decrease
with increment in variable thermal conductivity and viscosity.
Das et al. (2019) considered unsteady MHD chemically reac-
tive double-diffusive Casson fluid past a flat surface with heat
and mass transfer. The introduction of motile microorganisms
into the sytem can be beneficial for the suspension of nanoflu-
ids since it helps to stabilise the suspended nanoparticles. It is
noted that the above-mentioned studies were considered in the
absence of motile microorganisms.

The first pioneers of the notion of bioconvection are
Wager (1911) and Platt (1961). Bioconvection is a phenomenon
that emerge as a result of upswimming microorganisms, which
are less dense than water in suspensions. When the upper
surface of the suspensions becomes more dense because of
the assembling of microorganisms, it becomes unstable and
microorganisms fall to produce bioconvection. It is very impor-
tant to comprehend thebehaviour of themicroorganisms in sus-
pensions of nanofluids due to its applications in fields of biotech-
nology and medicine. Behaviour of nanoparticles accompa-
nied with microorganisms are significant in bioinspired systems
including artificial swimmers of drug particles, which can be
used in the process of drug delivery. Self-propelled microorgan-
isms are denser than the cell fluid and this cause bioconvection
and take place because of overturning instability resulted from
microorganisms swimming to the upper surface of a fluid, which
has a lower density than that of the microorganisms. Gyrotac-
tic microorganism is based on the balance of gravitational and
viscous torques causing bottom-heavy microorganisms to devi-
ate from the vertical (Plesset 1974). Most of the time, gryrotactic
microorganisms swim opposite to the gravity where the base
fluid is water. Nevertheless, once bioconvection emerge, their
swimmingdirection is determinedby thebalanceof two torques
which are the viscous torque acting on the body placed in a
shear flowand the torqueproducedbygravity (Nayak et al. 2019;
Shahid et al. 2018). The inclusion of gyrotactic microorgan-
isms in non-Newtonian nanofluid is necessary since it helps in
improving thermal performances and extrusion systems in dif-
ferent transport processes. Possible applications of nanofluid
bioconvection includenanomaterial processing and automotive
coolants.

The onset of nanofluid bioconvection was first considered by
Kuznestov (2011). Several researchers then considered biocon-
vective nanofluid flow with various geometrical configurations.
Bhatti and Michelides (Bhatti and Michaelides 2020) considered
thermo-bioconvection flow of a nanofluid containing gyrotactic
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towards a Riga plate and established that the motile microor-
ganism profile decreases significantly with increment in both
bioconvection Schmidt number and Peclet number. The three-
dimensional nanofluid flow over rotating circular plates filled
with nanoparticles and gyrotactic microorganisms was exam-
ined by Zhang et al. (2020). Beg, Uddin, and Khan (2015) studied
bioconvetion flowofnon-Newtoniannanofluidover ahorizontal
surface in a porous media filled with gyrotactic microorgan-
sims. They found that the boundary layer flow accelerates with
higher bioconvection Rayleigh number and nanofluid buoy-
ancy ratio. Also, the motile microorganism density function was
noted to elevate due to increment in bioconvection Lewis num-
ber while suppressed with the Peclet number. Al-Khaled, Khan,
and Khan (2020) investigated the bioconvection flow of tan-
gent hyperbolic nanoliquid over an accelerated moving surface
with gyrotactic microorganisms, chemical reaction and nonlin-
ear radiation. Heat transfer rate was established to improve with
escalating radiation parameter, thermophoresis and Brownian
motion. Magagula, Shaw, and Kairi (2020) examined double-
dispersed bioconvective Casson nanofluid flow past a nonlinear
stretching sheet with nonlinear radiation and chemical reac-
tion. The density of motile microorganisms was disclosed to
decrease with increase in the Casson number, while enhance
with increase in the density ratio of the motile microorgan-
ism. Experiments have shown that the influence of radiation on
microorganisms have destruction effects on organisms such as
bacteria and fungi. As a result, radiation in microorgansisms has
been extensively utilised in waste water sludge management.
Sabir et al. (2019) analysed two-phase Casson nanofluid flow
past a stretching sheet with chemical reaction and gyrotactic
microoganisms. Chemical reaction plays a vital role in processes
such as food processing, manufacturing of ceramics and drying.

The effectiveness of heat transfer in fluids is mostly depen-
dent on their thermo-physical features. Among these features,
we have fluid viscosity and thermal conductivity, which are sig-
nificant factors in the heat transfer processes. In the majority
of earlier published works, viscosity and thermal conductiv-
ity have been considered as constants. However, experiments
have shown that the importance of these physical properties in
isotropic fluid is quite limited. In case of variable thermo-physical
properties, the effects of such physical quantities cannot be
declined. To accurately analyse the flow and heat transfer pro-
cesses it is necessary to consider fluid viscosity and thermal con-
ductivity of variable nature. Several researchers have studied the
effects of variable fluid properties on non-Newtonian nanofluids
containing gyrotactic microorganisms. Oyelakin, Mondal, and
Sibanda (2019) investigated bioconvective Casson nanofluid
flow over a moving wedge nonlinear radiation and concen-
tration dependent fluid properties. It was reported that the
flow fields, skin friction coefficient, heat and motile microor-
ganism transfer rates increase by varying the transport proper-
ties. Khan, Hehzad, and Ali (2020) studied bioconvection flow
of Williamson nanofluid over an oscillatory stretching surface
with motile microorganisms and variable thermal conductiv-
ity. Their results indicated that the presence of variable ther-
mal conductivity, thermophoresis and Brownian motion effects
are more frequent for enhancement of heat transfer. Abdel-
malek et al. (2020) explored bioconvection flow of Williamson

nanofluid over a stretching cylinder with variable thermal con-
ductivity. Sohail et al. (2019) studied the effects of variable ther-
mal conductivity and mass diffusion on three-dimensional flow
of Casson nanofluid over a nonlinear stretched surface with
gyrotactic microorganisms. The above studies ignored the influ-
ence of exponentially varying fluid viscosity.

The purpose of the present work is to analyse MHD three-
dimensional bioconvection flow of Casson nanofluid filled with
gyrotactic microorganisms by considering the combined effects
of nonlinear thermal radiation, exponentially varying viscos-
ity and thermal conductivity. Nonlinear thermal radiation fea-
tures are found in applications such as thermal extrusion phe-
nomenon, solar system, missile technology, heavy mechanical
apparatus, fission and fusion reactions. The inertial contribu-
tion in the porous medium model is accounted for through
the inclusion of a velocity squared term in the momentum
equation, which is referred to as Forchheimer’s extension.
Muhammad et al. (2019) considered a fully developed Darcy-
Forchheimer mixed convection flow over a curved surface and
noted that the fluid velocity decays for the Forchheimer num-
ber. Hayat et al. (2018) investigated water-based carbon nan-
otubes nonlinear stretched flow through a Darcy-Forchheimer
porous medium in the presence of heat source/sink and non-
linear thermal radiation. Their results showed that the magni-
tude of skin friction coefficients increase for larger inertia coef-
ficient, whereas higher radiation and temperature difference
parameters boost themagnitude of heat transfer rate. The Buon-
giorno model Buongiorno (2006) is employed in the present
analysis by incorporating the aspects of Brownian motion and
thermophoretic diffusion. The literature review clearly indicates
that bioconvective flow of non-Newtonian Casson nanofluid
over a vertical plate surface in a non-Darcy porous medium
with nonlinear radiation features, temperature dependent ther-
mal conductivity and exponential variable fluid viscosity in the
presence of heat source/sink, viscous dissipation, Joule heat-
ing, chemical reaction, Hall and ionslip currents has not been
reported yet. Thus, in view of significance of nanofluid bio-
convection, the authors are motivated to tackle this problem.
The current flow analysis can contribute towards enhancing
the efficiency of thermal energy transportation systems. To
achieve such maximum efficiency and improve the produc-
tion process, we consider one of the important non-Newtonian
fluid with useful factors and valuable applications. The dimen-
sional model equations are first reduced into dimensionless
form and then solved numerically using the recently developed
overlapping multi-domain bivariate spectral quasilinearisation
method (OMD-BSQLM)(Mkhatshwa, Motsa, and Sibanda 2019;
Mkhatshwa et al. 2020, 2020?). The method applies the multi-
domain technique in both space and time and further uses the
overlapping grid approach in the spatial domain. The method
was found to require few grid points to achieve highly accu-
rate results. The improved accuracy is attributed to the use
of overlapping grid which makes the coefficient matrices in
matrix equation that results from collocation process to be less
dense, thus easy to invert. The present study assesses the con-
vergence and accuracy of the method by performing conver-
gence and residual error analysis which is limited in the previous
studies.
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2. Mathematical analysis

We consider MHD bioconvective flow of a viscous, incom-
pressible and partially-ionised electrically conducting Casson
nanofluid containing gyrotactic microorganisms adjacent to a
non-isothermal vertical surface embedded in a non-Darcy satu-
rated porousmediumwith variable fluid properties. For control-
ling the temperature field, features of nonlinear thermal radia-
tion and heat generation/absorption are adopted in the energy
equation. First-order homogeneous chemical reaction is also
considered in the concentration equation to improve the mass
transport. The features of Brownian motion and thermophore-
sis effects are included in the system for the nanofluid flow
through deploying the Buongiorno’s nanofluid model (Buon-
giorno 2006). The motile microorganisms are basically used to
stabilised the suspended nanoparticles due to bioconvection
generated by combined effect of buoyancy forces and mag-
netic field. The physical model of the problem and Cartesian
coordinates is shown in Figure 1. The plate surface is in the x-z
plane, where x and y-axes are parallel and normal,respectively,
and the z-axis coincides with the leading edge of the plate. The
magnetic field with component B0 acts only in the y-direction.
Themagnetic Reynolds number is small enough for the partially
ionised fluid so that inducted magnetic field can be neglected.
However, relative motion of the particles in the fluid can occur
and the electron-atom collision frequency is assumed to be
high enough for Hall and ionslip currents to be significant. The
influence of Hall current gives rise to a force in the z-direction,
which induces a cross flow in that direction, and hence the
flow becomes three-dimensional. Initially, the vertical surface
and Casson fluid are maintained at the same temperature Tw ,
nanoparticle concentration Cw , and density of motile microor-
ganism Nw . The ambient fluid temperature, concentration and
density number of motile microorganisms are given by T∞,C∞
and N∞, respectively. The fluid viscosity is assumed to vary
as an exponential function of temperature, whereas thermal

conductivity vary linearly as a function of temperature. The rhe-
ological equation of an isotropic and incompressible flowof Cas-
son fluid is givenbySharada andShankar (2015),Mukhopadhyay
and Bhattacharyya (2013), and Kala (2016)

τij =

⎧⎪⎪⎨
⎪⎪⎩
2
(

μB + Py√
2π

)
eij , ifπ > πc,

2
(

μB + Py√
2πc

)
eij , ifπ < πc,

(1)

Here, Py is the yield stress of the Casson fluid, which can be
expressed in the form

Py = μB
√
2π

β
, (2)

π = eijeij is the product of the component of deformation rate,
with eij as (i, j)-th component of the deformation rate, πc is crit-
ical value of π based on the non-Newtonian model, μB is the
plastic dynamic viscosity of the non-Newtonian fluid. For the
case of Casson fluid flow, where π > πc, we can write that

μf = μB + Py√
2π

. (3)

Making use of Equation (2) in Equation (3), the kinematic viscos-
ity becomes

νf = μf

ρf
= μB

ρf

(
1 + 1

β

)
, (4)

Under the above assumptions alongwith boundary layer and
Boussinesq’s approximations, and using the Darcy-Forchheimer
model, the governing equations of bioconvection flow of Cas-
son nanofluid in the presence of viscous dissipation and Joule
heating effects are given by Abo-Eldahab and Aziz (2005), Gaf-
far, Prasad, and Reddy (2016), Gaffar, Prasad, and Reddy (2016),
and Amanulla, Nagendra, and Reddy (2018):

∂u

∂x
+ ∂v

∂y
= 0, (5)

Figure 1. Physical model and coordinate system
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u
∂u

∂x
+ v

∂u

∂y
= 1

ρf

(
1 + 1

β

)
∂

∂y

(
uB(T)

∂u

∂y

)

− σB20
ρf (α

2
e + β2

e )
(αeu + βew) − b1

u2

kp

− μB(T)

ρf kp

(
1 + 1

β

)
u + g∗[βT (T − T∞)

+ βC(C − C∞) + βN(N − N∞)], (6)

u
∂w

∂x
+ v

∂w

∂y
= 1

ρf

(
1 + 1

β

)
∂

∂y

(
uB(T)

∂w

∂y

)

− μB(T)

ρf kp

(
1 + 1

β

)
w − b1

w2

kp
+ σB20

ρf (α
2
e + β2

e )
(βeu − αew)

(7)

u
∂T

∂x
+ v

∂T

∂y
= 1

(ρc)p

∂

∂y

(
k(T)

∂T

∂y

)

+ τ

[
DB

∂T

∂y

∂C

∂y
+ DT

T∞

(
∂T

∂y

)2
]

+ σB20
(ρc)p(α2

e + β2
e )

(u2 + w2)

+ μB(T)

(ρc)p

(
1 + 1

β

)[(
∂u

∂y

)2

+
(

∂w

∂y

)2]

+ Q0

(ρc)p
(T − T∞) + 16σ ∗

3k∗(ρc)p
∂

∂y

(
T3

∂T

∂y

)
, (8)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+ DT

T∞
∂2T

∂y2
− kc(C − C∞), (9)

u
∂N

∂x
+ v

∂N

∂y
+ bWc

Cw − C∞
∂

∂y

(
N

∂C

∂y

)
= DN

∂2N

∂y2
, (10)

where u, v and w are velocity components in the x, y, z direc-
tions, T is the temperature, C is the nanoparticle concentration,
N is the density of motile microorganisms, ρf is the density
of the base fluid, cp is the specific heat, g∗ is the accelera-

tion due to gravity, σ = e2nete
me

is electrical conductivity of the
fluid, e is the electron charge, te is the electron collision time,
ne is the electron number density, me is the mass of the elec-

tron, kp is the permeability of the porous medium, β = 2
√
2π

Py
is the Casson fluid parameter, βT ,βC and βN represents volu-
metric coefficient of thermal, solutal and motile microorganism
expansions, B0 is themagnetic field intensity,Q0 is the heat gen-
eration/absorption coefficient, k∗ is the mean absorption coef-
ficient, σ ∗ is the Stefan-Boltzman constant, DB is the Brownian
motion coefficient, DT is the thermophoresis diffusion coeffi-
cient, DN is the diffusivity of the motile microorganisms, τ =
(ρc)p
(ρc)f

is the ratio of heat capacity of nanoparticles material and
heat capacity of base fluid, b is the chemotaxis constant, Wc is
the maximum cell swimming speed, kc is the chemical reaction
coefficient, b1 is the Forchheimer form-drag parameter, αe =
1 + βiβe, whereβi = eneB0

(1+ne/na)kai
is the ion-slipparameterwithna

being the neutral particle number density and kai is the friction
coefficient between ions and neutral particles, and βe = ωete is
the hall current with ωe being the electron frequency. The trans-
port properties of the fluid are assumed to be constants, except
for the temperature dependent fluid viscosityμB(T) and thermal
conductivity k(T) expressed in the form Gbadeyan, Titiloye, and

Adeosun (2020), Jawali, Chamkha, and Mohiuddin (2016), Mah-
moud and Megahed (2009), Megahed (2019), and Oyelakin and
Sibanda (2020)

μB(T) = μ∞e−α T−T∞
Tw−T∞ , k(T) = k∞

[
1 + ε

T − T∞
Tw − T∞

]
, (11)

where u∞ and k∞ are the respective ambient fluid viscosity and
thermal conductivity, α and ε are the variable viscosity parame-
ter and thermal conductivity parameter, respectively.

The boundary conditions are given by

u = v = w = 0, T = Tw ,

DB
∂C

∂y
+ DT

T∞
∂T

∂y
= 0, N = Nw , at y = 0,

u → 0, w → 0, T → T∞, C → C∞, N → N∞, as y → ∞,
(12)

To transform the nonlinear PDEs (5)–(10) into a dimensionless
form, we introduce the following similarity transformations:

ξ = x1/2

L1/2
, η = C1y

x1/4
, � = 4νf C1x

3/4f (ξ , η),

θ(ξ , η) = T − T∞
Tw − T∞

, φ(ξ , η) = C − C∞
Cw − C∞

,

χ(ξ , η) = N − N∞
Nw − N∞

, C1 =
{
g∗βT (Tw − T∞)

4ν2f

}1/4

,

w = 4νf C
2
1x

1/2G(ξ , η), (13)

where L denotes characteristic length of the plate, ξ , η are the
dimensionless tangential and normal coordinates, respectively,
� is the stream function defined by u = ∂�

∂y and v = − ∂�
∂x ,

f ,G, θ ,φ and χ are the respective dimensionless stream func-
tion, lateral velocity, temperature, nanoparticle concentration
and denity of motile microorganisms.

In view of equations (13), the equation for conservation
of mass (5) is identically satisfied and the remaining equa-
tions (6)–(10) reduce to(

1 + 1
β

)
e−αθ

[
f ′′′ − αθ ′f ′′

]+ 3ff ′′ − 2f ′2

− 2

DaGr1/2x

ξ4
(
1 + 1

β

)
e−αθ f ′ − 4Fs

Da
ξ2f ′2

− 2M
α2
e + β2

e
ξ [αef

′ + βeG] + 2 (δTθ + δCφ + δNχ)

= 2ξ
(
f ′

∂f ′

∂ξ
− f ′′

∂f

∂ξ

)
, (14)

(
1 + 1

β

)
e−αθ

[
G′′ − αθ ′G′]+ 3fG′ − 2Gf ′

− 2

DaGr1/2x

ξ4
(
1 + 1

β

)
e−αθG

− 4Fs
Da

ξ2G2 − 2M
α2
e + β2

e
ξ [αeG − βef

′]

= 2ξ
(
f ′

∂G

∂ξ
− G′ ∂f

∂ξ

)
, (15)



6 M. PATSONMKHATSHWA ET AL.

[
1 + εθ + 4

3
Rd (1 + (θw − 1)θ)3

]
θ ′′ + εθ ′2

+ 4Rd (1 + (θw − 1)θ)2 (θw − 1) θ ′2

+ PrNbθ ′φ′ + PrNtθ ′2 + 2Prξλθ + 3Prfθ ′

+ 4PrMEc

α2
e + β2

e
ξ3[f ′2 + G2]

+ 4PrEcξ2
(
1 + 1

β

)
e−αθ [f ′′2 + G′2]

= 2Prξ
(
f ′

∂θ

∂ξ
− θ ′ ∂f

∂ξ

)
, (16)

φ′′ + Le
[
3fφ′ − ξKφ

]+ Nt

Nb
θ ′′ = 2Leξ

(
f ′

∂φ

∂ξ
− φ′ ∂f

∂ξ

)
, (17)

χ ′′ + 3Lbfχ ′ − Pe
[
(� + χ)φ′′ + φ′χ ′]

= 2Lbξ
(
f ′

∂χ

∂ξ
− χ ′ ∂f

∂ξ

)
, (18)

subject to the boundary conditions

f (ξ , 0) = 0, f ′(ξ , 0) = 0, G(ξ , 0) = 0,

θ(ξ , 0) = 1, Nbφ′(ξ , 0) + Ntθ ′(ξ , 0) = 0, χ(ξ , 0) = 1,

f ′(ξ ,∞) = 0, G(ξ ,∞) = 0, θ(ξ ,∞) = 0,

φ(ξ ,∞) = 0, χ(ξ ,∞) = 0, (19)

where δT = g∗βT (Tw−T∞)

2ν2f C
4
1

is the thermal buoyancy parameter,

δC = g∗βC(Cw−C∞)

2ν2f C
4
1

is the solutal buoyancy parameter, δN =
g∗βN(Nw−N∞)

2ν2f C
4
1

is the gyrotactic microorganism buoyancy param-

eter, λ = Q0L1/2

2ρf cpνf C
2
1
is the heat source/sink parameter, Pr = νfρf cp

kf

is the Prandtl number, M = σB20L
1/2

2ρf νf C
2
1
is the magnetic field param-

eter, Ec = 4C41ν
2
f L

cp(Tw−T∞)
is the Eckert number, Le = νf

DB
is the Lewis

number, Rd = 4σ ∗T3∞
νf k∗ρf cp is the radiation parameter, K = kcL1/2

νf C
2
1

is

the chemical reaction parameter, Da = kp
L2

is the Darcy number,

Fs = b1
L is the Forchheimer parameter, Nt = τDT (Tw−T∞)

νf T∞ is the

thermophoresis parameter, Nb = τDB(Cw−C∞)
νf

is the Brownian

motion parameter, θw = Tw
T∞ is the temperature ratio parame-

ter, Grx = g∗βT (Tw−T∞)x3

ν2f
is the local Grashof number, Pe = bWc

DN

is the bioconvection Peclet number, Lb = νf
DN

is the bioconvec-

tion Lewis number and� = N∞
Nw−N∞ is the density ratio of motile

microorganism.
The engineering quantities of physical interest are the skin

friction coefficients Cfx and Cgz along x− and z− directions, local
Nusselt numberNux , Sherwoodnumber Shx anddensity number
of the motile microorganisms Nnx expressed in dimensionless
form as

Cfx =
(
1 + 1

β

)
e−αθ(ξ ,0)f ′′(ξ , 0),

Cgz =
(
1 + 1

β

)
e−αθ(ξ ,0)G′(ξ , 0),

Nux = − 1√
2
Gr1/4

[
1 + εθ(ξ , 0)

+4
3
Rd (1 + (θw − 1)θ(ξ , 0))3

]
θ ′(ξ , 0)

Shx = − 1√
2
Gr1/4φ′(ξ , 0), Nnx = − 1√

2
Gr1/4χ ′(ξ , 0), (20)

3. Numerical procedure

This section presents the implementation of the OMD-BSQLM in
simplifying the system of PDEs (14)–(18). The proposed method
involves splitting the time computational domain into non-
overlapping subintervals and the spatial domain into overlap-
ping subintervals. The solution algorithm uses the the quasilin-
earisation method (QLM)(Bellman and Kalaba 1965) to linearise
the nonlinear PDEs. Then the multidomain spectral colloca-
tion method is implemented on the linearised iterative scheme,
where the resulting PDEs are solved independently over each
time interval. It is worth noting that the solution in the space
direction is computed simultaneously across all subintervals. To
apply the OMD-BSQLM, we let the time variable ξ ∈ J, where
J = [0, ξf ]. The time interval J is decomposed into q equal non-
overlapping subintervals, defined as

J� = [ξ�−1, ξ�], ξ�−1 < ξ� � = 1, 2, 3, . . . , q, (21)

where each subinterval J� is further discretised into (Nξ + 1)
ChebyshevGauss-Lobatto collocationpoints. The rest of the grid
in the time variable can be shown as follows:

{
0 = ξ

(1)
Nξ

, . . . , ξ (1)
0 = ξ

(2)
Nξ

, . . . , ξ (�−1)
0 = ξ

(�)
Nξ

, . . . ,

ξ
(q)
0 = ξf , . . . , 2 ≤ � ≤ q

}

On the other hand, the semi-finite space interval [0,∞) is
replaced with a truncated domain [0, η∞], where η∞ is the finite
value chosen to allow the application of the method at infinity.
The interval I = [0, η∞] is then decomposed into p overlapping
subintervals, denoted by

I� = [η�
0 , η�

Nη
], � = 1, 2, 3, . . . , p, (22)

where each subinterval I� is further discretised into Nη + 1 col-
location points. The spatial domain decomposition is illustrated
in Figure 2, where the last two points in the I� subinterval is
noted to coincide with the first two points of the I�+1 subin-
terval, respectively, and remain common. For the overlap to be
possible, each subinterval I� must be of the same length given
by

Lη = η∞
p + 1

2 (1 − p)(1 − cos π
Nη

)
, (23)

Moreover, the same number of collocation points (Nη + 1)must
be used in each subinterval. For the derivation of equation (24)
the reader is refereed to Mkhatshwa et al. (2020). Applying QLM
at each subinterval, the nonlinear PDEs (14)- (18) reduces to the



INTERNATIONAL JOURNAL OF AMBIENT ENERGY 7

Figure 2. Overlapping grid (η− domain )

following linear PDEs:

δ0,r
∂3f (� ,�)
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∂η3
+ δ1,r
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+ δ2,r
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r+1 (24)
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∂η

(
∂f (� ,�)
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+ γ4,rf
(� ,�)
r+1 + γ5,r

∂2φ
(� ,�)
r+1

∂η2
+ γ6,r

∂φ
(� ,�)
r+1

∂η

+ γ7,r
∂χ

(� ,�)
r+1

∂ξ
+ γ8,r

∂f (� ,�)
r+1

∂ξ
= γ9,r , (28)

where r and r + 1 signify previous and current iteration and the
variable coefficients are defined as

δ0,r =
(
1 + 1

β

)
e−αθ

(� ,�)
r ,

δ
(� ,�)
1,r = 3f (� ,�)

r + 2ξ
∂f (� ,�)

r

∂ξ
−
(
1 + 1

β

)
α

∂θ
(� ,�)
r

∂η
e−αθ

(� ,�)
r ,

δ
(� ,�)
2,r = −4

∂f (� ,�)
r

∂η
−
(
1 + 1

β

)
2ξ4

DaGr1/2x

e−αθ
(� ,�)
r

− 8Fsξ2

Da

∂f (� ,�)
r

∂η
− 2Mξαe

α2
e + β2

e
− 2ξ

∂

∂η

(
∂f (� ,�)

r

∂ξ

)
,

δ
(� ,�)
3,r = 3

∂2f (� ,�)
r

∂η2
, δ

(� ,�)
4,r = − 2Mξβe

α2
e + β2

e
,

δ
(� ,�)
5,r = −

(
1 + 1

β

)
α

∂2f (� ,�)
r

∂η2
e−αθ

(� ,�)
r , δ

(� ,�)
6,r = 2δT

+
(
1 + 1

β

)
αe−αθ

(� ,�)
r

[
α

∂θ
(� ,�)
r

∂η

∂2f (� ,�)
r

∂η2

+ 2ξ4

DaGr1/2x

∂f (� ,�)
r

∂η
− ∂3f (� ,�)

r

∂η3

]
, δ(� ,�)

7,r = 2δC ,

δ
(� ,�)
8,r = 2δN,

δ
(� ,�)
9,r = −2ξ

∂f (� ,�)
r

∂η
, δ

(� ,�)
10,r = 2ξ

∂2f (� ,�)
r

∂η2
,

δ
(� ,�)
11,r =

(
1 + 1

β

)
α2 ∂θ

(� ,�)
r

∂η

∂2f (� ,�)
r

∂η2
θ

(� ,�)
r e−αθ

(� ,�)
r

−
(
1 + 1

β

)
e−αθ

(� ,�)
r

[
α

∂2f (� ,�)
r

∂η2

∂θ
(� ,�)
r

∂η

+ α
∂3f (� ,�)

r

∂η3
θ

(� ,�)
r − 2αξ4

DaGr1/2x

∂f (� ,�)
r

∂η
θ

(� ,�)
r

]

−
(

∂f (� ,�)
r

∂η

)2

+ 3f (� ,�)
r

∂3f (� ,�)
r

∂η3
− 4Fsξ2

Da

(
∂f (� ,�)

r

∂η

)2

− 2ξ
∂f (� ,�)

r

∂η

∂

∂η

(
∂f (� ,�)

r

∂ξ

)
+ 2ξ

∂2f (� ,�)
r

∂η2

∂f (� ,�)
r

∂ξ
, ι0,r

=
(
1 + 1

β

)
e−αθ

(� ,�)
r , ι

(� ,�)
1,r = 3f (� ,�)

r
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+ 2ξ
∂f (� ,�)

r

∂ξ
−
(
1 + 1

β

)
α

∂θ
(� ,�)
r

∂η
e−αθ

(� ,�)
r ,

ι
(� ,�)
2,r = −2

∂f (� ,�)
r

∂η
−
(
1 + 1

β

)
2ξ4

DaGr1/2x

e−αθ
(� ,�)
r

− 8Fsξ2

Da
G(� ,�)
r − 2Mξαe

α2
e + β2

e
,

ι
(� ,�)
3,r = −2G(� ,�)

r + 2Mξβe

α2
e + β2

e
− 2ξ

∂G(� ,�)
r

∂ξ
,

ι
(� ,�)
4,r = 3

∂G(� ,�)
r

∂η
, ι

(� ,�)
5,r = −

(
1 + 1

β

)
α

∂G(� ,�)
r

∂η
e−αθ

(� ,�)
r ,

ι
(� ,�)
6,r = −

(
1 + 1

β

)
α

∂2G(� ,�)
r

∂η2
e−αθ

(� ,�)
r

+
(
1 + 1

β

)
αe−αθ

(� ,�)
r

[
α

∂θ
(� ,�)
r

∂η

∂G(� ,�)
r

∂η

+ 2ξ4

DaGr1/2x

G(� ,�)
r

]
, ι(� ,�)
7,r = −2ξ

∂f (� ,�)
r

∂η
,

ι
(� ,�)
8,r = −2ξ

∂G(� ,�)
r

∂η
,

ι
(� ,�)
9,r = 3f (� ,�)

r
∂G(� ,�)

r

∂η
+
(
1 + 1

β

)
θ

(� ,�)
r e−αθ

(� ,�)
r

×
[
α2 ∂θ

(� ,�)
r

∂η

∂G(� ,�)
r

∂η
+ 2αξ4

DaGr1/2x

G(� ,�)
r

]

−
(
1 + 1

β

)
αe−αθ

(� ,�)
r

[
∂G(� ,�)

r

∂η

∂θ
(� ,�)
r

∂η
+ ∂2G(� ,�)

r

∂η2
θ

(� ,�)
r

]

− 4Fsξ2

Da

(
G(� ,�)
r

)2

− 2G(� ,�)
r

∂f (� ,�)
r

∂η

− 2ξ
∂f (� ,�)

r

∂η

∂G(� ,�)
r

∂ξ
+ 2ξ

∂G(� ,�)
r

∂η

∂f (� ,�)
r

∂ξ
,

κ
(� ,�)
0,r = 1 + 4Rd(θw − 1)θ(� ,�)

r + 4Rd(θw − 1)2
(
θ

(� ,�)
r

)2
+ 4

3
Rd + 4

3
Rd(θw − 1)3

(
θ

(� ,�)
r

)3 + εθ
(� ,�)
r , κ(� ,�)

1,r = 3Prf (� ,�)
r

+ 8Rd(θw − 1)
∂θ

(� ,�)
r

∂η
+ 2NtPr

∂θ
(� ,�)
r

∂η

+
[
2ε + 16Rd(θw − 1)2θ(� ,�)

r

] ∂θ
(� ,�)
r

∂η

+ 8Rd(θw − 1)3
(
θ

(� ,�)
r

)2 ∂θ
(� ,�)
r

∂η
+ NbPr

∂φ
(� ,�)
r

∂η
+ 2Prξ

+ ∂f (� ,�)
r

∂ξ
, κ

(� ,�)
2,r = ε

∂2θ
(� ,�)
r

∂η2
+ 4Rd(θw − 1)

∂2θ
(� ,�)
r

∂η2

+ 8Rd(θw − 1)2θ(� ,�)
r

∂2θ
(� ,�)
r

∂η2
+ 2ξPrλ

− 4PrEcαξ2
(
1 + 1

β

)
e−αθ

(� ,�)
r

×
⎡
⎣
(

∂2f (� ,�)
r

∂η2

)2

+
(

∂G(� ,�)
r

∂η

)2
⎤
⎦

+ 4Rd(θw − 1)3
(
θ

(� ,�)
r

)2 ∂2θ
(� ,�)
r

∂η2

+ 8Rd
[
(θw − 1)2 + (θw − 1)3θ(� ,�)

r

](∂θ
(� ,�)
r

∂η

)2

,

κ
(� ,�)
3,r = 8PrEcξ2

(
1 + 1

β

)
∂2f (� ,�)

r

∂η2
e−αθ

(� ,�)
r ,

κ
(� ,�)
4,r = 8PrEcξ3

α2
e + β2

e

∂f (� ,�)
r

∂η
− 2Prξ

∂θ
(� ,�)
r

∂ξ
,

κ
(� ,�)
6,r = 8PrEcξ2

(
1 + 1

β

)
∂G(� ,�)

r

∂η
e−αθ

(� ,�)
r ,

κ
(� ,�)
5,r = 3Pr

∂θ
(� ,�)
r

∂η
, κ(� ,�)

7,r = 8PrEcξ3

α2
e + β2

e
G(� ,�)
r ,

κ
(� ,�)
8,r = NbPr

∂θ
(� ,�)
r

∂η
, κ

(� ,�)
9,r = −2Prξ

∂f (� ,�)
r

∂η
,

κ
(� ,�)
10,r = 2Prξ

∂θ
(� ,�)
r

∂η
, κ(� ,�)

11,r = εθ
(� ,�)
r

∂2θ
(� ,�)
r

∂η2

+ 3Prf (� ,�)
r

∂θ
(� ,�)
r

∂η
+
(

∂θ
(� ,�)
r

∂η

)2

[ε + NtPr]

+ NbPr
∂θ

(� ,�)
r

∂η

∂φ
(� ,�)
r

∂η
+ 4Rd(θw − 1)θ(� ,�)

r
∂2θ

(� ,�)
r

∂η2

+ 4MPrEcξ3

α2
e + β2

e

⎡
⎣
(

∂f (� ,�)
r

∂η

)2

+
(
G(� ,�)
r

)2⎤⎦

− 2Prξ
∂f (� ,�)

r

∂η

∂θ
(� ,�)
r

∂ξ
+ 2Prξ

∂θ
(� ,�)
r

∂η

∂f (� ,�)
r

∂ξ

+ 4PrEcξ2
(
1 + 1

β

)
e−αθ

(� ,�)
r

×
[

∂2f (� ,�)
r

∂η2
+ ∂G(� ,�)

r

∂η

]

− 4PrEcξ2α
(
1 + 1

β

)
e−αθ

(� ,�)
r θ

(� ,�)
r

[
∂2f (� ,�)

r

∂η2
+ ∂G(� ,�)

r

∂η

]

+ 12Rd(θw − 1)3
(
θ

(� ,�)
r

)2 (∂θ
(� ,�)
r

∂η

)2

+ 4Rd(θw − 1)

⎡
⎣(θw − 1)

(
θ

(� ,�)
r

)2

×
[
2 + (θw − 1)

(
θ

(� ,�)
r

)] ∂2θ
(� ,�)
r

∂η2

+
[
1 + 4(θw − 1)θ(ε,�)

r

](∂θ
(� ,�)
r

∂η

)2
⎤
⎦ ,
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ς
(� ,�)
1,r = 3Lef (� ,�)

r + 2Leξ
∂f (� ,�)

r

∂ξ
, ς

(� ,�)
2,r = −ξLeK ,

ς
(� ,�)
3,r = −2Leξ

∂φ
(� ,�)
r

∂ξ
, ς

(� ,�)
4,r = 3Le

∂φ
(� ,�)
r

∂η
,

ς
(� ,�)
5,r = Nt

Nb
, ς

(� ,�)
6,r = −2Leξ

∂f (� ,�)
r

∂η
,

ς
(� ,�)
7,r = 2Leξ

∂φ
(� ,�)
r

∂η
, ς

(� ,�)
8,r = 3Lef (� ,�)

r
∂φ

(� ,�)
r

∂η

− 2Leξ
∂f (� ,�)

r

∂η

∂φ
(� ,�)
r

∂ξ
+ 2Leξ

∂φ
(� ,�)
r

∂η

∂f (� ,�)
r

∂ξ
,

γ
(� ,�)
1,r = 3Lbf (� ,�)

r − Pe
∂φ

(� ,�)
r

∂η
+ 2Lbξ

∂f (� ,�)
r

∂ξ
,

γ
(� ,�)
2,r = −Pe

∂2φ
(� ,�)
r

∂η2
, γ (� ,�)

3,r = −2Lbξ
∂χ

(� ,�)
r

∂ξ
,

γ
(� ,�)
4,r = 3Lb

∂χ
(� ,�)
r

∂η
, γ

(� ,�)
5,r = −Peχ(� ,�)

r − Pe�,

γ
(� ,�)
6,r = −Pe

∂χ
(� ,�)
r

∂η
, γ

(� ,�)
7,r = −2Lbξ

∂f (� ,�)
r

∂η
,

γ
(� ,�)
8,r = 2Lbξ

∂χ
(� ,�)
r

∂η
, γ

(� ,�)
9,r = 3Lbf (� ,�)

r
∂χ

(� ,�)
r

∂η

− Peχ(� ,�)
r

∂2φ
(� ,�)
r

∂η2
− Pe

∂φ
(� ,�)
r

∂η

∂χ
(� ,�)
r

∂η

− 2Lbξ
∂f (� ,�)

r

∂η

∂χ
(� ,�)
r

∂ξ
+ 2Lbξ

∂χ
(� ,�)
r

∂η

∂f (� ,�)
r

∂ξ
,

Since the spectral collocation method is valid in the domain
[−1, 1], the time interval J� and space interval I� are respectively
transformed into ξ̂ ∈ [−1, 1] and η̂ ∈ [−1, 1], using the linear
transformations

ξ
�
j = 1

2
(ξ� − ξ�−1)ξ̂j + 1

2
(ξ� + ξ�−1),

{
ξ̂j

}Nξ

j=0
= cos

(
π j

Nξ

)
,

η�
i = Lη

2
(η̂i + 1),

{
η̂i
}Nη

i=0 = cos
(

π i

Nη

)
. (29)

We suppose that at each subdomain, the needed solution, for
instance f (η, ξ) can be approximated by a bivariate Lagrange
interpolation polynomial of the form

f (� ,�)(η, ξ) ≈
Nη∑
k=0

Nξ∑
s=0

f (� ,�)(η̂k , ξ̂s)Lk(η̂)Ls(ξ̂ ), (30)

where the functionsLk(η) andLs(ξ) are thewell known charac-
teristic Lagrange cardinal polynomial based on the chebyshev-
Gauss-Lobatto points (Canuto et al. 2006). The first derivative
of f (� ,�)(η, ξ) with respect to η and ξ at the Chebyshev-Gauss-
Lobatto points (η̂i, ξ̂j) are computed as

∂f (� ,�)
r+1

∂η

∣∣∣∣∣
(η=ηi ,ξ=ξj)

=
Nη∑
k=0

D̂(�)

i,k F(� ,�)
r+1 (η̂k , ξ̂j) = DF(� ,�)

j,r+1 ,

∂f (� ,�)
r+1

∂ξ

∣∣∣∣∣
(η=ηi ,ξ=ξj)

=
(

2
ξ� − ξ�−1

) Nξ∑
s=0

d̂j,sF
(� ,�)
r+1 (η̂i, ξ̂s)

=
Nξ∑
s=0

dj,sF
(� ,�)
s,r+1 , (31)

where d̂j,s(j, s = 0, 1, . . . ,Nξ ) are entries of the standard first

order Chebyshev differentiation matrix d =
(

2
ξ�−ξ�−1

)
[di,j] of

size (Nξ + 1) × (Nξ + 1) (Canuto et al. 2006), D̂(�)

i,k = 2
η�
Nη

−η�
0

Di,k(i, k = 0, 1, . . . ,Nη) with Di,k being the standard first order
Chebyshev-Gauss-Lobatto differentiation matrix of size (Nη +
1) × (Nη + 1). The vector F(� ,�)

j is defined as

F(� ,�)
j =

[
f (� ,�)(η�

0 , ξj), f (� ,�)(η�
1 , ξj), . . . , f (� ,�)(η�

Nη
, ξj)
]T

,

(32)
where T is the transpose. Since the last two points in the � th

subinterval and the first two points in the (� + 1)th subinter-
val overlap and remains common, the differentiation matrix D
for overlapping grid in η is assembled by carefully discarding the
rows corresponding to the recurrent points as shown below:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D̂(p)
0,0 D̂(p)

0,1 · · · D̂(p)
0,Nη−1 D̂(p)

0,Nη

D̂(p)
1,0 D̂(p)

1,1 · · · D̂(p)
1,Nη−1 D̂(p)

1,Nη

. . .
. . .

. . .
. . .

. . .

D̂(p)
Nη−1,0 D̂(p)

Nη−1,1 · · · D̂(p)
Nη−1,Nη−1 D̂(p)

Nη−1,Nη

D̂(p−1)
1,0 D̂(p−1)

1,1 · · ·
D̂(p−1)
2,0 D̂(p−1)

2,1 · · ·
. . .

. . .
. . .

D̂(p−1)
Nη−1,0 D̂(p−1)

Nη−1,1 · · ·

D̂(p−1)
1,Nη−1 D̂(p−1)

1,Nη

D̂(p−1)
2,Nη−1 D̂(p−1)

2,Nη

. . .
. . .

D̂(p−1)
Nη−1,Nη−1 D̂(p−1)

Nη−1,Nη

. . .
. . .

D̂(1)
1,0 D̂(1)

1,1 · · · D̂(1)
1,Nη−1 D̂(1)

1,Nη

D̂(1)
2,0 D̂(1)

2,1 · · · D̂(1)
2,Nη−1 D̂(1)

2,Nη

. . .
. . .

. . .
. . .

. . .

D̂(1)
Nη ,0

D̂(1)
Nη ,1

· · · D̂(1)
Nη ,Nη−1 D̂(1)

Nη ,Nη

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (33)

where the empty entries of coefficient matrix D are zeros (lead-
ing to sparse matrix) and D̂(�) represents the Chebyshev differ-
entiationmatrix in the� th subinterval in space. It isworthnoting
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that the spatial derivative operator becomes a full matrix if only
a single domain is used in the calculation. The size of matrix D
is (� + 1) × (� + 1), where� = Nη + (Nη − 1) × (p − 1) is the
total number of collocation points in the entire spatial domain.
The higher order (nth) differentiationmatrixwith respect to η can
be obtained using matrix multiplication as follows:

∂nf (� ,�)
r+1

∂ηn

∣∣∣∣∣
(η=ηi ,ξ=ξj)

=
Nη∑
k=0

[
D̂(�)

i,k

]n
F(� ,�)
r+1 (η̂k , ξ̂j) = DnF(� ,�)

j,r+1 ,

(34)
Applying the spectral method by evaluating equations (24)–(28)
at the collocation points and making use of assembled differ-
entiation matrices and the initial condition gives the following
matrix equations:

A(i)
11F

(� ,�)
i,r+1 + A(i)

12G
(� ,�)
i,r+1 + A(i)

13�
(� ,�)
i,r+1 + A(i)

14�
(� ,�)
i,r+1 + A(i)

15χ
(� ,�)
i,r+1

+ δ
(i)
9,r

Nξ −1∑
j=0

di,jDF
(� ,�)
j,r+1 + δ

(i)
10,r

Nξ −1∑
j=0

di,jF
(� ,�)
j,r+1 = R(i)

1,r , (35)

A(i)
21F

(� ,�)
i,r+1 + A(i)

22G
(� ,�)
i,r+1 + A(i)

23�
(� ,�)
i,r+1 + ι

(i)
7,r

Nξ −1∑
j=0

di,jG
(� ,�)
j,r+1

+ ι
(i)
8,r

Nξ −1∑
j=0

di,jF
(� ,�)
j,r+1 = R(i)

2,r , (36)

A(i)
31F

(� ,�)
i,r+1 + A(i)

32G
(� ,�)
i,r+1 + A(i)

33�
(� ,�)
i,r+1 + A(i)

34�
(� ,�)
i,r+1

+ κ
(i)
9,r

Nξ −1∑
j=0

di,j�
(� ,�)
j,r+1 + κ

(i)
10,r

Nξ −1∑
j=0

di,jF
(� ,�)
j,r+1 = R(i)

3,r , (37)

A(i)
41F

(� ,�)
i,r+1 + A(i)

43�
(� ,�)
i,r+1 + A(i)

44�
(� ,�)
i,r+1 + ς

(i)
6,r

Nξ −1∑
j=0

di,j�
(� ,�)
j,r+1

+ ς
(i)
7,r

Nξ −1∑
j=0

di,jF
(� ,�)
j,r+1 = R(i)

4,r , (38)

A(i)
51F

(� ,�)
i,r+1 + A(i)

54�
(� ,�)
i,r+1 + A(i)

55χ
(� ,�)
i,r+1 + γ

(i)
7,r

Nξ −1∑
j=0

di,jχ
(� ,�)
j,r+1

+ γ
(i)
8,r

Nξ −1∑
j=0

di,jF
(� ,�)
j,r+1 = R(i)

5,r , (39)

where

A(i)
11 = δ
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Here, I is an (� + 1)(� + 1) identity matrix, Fi,r+1,Gi,r+1,�i,r+1,
�i,r+1 and χ i,r+1 denote values of f ,G, θ ,φ and χ at the
collocation points. The boundary conditions are imposed on
equation (35)–(39) for each i = 0, 1, 2, . . . ,Nξ . After imposing
the boundary conditions the resulting equations can be writ-
ten as a matrix system that can be solved iteratively to give
the approximate solutions for f (η, ξ),G(η, ξ), θ(η, ξ),φ(η, ξ) and
χ(η, ξ).

4. Results and discussion

This section presents the numerical results computed using the
method discussed in the previous section. In the entire com-
putational process, Nη = 20 and Nξ = 5 collocation points in
space and time, respectively, were found to be sufficient to give
accurate and consistent results. The time and spatial domains
were each decomposed into p = q = 5 subintervals, while the
edge of the boundarywas taken as η∞ = 15. The values of phys-
ical parameters where chosen as β = 1,α = 0.5, ε = 0.2, δT =
0.5, δC = 0.5, δN = 1,Grx = 1, Pr = 0.71, Le = 0.6, K = 0.5,Da =
1, Fs = 0.1, Ec = 0.1,M = 0.5,βi = 0.4,βe = 0.5,� = 0.2, Rd =
0.2, θw = 1.2,Nt = 0.5,Nb = 0.5, λ = 0.01, Lb = 0.5 and Pe =
0.3. These values were fixed throughout the numerical study
unless otherwise stated. In order to validate the accuracy of
the OMD-BSQLM, the obtained numerical results were com-
pared with previously published results for the limiting cases.
The results are presented in Table 1 and Table 2, and are in sat-
isfactory accordance. It is worth mentioning that Abo-Eldahab
and El-Aziz (Abo-Eldahab and Aziz 2005) employed fifth-order
Runge–Kutta–Fehlberg scheme with Newton Raphson shoot-
ing method, whereas (Gaffar, Prasad, and Reddy 2016) used
Keller-Box implicit difference method in solving the boundary
value problems governing the flow. However, spectral colloca-
tion based methods are known to be highly accurate, more effi-
cient and low computational cost than traditionalmethods such
as the Keller-Box implicit differencemethod (Canuto et al. 2006).

Table 1. Comparison of −θ ′(0, 0) for various values Pr when M = βe = K =
βi = Le = Lb = Pe = � = δT = δC = δN = Ec = Fs = Rd = Nt = Nb = λ =
Le = ξ = 0, Grx → ∞, Da → ∞ and β → ∞.

Pr

Takhar, Gorla, and
Soundal-

gekar (1996)
Abo-Eldahab

and Aziz (2005)

Gaffar, Prasad,
and

Reddy (2016)
Present
results

0.5 0.4412 0.441191 0.4410 0.4411670
0.733 − 0.504599 0.5043 0.5046342
0.72 0.5079 0.507872 0.5077 0.5079077
0.9 0.5465 0.546501 0.5463 0.5465363
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When applied to problems with smooth solutions, they use few
grid points and requireminimal computational time to generate
accurate solutions, thus they are better than traditional meth-
ods. The excellent agreement demonstrated by the set of results
justify the reliability, applicability and accuracy of the present
method.

To assess the convergence of the method, we have taken the
normof difference in the values of two successive iterations. The
error norm between two successive iterations is defined as

E� = max
0≤i≤Nξ

||
i,r+1 − 
i,r||∞, (40)

where 
 = {F(� ,�),G(� ,�),�(� ,�),�(� ,�),χ (� ,�)}. Figure 3(a)
shows the variation in the error norms against the number of
iterations. It can be seen that the error norms decrease mono-
tonically with increasing number of iterations. This is an indi-
cation that the method converges as the number of iterations
increases. Full convergence is achieved after about seven iter-
ations for all solutions with error norms close to 10−14. The
accuracy of theOMD-BSQLM can be assessed by considering the
residual errors defined as

||Res(ξ)||∞ =
∣∣∣∣
∣∣∣∣�ξ

[
F(� ,�),G(� ,�),�(� ,�),�(� ,�),χ (� ,�)

] ∣∣∣∣
∣∣∣∣∞
(41)

where �ξ signifies the nonlinear PDEs (14)–(18), F(� ,�),G(� ,�),
�(� ,�), �(� ,�),χ (� ,�) are the OMD-BSQLM solutions. Figure 3b
depicts the variation of residual errors of the five govern-
ing equations (14) -(18) against the number of iterations. The
residual errors are observed to decrease significantly with the
increase in the number of iterations and converge with residual
errors of close to 10−14 after about five iterations. The smaller
values of the residual errors suggest the accuracy of themethod.
The above results sufficiently confirm the accuracy and conver-
gence of the OMD-BSQLM, thus the method can be trusted.

Figure 4 illustrates the impact of Hall parameter on the flow
and transverse velocity profiles. Figure 4(a) shows that incre-
ment in Hall parameter decelerates the tangential velocity pro-
file and reinforce the boundary layer thickness near the wall,
while it shrinks distant from the surface. This is because themag-
netic damping on the tangential velocity diminishes as the Hall
parameter escalates, and the magnetic field has a propelling
effect on the primary velocity. Figure 4(b) elucidates that the
lateral velocity profile and momentum boundary layer thick-
ness also intensify with diminutive effects, as the Hall parameter
increases from zero to unity (βe ≤ 1). This is because the inclu-
sion of the Hall parameter suppresses the resistive effect of the
magnetic field. As a result, increment inHall parameter enhances
the fluid velocity. It is worth noting that the maximum veloc-
ity is reached for βe = 1 and diminishes for values of the Hall
parameter greater than unity (βe > 1), being equal zero when
theHall parameter becomes very large. This findings concurwith
results obtained by Abo-Eldahab and Aziz (2005) in the absence
of nanoparticles andmotile gyrotactic microorganisms. Figure 5
portrays the influence of ion-slip parameter on the primary and
secondary velocity profiles. The magnitude of primary velocity
is enhancedwhen the ion-slip parameter increases, whereas the
secondary velocity dropswith an elevation in the ion-slip param-
eter. The ion slip is observed to have a significant impact on the

induced flow in the z-direction than in the x-direction. Ion slip
arises in the parameter αe = 1 + βiβe, which causes a heating
effect as the ions slip in themagnetic field and a reduction in the
secondary flow.

Figure 6 exhibits the repercussions of Casson fluid parameter
on the primary and secondary velocity. The profiles of veloc-
ity are found to increase with escalating values of the Casson
fluid parameter close to the surface. Further away from the sur-
face, the velocity components and thickness of the momentum
boundary layer decrease with increasing values of the Casson
fluid parameter. This is because increasing values of Casson
fluid number makes the fluid to be more viscous, thus produc-
ing more resistance to the fluid flow, which in turn diminishes
the momentum boundary layer thickness. It is worth mention-
ing that increasing the Casson number reduces the yield stress,
which means that the fluid behaves as Newtonian fluid when
Casson fluid parameter become large, thus suppresses the fluid
velocity. The influence of variable fluid viscosity parameter on
the primary and secondary velocity is presented in Figure 7. An
increase in the variable viscosity produces enhancement in the
flow velocity close to the surface. Further away from the sur-
face, the flow velocity decelerates when the variable viscosity
parameter grows. During fluid flow both velocity and friction
haveopposite effects. Thus, increment in theviscosityof the fluid
corresponds to increasing the friction between the molecules
and internal force of attraction. This causes resistance to the fluid
flow which in turn suppresses the velocity of the fluid. Figure 8
depicts the effects of variable thermal conductivity parameter
on the primary and secondary velocity distributions.We observe
that the velocity fields and associated boundary layer thickness
enhances slightly with increasing variable thermal conductivity
parameter. This occurs because an increase in variable thermal
conductivity parameter improves the temperature difference
(Tw − T∞), thus weakening Casson fluid bond and reducing
the strength of Casson plastic dynamic viscosity. Similar results
were reported by Gbadeyan, Titiloye, and Adeosun (2020) in the
absence of motile microorganisms.

Figure 9 shows the impact of radiation parameter and Cas-
son fluid parameter on the temperature profiles. The temper-
ature field and thermal boundary layer thickness enhances for
larger values of radiation parameter as seen in Figure 9(a). Phys-
ically, increment in radiation parameter releases thermal radi-
ation energy into the flow, since increasing radiation parame-
ter implies a reduction in the Rosseland radiation absorption.
Accordingly, thismaximises the rate of radiative heat transferred
to the fluid, thus increases the temperature of the fluid. Figure 9
indicates that the temperature profile and thermal boundary
layer thickness retard for higher values of the non-Newtonian
Casson fluid number since increment in Casson fluid number
implies reduction in yield stress, consequently the thickness
of the thermal boundary layer reduces. Figure 10 presents the
influence of variable fluid viscosity and thermal conductivity
parameters on the temperature distributions. Figure 10a shows
that the fluid temperature and thermal boundary layer thickness
decrease with increasing variable fluid viscosity parameter. As
the variable viscosity parameter escalates, the viscosity of the
fluid improves leading to an increase in viscous forces which
opposes the fluidmotion. This increase in the viscous force leads
to a fall in the temperature of the flow and the reduction rate of
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Table 2. Comparison of f ′′(ξ , 0) and G′(ξ , 0) for various values of M,βe ,βi , λ and Ec when Pr = 0.72, δT = 0.5, ξ = 0.4, K = Le = Lb = Pe = � = δC = δN = Fs =
Rd = Nt = Nb = Le = 0, Grx → ∞,Da → ∞ and β → ∞.

Abo-Eldahab and Aziz (2005) Present Results

M Ec βe βi λ f ′′(ξ , 0) G′(ξ , 0) f ′′(ξ , 0) G′(ξ , 0)

1.0 0.3 1.0 0.5 0.01 0.63693082901 0.0383893132 0.6369315 0.0383871
2.0 0.3 1.0 0.5 0.01 0.59706823575 0.0643022634 0.5970646 0.0643001
3.0 0.3 1.0 0.5 0.01 0.56068338930 0.0811004043 0.5606865 0.0811088
1.0 0.0 1.0 0.5 0.01 0.63473777182 0.0382936717 0.6347306 0.0382909
1.0 1.0 1.0 0.5 0.01 0.64720993236 0.0387984582 0.6472009 0.0387920
1.0 2.0 1.0 0.5 0.01 0.66049461582 0.0393185271 0.6604913 0.0393138
1.0 0.3 0.0 0.5 0.01 0.59835234145 0.0 0.5983540 0.0000000
1.0 0.3 0.1 0.5 0.01 0.60217361460 0.0094174445 0.6021726 0.0094131
1.0 0.3 0.5 0.5 0.01 0.61954847255 0.0316335848 0.6195405 0.0316324
1.0 0.3 1.0 0.5 0.01 0.63693082901 0.0383893132 0.6369315 0.0383871
1.0 0.3 2.0 0.5 0.01 0.65519306619 0.0338307267 0.6551983 0.0338394
1.0 0.3 3.0 0.5 0.01 0.66324252266 0.0275347841 0.6632498 0.0275397
1.0 0.3 4.0 0.5 0.01 0.66746644037 0.0227866200 0.6674647 0.0227879
1.0 0.3 1.0 0.0 0.01 0.63058178496 0.0612420061 0.6305829 0.0612497
1.0 0.3 1.0 1.0 0.01 0.64312951983 0.0255745858 0.6431205 0.0255794
1.0 0.3 1.0 3.0 0.01 0.65788414992 0.0080167629 0.6578878 0.0080168
1.0 0.3 1.0 0.5 −0.9 0.57357816680 0.0353441224 0.5735739 0.0353485
1.0 0.3 1.0 0.5 −0.6 0.59261453147 0.0362969610 0.5926108 0.0362979
1.0 0.3 1.0 0.5 −0.3 0.61339672553 0.0372992234 0.6133942 0.0372987
1.0 0.3 1.0 0.5 0.0 0.64558564656 0.0383531893 0.6455849 0.0383523
1.0 0.3 1.0 0.5 0.3 0.66395613639 0.0394596683 0.6639597 0.0394594
1.0 0.3 1.0 0.5 0.6 0.68840238136 0.0406190713 0.6884080 0.0406105
1.0 0.3 1.0 0.5 0.9 0.71839291545 0.0418303872 0.7183972 0.0418352
1.0 0.3 1.0 0.5 1.2 0.75124292543 0.0430892029 0.7512494 0.0430866
1.0 0.3 1.0 0.5 1.5 0.78713651857 0.0443920884 0.7871310 0.0443901

Figure 3. Error norms and residual error graphs. (a) Solution error norms against iterations. (b) Residual errors against iterations.

Figure 4. Effect of Hall current parameter. (a) Primary velocity profiles. (b) Secondary velocity profiles

the temperature fields. Figure 10(b) shows that an increment in the variable thermal conductivity enhances the fluid tempera-
ture since more heat is exchanged from the surface to the fluid
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particles, consequently increasing the temperature of nanopar-
ticles. It is also worth noting that the thermal boundary layer
becomes thicker as thermal diffusivity improves. This observa-
tion implies that the inclusion of variable thermal conductivity
can be useful to improve the heat transportation characteristics
in different thermal extrusion processes.

Figure 11 discloses the effects of thermophoresis and Brow-
nan motion parameters on the concentration fields. It is
observed that the concentration profiles increases as the ther-
mophoresis parameter increases close to the surface. Away from
the surface the concentration distribution along with corre-
sponding boundary layer thickness enhancewith increasing val-
ues of thermophoresis parameter. This implies that escalating
thermophoresis parameter induces resistance to the diffusion of

the solutewhich helps in the reduction of the concentration gra-
dient at the surface. The enhancement in nanoparticle concen-
tration boundary layer thickness is basically due to the fact that
thermophoresis force transport the nanoparticles from the hot-
ter region to the colder region, thus improving the concentration
of the fluid. These results are consistent with findings reported
byAbbas et al. (2019). Theopposite trend is true for theBrownian
motion parameter, where the concentration retards by increas-
ing the Brownian motion. This is due to the fact that an incre-
ment in the Brownian motion parameter augments the inter-
action between fluid particles, which leads to significant fall in
the fluid concentration and associatedboundary layer thickness.
Figure 12 demonstrates the repercussions of chemical reaction
and Casson fluid parameters on the concentration profiles. As

Figure 5. Effect of ionslip parameter. (a) Primary velocity profiles. (b) Secondary velocity profiles

Table 3. Values of skin friction coefficients, Nusselt number, Sherwood number and density number of the motile microorgan-
isms for different values of α, ε,β , Rd,Nt,Nb, Pe and Lb when ξ = 1, δT = 0.5, δC = 0.5, δN = 1, K = 0.5,Grx = 1, Pr = 0.71, Le = 0.6,
Da = 1, Fs = 0.1, Ec = 0.1,M = 0.5,βi = 0.4,βe = 0.5,� = 0.2, θw = 1.2, and λ = 0.01.

α ε Rd β Nt Nb Pe Lb Cfx Cgz Nux Shx Nnx

0.0 0.2 0.2 1.0 0.5 0.5 0.3 0.5 1.4814310 0.0411883 0.5875137 −0.1261842 0.2687709
0.3 0.2 0.2 1.0 0.5 0.5 0.3 0.5 1.3978105 0.0443793 0.6298827 −0.1352841 0.2907701
0.6 0.2 0.2 1.0 0.5 0.5 0.3 0.5 1.3069146 0.0460863 0.6702606 −0.1439563 0.3120635
1.0 0.2 0.2 1.0 0.5 0.5 0.3 0.5 1.1776300 0.0461080 0.7203813 −0.1547211 0.3387466
0.5 0.0 0.2 1.0 0.5 0.5 0.3 0.5 1.3354358 0.0455384 0.6458856 −0.1449474 0.3034519
0.5 0.5 0.2 1.0 0.5 0.5 0.3 0.5 1.3414744 0.0458971 0.6733758 −0.1358708 0.3073115
0.5 1.0 0.2 1.0 0.5 0.5 0.3 0.5 1.3469485 0.0462283 0.6995660 −0.1282196 0.3106446
0.5 1.5 0.2 1.0 0.5 0.5 0.3 0.5 1.3519332 0.0465353 0.7246160 −0.1216615 0.3135655
0.5 0.2 0.0 1.0 0.5 0.5 0.3 0.5 1.2508160 0.0405579 0.3301161 −0.2750968 0.2491368
0.5 0.2 0.5 1.0 0.5 0.5 0.3 0.5 1.2936145 0.0429046 0.4693279 −0.1995442 0.2791422
0.5 0.2 1.0 1.0 0.5 0.5 0.3 0.5 1.3198526 0.0444965 0.5726093 −0.1634159 0.2948473
0.5 0.2 1.5 1.0 0.5 0.5 0.3 0.5 1.3379244 0.0456855 0.6570493 −0.1411188 0.3050681
0.5 0.2 0.2 0.5 0.5 0.5 0.3 0.5 1.4456794 0.0399372 0.5741325 −0.1233102 0.2689322
0.5 0.2 0.2 1.0 0.5 0.5 0.3 0.5 1.3379244 0.0456855 0.6570493 −0.1411188 0.3050681
0.5 0.2 0.2 2.0 0.5 0.5 0.3 0.5 1.2498740 0.0472094 0.7088974 −0.1522546 0.3286404
0.5 0.2 0.2 ∞ 0.5 0.5 0.3 0.5 1.1149879 0.0462695 0.7715823 −0.1657178 0.3580509
0.5 0.2 0.2 1.0 0.1 0.5 0.3 0.5 1.3902571 0.0457488 0.6548074 −0.0281275 0.3317472
0.5 0.2 0.2 1.0 0.3 0.5 0.3 0.5 1.3644206 0.0457324 0.6560967 −0.0845485 0.3183701
0.5 0.2 0.2 1.0 0.5 0.5 0.3 0.5 1.3379244 0.0456855 0.6570493 −0.1411188 0.3050681
0.5 0.2 0.2 1.0 0.7 0.5 0.3 0.5 1.3108096 0.0456099 0.6576559 −0.1977488 0.2918627
0.5 0.2 0.2 1.0 0.5 0.5 0.3 0.5 1.3379244 0.0456855 0.6570493 −0.1411188 0.3050681
0.5 0.2 0.2 1.0 0.5 1.0 0.3 0.5 1.3718015 0.0458050 0.6490566 −0.0697011 0.3221870
0.5 0.2 0.2 1.0 0.5 1.5 0.3 0.5 1.3827929 0.0458353 0.6462987 −0.0462700 0.3278476
0.5 0.2 0.2 1.0 0.5 2.0 0.3 0.5 1.3882309 0.0458486 0.6449034 −0.0346275 0.3306683
0.5 0.2 0.2 1.0 0.5 0.5 0.2 0.5 1.3322222 0.0454532 0.6548695 −0.1406507 0.3153478
0.5 0.2 0.2 1.0 0.5 0.5 0.5 0.5 1.3494689 0.0461539 0.6614300 −0.1420597 0.2846636
0.5 0.2 0.2 1.0 0.5 0.5 0.8 0.5 1.3671329 0.0468661 0.6680466 −0.1434808 0.2544896
0.5 0.2 0.2 1.0 0.5 0.5 1.2 0.5 1.3913195 0.0478325 0.6769345 −0.1453897 0.2151991
0.5 0.2 0.2 1.0 0.5 0.5 0.3 0.3 1.3904389 0.0484281 0.6966927 −0.1496333 0.2325015
0.5 0.2 0.2 1.0 0.5 0.5 0.3 0.6 1.3181305 0.0447168 0.6440161 −0.1383196 0.3335449
0.5 0.2 0.2 1.0 0.5 0.5 0.3 1.0 1.2603464 0.0420146 0.6116382 −0.1313656 0.4210455
0.5 0.2 0.2 1.0 0.5 0.5 0.3 1.5 1.2127177 0.0398948 0.5902911 −0.1267807 0.4994455
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Figure 6. Effect of Casson fluid parameter. (a) Primary velocity profiles. (b) Secondary velocity profiles

the chemical reaction parameter enhances, the concentration
fields as well as the solutal boundary layer thickness reduce as
seen in Figure 12(a). This is because the chemical reaction rein-
forces the rate of interfacial mass transfer and shrinks the local
concentration. Figure 12(b) depicts that the concentration of the
fluid slightly decay by increasing the Casson fluid parameter due
to the increasing viscosity that resists the fluid flow. In Figure 13
there is a slight reduction in the fluid concentration with incre-
ment in the variable fluid viscosity parameter, whereas slight
augmentation is noted with the variable thermal conductivity.
This observation suggests that the concentration of the fluid is
weakly affected by the temperature dependent fluid properties.

This weakly influence is due to the fact that these variable
fluid properties do not occur in the nanoparticle concentration
equation.

The influence of bioconvection parameters on the density
of motile microorganisms is shown in Figure 14. It is seen that
the dimensionless density of motile microorganisms decreases
strongly with escalating bioconvection Lewis number. In actual
fact, the increment in the bioconvection Lewis number implies
reduction in the diffusion of microorganisms, thus both den-
sity and associated boundary layer thickness of motile microor-
ganisms diminish with amplifying bioconvection Lewis number.
On the other hand, the density and boundary layer thickness

Figure 7. Effect of variable viscosity parameter. (a) Primary velocity profiles. (b) Secondary velocity profiles

Figure 8. Effect of variable thermal conductivity parameter. (a) Primary velocity profiles. (b) Secondary velocity profiles.
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Figure 9. Temperature profiles. (a) Effect of thermal radiation parameter. (b) Effect of Casson fluid parameter.

Figure 10. Temperature profiles. (a) Effect of variable viscosity parameter. (b) Effect of variable thermal conductivity parameter

of motile microorganisms strongly augments with increasing
values of the bioconvection Peclet number close to the sur-
face. However, the motile microorganisms weakly diminish by
increasing the bioconvection Peclet number away from the sur-
face. This might be because the Peclet number achieves reverse
relation with microorganism diffusivity away from the surface.
Figure 15 presents the influence of the Casson fluid number
and variable viscosity parameter on the dimensionless density of
motile microorganisms. Higher values of the Casson fluid num-
ber and variable fluid viscosity parameter are noted to retard

the density and boundary layer thickness of motile microorgan-
isms. Thismeans that the intermolecular forces are strengthened
with increment in variable viscosity and Casson fluid parame-
ter. Physically, larger intermolecular forces implies higher fluid
viscosity.

The numerical values of local skin friction coefficients, Nusselt
number, Sherwood number and wall motile microorganisms for
selected values of important physical parameters are presented
in Table 3. The dimensional wall stress in both x− and z− direc-
tions increases with escalating bioconvection Peclet number,

Figure 11. Concentration profiles. (a) Effect of thermophoresis parameter. (b) Effect of Brownian motion parameter.
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Figure 12. Concentration profiles.(a) Effect of chemical reaction parameter. (b) Effect of Casson fluid parameter.

Figure 13. Concentration profiles. (a) Effect of variable viscosity parameter. (b) Effect of variable thermal conductivity parameter

variable thermal conductivity, thermal radiation and Brownian
motion, whereas diminishes by increasing bioconvection Lewis
number and thermophoresis parameter. The reverse trend is
observed in the case of Casson fluid and variable fluid viscos-
ity parameters. The reduction in skin friction coefficients due
to increment in bioconvection Lewis number is caused by the
increase in mass diffusion at the surface which restricts the flow
near the surface. The heat transfer rate enhances with incre-
ment in variable fluid viscosity, thermal conductivity, thermal
radiation, Casson fluid, thermophoresis force and bioconvection
Peclet number (due to advective convection increment) while

retards with augmentation in Brownian motion and bioconvec-
tion Lewis number. The mass transfer rates improves when vari-
able thermal conductivity, thermal radiation, Brownian motion
and bioconvection Lewis number increases, but declines when
variable fluid viscosity, Casson fluid, thermophoresis force and
bioconvection Peclet number escalate. Lastly, the local density
of the motile microorganisms amplifies for larger values of the
variable viscosity, thermal conductivity, thermal radiation, Cas-
son fluid, Brownian motion and bioconvection Lewis number,
whereas suppresses for higher values of thermophoresis param-
eter and bioconvection Peclet number. The increment in density

Figure 14. Density of motile microorganisms profiles. (a) Effect of bioconvection Lewis number. (b) Effect of bioconvection Peclet number.
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Figure 15. Density of motile microorganisms profiles. (a) Casson fluid parameter. (b) Effect of variable viscosity parameter.

number ofmotilemicroorganismsbecause of escalatingbiocon-
vection Lewis number is due to the fact that this it assists in
suppressing themicroorganism concentration layer thickness as
already highlighted above.

5. Conclusion

The present work analysed the influence of variable fluid prop-
erties on MHD bioconvective radiative flow of Casson nanofluid
containing gyrotactic microorganisms from a vertical surface.
The transformed conservation equations were solved using the
OMD-BSQLM. The convergence and accuracy of the method
were assessed. The OMD-BSQLM was found to give accurate
results after few iterations and using less grid points in each
subinterval. The theoretical results have demonstrated that fluid
viscosity and thermal conductivity cannot be assumed con-
stants since physical properties of the fluid may change signifi-
cantly with temperature. The flow fields diminish by considering
fluid viscosity of variable nature while improve for the non-
Newtonian fluid behaviour in the porous medium. It is worth
noting that the influence of physical parameters on tangential
and lateral velocities ismore pronounced near thewall andmax-
imum velocity is also reached close to the wall. The rest of the
findings can be summarised as follows:

• Increasing Hall parameter accelerates both primary and sec-
ondary flows. However, rising the ion-slip parameter weakly
accelerates the primary flow and strongly decelerates the
secondary flow.

• The temperature of the fluid along with heat and mass trans-
fer rates augment with the inclusion of variable thermal con-
ductivity and nonlinear radiative heat flux into the system.

• The concentration and associated boundary layer thickness
intensify as thermophoresis force becomes stronger while
dropping with growing Brownian motion and chemical reac-
tion.

• The density and boundary layer thickness of the motile
microorganisms are suppressedby thebioconvectionparam-
eters.

• The skin friction coefficients amplify with escalating biocon-
vection Peclet number, variable thermal conductivity, ther-
mal radiation and Brownian motion, whereas decreases with

increasing bioconvection Lewis number and thermophoresis
parameter.

• An increment in variable fluid viscosity and Casson fluid
parameters enhances the rates of heat transfer and den-
sity number of motile microorganisms, but retards the mass
transfer rate.

• Increasing Brownian motion elevates mass and motile
microorgansism transfer rates while causing decrement in
heat transfer rate. The opposite trend is true for the ther-
mophoresis parameter.
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Part B:
Application of the overlapping grid spectral

method in space and time variables
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Chapter 8

Numerical solution of time-dependent

Emden-Fowler equations using bivariate

spectral collocation method on overlapping

grids

In Part A, the overlapping grid approach was used only in the space variable when applying the

spectral quasilinearisation method and bivariate spectral quasilinearisation method to solve ordi-

nary and partial differential equations. In Part B, the overlapping grid approach is implemented in

both space and time variables when using the bivariate spectral quasilinearisation method to solve

partial differential equations. In this chapter, the method is tested by solving Emden-Fowler par-

tial differential equations. To determine the accuracy and convergence of the numerical scheme,

approximate solutions are compared to exact solutions. We present useful error bound theorems

along with their proofs to highlight the merits of the method.
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Abstract: In this work, we present a new modi�cation 
to the bivariate spectral collocation method in solving 
Emden-Fowler equations. The novelty of the modi�ed ap-
proach is the use of overlapping grids when applying the 
Chebyshev spectral collocation method. In the case of 
nonlinear partial di�erential equations, the quasilineari-
sation method is used to linearize the equation. The multi-
domain technique is applied in both space and time inter-
vals, which are both decomposed into overlapping subin-
tervals. The spectral collocation method is then employed 
in the discretization of the iterative scheme to give a ma-
trix system to be solved simultaneously across the over-
lapping subintervals. Several test examples are considered 
to demonstrate the general performance of the numerical 
technique in terms of e�ciency and accuracy. The numer-
ical solutions are matched against exact solutions to con-
�rm the accuracy and convergence of the method. The er-
ror bound theorems and proofs have been considered to 
emphasize on the bene�ts of the method. The use of an 
overlapping grid gives a matrix system with less dense 
matrices that can be inverted in a computationally e�-
cient manner. Thus, implementing the spectral collocation 
method on overlapping grids improves the computational 
time and accuracy. Furthermore, few grid points in each 
subinterval are required to achieve stable and accurate re-
sults. The approximate solutions are established to be in 
excellent agreement with the exact analytical solutions.

Keywords: bivariate spectral quasilinearisation method; 
multi-domain; overlapping grid; Emden-Fowler equa-
tions; Neumann and Dirichlet boundary conditions

*Corresponding Author: Musawenkhosi P. Mkhatshwa, School of
Mathematics, Statistics & Computer Science, University of Kwazulu
Natal, Private Bag X01, Scottsville, 3209, Pietermarittzburg, South
Africa, E-mail: patsonmkhatshwa@gmail.com
Sandile S. Motsa, School of Mathematics, Statistics & Computer
Science, University of Kwazulu Natal, Private Bag X01, Scottsville,
3209, Pietermarittzburg, South Africa

1 Introduction
The challenge of �nding more accurate and computa-
tionally e�cient numerical methods for solving linear
and strongly nonlinear problems still persists. The de-
velopment of numerical methods that are easily to han-
dle and highly accurate has been a subject of interest
to a growing number of researchers in the recent past
years. Spectral collocation based methods are known to
be one of the powerful numerical tools for the solution
of time-dependent partial di�erential equations (PDEs)
when compared with traditional methods such as �nite
di�erence methods and �nite volume schemes [1]. The �-
nite volume and �nite di�erence methods can be applied
in solving complex problems, but require a high number
of grid points to give accurate results. Spectral collocation
methods have been widely used for solving problems with
smooth solutions because of their e�ciency, exponential
rates convergence, low computational cost and high order
of accuracy [2–5] achieved using aminimal number of grid
points. It is known that the accuracy of spectral methods
increases with an increase in grid points but beyond a cer-
tain number of grid points, the accuracy rapidly deterio-
rates. The limitation of spectral methods is that their ac-
curacy deteriorates for complicated domains, for instance,
when the computational timedomainbecomes large.Also,
spectral methods produce amatrix systemwith dense ma-
trices that cannot be inverted in a computationally e�-
cient manner.

Motsa et al. [6] introduced the bivariate spectral quasi-
linearisation method (BSQLM) and applied the method
in solving nonlinear evolution PDEs. This numerical ap-
proach gave accurate results for smaller time domains.

Department of Mathematics, University of Eswatini, Private Bag 4,
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Precious Sibanda, School of Mathematics, Statistics & Com-
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However, the level of accuracy deteriorated when the
time domain increases. Magagula et al. [7] proposed the
non-overlapping multi-domain bivariate spectral quasi-
linearisation method as an alternative to increase the ac-
curacy of the BSQLM over large time intervals. In the
non-overlapping multi-domain BSQLM, the multi-domain
technique was only applied in time. Recently, Mkhatshwa
et al. [8, 9] found that the accuracy of the BSQLM can
be improved by applying the overlapping multi-domain
technique in the space interval and the non-overlapping
multi-domain technique in the time interval. Teleei and
Dehghan [10] introduced a numerical scheme for the
solution of sine-Gordon equation when only space dis-
cretization is performed by an overlapping multi-domain
pseudo-spectral technique. The present work seeks to im-
prove the performance of the standard BSQLM by apply-
ing the overlappingmulti-domain technique in both space
and time intervals. The BSQLM is based on Chebyshev-
Gauss-Lobatto points and uses the spectral method for the
discretization of both space and time variables. Accord-
ing to Olmos and Shizgal [11], using the overlapping do-
main decomposition method reduces the round o� error
for the Chebyshev collocation method and bring about
the stability of the method with large step size for time.
The proposed method is applied in solving singular time-
dependent Emden-Fowler equations since developing a
robust and computationally e�cient method for Emden-
Fowler equations with a large computational time domain
remains a challenging task. In this paper, we consider the
following singular time-dependent Emden-Fowler heat
equation:

∂2u(x, t)
∂x2 + k

x
∂u(x, t)
∂x + σf (x, t)G(u) + h(x, t) = ∂u(x, t)

∂t ,

0 < x < ϵ, t > 0, k > 0, (1.1)

where f (x, t)G(u) + h(x, t) is the nonlinear heat source,
u(x, t) is the temperature and t is the dimensionless time
variable. On the other hand, we consider the singular
wave-type equation:

∂2u(x, t)
∂x2 + k

x
∂u(x, t)
∂x + σf (x, t)G(u) + h(x, t) = ∂2u(x, t)

∂t2 ,

0 < x < ϵ, t > 0, k > 0, (1.2)

where f (x, t)G(u) + h(x, t) is the nonlinear source and
u(x, t) is the displacement of the wave at the position x
and at time t. The heat andwave-type equations are solved
subject to the following Neumann and Dirichlet boundary
conditions:

∂u(0, t)
∂x = 0, u(1, t) = g(t), (1.3)

and initial condition u(x, 0) = v(x). Equations (1.1)-(1.2)
can be used in modelling various phenomena in areas of
mathematical physics and astrophysics such as the di�u-
sionof heat perpendicular to the surface of parallel planes,
the theory of stellar structure, the thermal behaviour of
a spherical cloud of gas, isothermal gas sphere and the-
ory of thermionic currents [12–14]. Finding the numerical
solution of the time-dependent Emden-Fowler equation
as well as di�erent linear and nonlinear singular initial
value problems (IVPs) in quantum mechanics and astro-
physics has been a di�cult task because of the singularity
behaviour at x = 0.

Numerous research work has been carried out to
study singular boundary value problems of the form (1.1)-
(1.2) using various methods. El-Gamel et al. [15] used B-
spline collocation method to �nd the numerical solution
of time-dependent Emden-Fowler equations. Wazwaz [16]
applied the Domain decomposition method, while Singh
and Wazwaz [17] employed the modi�ed decomposition
method in the analysis of the time dependent Emden-
Fowler equations. Batiha [18], and Wazwaz [19] studied
the time-dependent Emden-Fowler equations using the
variation iteration method. Bataineh et al. [20] applied
the homotopy analysis method in �nding approximate an-
alytical solutions of time-dependent Emden-Fowler type
equations. Babolian et al. [21] gave some notes on the
implementation of the homotopy perturbation method
in solving time-dependent di�erential equations. Singh
et al. [22] proposed a modi�ed homotopy perturbation
method and used it to solve nonlinear time-dependent
Emden-Fowler equations with boundary conditions. Ul-
lah and Shah [23] considered numerical analysis of Lane
Emden-Folwer PDEs with initial condition via the Laplace
Adomian decomposition method. Recently, Singh et al.
[24] applied the Haar wavelet collocation method in solv-
ing Lane-Emden equations with Dirichlet, Newman and
Newman-Robin boundary conditions. Mohammadi et al.
[25] extended the application of Haar wavelet colloca-
tion method to solve nonlinear fractional time-dependent
Emden-Fowler equations with initial and boundary con-
ditions. The case where the fractional equations reduces
to equations of the form (1.1) was also considered in the
study.

Sharma et al. [26] introduced the Chebyshev Opera-
tional Matrix Method that uses �rst kind Chebyshev op-
eration matrix of di�erentiation to solve linear and non-
linear Lane-Emden singular initial value problems. Öztürk
[27] used an e�cient method that uses Chebyshev spec-
tral operational matrix method to solve a system Lane-
Emden ordinary di�erential equations occurring in engi-
neering. The bene�t of the approaches used in these stud-
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ies is that only small-size operational matrix is required to
achieve highly accurate results. This is because the di�er-
entiationmatrix contains a lot of zero elements, thusmini-
mizes the run time and lower operation count, resulting in
less cumulative truncated errors and improved accuracy.
To the best of the author’s knowledge, theChebyshev spec-
tral collocationmethod onmultidomain overlapping grids
has not been used to solve time-dependent Emden-Fowler
PDEs. The use of overlapping grids has the potential to
produce a matrix system with less dense (sparse) matri-
ces with a lot of zero elements. The sparsity of matrices
minimizes the storage of large matrices and makes it easy
to perform matrix-vector multiplications. Thus, the pro-
posed method requires less computer memory and com-
putational time to produce highly accurate results.

2 Numerical procedure
In this section, we present the implementation of the bi-
variate spectral collocation method on overlapping grids
in solving the time-dependent Emden-Fowler PDEs with
singular behaviour. To apply the bivariate spectralmethod
over overlapping grid on the x − t plane, we let x ∈ I,
where the space interval I = [a, b] is split into s overlap-
ping subintervals given as

Iγ = [xγ0, x
γ
Nx ], γ = 1, 2, 3, ..., s. (2.1)

Similarly, we let t ∈ K, where the time interval K = [t0, tf ]
is decomposed into m overlapping subintervals de�nes as

Kι = [tι0, tιNt ], ι = 1, 2, 3, ...,m. (2.2)

Each Iγ and Kι are further discretized into (Nx+1) and (Nt+
1) Chebyshev Gauss-Lobatto points (collocation points),
respectively. The intervals are split by overlapping one grid
point as shown in Figure 1. It can be seen from the �gure
that the last two points in the Iγ and Kι subintervals over-
lap with the �rst two points of the Iγ+1 and Kι+1 subinter-
vals, respectively, and remain common. For the overlap to
be possible, the subintervalsmust be of equal length given
by

Lx = b − a
s + 1

2 (1 − s)(1 − cos π
Nx )

, (2.3)

Lt =
tf − t0

m + 1
2 (1 − m)(1 − cos π

Nt )
, (2.4)

and the same number of collocation points (Nx + 1) and
(Nt+1) are used in each subinterval, respectively. To derive
the formula in Eq. (2.3), we remark that the total length of

the spatial domain is

b − a = 2Lx − α + (2Lx − 2α)
( s

2 − 1
)

(2.5)

=2Lx − α + (Lx − α)(s − 2) = α(1 − s) + sLx , (2.6)

where α is the overlapping distance between two intervals.
We note that α = x0−x1. Considering the �rst interval I1 in
which x ∈ [a, x1

Nx ], we can de�ne the length Lx = x1
Nx − a.

The linear transformation x = Lx
2 x̂ + a+x1

Nx
2 can be used to

transform the interval [a, x1
Nx ] into [−1, 1]. Thus, using the

Gauss-Lobatto collocation points x̂i = cos
(
πi
Nx

)
,where i =

0, 1, 2, 3, ..., Nx , we obtain

x0 − x1 = Lx
2 (x̂0 − x̂1) = Lx

2

(
1 − cos π

Nx

)
. (2.7)

Therefore, Eq. (2.7) becomes

b − a = α(1 − s) + sLx = Lx
2

(
1 − cos π

Nx

)
(1 − s) + sLx ,

(2.8)

which upon rearranging and making Lx the subject of the
formula gives Eq. (2.3). The formula for the length of time
domain is derived in a similarmanner. In each subinterval,
we must solve the heat equation

∂2u(γ,ι)

∂x2 + k
xγ
∂u(γ,ι)

∂x + σf (xγ , tι)G(u(γ,ι)) + h(xγ , tι) = ∂u(γ,ι)

∂t ,

(2.9)

where G is the nonlinear function. To solve Eq. (2.9), we
�rst linearise the nonlinear problem using the quasilin-
earisation method (QLM) [28]. The QLM assumes that the
di�erence between approximate solutions at two succes-
sive iterations represented by ur and ur+1 is very small.
Consequently, applying the QLM on Eq. (2.9) gives

∂2u(γ,ι)
r+1

∂x2 + k
xγ
∂u(γ,ι)

r+1
∂x

+ σf (xγ , tι)
[
G
(
u(γ,ι)
r

)
+
(
u(γ,ι)
r+1 − u

(γ,ι)
r

) ∂G
∂u

(
u(γ,ι)
r

)]

+ h(xγ , tι) =
∂u(γ,ι)

r+1
∂t , r = 0, 1, 2, 3, . . . (2.10)

which can be written in the form

∂2u(γ,ι)
r+1

∂x2 + k
xγ
∂u(γ,ι)

r+1
∂x + σf (xγ , tι)Λru(γ,ι)

r+1 −
∂u(γ,ι)

r+1
∂t =

σf (xγ , tι)Λru(γ,ι)
r − h(xγ , tι) − G

(
u(γ,ι)
r

)
, (2.11)

where Λ = ∂G
∂u . Before the spectral collocation method is

applied at each subinterval, the intervals Iγ and Kι are re-
spectively transformed into x̂ ∈ [−1, 1] and t̂ ∈ [−1, 1] us-
ing the linear transformations

xγi =
xγNx − x

γ
0

2 x̂ +
xγNx + xγ0

2 ,
{
x̂i
}Nx
i=0 = cos

(
πi
Nx

)
,

(2.12)
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Figure 1: Overlapping grid

tιj =
tιNt − t

ι
0

2 t̂ +
tιNt + tι0

2 ,
{
t̂j
}Nt
j=0

= cos
(
πj
Nt

)
, (2.13)

We assume that at each subinterval, the solution can
be approximated by the bivariate Lagrange interpolation
polynomial of the form

u(γ,ι)(x, t) ≈ U(γ,ι)(x, t) =
Nx∑

z=0

Nt∑

τ=0
U(γ,ι)(xz , tτ)Lz(x)Lτ(t),

(2.14)

where Lz(x) and Lτ(t) are the well known characteristic
Lagrange cardinal polynomial based on the Chebyshev-
Gauss-Lobatto points [2, 5]. The �rst order derivatives of
u(γ,ι)(x, t) with respect to x and t at the Gauss-Lobatto
points (x̂, t̂) are computed as

∂U(γ,ι)

∂x

∣∣∣∣∣
(x=xi ,t=tj)

= 2
Lx

Nx∑

z=0

Nt∑

τ=0
U(γ,ι)(xz , tτ)Lτ(tj)

dLz(x)
dx

∣∣∣∣
x=xi

=
Nx∑

z=0

[
D̄(γ)
i,z

](1,0)
U(γ,ι)(xz , tj) =

[
D(γ)

](1,0)
U(γ,ι)
j ,

i = 0, 1, 2, ...,M, (2.15)

∂U(γ,ι)

∂t

∣∣∣∣∣
(x=xi ,t=tj)

= 2
Lt

Nx∑

z=0

Nt∑

τ=0
U(γ,ι)(xz , tτ)Lz(xi)

dLτ(t)
dt

∣∣∣∣
t=tj

=
Nt∑

τ=0

[
D̂(ι)
j,τ

](0,1)
U(γ,ι)(xi , tτ) =

Nt∑

τ=0

[
D̂(ι)
j,τ

](0,1)
U(γ,ι)
τ ,

j = 0, 1, 2, ..., P, (2.16)

where
[
D̄(γ)
i,z

](1,0)
= 2

xγNx−x
γ
0
Di,z , with Di,z = dLz(x̂i)

dx̂ be-
ing the ith and zth entry of the standard �rst derivative
Chebyshev di�erentiation matrix of size (Nx + 1) × (Nx + 1)

and
[
D̂(ι)
j,τ

](0,1)
= 2

tιNt−t
ι
0
dj,τ , with dj,τ = dLτ (̂tj)

dt̂ being the
jth and τth entry of the standard �rst derivative Cheby-
shev di�erentiation matrix of size (Nt + 1) × (Nt + 1) [5],
M = Nx + (Nx − 1)(s − 1) and P = Nt + (Nt − 1)(m − 1)
are the total number of collocation point in the entire spa-
tial and time domain, respectively. The second order space
and time derivatives are obtained as

∂2U(γ,ι)

∂x2

∣∣∣∣∣
(x=xi ,t=tj)

=
Nx∑

z=0

[
D̄(γ)
i,z

](2,0)
U(γ,ι)(xz , tj)

=
[
D(γ)

](2,0)
U(γ,ι)
j , (2.17)

∂2U(γ,ι)

∂t2

∣∣∣∣∣
(x=xi ,t=tj)

=
Nt∑

τ=0

[
D̂(ι)
j,τ

](0,2)
U(γ,ι)(xi , tτ)

=
Nt∑

τ=0

[
D̂(ι)
j,τ

](0,2)
U(γ,ι)
τ , (2.18)
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The approximate solution to the linearized QLM scheme (2.11) is obtained using the spectral collocation method on
the overlapping grids over the entire interval. We apply the overlapping grid multi-domain spectral collocation method
by �rst assembling the di�erentiation matrices in the space and time variables. Since the last two points in the γth
sub-interval and the �rst two points in the (γ + 1)th sub-interval overlap and remain common, we remove the rows
corresponding to the recurrent grid points and assemble the Chebyshev di�erentiationmatrixD usingD(γ) for themulti-
domain technique in x as follows

D =




D(s)
0,0 D(s)

0,1 · · · D(s)
0,N−1 D(s)

0,Nx
D(s)

1,0 D(s)
1,1 · · · D(s)

1,Nx−1 D(s)
1,Nx

. . . . . . . . . . . . . . .
D(s)
Nx−1,0 D(s)

Nx−1,1 · · · D(s)
Nx−1,Nx−1 D(s)

Nx−1,Nx
D(s−1)

1,0 D(s−1)
1,1 · · · D(s−1)

1,Nx−1 D(s−1)
1,Nx

D(s−1)
2,0 D(s−1)

2,1 · · · D(s−1)
2,Nx−1 D(s−1)

2,Nx
. . . . . . . . . . . . . . .

D(s−1)
Nx−1,0 D(s−1)

Nx−1,1 · · · D(s−1)
Nx−1,Nx−1 D(s−1)

Nx−1,Nx
. . . . . .
D(1)

1,0 D(1)
1,1 · · · D(1)

1,Nx−1 D(1)
1,Nx

D(1)
2,0 D(1)

2,1 · · · D(1)
2,Nx−1 D(1)

2,Nx
. . . . . . D

. . . . . . . . .
D(1)
Nx ,0 D(1)

Nx ,1 · · · D(1)
Nx ,Nx−1 D(1)

Nx ,Nx




(2.19)

where the empty entries are zeros, which makes the matrix to be sparse, and D(γ) denotes Chebyshev di�erentiation
matrix in the γth subinterval. The size ofmatrixD is (M+1)×(M+1),which reduces to a fullmatrix if only a single domain
is used in the calculation. The di�erentiation matrix in t is assembled using D̂(ι) in a similar manner to obtain a matrix
system D̂ of size (P + 1) × (P + 1). The second order di�erentiation matrices are computed using matrix multiplications.
Using the assembled di�erentiation matrices in x and t directions in Eq. (2.11) yields the following system of linear
equations:

[
D(2,0) + k

xγi
D(1,0) + σf (xγi , t

µ
j )ΛrI

]
U(γ,ι)
j,r+1 −

P∑

j=0
D̂(0,1)
i,j U(γ,ι)

j,r+1 = σf (xγi , t
ι
j)Λru

(γ,ι)
r − h(xγi , t

ι
j) − G(u(γ,ι)

r ), (2.20)

Making use of the relevant initial condition, Eq. (2.20) yields
[
D(2,0) + k

xγi
D(1,0) + σf (xγi , t

ι
j)ΛrI

]
U(γ,ι
j,r+1 −

P−1∑

j=0
D̂(0,1)
i,j U(γ,ι)

j,r+1 = R(γ,ι)
i,r , (2.21)

whereR(γ,ι) = σf (xγi , t
ι
j)ΛrU

(γ,ι)
r −h(xγi , t

ι
j)−G(U(γ,ι)

r )+D̂(0,1)
j,P U(γ,ι)

P . Equation (2.21) can be expressed as an P(M+1)×P(M+1)
matrix system of the form 



A0,0 A0,1 · · · A0,P−1
A1,0 A1,1 · · · A1,P−1
...

...
. . .

...
AP−1,0 AP−1,1 · · · AP−1,P−1







Û0
Û1
...

ÛP−1




=




R̂0
R̂1
...

R̂P−1



, (2.22)

where

Ai,i = D(2,0) + k
xγi
D(1,0) + σf (xγi , t

ι
j)ΛrI − D̂(0,1)

i,i I, i = j, (2.23)

Ai,j = −D̂(0,1)
i,j I, i = ̸ j, (2.24)

and I is an identity matrix of size (M + 1) × (M + 1). For brevity, the application of the BSQLM on overlapping grids in
solving the time dependent Emden-Fowler wave equation has been omitted.
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3 Numerical examples
This section demonstrates the implementation of the
BSQLM on overlapping grids to popular time dependent
Emden-Fowler heat-wave equations with known analyti-
cal solutions. In all our numerical calculations, we con-
sider Neumann and Dirichlet boundary conditions. The
space interval is taken as [a, b] = [0, 1] and the time in-
terval [t0, tf ] = [0, T] is varied.

3.1 Singular heat-type equations

Example 1. We consider the linear homogeneous time-
dependent Emden-Fowler heat equation [17]:

∂2u(x, t)
∂x2 + 5

x
∂u(x, t)
∂x −

(
12t2 − 2tx2 + 4t4x2

)
u(x, t)

= ∂u(x, t)
∂t , (3.1)

subject to the Neumann and Dirichlet boundary condi-
tions

∂u(0, t)
∂x = 0, u(1, t) = et

2
, (3.2)

and initial condition u(x, 0) = 1. The exact solution is
u(x, t) = ex

2 t2 .

Example 2. In the next example, we consider the linear
nonhomogeneous time-dependent Emden-Fowler heat
equation [15, 16, 19, 23]:

∂2u(x, t)
∂x2 + 2

x
∂u(x, t)
∂x −

(
5 + 4x2

)
u(x, t)

= ∂u(x, t)
∂t + (6 − 5x2 − 4x4), (3.3)

with the boundary conditions

∂u(0, t)
∂x = 0, u(1, t) = 1 + e1+t , (3.4)

and the initial condition u(x, 0) = x2 + ex
2
. The exact

solution is given by u(x, t) = x2 + ex
2+t .

Example 3. Next, we consider the nonlinear time-
dependent Emden-Fowler equation [15–17]:

∂2u(x, t)
∂x2 + 5

x
∂u(x, t)
∂x = ∂u(x, t)

∂t +
(

24t + 16t2x2
)
eu(x,t)

+ 2x2e
1
2 u(x,t), (3.5)

subject to the boundary conditions

∂u(0, t)
∂x = 0, u(1, t) = −2 ln(1 + t), (3.6)

and initial condition u(x, 0) = 0. The exact solution is
known as u(x, t) = −2 ln(1 + tx2).

Example 4. In this example, we consider the nonlinear
time-dependent Emden-Fowler heat equation [15, 17]:

∂2u(x, t)
∂x2 + k

x
∂u(x, t)
∂x = ∂u(x, t)

∂t
+
[
t (tx)(−2+p) p

(
x2 − t(−1 + k + p)

)]
eu(x,t)

+
[
t2 (tx)(−2+2p) p2

]
e2u(x,t), (3.7)

where k and p are physical parameters. The problem is
solved subject to the boundary conditions

∂u(0, t)
∂x = 0, u(1, t) = ln

(
1

3 + tp

)
, (3.8)

and initial condition u(x, 0) = ln( 1
3 ). The analytical solu-

tion is given by u(x, t) = ln( 1
3+(xt)p ). In the present work,

the numerical results are obtained for the cases when (k =
1, p = 2) and (k = p = 2).

3.2 Singular wave-type equations

Example 5. We consider the linear time-dependent
Emden-Fowler wave equation [21]:

∂2u(x, t)
∂x2 + 4

x
∂u(x, t)
∂x − (18x + 9x4)u(x, t) =

∂2u(x, t)
∂t2 − 2 − (18x + 9x4)t2, (3.9)

subject to the boundary conditions

∂u(0, t)
∂x = 0, u(1, t) = t2 + e1, (3.10)

and initial condition u(x, 0) = ex
3
. The analytical solution

is given by u(x, t) = t2 + ex
3
.

Example 6. Lastly, we consider the nonlinear time-
dependent Emden-Fowler wave equation [17]:

∂2u(x, t)
∂x2 + 3

x
∂u(x, t)
∂x = ∂2u(x, t)

∂t2 − 8teu(x,t)

+
(

4t2x2 − x4
)
e2u(x,t), (3.11)

with the boundary conditions

∂u(0, t)
∂x = 0, u(1, t) = ln

(
1

5 + t

)
, (3.12)

and initial condition u(x, 0) = ln( 1
5 ). The analytical solu-

tion is known as u(x, t) = ln
( 1

5+tx2

)
.
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4 Convergence and stability of the
spectral collocation method on
overlapping grids

4.1 Convergence

For a numerical scheme to be adopted it needs to resem-
ble the PDEs that is approximated. A numerical method is
said to be convergent if the solution of the discrete equa-
tions tends to exact solution of the di�erential equation
as the distance between the computational grids is de-
�ned. The bene�t of spectral methods is that they achieve
a high degree of numerical accuracy with little more res-
olution than the one required to achieve moderate accu-
racy [29]. The main challenge of numerical analysis in the
boundary value problems is to obtain the approximate so-
lution u(x, t) which converges to exact solution as the col-
location points increases for some time interval [t0, tf ].
To estimate the error, the approximate solution is sub-
tracted from the exact solution. Thebasic results is theLax-
Richtmyer equivalence theoremwhich states that stability
is equivalent to converge for consistent approximations to
well-posed linear problems. It is worth noting that the the-
orem is applicable to any discretization. Let the in�nity er-
ror norm be computed as

Ei = ||ui − ûi||∞, 0 ≤ i ≤ M, (4.1)

where ui is the approximated solution, ûi is the exact so-
lution at time level t, M denote the number of collocation
points in space direction. The scheme is consistent if asM
tends to in�nity, in�nity norm error goes to zero and then
the scheme is convergent [30]. To assess the convergence
of the iterative scheme, we record the in�nity error norms
of the solutions between successive iterations. This values
are called solution error, and can be written as

||E||∞ = ||Ur+1 − Ur||∞. (4.2)

4.2 Stability

The stability analysis of the iterative scheme is accessed
by obtaining the condition numbers of the coe�cient ma-
trix (in matrix equation that results from collocation pro-
cess). To compute the condition number of coe�cient ma-
trix A, we invoke the Matlab cond(A). The condition num-
ber of the matrix measures the ratio of the maximum rela-
tive stretching to themaximum relative shrinking that ma-
trix does to any non-zero vectors. The 2-norm condition

number of a matrix A ∈⊂q×q is given by

ε(A) = ||A||2||A−1||2. (4.3)

Without any preconditioning ε(Aq) grows proportionally
with m, which is better than the typical growth of O(q2Q)
in the condition number for the standard tau and colloca-
tionmethods. It is worth noting that the condition number
of the linear system is independent of the number of col-
location points, and the boundary conditions are imposed
exactly.

4.3 Error bounds theorem in spectral
collocation method on overlapping grids

This section examines an upper bound theorem for the
absolute error and gives a procedure to estimate the ab-
solute error. The error bound theorems that govern poly-
nomial interpolation error in a Bivariate Lagrange inter-
polating polynomial constructed using Chebyshev Gauss-
Lobatto nodes which are basically the relative extremes of
the Nx-th degree Chebyshev polynomial of the �rst kind
TNx (x̂) = cos

[
Nx cos−1(x̂)

]
, x̂ ∈ [−1, 1]. A complete set

of the Chebyshev Gauss-Lobatto nodes are the roots of the
Nx-th degree Chebyshev polynomial de�ned as

LNx+1(x̂) =
(

1 − x̂2
)
T

′
Nx (x̂), (4.4)

Next we present the theorem that benchmarks formula-
tion of the error bounds theorems on bivariate polynomial
interpolation [31, 32]:

Theorem 1: Let u(x, t) ∈ CNx+Nt+2 ([a, b] × [t0, tf ]
)
be suf-

�ciently smooth such that at least (Nx+1)-th partial deriva-
tive with respect to x, (Nt + 1)-th partial derivative with re-
spect to t, and (Nx+Nt+2)-thmixed partial derivativewith
respect to x and t exists and are all continuous, then there
exists values δx , δ

′
x ∈ (a, b) and δt , δ

′
t ∈ (t0, tf ), such that

u(x, t) − U(x, t) = ∂Nx+1u(δx , t)
∂Nx+1(Nx + 1)!

Nx∏

i=0
(x − xi)

+ ∂Nt+1u(x, δt)
∂Nt+1(Nt + 1)!

Nt∏

j=0
(t − tj)

+ ∂Nx+Nt+2u(δ
′
x , δ

′
t)

∂Nx+1∂Nt+1(Nx + 1)!(Nt + 1)!

Nx∏

i=0
(x − xi)

Nt∏

j=0
(t − tj),

(4.5)

where U(x, t) is a bivariate interpolating polynomial of
u(x, t) at {xi}Nxi=0 grid points in x− variable and

{
tj
}Nt
j=0 grid

points in t− variable. Similar results to Eq. (4.5) were also
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obtained byBrawy [33]. Taking absolute values of Eq. (4.5),
we have

u(x, t) − U(x, t) ≤ max
(x,t)∈Λ

∣∣∣∣
∂Nx+1u(δx , t)

∂Nx+1

∣∣∣∣

∣∣∣∣
∏Nx
i=0(x − xi)

∣∣∣∣
(Nx + 1)!

+ max
(x,t)∈Λ

∣∣∣∣
∂Nt+1u(x, δt)

∂Nt+1

∣∣∣∣

∣∣∣∣
∏Nt
j=0(t − tj)

∣∣∣∣
(Nt + 1)!

+ max
(x,t)∈Λ

∣∣∣∣
∂Nx+Nt+2u(δ

′
x , δ

′
t)

∂Nx+1∂Nt+1

∣∣∣∣

∏Nx
i=0(x − xi)

∣∣∣∣
∣∣∣∣
∏Nt
j=0(t − tj)

∣∣∣∣
(Nx + 1)!(Nt + 1)! ,

(4.6)

where Λ = [a, b] × [t0, tf ]. Since the function u(x, t) is as-
sumed to be smooth on the interval of approximation, it
follows that its derivatives are bounded and there exists
constants C1, C2 and C3 such that

max
(x,t)∈Λ

∣∣∣∣
∂Nx+1u(δx , t)

∂Nx+1

∣∣∣∣ ≤ C1, max
(x,t)∈Λ

∣∣∣∣
∂Nt+1u(x, δt)

∂Nt+1

∣∣∣∣ ≤ C2,

max
(x,t)∈Λ

∣∣∣∣
∂Nx+Nt+2u(δ

′
x , δ

′
t)

∂Nx+1∂Nt+1

∣∣∣∣ ≤ C3, (4.7)

4.3.1 Error bound on a single domain

The error bound theorem for the bivariate polynomial in-
terpolation using Chebyshev Gauss-Lobatto nodes on a
single domain is governed by the theorem below:
Theorem 2: (The error bound on single domain). The
forthcoming error bound when the Chebyshev Gauss-
Lobatto grid points {xi}Nxi=0 in x− variable and

{
tj
}Nt
j=0 in t−

variable are used in bivariate polynomial interpolation is
as follows :

E(x, t) ≤ C1

8
(
b−a

4

)Nx+1

(Nx + 1)! + C2

8
(
tf−t0

4

)Nt+1

(Nt + 1)!

+ C3

82
(
b−a

4

)Nx+1(
tf−t0

4

)Nt+1

(Nx + 1)!(Nt + 1)! , (4.8)

Proof: First, using the relation in [34], we express Eq. (4.4)
in the form

LNx+1(x̂) = (1 − x̂2)T
′
Nx (x̂) = −Nx x̂TNx (x̂) + NxTNx−1(x̂).

(4.9)

Using the triangular inequality and noticing that |TNx (x̂)| ≤
1, ∀x̂ ∈ [−1, 1], we have

LNx+1(x̂) = | − Nx x̂TNx (x̂) + NxTNx−1(x̂)|
≤ | − Nx x̂TNx (x̂)| + |NxTNx−1(x̂)| ≤ 2Nx . (4.10)

The leading coe�cients of LNx+1(x̂) is 2Nx−1Nx , where the
components 2Nx−1 and Nx, respectively, emerge from the
leading coe�cient of TNx (x̂) and the application of the Nx-
th rule of di�erentiation on TNx . The product factor in the
�rst term of the error bound expression given at Eq. (4.6)
can be considered as the factorised form of monic polyno-
mial LNx+1(x̂)

2Nx−1Nx . We have,

Nx∏

i=0
(x̂ − x̂i) = LNx+1(x̂)

2Nx−1Nx
, x̂ ∈ [−1, 1]. (4.11)

Using Eq. (4.10), it is easy to show that the monic polyno-
mial (4.11) is bounded by

∣∣∣∣
Nx∏

i=0
(x̂ − x̂i)

∣∣∣∣ =
∣∣∣∣
LNx+1(x̂)
2Nx−1Nx

∣∣∣∣ ≤
2Nx

2Nx−1Nx
= 4

2Nx , (4.12)

In view of the general interval x ∈ [a, b], we can ex-
hibit that the �rst product factor in Eq. (4.6) is bounded by

max
a≤x≤b

∣∣∣∣
Nx∏

i=0
(x − xi)

∣∣∣∣ = max
−1≤x̂≤1

∣∣∣∣
Nx∏

i=0

(b − a)
2 (x̂ − x̂i)

∣∣∣∣

=
(
b − a

2

)Nx+1
max
−1≤x̂≤1

∣∣∣∣
Nx∏

i=0
(x̂ − x̂i)

∣∣∣∣

=
(
b − a

2

)Nx+1
max
−1≤x̂≤1

∣∣∣∣
LNx+1(x̂)
2Nx−1Nx

∣∣∣∣

≤
4
(
b−a

2

)Nx+1

2Nx = 8
(
b − a

4

)Nx+1
(4.13)

Similarly, the second product factor is bounded above
by

max
t0≤t≤tf

∣∣∣∣
Nt∏

j=0
(t − tj)

∣∣∣∣ =
( tf − t0

2

)Nt+1
max
−1≤t̂≤1

∣∣∣∣
LNt+1 (̂t)
2Nt−1Nt

∣∣∣∣

≤
4
(
tf−t0

2

)Nt+1

2Nt = 8
( tf − t0

4

)Nt+1
, (4.14)

Using Eq. (4.13), (4.14) and Eq. (4.6) and (4.7)complete the
proof.

4.3.2 Error bound theorem in overlapping multiple
intervals

In this section, the bivariate polynomial interpolation er-
ror bound theorem for single domain is extended to accom-
modate decomposed domains. It is worth mentioning that
the number of grid points is assumed to be the same for all
subintervals in either space or time direction.
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Error bound in the decomposed domain: The error
bound when the Chebyshev Gauss-Lobatto grid points
{xi}Nxi=0 ∈ [xγ0, x

γ
Nx ], γ = 1, 2, 3, ..., s, in space variable and

{
tj
}Nt
j=0 ∈ [tι0, tιNt ], ι = 1, 2, 3, ...,m, in time variable are

used in bivariate polynomial interpolation is as follows:

E(x, t) ≤ C1

8
(
Lx
4

)Nx+1

(Nx + 1)! + C2

8
(
Lt
4

)Nt+1

(Nt + 1)!

+ C3

82
(
Lx
4

)Nx+1(
Lt
4

)Nt+1

(Nx + 1)!(Nt + 1)! , (4.15)

where Lx and Lt represent the length of each subinterval
in x and t, as given in Eq. (2.3) and (2.4).

Proof: First, we consider the x variable. In the entire
spatial domain [a, b], we have that

∣∣∣∣
Nx∏

i=0
(x − xi)

∣∣∣∣ ≤ 8
(
b − a

4

)Nx+1
, x ∈ [a, b]. (4.16)

Since the interpolation is done piece-wise and taking into
account that the error bound depends on the length of the
interval as from the previous theorem, there is a straight-
forward inference that in the decomposed domain and at
each subinterval is x, we must have

∣∣∣∣
Nx∏

i=0
(x − xi)

∣∣∣∣ ≤ 8
(
Lx
4

)Nx+1
, {xi}Nxi=0 ∈ [xγ0, x

γ
Nx ],

γ = 1, 2, 3, ..., s. (4.17)

Using the assumption that the unknown function u(x, t)
is smooth, it is necessary to state that ∃ δκ ∈ (xκ0, xκNx ), κ =
1, 2, 3, ..., s, for which the values of the (Nx + 1)th par-
tial derivatives of u(x, t) with respect to x in each subdo-
main, is the absolute extrema. This allows us to split the

�rst term C1

8

(
b−a

4

)Nx+1

(Nx+1)! , which appears in the error bound
expression at Eq. (4.8), into separate components that are
certainly not equal in the divided x domain, as




C(γ)

1

8
(
Lx
4

)Nx+1

(Nx + 1)!





s

γ=1

, (4.18)

where

max
(x,t)∈Λ

∣∣∣∣
∂Nx+1u(x, t)
∂Nx+1

∣∣∣∣ =
∣∣∣∣
∂Nx+1u(δx , t)

∂Nx+1

∣∣∣∣ ≤ C
γ
1, x ∈ [xγ0, x

γ
Nx ].

(4.19)

We de�ne

||C̄1||∞ ≡ max
{
C(1)

1 , C(2)
1 , C(3)

1 , ..., C(s)
}
, (4.20)

to represent the maximum absolute value of the (Nx + 1)-
th partial derivatives of u(x, t) with respect to x ∈ [a, b].
Distinctly, ||C̄1||∞ = C1, where C1 is identical to the given
Eq. (4.8). To expand the error bound over the x domain, we
shall consider the largest possible error across all overlap-
ping subintervals in x, which is

C1

8
(
Lx
4

)Nx+1

(Nx + 1)! . (4.21)

The same procedure can be used to show that the second
component in the error bound Eq. (4.8) in the decomposed
t domain gives

C2

8
(
Lt
4

)Nt+1

(Nt + 1)! , (4.22)

Accordingly, the third component in Eq. (4.8) becomes

C3

82
(
Lx
4

)Nx+1(
Lt
4

)Nt+1

(Nx + 1)!(Nt + 1)! , (4.23)

in the decomposed domain and
(
Lx
4

)Nx+1
�
(
b−a

4

)Nx+1

and
(
Lt
4

)Nt+1
�
(
tf−t0

4

)Nt+1
for large number of subinter-

vals γ and ι in x and t, respectively. Using Eq. (4.21)-(4.23)
completes the proof.

5 Results and discussion
In this section,wepresent thenumerical results of the time
dependent Emden-Fowler equations obtained using spec-
tral collocation method on overlapping grids. In order to
assess the performance and reliability of the method, the
numerical results are compared with results from the liter-
ature and exact solutions. The level of accuracy of the ap-
proximate solution in comparison with the exact solution
is measured by calculating themaximum error EN de�ned
as

EN = max
i

{∣∣u(xi , t) − û(xi , t)
∣∣ , : 0 ≤ i ≤ N

}
, (5.1)

where u(xi , t) is the approximate solution and û(xi , t) is
the exact solution.

5.1 Maximum error estimates for varying
time and space grid points

The maximum errors for the numerical examples are pre-
sented inTables 1 - 8 at di�erent collocationpoints in space
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for varying time t. The central processing unit (CPU) com-
putational time is presented at the bottom of each table.
Table 1 displays the maximum error estimates for exam-
ple 1 when Nt = 10, and m = s = 3. When Nx = 4,
the BSQLM on overlapping grids produces maximum er-
rors of about 10−11 for small time (t = 0.1) and 10−5 for
increasing time (t = 0.8, 1). On the other hand, when
Nx = 10, 12 the method gives maximum errors of about
10−12 for both small and increasing time. This observation
suggests that increasing the number of grid points from
Nx = 4 to Nx = 10 gives more accurate solutions with
accuracy not deteriorating with increasing time variable.
Increasing space grid points beyond Nx = 10 does not
signi�cantly improve the accuracy of the BSQLM on over-
lapping grids. We can remark that these accurate results
are achieved using a minimal number of grid points and
convergence of the method is reached within few seconds.
From table 1, it is also noted that the modi�ed decompo-
sition method gives a maximum error of up to 10−3, while
the BSQLM on overlapping grids gives amaximum error of
up to 10−13. This implies that the BSQLM on overlapping
grids is more accurate than other methods including the
modi�ed decomposition method employed by Singh and
Wazwaz [17].

Table 2 summarizes the maximum error estimates for
example 2 obtained by the proposed method using Nt =
10, and m = s = 3. For Nx = 4, the BSQLM on over-
lapping grids gives a maximum error of about 10−4 and
for Nx = 10, 12, the maximum error is 10−11 on average.
It is clear from the table that the computed maximum er-
rors decline monotonically as the number of grid points
increases. A maximum of Nx = 10 grid points is enough
to ensure that the numerical method converged to the de-
sired accuracy in a fraction of seconds. Hence, the numer-
ical method uses few grid points and less computational
time to achieve accurate results. For comparison, we have
shown that the maximum errors obtained in the present
study are relatively lower than those obtained by El-Gamel
et al. [15] using the B-spline collocation method. This ob-
servation suggests that the BSQLM on overlapping grids
performs better than the B-spline collocation method.

In Table 3, the maximum error estimates for example
3 are presented when Nt = 10, and m = s = 3. When
Nx = 4, the BSQLM on overlapping grids produces max-
imum errors of about 10−8 for small time (t = 0.1) and
10−5 for increasing time (t = 0.6, 0.7, 0.8, 1).On the other
hand, when Nx = 10, 12 the method gives maximum er-
rors close to 10−13 for both small and increasing time. We
observe that using Nx = 10 for the BSQLM on overlapping
grids gives more accurate results. Once again, increasing
space grid points beyond Nx = 10 does not signi�cantly

improve the accuracy of the method. We also compare the
maximum error estimates with those obtained using B-
Spline collocation method of El-Gamel [15] and Modi�ed
Decomposition method of Singh andWazwaz [17]. The ab-
solute errors from the proposed method were also com-
paredwith errors computed usingmodi�edhomotopy per-
turbationmethodbySinghet al. [22], Adomiandecomposi-
tion method by Wazwaz [16] and Haar wavelet collocation
method by Mohammadi et al. [25]. The results are shown
in Table 4 for varying x.. From these comparisons, it is
clear that the errors obtained using the BSQLMon overlap-
ping grids are less than those obtained using the B-Spline
collocation, Decomposition method, homotopy perturba-
tion method and Haar wavelet collocation method. Thus,
it can be deduced that the BSQLM on overlapping grids
gives highly accurate results and computationally e�cient
when compared to other methods.

Tables 5 and 6 display the maximum error estimates
for example 4, which were obtained using the BSQLM on
overlapping grids when Nt = 10, p = 2, and m = s = 3.
When Nx = 4, the BSQLM on overlapping grids gives max-
imum errors of about 10−12 for small time (t = 0.1) and
10−5 for increasing time (t = 1.7, 2). On the other hand,
when Nx = 10, 12 the method produces maximum errors
of about 10−12 for both small and large time. It can be seen
that varying the constants k and p does not a�ect the ac-
curacy of the method since the maximum error estimates
do not change signi�cantly when the same number of grid
points are used. It is also noted that increasing the number
of grid points decreases the maximum error and a maxi-
mum of Nx = 10 space grid points is su�cient to ensure
convergence of the method to the desired accuracy within
a fraction of seconds. The accuracy of themethod does not
improvewhen increasing space grid points aboveNx = 10.
The maximum errors computed using the BSQLM on over-
lapping grids are seen to be smaller than those obtained
by Singh and Wazwaz [17] using the Modi�ed Decomposi-
tion method. These numerical outcome indicates high ac-
curacy and e�ciency of the proposed method.

Table 7 presents the maximum error estimates for ex-
ample 5 generated using the BSQLM on overlapping grids
when Nt = 5,m = s = 3. The decrease in the maximum er-
rors as the time t becomes large implies that the accuracy
of the BSQLM on overlapping grids does not deteriorate as
t increases. Thus, it can be concluded that decomposing
the main intervals into overlapping subintervals improves
the accuracyof theBSQLMmethod. ForNx = 6, theBSQLM
on overlapping grids gives amaximum error of about 10−6

and for Nx = 10, 12, the maximum error is about 10−10.
We observe that increasing the number of grid points de-
creases the maximum error and Nx = 10 space grid points
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Table 1:Maximum errors EN for example 1 using Nt = 10 and m = s = 3

t\Nx 4 6 8 10 12 Singh and Wazwaz [17]

0.1 2.7032e-011 6.2594e-013 9.9853e-013 2.8331e-012 2.2855e-012 -
0.2 1.9447e-009 2.6690e-013 3.4772e-012 1.0118e-011 1.0050e-011 -
0.3 2.4218e-008 4.9165e-012 1.3165e-012 3.8836e-012 1.4514e-011 -
0.4 1.4964e-007 5.3980e-011 6.3749e-013 5.4465e-012 1.1304e-011 -
0.5 6.3576e-007 3.7258e-010 9.2948e-013 2.7414e-012 4.9281e-012 1.68682e-003
0.6 2.1447e-006 1.8983e-009 1.7959e-012 3.6626e-012 9.9449e-012 -
0.7 6.2927e-006 7.8670e-009 1.0117e-011 4.0949e-012 1.8006e-011 -
0.8 1.6564e-005 2.8185e-008 3.7555e-011 6.2184e-012 1.5489e-011 -
1 9.1402e-005 2.6887e-007 6.0193e-010 4.2895e-012 8.5687e-012 2.49443e-002

CPU Time 0.030678 0.068325 0.135047 0.164138 0.241184 -

Table 2:Maximum errors EN for example 2 using Nt = 10 and m = s = 3

t\Nx 4 6 8 10 12 El-Gamel et al. [15]

0.1 1.3627e-004 3.6444e-007 7.7253e-010 1.1648e-011 1.9944e-011 1.541e-05
0.2 1.5067e-004 4.0335e-007 8.5353e-010 7.8915e-012 1.2781e-011 -
0.4 1.8404e-004 4.9282e-007 1.0442e-009 1.5382e-011 2.4286e-011 -
0.5 2.0340e-004 5.4465e-007 1.1539e-009 6.6538e-012 2.2956e-011 2.431e-05
0.8 2.7456e-004 7.3521e-007 1.5547e-009 1.6607e-011 6.6873e-011 -
1 3.3534e-004 8.9798e-007 1.9099e-009 1.0463e-011 1.8777e-011 4.008e-05
1.2 4.0959e-004 1.0968e-006 2.3222e-009 2.4110e-011 8.3839e-011 -
1.4 5.0027e-004 1.3396e-006 2.8322e-009 3.3756e-011 8.2454e-011 -
1.6 6.1104e-004 1.6362e-006 3.4713e-009 4.2048e-011 4.2372e-011 -
2 9.1156e-004 2.4410e-006 5.1725e-009 7.0948e-011 7.3666e-011 -

CPU Time 0.027655 0.059255 0.105297 0.161377 0.247752 -

Table 3:Maximum errors EN for example 3 using Nt = 10 and m = s = 3

t\Nx 4 6 8 10 12 Sing and Wazwaz [17] El-Gamel et al. [15]

0.1 7.9494e-008 3.6645e-011 1.1463e-013 5.9744e-013 1.0649e-012 - 5.202e-05
0.2 5.1143e-007 4.1489e-010 4.7408e-013 7.0116e-013 7.9162e-013 - 1.148e-04
0.3 1.7218e-006 2.0603e-009 3.3333e-012 1.0248e-012 6.8643e-012 - -
0.4 3.9985e-006 6.1430e-009 1.2917e-011 6.0660e-013 3.3857e-012 - -
0.5 7.5313e-006 1.3838e-008 3.4698e-011 1.4209e-012 6.2185e-012 8.1151e-003 -
0.6 1.2374e-005 2.6808e-008 7.9783e-011 4.0957e-012 8.1165e-012 - -
0.7 1.8436e-005 4.8558e-008 1.5799e-010 3.6885e-012 8.6302e-012 - -
0.8 2.5473e-005 8.0908e-008 2.8350e-010 7.0806e-012 9.1263e-012 - -
1 4.1074e-005 1.8904e-007 7.5399e-010 3.7352e-012 4.1977e-012 2.49443e-002 -

CPU Time 0.145928 0.279091 0.503767 0.849340 1.378707 - -

is enough to ensure that the numerical method converged
to the exact solution over the large computational time do-
main. Using Nt = 5 and Nx = 10 as well as employing
the overlapping grid strategy reduces the size of the co-
e�cient matrix which in turn reduces the computational
time. Thus, the BSQLM on overlapping grids uses fewer
grid points and minimal computational time to achieve
more accurate results for large time domains.

Table 8 displays the maximum error estimates for ex-
ample 6 using Nt = 5, and m = s = 3. Just like in the pre-
vious example, the accuracy of the BSQLM on overlapping
grids in solving example 6 does not worsen as t becomes
large.When Nx = 4, the BSQLMon overlapping grids gives
maximum errors of about 10−7 for small time (t = 0.1)
and 10−4 for large time (t = 10, 12, 14, 16, 18, 19). On
the other hand, when Nx = 8, 10, 12 the method gener-
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Table 4:Maximum errors EN for example 3 using Nt = Nx = 10,m = s = 3, and t = 0.5

x Singh et al. [22] Wazwaz [16] Mohammadi et al. [25] Present results

0.1 2.2300e-04 5.3985e-15 3.8818e-07 1.5556e-014
0.2 2.1300e-04 2.0974e-11 4.6257e-07 8.7764e-013
0.3 3.1900e-04 2.6652e-09 6.8850e-07 1.1586e-013
0.4 2.3500e-04 8.1781e-08 4.6909e-06 2.3337e-012
0.5 2.3600e-04 1.1487e-06 2.5043e-05 3.1268e-012
0.6 3.3100e-04 9.8258e-06 7.0896e-05 5.6095e-012
0.7 2.2700e-04 5.9617e-05 1.5046e-04 3.8346e-012
0.8 1.3300e-04 2.8116e-04 2.6759e-04 6.7432e-012
0.9 2.6000e-05 1.0935e-03 4.2135e-04 3.4377e-012
1 0.000000 3.6531e-03 6.0658e-04 3.7352e-012

Table 5:Maximum errors EN for example 4 using Nt = 10, m = s = 3 and k = 1, p = 2

t\Nx 4 6 8 10 12 Singh and Wazwaz [17]

0.1 2.0992e-012 8.4777e-013 2.3177e-012 2.7267e-012 4.3436e-012 -
0.2 1.5251e-010 3.1997e-013 2.1863e-012 2.6663e-012 1.5183e-012 -
0.3 1.7306e-009 3.9879e-013 1.2415e-012 3.1604e-012 2.9396e-012 -
0.5 3.1536e-008 1.1303e-011 1.3922e-012 3.7710e-012 2.1513e-011 7.6164e-004
0.7 1.7269e-007 8.6033e-011 6.6991e-013 3.6995e-012 7.2982e-012 -
1 1.0054e-006 1.5192e-009 3.2312e-012 4.2584e-012 9.2206e-012 9.4733e-004
1.2 2.8188e-006 5.9746e-009 1.5796e-011 3.3356e-012 7.6605e-012 -
1.5 8.9536e-006 2.9790e-008 8.7292e-011 3.8634e-012 9.0561e-012 -
1.7 1.9056e-005 6.8365e-008 2.2445e-010 4.6017e-012 6.6456e-012 -
2 4.8793e-005 1.8736e-007 7.6246e-010 7.9028e-012 4.8510e-012 -

CPU Time 0.135166 0.269503 0.478339 0.841058 1.329802 -

Table 6:Maximum errors EN for example 4 using Nt = 10, m = s = 3 and k = p = 2

t\Nx 4 6 8 10 12 Singh and Wazwaz [17]

0.1 2.0728e-012 4.3587e-013 1.3951e-012 5.6384e-012 5.2225e-012 -
0.2 1.4708e-010 2.4425e-013 3.5532e-012 2.9743e-012 1.0799e-011 -
0.3 1.6640e-009 6.0574e-013 1.4022e-012 3.3729e-012 1.3267e-011 -
0.5 3.0413e-008 1.1060e-011 4.3743e-013 2.7836e-012 1.1411e-011 8.022e-005
0.7 1.6844e-007 8.9288e-011 2.0448e-012 6.0698e-012 3.8620e-012 -
1 1.1188e-006 1.5465e-009 3.8647e-012 3.7705e-012 3.3966e-012 9.929e-005
1.2 3.1528e-006 5.9507e-009 1.3870e-011 3.2589e-012 9.7775e-012 -
1.5 1.0284e-005 2.9659e-008 9.1938e-011 4.3012e-012 4.4464e-012 -
1.7 1.8836e-005 6.9950e-008 2.4621e-010 5.4248e-012 1.0157e-011 -
2 4.3144e-005 2.0118e-007 8.9129e-010 6.3878e-012 6.1879e-012 -

CPU Time 0.129197 0.259293 0.484481 0.836222 1.320742 -

ates maximum errors of close to 10−8 for both small and
large time. An increase in the number of grid points re-
sults in a decrease in the maximum error from Nx = 4 to
Nx = 8. However, the decrease in the maximum error es-
timates from Nx = 8 to Nx = 12 is not signi�cant partic-
ularly for small values of time t. This suggest that Nx = 8
space grid points is su�cient to ensure that the method
converged to the exact solutionover the large timedomain.

Numerical solutions for example 6 were obtained using
few grid points and less computational time.
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Table 7:Maximum errors EN for example 5 using Nt = 5, m = s = 3

t\Nx 6 8 10 12

1 1.4597e-005 7.5077e-007 6.0796e-008 3.6887e-008
2 6.1951e-006 4.5171e-008 1.1547e-009 2.6870e-009
4 6.0941e-006 4.4383e-008 3.7191e-010 2.3821e-010
6 5.8925e-006 4.3594e-008 2.9772e-010 1.4603e-010
8 5.9088e-006 4.3606e-008 5.3856e-010 6.9367e-010
10 5.9090e-006 4.3792e-008 2.8747e-010 4.3056e-010
12 5.9090e-006 4.3710e-008 4.2081e-010 1.6001e-009
14 5.9090e-006 4.3384e-008 5.0292e-010 6.6805e-010
16 5.9090e-006 4.3686e-008 3.2327e-010 1.1920e-010
18 5.9090e-006 4.3778e-008 4.5924e-010 5.9612e-010

CPU Time 0.011878 0.016307 0.022972 0.036610

Table 8:Maximum errors EN for example 6 using Nt = 5, m = s = 3

t\Nx 4 6 8 10 12

1 7.0535e-007 7.7687e-007 7.6292e-007 8.1070e-007 6.8236e-007
2 1.8492e-006 3.0200e-007 2.9740e-007 2.9900e-007 3.0049e-007
4 1.2359e-005 7.4108e-007 7.4364e-007 7.4269e-007 7.4347e-007
8 7.4115e-005 5.6244e-007 2.1912e-007 2.1937e-007 2.1932e-007
10 1.3696e-004 8.3875e-007 6.4378e-008 6.4580e-008 6.5044e-008
12 2.2265e-004 1.3686e-006 2.7446e-008 2.6343e-008 2.6126e-008
14 3.3358e-004 2.0690e-006 3.7544e-008 3.2172e-008 3.2208e-008
16 4.7201e-004 2.9250e-006 6.4639e-008 4.3655e-008 4.3647e-008
18 6.3984e-004 3.9047e-006 1.0723e-007 7.4644e-008 7.4522e-008
19 7.5118e-004 4.6086e-006 1.2866e-007 8.9153e-008 8.9262e-008

CPU Time 0.126031 0.228421 0.324762 0.518048 0.916834

5.2 Maximum error estimates for varying
subintervals

Tables 9 -12 presentmaximumerrors for the di�erent num-
ber of overlapping subintervals for the heat equations (ex-
amples 1, 2 and 5) when Nt = Nx = 10 and t = 1 and wave
equation (example 5), when Nt = 5, Nx = 10 and t = 16.
It is worth noting that m = s = 1 represent the single do-
main BSQLM and m, s = 2, 3, 4, 5 represent the BSQLM
on overlapping grids. It is observed from all tables that the
maximum errors are smaller when both space and time in-
tervals are split into overlapping subintervals. This implies
that the accuracy of the method improves by employing
the overlapping grid strategy in both space and time. It is
worth mentioning that the maximum error also decreases
when the overlapping grid strategy is applied only in space
but not in time. This suggests that the overlapping grid
strategy has a signi�cant impact on the space interval than
in the time interval.

6 Stability
To assess the stability of the numerical scheme, we com-
puted condition numbers of the associated coe�cient ma-
trices of the system of linearized equations being solved.

Table 9:Maximum errors EN for example 1 using Nt = Nx = 10 and
t = 1.

m\s 1 2 3 4 5

1 2.0147e-008 9.0459e-010 9.3860e-010 9.2397e-010 9.3621e-010
2 1.9919e-008 3.6569e-011 6.8341e-012 1.5237e-011 6.4912e-011
3 1.9920e-008 3.6278e-011 4.2895e-012 4.2371e-011 2.0932e-011
4 1.9920e-008 3.4636e-011 6.6422e-012 1.3078e-011 1.1076e-011
5 1.9920e-008 3.4639e-011 9.1882e-012 7.8106e-012 1.5590e-011

Table 10:Maximum errors EN for example 2 using Nt = Nx = 10 and
t = 1.

m\s 1 2 3 4 5

1 3.5346e-008 1.1623e-010 8.0965e-011 6.2935e-011 1.2047e-010
2 3.5338e-008 1.2065e-010 1.8076e-011 2.3173e-011 5.9133e-011
3 3.5338e-008 1.1539e-010 1.0463e-011 9.9980e-011 3.6071e-011
4 3.5338e-008 1.1726e-010 1.2884e-011 3.5653e-011 9.5985e-011
5 3.5338e-008 1.1433e-010 1.4735e-011 8.3071e-011 7.5446e-011

Table 11:Maximum errors EN for example 3 using Nt = Nx = 10 and
t = 1.

m\s 1 2 3 4 5

1 1.0558e-007 1.2804e-010 8.1803e-011 8.8232e-011 7.4566e-011
2 1.0562e-007 6.3431e-011 4.4183e-012 4.5055e-012 9.8677e-012
3 1.0562e-007 6.1951e-011 3.7352e-012 2.5439e-012 1.6987e-011
4 1.0562e-007 6.2194e-011 1.6095e-011 9.8566e-012 2.0757e-011
5 1.0562e-007 6.6759e-011 3.6396e-012 2.3268e-011 1.4699e-011

Table 12:Maximum errors EN for example 5 using Nt = 5, Nx = 10
and t = 16.

m\s 1 2 3 4 5

1 1.5564e-006 6.1810e-009 2.7467e-010 3.0298e-011 1.2164e-011
2 1.5584e-006 6.1370e-009 4.6242e-010 1.2660e-009 1.1395e-009
3 1.5586e-006 6.1313e-009 3.2327e-010 1.1237e-009 1.1646e-009
4 1.5585e-006 6.2987e-009 1.9559e-009 1.0264e-009 4.5667e-009
5 1.5585e-006 6.0227e-009 8.6720e-010 1.2012e-009 4.6034e-009

We have shown results for both single domain BSQLM and
BSQLM on overlapping grids in Tables 13 and 14. Look-
ing at the sizes of the coe�cient matrices, the condition
numbers for the spectral collocation method on overlap-
ping grids are smaller than those from the spectral collo-
cation method on single domains. This indicate that the
system linear algebraic equations is well posed, hence the
proposed numerical scheme is stable and accurate. It is
also noted that the errors are always smaller in the spectral
collocation method on decomposed domains than on sin-
gle domains. Also, when the computational time domain
becomes large on the single domain approach, the error
become very large. This means that the accuracy deterio-
rates as the computational domain becomes large on sin-
gle domain approach, which is not the case with spectral
collocation method on overlapping grids. The CPU time is
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also observed to be less for the spectral collocationmethod
on overlapping grids. This is attributed to the sparse co-
e�cient matrices, which are easy to invert. Sparse matri-
ces are well conditioned, and results to a well-posed prob-
lem, thus leading to stable results. Based on the above
observations, we can conclude that spectral collocation
method on overlapping grids is computationally e�cient,
gives stable andaccurate solutionsusing fewgrid points in
each subinterval. The use of few grid points in each subin-
terval minimizes the e�ects of round-o� errors that are re-
lated to approximating functions with interpolating poly-
nomials of higher degree.

Table 13:Maximum errors EN and condition numbers of coe�cient
matrices on single domain (p = q = 1) when Nx = 80 and Nt = 10.

Examples t Matrix size Maximum Error Condition number CPU Time

1 1 810 × 810 5.2184e-009 1.5831e+008 5.134862
2 1 810 × 810 5.0243e-009 5.7068e+007 5.133314
3 1 810 × 810 2.9086e-009 6.2421e+008 6.662206
4 (k = 1) 1 810 × 810 1.4420e-009 9.1551e+007 5.498131
5 16 810 × 810 8.4671e-001 2.3711e+009 6.144010
6 16 810 × 810 5.8116e-002 7.7582e+009 6.517864

Table 14:Maximum errors EN and condition numbers of coe�cient
matrices on overlapping grids (p = q = 3) when Nx = 10 and
Nt = 10.

Examples t Matrix size Maximum Error Condition number CPU Time

1 1 812 × 812 4.2895e-012 2.4893e+004 0.193104
2 1 812 × 812 1.0463e-011 7.3162e+003 0.159363
3 1 812 × 812 4.3758e-012 7.2365e+004 0.168091
4 (k = 1) 1 812 × 812 4.2584e-012 1.1610e+004 0.160681
5 16 812 × 812 1.0738e-009 7.2525e+005 0.159894
6 16 812 × 812 1.7448e-009 6.2315e+006 0.162404

6.1 Comparison of exact and approximate
solutions

Figures 2 - 7 show analytic and approximate solutions for
the Emden-Fowler equations at di�erent time level. The
graphs for the heat-type equationswere plotted using Nt =
Nx = 10, m = s = 3, while the graphs for the wave-
type equations were generated using Nt = 5, Nx = 10,
m = s = 3. The approximate solution being superimposed
on the exact solutions suggests that the BSQLM on over-
lapping grids converged to the exact solution over the do-
main x ∈ [0, 1]. Figures 8 -13 show the space-time graph of
the exact and numerical solutions for the heat and wave-
type equations when m = s = 3 and t = 1. The number of

grid points used are Nt = Nx = 10 in the heat-type equa-
tions and Nt = 5, Nx = 10 in the wave-type equations. The
�gure shows that the exact and computed numerical solu-
tions have similar behaviour, thus they are in satisfactory
accordance with each other, assuring that the numerical
method converged to the exact solutions over the domain
x ∈ [0, 1]. The match between the exact and approximate
solutions validates the accuracy and computational e�-
ciency of the BSQLM on overlapping grids.
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Figure 2: Analytical and approximate solution for example 1 at (a)
t = 0.5 and (b) t = 1
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Figure 3: Analytical and approximate solution for example 2 at (a)
t = 0.5 and (b) t = 2
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Figure 5: Analytical and approximate solution for example 4 when
k = 1, p = 2 at (a) t = 0.5 and (b) t = 2
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Figure 4: Analytical and approximate solution for example 3 at (a)
t = 0.5 and (b) t = 1
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Figure 6: Analytical and approximate solution for example 5 at (a)
t = 0.5 and (b) t = 2
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Figure 7: Analytical and approximate solution for example 6 at (a)
t = 2 and (b) t = 16
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Figure 8: Space-time graph of the exact solution and approximate
solution for example 1
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Figure 9: Space-time graph of the exact solution and approximate
solution for example 2
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Figure 10: Space-time graph of the exact solution and approximate
solution for example 3
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Figure 11: Space-time graph of the exact solution and approximate
solution for example 4 when k = 1, p = 2
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Figure 12: Space-time graph of the exact solution and approximate
solution for example 5
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Figure 13: Space-time graph of the exact solution and approximate
solution for example 6

6.2 Convergence graphs

Figures 14-16 compare the convergence andaccuracyof the
single domain BSQLM (m = s = 1) and BSQLM on overlap-
ping grids (m = s = 3) for nonlinear examples 3, 4 and 6
when t = 1. Thenumber of collocationpoints usedareNt =
Nx = 10 in the heat-type equations and Nt = 5, Nx = 10
in the wave-type equations. It can be seen from the �gures
that the single domain BSQLMmethod converges to a less
accurate solution compared to the BSQLM on overlapping
grids. Figure 14 shows that the single domain BSQLM con-
verges after about six iterations to an error of 10−7, while
the BSQLM on overlapping grids converges to an error of
about 10−12 after six iterations.

In Figure 15, the single domain BSQLM converges af-
ter about three iterations to an error of 10−7, while the
BSQLM on overlapping grids converges to an error of close
to 10−12 after four iterations. Figure 16 depicts that the sin-
gle domain BSQLM converges after approximately six iter-
ations to an error of10−4,while theBSQLMonoverlapping
grids converges to an error of approximately 10−8 after
six iterations. These �ndings suggest that the BSQLM on
overlapping grids is more accurate than the single domain
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Figure 14: Convergence graphs for example 3 when t = 1 and Nt =
Nx = 10.

BSQLM, hence suitable for approximating the solution of
nonlinear Emden-Fowler heat and wave type-equations.

7 Conclusion
In this paper, we introduced the bivariate spectral col-
location method on overlapping grids and determined
its accuracy, robustness and e�ectiveness in solving
time-dependent Emden-Fowler PDEs. The method
uses the quasilinearisation technique and bivariate
Lagrange interpolation polynomials based on Cheby-
shev–Gauss–Lobatto grid points in both space and time.
Space and time intervals were each decomposed into over-
lapping subintervals and the linearized equations were
solved across the overlapping subintervals. The use of
an overlapping grid approach was found to give a matrix
system with less dense matrices that can be inverted in a
computationally e�cient manner. Consequently, imple-
menting the spectral collocation method on overlapping
grids signi�cantly improves the computational time and
accuracy using fewer grid points at each subinterval. This
is because splitting the domains into smaller subintervals
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Figure 15: Convergence graphs for example 4 when t = 2, k = 1, p =
2, and Nt = Nx = 10.

and accordingly minimizing the number of grid points
per subinterval reduces the size of the coe�cient matrix
at each subinterval, thus requiring less time to invert.
The use of fewer grid points also minimizes the e�ects of
round-o� errors, thus producing stable results which are
evident from the small condition numbers. The BSQLM on
overlapping grids performed fast and converged to highly
accurate results than the single domain BSQLM using
few iterations. The obtained numerical results show that
the approximate solutions obtained using the BSQLM on
overlapping grids are in close agreement with exact solu-
tions. The error bounds theorem showed that the error in
bivariate polynomial interpolation is smaller when inter-
polation is conducted on multidomain overlapping grids
than on a single domain. The Chebyshev Gauss-Lobattto
nodes are bene�cial for interpolation when using spectral
collocation methods to solve boundary value problems
since they are appropriate for assembling di�erentiation
matrices as they contain the boundary nodes, which is
useful when imposing boundary conditions. The present
analysis adds to literature a new technique that can be
extended to coupled systems of time-dependent Emden-
Fowler equations and other complex nonlinear PDEs
arising in other �elds.
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Figure 16: Convergence graphs for example 6 when t = 16, Nt = 5
and Nx = 10.
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Chapter 9

MHD mixed convective radiative flow of

Eyring-Powell fluid over an oscillatory

stretching sheet using bivariate spectral

method on overlapping grids

The well-known linear and nonlinear partial differential equations solved in Chapter 8 have exact

solutions. In this chapter, the method is extended to solve non-similar boundary layer flow equa-

tions without exact solutions. The bivariate spectral quasilinearisation method on overlapping grids

is utilized in solving nonlinear partial differential equations that describe an unsteady MHD mixed

convection flow of a non-Newtonian Eyring-Powell fluid over an oscillatory stretching sheet. Er-

ror norms and residual errors are used in assessing the convergence and accuracy of the numerical

scheme. The effects of certain significant variables on the fluid properties and transport phenomena

are discussed in detail.
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Abstract

The bivariate spectral quasilinearization method

(BSQLM) on overlapping grids is presented and applied

in the analysis of unsteady magnetohydrodynamic mixed

convection flow of Eyring‐Powell fluid over an oscillatory

stretching sheet embedded in a non‐Darcy porous

medium with nonlinear radiative heat flux and variable

thermophysical properties. The fluid properties, namely

the fluid viscosity, thermal conductivity, and mass dif-

fusivity, are assumed to vary with temperature. It is as-

sumed that the first‐order chemical reaction with heat

generation/absorption takes place in the flow. The flow

domain is subject to uniform transverse magnetic field

perpendicular to the stretching surface. The transformed

flow equations are solved numerically using BSQLM on

overlapping grids. The convergence properties and ac-

curacy of the method are assessed. The proposed method

is computationally efficient, and it gives stable and highly

accurate results after few iterations and using few grid

points in each subinterval. The improved accuracy rests

upon the use of the overlapping grid, which produces

sparse coefficient matrices that are easy to invert and

have small condition numbers. The effects of physical

parameters on the flow fields, local skin friction, the



Nusselt number, and the Sherwood number are ex-

hibited through graphs and tables. Amongst other find-

ings, we found that the amplitude of the fluid flow along

with flow characteristics may efficiently improve

through the utilization of variable fluid viscosity. Heat

and mass transportation processes enhance with the

inclusion of nonlinear radiative heat flux, temperature‐
dependent thermal conductivity, and mass diffusion

coefficient, whereas they diminish with the increase in

the local inertia coefficient. The current flow analysis can

be useful in various engineering applications including

paper production, polymer solution, glass blowing, ex-

trusion of thermal system manufacturing process, and

heat transportation enhancement.

KEYWORDS

bivariate spectral quasilinearization method, chemical reaction,

Eyring‐Powell fluid, multidomain overlapping grid, nonlinear

radiation, oscillatory stretching sheet, variable fluid properties

1 | INTRODUCTION

In the past few years, the boundary layer flow, together with heat and mass transfer, along a
stretching sheet has captured attention of several researchers due to its significant relevance in
countless engineering and industrial applications including paper production, packed sphere bed, hot
rolling, and continuous casting of metal. The first encounter of boundary layer theory for a linearly
stretching surface was reported by Crane.1 The flow over a stretching surface has been successfully
considered in non‐Newtonian fluid flow models. Non‐Newtonian fluids have become significant and
suitable in modern engineering, because heat and mass transfer characteristics for the flow are
difficult to understand using Newtonian fluid models. Non‐Newtonian fluids have various applica-
tions in engineering and industries such as heat exchanger design, glass blowing melt spinning,
production of glass fibers, fiber and wire coating, and industrialization of rubber, and plastic sheets.
Unfortunately, there is no specific constitutive equation available that describes the entire non‐
Newtonian materials. Thus, several researchers2‐8 have used various constitutive equations according
to their rheological properties about non‐Newtonian behavior. Shafiq and Sindhu2 considered the
hydromagnetic flow of Williamson fluid over a stretched surface with thermal radiation. Shafiq et al4

investigated the influence of radiation on a stagnation point flow of Walter's B fluid induced by a Riga
plate. Mabood et al5 investigated the magnetohydrodynamic (MHD) mixed convection flow of a
second‐grade fluid over a vertical cylinder with suction. Rasool et al7 analyzed the MHD Darcy‐
Forchheimer Williamson nanofluid flow over a nonlinear stretching surface embedded in a porous
medium. Rasool et al8 investigated the heat and mass transfer analysis in Jeffrey nanofluid in a porous
medium under Darcy‐Forchheimer relation. The Darcy‐Forchheimer model is the most well‐known
modification to the Darcian flow used in similarity inertia effects. Amongst the different
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non‐Newtonian fluids, we also have an Eyring‐Powell fluid,9 which forms an integral part of the non‐
Newtonian fluids theory. The Eyring‐Powell fluid model is mathematically complex but very im-
portant in the sense that it reduces to Newtonian behavior for low and high shear rates. The
applications of Eyring‐Powell fluids include formulating flows of modern industrial materials, for
instance, powdered graphite and ethylene glycol. Numerous studies10‐15 have been conducted on
flows of Eyring‐Powell fluids over a stretching sheet. Ahmed11 analyzed the effects of variable fluid
thermal conductivity on the flow and heat transfer of an Eyring‐Powell fluid over a stretching porous
sheet. Parmar and Jain14 considered the unsteady convective flow for MHD Powell‐Eyring fluid over a
stretching sheet embedded in a porous medium with variable thermal conductivity. Ogunseye et al15

studied the flow and heat transfer in a Powell‐Eyring nanofluid flow past a stretching surface using
the nanofluid viscosity and thermal conductivity models.

The above studies focus on the fluid flow over a stretched sheet. However, there are situations
where the sheet is stretched and oscillates periodically in its own plane. This phenomenon is the time‐
dependent flow for which the various features of fluid motion can be scrutinized at different times.
Wang16 became the first author to study the viscous flow due to the oscillatory stretching surface.
Several authors17‐24 extended the work of Wang16 and studied heat and mass transfer in the non‐
Newtonian fluid flow over an oscillatory stretching surface. Khan et al25 introduced flow and heat
transfer of Eyring‐Powell fluid over an oscillatory stretching surface with thermal radiation effects.
Khan et al26 considered the influence of convective heat and mass conditions on the unsteady flow of
Eyring‐Powell nanofluid over an oscillatory stretching surface in the presence of heat generation/
absorption. Khan et al27 also analyzed the effects of cross‐diffusion, heat generation/absorption, and
chemical reaction on the MHD flow of Eyring‐Powell fluid over an oscillatory stretching surface.
Dawar et al28 studied the effects of thermal radiation and heat source/sink on Eyring‐Powell fluid flow
over an unsteady porous stretching surface. Alharbi et al29 scrutinized the entropy generation inMHD
Eyring‐Powell fluid over an unsteady oscillating porous stretching sheet with thermal radiation and
heat source/sink effects.

In the aforementioned studies, the fluid viscosity, thermal conductivity, and mass diffusivity
were taken as constants in the analysis of the non‐Newtonian Eyring‐Powell fluid flow over an
oscillatory stretching surface. Furthermore, these studies incorporated linear radiation effects instead
of nonlinear thermal radiation for the heat transfer analysis. The linear radiative heat transfer
repercussions are only valid for small temperature differences. However, the nonlinearized Rosse-
land diffusion approximation for studying nonlinear radiative heat transfer accommodates both
smaller and larger temperature differences of the surface and ambient fluid. Nonlinear thermal
radiation has various applications, namely thermal extrusion phenomenon, solar system, missile
technology, environmental applications, heavy mechanical apparatus, and fission and fusion reac-
tions. Experiments have shown that the magnitude of viscosity is inversely proportional to the
temperature of liquids, whereas thermal conductivity and mass diffusivity properties are directly
proportional to the temperature. To accurately predict the flow, together with heat and mass transfer
characteristics, it is important to consider the variation of viscosity, thermal conductivity, and mass
diffusivity. Ramzan et al30 studied the impact of variable thermal conductivity and nonlinear
thermal radiation on Eyring‐Powell nanofluid flow past a constantly moving surface with chemical
reaction. Parmar and Jain31 investigated the MHD flow of Eyring‐Powell fluid over a cylinder with
nonlinear radiation and variable thermal conductivity. Reddy et al32 considered the unsteady flow of
the nonlinear radiative Powell‐Eyring fluid over an inclined stretching sheet with chemical reaction.
Khan et al33 examined the MHD mixed convection Eyring‐Powell nanofluid flow over an inclined
surface with exponentially varying viscosity. Wahab et al34 studied the influence of variable viscosity
and thermal conductivity on the MHD flow of Eyring‐Powell fluid over a nonlinear stretching sheet.
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The aim of the present work is to study the effects of temperature‐dependent fluid properties and
nonlinear thermal radiation on the unsteady MHDmixed convection flow, heat and mass transfer of
Eyring‐Powell fluid over an oscillatory stretching surface with viscous dissipation, heat source/sink,
and chemical reaction. The inertia effect in the porous media is considered through the inclusion of
a velocity‐squared term in the momentum equation, which is known as Forchheimer's extension. To
the authors' best knowledge, no study has been reported in literature on the heat and mass transfer
in the Eyring‐Powell fluid flow over an oscillatory stretching surface in a non‐Darcy porous medium
with variable fluid properties and nonlinear radiation features. The role of physical properties in
isotropic liquids is quite limited; thus, in case of variable thermophysical properties, the effects of
such physical quantities cannot be ignored. It is also important to determine the extent to which
these variable fluid properties can affect the boundary layer in the oscillatory stretched surface. Khan
et al35 studied the double‐diffusive flow of Jeffrey nanofluid over an oscillatory stretched surface
under the influence of temperature‐dependent thermal conductivity. Ahmad et al36 scrutinized the
unsteady flow of Oldroyd‐B fluid along an oscillatory stretched surface with variable thermal con-
ductivity and heat generation/absorption. Recently, Khan et al37 investigated the mixed convection
flow of the Carreau nanofluid past an oscillatory stretching sheet by considering variable thermal
conductivity and thermal radiation features. These studies reported that fluid temperature and the
associated thermal boundary layer thickness enhance with escalating variable thermal conductivity.
The current analysis intends to contribute toward enhancing the efficiency of thermal energy
transportation systems. To achieve such maximum efficiency as well as improve the production
process, we have considered one of the important non‐Newtonian fluid with some more useful
factors and valuable applications. The novelty of the present study also lies in the use of efficient
bivariate spectral quasilinearization method (BSQLM) on overlapping grids38 in solving the di-
mensionless flow equations. The single‐domain BSQLMwas introduced by Motsa et al39 and used in
solving nonlinear evolution partial differential equations (PDEs). Subsequently, the method has
been employed by several researchers40‐44 in solving boundary layer flow problems. The single‐
domain BSQLM method uses quasilinearization technique,45 the Chebyshev spectral collocation
method, as well as the bivariate Lagrange interpolation polynomial with Chebyshev‐Gauss‐Lobatto
grid points. The overlapping multidomain technique with pseudospectral methods has been con-
sidered by several researchers.46‐49 In all these studies, the overlapping multidomain approach was
applied only in the spatial domain, and it was found that the accuracy of pseudospectral methods
improved through the use of overlapping grid procedure. Mkhatshwa et al48 and Mkhatshwa et al49

considered nonlinear PDEs modeling problems that arise in fluid mechanics. The BSQLM on
overlapping grids was introduced by Mkhatshwa et al38 and implemented to solve time‐dependent
Emden‐Fowler equations. This method remains to be generalized and its robustness remains to be
tested in the case of highly nonlinear PDEs with strong coupling. The BSQLM on overlapping grids
involves using multidomain strategy in both space and time variables, which are each split into
overlapping subintervals of equal length. The current study presents the first opportunity in which
this numerical method is used to solve nonlinear PDEs modeling boundary layer fluid flow problem.

2 | FLOW ANALYSIS

We consider the unsteady, two‐dimensional MHD boundary layer flow of an incompressible
Eyring‐Powell fluid over an oscillatory stretching sheet embedded in a non‐Darcy porous
medium. The sheet is assumed to coincide with ȳ in a rectangular coordinate system x y( ¯, ¯). The
flow takes place in the semi‐finite porous space ( ȳ > 0) of constant permeability. To stabilize
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the boundary layer flow, the uniform magnetic field B0 is applied perpendicular to the
stretching sheet along the ȳ direction. The induced magnetic field is neglected, which is sup-
posed to be small as compared with the applied magnetic field. The first‐order chemical re-
action is adopted in the concentration equation to control the mass transport, whereas the heat
transfer mechanism is analyzed by utilizing the phenomena of heat source/sink and nonlinear
thermal radiation, which permit both small and large temperature differences into the flow. It is
assumed that the elastic sheet is stretched back and forth periodically with velocity
u bx ωt= ¯ sinw , where b is the stretching rate and ω denotes the oscillatory frequency of the
sheet. Concentration Cw and temperature Tw at the wall are kept uniform where these values
are supposed to be greater than ambient concentration C∞ and temperature T∞ far away from
the sheet. The fluid properties are assumed to be constant, except for the viscosity of the fluid
that is assumed to change exponentially with temperature, whereas the fluid thermal con-
ductivity and mass diffusivity are considered to vary linearly with temperature. The theory of
rate processes is utilized in deriving the Eyring‐Powell model for describing the shear stress of
non‐Newtonian flow. The shear stress tensor for the Eyring‐Powell fluid model is expressed as9
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Under these assumptions along with the boundary layer approximations, and considering
viscous dissipation, the unsteady boundary layer equations governing flow of Eyring‐Powell
fluid are given by25,27‐29
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where u and v are velocity components in the x̄‐and ȳ‐directions,T is the fluid temperature,C is the
concentration, g is the acceleration due to gravity, ρ∞ is the fluid density, μ T K T( ), ( ), and D T( ) are
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the respective temperature‐dependent viscosity, thermal conductivity, and mass diffusivity of the fluid,
σ is the electrical conductivity of the fluid, β andC1 are fluid parameters of the Eyring‐Powell fluid,Q0

is the heat source/sink coefficient, βt is the coefficient of thermal expansion, βc is the coefficient of
concentration expansion, B0 is the applied uniform magnetic field, σ* is the Stefan‐Boltzmann
coefficient, k* is the mean absorption coefficient, cp is the specific heat capacity, kp is the the
permeability of the porous medium, cb is the form of drag coefficient, and k0 is the chemical reaction
coefficient.

The appropriate boundary conditions are given by

u u bx ωt v v T T C C y t= = ¯ sin , = ± , = , = , at ¯ = 0, > 0,ω w w w
(7)

u T T C C y= 0, = , = , as ,→ ∞∞ ∞
(8)

where vw represents suction/injection. To reduce Equations (3) to (6) into a dimensionless form,
we make use of the subsequent similarity transformations19,27,37:
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The velocity components are derived from the stream function (Ψ) as follows:
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In the present work, the exponentially varying viscosity, thermal conductivity, and mass
diffusivity take the form36,50‐53
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where μ K,∞ ∞, and D∞ represent the viscosity, thermal conductivity, and mass diffusivity of the fluid
far away from the sheet, respectively, ς is the variable viscosity parameter that measures the rate of
dynamic viscosity with temperature, δ1 is the variable thermal conductivity parameter that measures
the rate of change of thermal conductivity with temperature, and δ2 is the variable mass diffusion
coefficient that measures the rate of change of chemical diffusivity with temperature.

Employing Equations (9) to (11) in Equations (3) to (6), Equation (3) is satisfied identically
and the remaining set of equations reduces to the following dimensionless nonlinear PDEs:
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subject to the boundary conditions:
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f τ τ f τ f θ τ ϕ τ′(0, ) = sin , (0, ) = , (0, ) = 1, (0, ) = 1,w
(15)

f τ θ τ ϕ τ′( , ) = 0, ( , ) = 0, ( , ) = 0,∞ ∞ ∞ (16)

where Sc =
ν

D
∞

∞
signifies the Schmidt number, S = ω

b
represents the ratio of the oscillation

frequency of the sheet to its stretching rate (unsteady parameter), k =c
k

b
0 is the chemical

reaction parameter, Fs = c x

k

¯b

p

is the local inertia (Forchheimer) coefficient, Gr =x
gβ T T x

ν

( − ) ¯t w
3

2

∞

∞

is

the Grashof number, Rd = σ T

k k

4 *

*

3
∞

∞
is the nonlinear thermal radiation parameter, θ =w

T

T
w

∞
is the

temperature ratio parameter, γ = Gr

Re

x

x
2 is the mixed convection parameter, N =

β C C

β T T

( − )

( − )
c w

t w

∞

∞
is the

concentration buoyancy parameter,M =
σB

bρ
2 0

2

∞

is the Hartmann number, Pr =
μ c

k

p∞

∞
is the Prandtl

number, Ec = bx

c T T

( ¯)

( − )p w

2

∞
is the Eckert number, λ = Q

bρ cp

0

∞

is the heat source λ( > 0) or sink

λ( < 0) parameter, f =w
v

ν b

− w

∞

is the suction f( > 0)w or injection f( < 0)w parameter, and

Γ =
μ βC

1

1∞

and ϖ =
b x

ν C

¯

2

3 2

1
2

∞
are the material fluid parameters. It is worth noting that the product

ϖΓ is preferred to be sufficiently smaller than unity (ie, ϖΓ 1≪ ).10

The local skin friction coefficient (Cfx), Nusselt number (Nux), and Sherwood number, (Shx),
are given by

C
τ

ρ u
Nu

xq

k T T
Sh

xq

D C C
= , =

¯

( − )
, =

¯

( − )
,fx

w

w
x

w

w
x

m

w
2

∞ ∞ ∞ ∞ ∞

(17)

where τ q,w w, and qm are the wall shear stress, surface heat, and mass fluxes, respectively,
defined as

τ μ T
u

y βC

u

y βC

u

y
q

K T
σ

k
T

T

y
q D T

C

y

= ( )
¯

+
1

¯
−

1

6 ¯
,

= − ( ) +
16

3 ¯
, = − ( )

¯
.

*

*

w

y

w

y
m

y

1 1
3

3

=0

3

=0 =0

⎜ ⎟

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂
(18)

Using similarity transformations (9) to (11), the dimensionless form of the skin friction coef-
ficient, Nusselt number, and Sherwood number are obtained as

Re C e f τ
ϖ

f τ

Re Nu δ θ τ Rd θ θ τ θ τ Re Sh

δ θ τ φ τ

= [Γ + ] ″(0, ) −
Γ

3
[ ″(0, )] ,

= − 1 + (0, ) +
4

3
[1 + ( − 1) (0, )] ′(0, ),

= −[1 + (0, )] ′(0, ),

x fx
ςθ τ

x x w x x

1 2 − (0, ) 3

−1 2
1

3 −1 2

2

⎡
⎣⎢

⎤
⎦⎥

∕

∕ ∕ (19)

where Re u x ν= ¯x w ∕ ∞ is the local Reynolds number.

3 | NUMERICAL METHOD

This section presents the implementation of the BSQLM on overlapping grids to simplify the
nonlinear PDEs (12) to (14). The proposed method involves splitting the computational
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domains into overlapping subintervals. The spectral collocation method is employed in the
discretization of the iterative scheme to give a matrix system to be solved simultaneously across
the overlapping subintervals. We let the time variable τ J ,∈ where J τ τ= [ , ].f0 The time in-
terval J is split into q overlapping subintervals, defined as

J τ τ q= [ , ], = 1, 2, 3, …, ,N0 τ
ϱϱ

ϱ ϱ (20)

where each subinterval Jϱ is further discretized into N( + 1)τ Chebyshev‐Gauss‐Lobatto collocation
points. However, the semi‐finite space interval [0, )∞ is replaced with a truncated domain y[0, ]∞ ,
where y∞ is the finite value chosen to allow the application of the method at infinity. The truncated
interval of integration I y= [0, ]∞ is decomposed into p overlapping subintervals, denoted by

I y y ε p= [ , ], = 1, 2, 3, …, ,ε
ε

N
ε

0 y

(21)

where each subinterval Iε is further discretized into N + 1y collocation points. The domain decom-
position is illustrated in Figure 1, where the last two points in the Iε and Jϱ subintervals are noted to
coincide with the first two points of the Iε+1 and J +1ϱ subintervals, respectively, and remain common.

For the overlap to be possible, the length of subintervals Iε and Jϱ must be the same and,
respectively, given as

FIGURE 1 The overlapping grid [Color figure can be viewed at wileyonlinelibrary.com]
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( )
L

y

p p
=

+ (1 − ) 1 − cos
,x

π

N

1

2 y

∞ (22)

( )
L

τ τ

q q
=

−

+ (1 − ) 1 − cos
.τ

f

π

N

0

1

2 τ

(23)

Moreover, the same number of collocation points N( + 1)y and N( + 1)τ are used in each sub-
interval. To derive Equation (22), we remark that the total length of the spatial domain is given by

y L ω L ω
p

L ω L ω p ω p pL= 2 − + (2 − 2 )
2
− 1 = 2 − + ( − )( − 2) = (1 − ) + ,x x x x x⎜ ⎟

⎛
⎝

⎞
⎠∞

(24)

where ω is the overlapping distance between two subintervals. It is worth noting that ω y y= − .0 1

Considering the first interval I1 in which y y0, ,N
1
y

⎡⎣ ⎤⎦∈ we can define the length L y= .x N
1
y

The

linear transformation y y= ˆ +
L y

2 2
x Ny

1

can be used to transform the interval y0, N
1
y

⎡⎣ ⎤⎦ to [−1, 1]. Thus,

using the Gauss‐Lobatto collocation points ( )ŷ = cos ,i
πi

Ny
where i N= 0, 1, 2, …, ,y we obtain

y y
L

y y
L π

N
− =

2
( ˆ − ˆ ) =

2
1 − cos .x x

y
0 1 0 1

⎛
⎝⎜

⎞
⎠⎟

(25)

Therefore, Equation (24) becomes

y
L π

N
p pL=

2
1 − cos (1 − ) + ,x

y
x

⎛
⎝⎜

⎞
⎠⎟∞

(26)

and making Lx the subject of the formula in Equation (26) gives Equation (22). The formula for the
length of time domain can be derived in a similar manner. Applying the quasilinearization method45

at subintervals Jϱ and I ,ε , the nonlinear PDEs (12) to (14) reduce to the following linear PDEs:

φ
f

y
φ

f

y
φ

f

y
φ f φ

θ

y
φ θ

φ ϕ S
y

f

τ
φ

+ + + + +

+ − = ,

r
ε r

ε

r
ε r

ε

r
ε r

ε

r
ε

r
ε

r
ε r

ε

r
ε

r
ε

r
ε

r
ε r

ε

r
ε

0,
( , )

3
+1
,

3 1,
( , )

2
+1
( , )

2 2,
( , ) +1

( , )

3,
( , )

+1
( , )

4,
( , ) +1

( , )

5,
( , )

+1
( , )

6,
( , )

+1
( , ) +1

( , )

7,
( , )

ϱ
ϱ

ϱ
ϱ

ϱ
ϱ

ϱ ϱ ϱ
ϱ

ϱ ϱ

ϱ ϱ
ϱ

ϱ
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂
(27)

θ

y

θ

y
θ

f

y

f

y
f

PrS
θ

τ

ϑ + ϑ + ϑ + ϑ + ϑ + ϑ

− = ϑ ,

r
ε r

ε

r
ε r

ε

r
ε

r
ε

r
ε r

ε

r
ε r

ε

r
ε

r
ε

r
ε

r
ε

0,
( , )

2
+1
( , )

2 1,
( , ) +1

( , )

2,
( , )

+1
( , )

3,
( , )

2
+1
( , )

2 4,
( , ) +1

( , )

5,
( , )

+1
( , )

+1
( , )

6,
( , )

ϱ
ϱ

ϱ
ϱ

ϱ ϱ ϱ
ϱ

ϱ
ϱ

ϱ ϱ

ϱ
ϱ

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂
(28)

ψ
ϕ

y
ψ

ϕ

y
ψ ϕ ψ

θ

y
ψ θ ψ f

ScS
ϕ

τ
ψ

+ + + + +

− = ,

r
ε r

ε

r
ε r

ε

r
ε

r
ε

r
ε r

ε

r
ε

r
ε

r
ε

r
ε

r
ε

r
ε

0,
( , )

2
+1
( , )

2 1,
( , ) +1

( , )

2,
( , )

+1
( , )

3,
( , ) +1

( , )

4,
( , )

+1
( , )

5,
( , )

+1
( , )

+1
( , )

6,
( , )

ϱ
ϱ

ϱ
ϱ

ϱ ϱ ϱ
ϱ

ϱ ϱ ϱ ϱ

ϱ
ϱ

∂

∂

∂

∂

∂

∂

∂

∂
(29)
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where the variable coefficients are defined as

φ e ϖ
f

y
φ f ϖ

f

y

f

y
ς
θ

y
e

φ Fs
f

y

M φ
f

y
φ ς

f
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e φ γN
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= Γ + − Γ , = − 2 Γ − ,

= −2(1 − )

− , = , = − , = ,

= + − ,

= − + −

− (1 + )

− 2 Γ , ϑ = 1 +
4

3
+ 4 ( − 1) + 4 ( − 1) ( )

+
4

3
( − 1) ( )

+ , ϑ = 8 ( − 1) + [2 + 16 ( − 1) ] +

+ 8 ( − 1) ( ) ,

ϑ = + + 4 ( − 1) + 8 ( − 1)

+ 4 ( − 1) ( )

+ 8 [( − 1) + ( − 1) ] − , ϑ = 2 ,

ϑ = 2 , ϑ = + +

+ 4 ( − 1)

+ + + 4 [2( − 1) ( ) + ( − 1) ( ) ]

+ 4 ( − 1) + 12 ( − 1) ( ) + 16 ( − 1)

− , ϑ = , = 1 + , = + ,

= − ,

= , = , = , = +
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As the spectral collocation method is valid in the domain [−1, 1], the time interval Jϱ and space
interval Iε are, respectively, transformed into τ̂ [−1, 1]∈ and ŷ [−1, 1]∈ , using the linear
transformations

τ
L

τ τ
πj

N
=

2
(ˆ + 1), {ˆ } = cos ,j

τ
j j j

N

τ
=0
τϱ

⎛
⎝⎜

⎞
⎠⎟

(30)

y
L

y y
πi

N
=

2
( ˆ + 1), { ˆ } = cos .i

ε x
i i i

N

y
=0
y

⎛
⎝⎜

⎞
⎠⎟

(31)

We suppose that at each subdomain, the needed solution, for instance, f y τ( , ) can be
approximated by a bivariate Lagrange interpolation polynomial of the form

L Lf y τ f y τ y τ( , ) ( ˆ , ˆ ) ( ˆ) (ˆ),ε

k

N

s

N

ε
k s k s

( , )

=0 =0

( , )
y τ

ϱ ϱ∑∑≈ (32)

where functions L y( )k and L τ( )s are the well‐known characteristic Lagrange cardinal
polynomial based on the Chebyshev‐Gauss‐Lobatto points.54 The first derivative
of f y τ( , )ε( , )ϱ with respect to y and τ at the Chebyshev‐Gauss‐Lobatto points y τ( ˆ , ˆ )i j are
computed as

f

y
D F y τ DF= ˆ ( ˆ , ˆ ) = ,r

ε

y y τ τ k

N

i k
ε

r
ε

k j j r
+1
( , )

( = , = ) =0

,
( )

+1
( , )

, +1

i j

yϱ
ϱ

⎛
⎝
⎜⎜ ∑
∂

∂
(33)

f

τ τ τ
d F y τ d F=

2

−
ˆ ( ˆ , ˆ ) = ,r

ε

y y τ τ
N s

N

j s r
ε

i s

s

N

j s s r
+1
( , )

( = , = )
0 =0

,
( )

+1
( , )

=0

, , +1

i j
τ

τ τϱ

ϱ ϱ

ϱ ϱ
⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑

∂

∂
(34)

where D D i k Nˆ = ( , = 0, 1, 2, …, )i k
ε

y y i k y,
( ) 2

− ,
Ny
ε ε

0

, with Di k, being the standard first‐order

Chebyshev‐Gauss‐Lobatto differentiation matrix of size N N( + 1) × ( + 1)y y , as defined in

Reference [54], and d d j s Nˆ = ( , = 0, 1, 2, …, )j s

τ τ
j s τ,

( ) −

2 ,
Nτ 0ϱ ϱ ϱ

being entries of the standard first‐
order Chebyshev differentiation matrices of size N N( + 1) × ( + 1).τ τ The vector Fj is de-

fined as

f y τ f y τ f y τF = [ ( , ), ( , ), …, ( , )] ,j
ε

j
ε

j
ε

N j
T( , )

0
( , )

1
( , )

y

ϱ ϱ ϱ (35)

whereT is the transpose. As the last two points in the εth subinterval and the first two points in
the ε( + 1)th subinterval overlap and remain common, the differentiation matrix D for the
overlapping grid in y is assembled by carefully discarding the rows corresponding to the re-
current points as shown below:
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(36)

where the empty entries of coefficient matrix D are zeros (leading to sparse matrix) and D̂
ε( )

represents the Chebyshev differentiation matrix in the εth subinterval in space. It is
worth noting that the spatial derivative operator becomes a full matrix if only a single
domain is used in the calculation. The size of matrix D is V V( + 1) × ( + 1), where
V N N p= + ( − 1) × ( − 1)y y is the total number of collocation points in the entire spatial
domain. The higher order (nth) differentiation matrix with respect to y can be obtained using
matrix multiplication as follows:

f

y
D F y τ D F= [ ˆ ] ( ˆ , ˆ ) = .

n
r
ε

n
y y τ τ k

N

i k
ε n

r
ε

k j
n

j r
+1
,

( = , = ) =0

,
( )

+1
( , )

, +1

i j

yϱ
ϱ∑

∂

∂
(37)

The global structure of the time derivative operator ( )τ
∂

∂
has a similar structure as in Equation

(36), with size of W W( + 1) × ( + 1), whereW N N q= + ( − 1) × ( − 1)τ τ is the total number
of collocation points in the entire time domain. Applying the spectral method by evaluating
Equations (27) to (29) at the collocation points and making use of assembled differentiation
matrices give

S dA F A Θ A Φ DF R+ + − = ,i
i r

i
i r

i
i r

j

W

i j j r r
i

11
( )

, +1 12
( )

, +1 13
( )

, +1

=0

, , +1 1,
( )∑ (38)

PrS dA F A Θ A Φ Θ R+ + − = ,i
i r

i
i r

i
i r

j

W

i j j r r
i

21
( )

, +1 22
( )

, +1 23
( )

, +1

=0

, , +1 2,
( )∑ (39)

ScS dA F A Θ A Φ Φ R+ + − = ,i
i r

i
i r

i
i r

j

W

i j s r r
i

31
( )

, +1 32
( )

, +1 33
( )

, +1

=0

, , +1 3,
( )∑ (40)

where
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(41)

where I is an V V( + 1)( + 1) identity matrix, 0 is an V V( + 1)( + 1) matrix of zeros,
F Θ,i r i r, +1 , +1 and Φi r, +1 denote values of f θ, , and ϕ at the collocation points. The boundary
conditions are imposed on Equations (38) to (40) for each i W= 0, 1, 2, …, . Equations (38) to
(40) can be written as a matrix system of the form

B Λ K= ,r r r+1
(42)

which can be solved iteratively to give the approximate solutions of f y τ θ y τ( , ), ( , ), and ϕ y τ( , ).

For the structure of coefficient matrix Br and vectors Λr+1 andK ,r the reader is refereed to Goqo
et al.42

4 | RESULTS AND DISCUSSION

The system of nonlinear PDEs (12) to (14) was solved numerically using BSQLM on overlapping
grids. In the entire numerical computational process, the parameter values were chosen
as τ π γ Fs= 10 , Γ = 0.1, = 0.5, = 0.1, Pr S M λ N Rd= 0.4, = 0.5, = 0.5, = 0.3, = 0.4, = 0.2,

Ec θ ϖ ς δ δ k f= 0.2, = 1.2, = 0.1, = 0.2, = 0.2, = 0.6, = 0.5, = 1w c w1 2 , and Sc = 0.22. The
spatial domain y was truncated to y = 15.∞ We used N = 5τ and N = 20y collocation points in
space and time, respectively. These values were sufficient to give accurate and consistent re-
sults, as a further increase in the number of collocation points did not change the numerical
results. The space and time intervals were split into p q= = 3 subintervals. The above values
were treated the same in the entire study, except the varied values in the respective figures and
tables. To asses the convergence of the method, we have considered the error norms between
two successive iterations. The error norms are defined as

E w f θ ϕ F Θ Φ= max Ω − Ω , = { , , }, Ω = { , , }.w
j N

r j r j
0

+1, ,
τ

∥ ∥
≤ ≤

∞
(43)

The errors given by Equation (43) can be considered to be solution‐based errors, and they
measure the number of correct digits in the approximate solutions at the rth iteration level.
Figure 2 shows the variation in the error norms E E,f θ, and Eϕ against the number of iterations
for both BSQLM on overlapping grids and single‐domain BSQLM. It can be seen that the error
norms decrease monotonically with increasing number of iterations, which indicates con-
vergence of the methods. Full convergence is achieved after about six iterations for all solutions
with a solution error of up to 10−11 for single‐domain BSQLM and 10−14 for BSQLM on over-
lapping grids. It is worth noting that the smaller values of solution errors for the BSQLM on
overlapping grids are attributed to the use of few number of grid points in each subinterval.
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The accuracy of the method can be estimated by considering the residual errors, which
measure the extent to which the numerical solutions approximate the true solution of the
conservation Equations (12) to (14). The residual errors are defined as follows:

Res w w f θ ϕF Θ Φ( ) = Δ [ , , ] , = { , , },w r j r j r j+1, +1, +1,∥ ∥∞ (44)

where Δw represents the nonlinear PDEs (12) to (14), F Θ,j j, and Φj are the approximate solu-
tions. Figures 3 to 5 depict the variation of residual errors against the time scale τ for different
number of iterations in both BSQLM on overlapping grids and single‐domain BSQLM. The
reduction in the residual errors with an increase in the number of iterations demonstrates the
convergence of the methods. The smaller values of the residual errors in the BSQLM on
overlapping grids imply high accuracy of the proposed method. It can be seen that the residual
errors are nearly uniform across time τ , particularly after six iterations. This observation sug-
gests that the accuracy of the method does not deteriorate with an increase in the time variable.
Also, the residual errors do not change significantly after six iterations, which means six
iterations are enough to give accurate results. The accuracy of our numerical results was

(A)

(B)

FIGURE 2 Error norm graphs [Color
figure can be viewed at wileyonlinelibrary.com]
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determined by comparing the values of the skin friction coefficient with previously published
works of Zheng et al19 and Khan et al.25 The comparison is shown in Table 1, where results are
noted to be in good agreement. Hence, the accuracy and efficiency of the proposed method can
be justified.

In this study, we have also studied the effects of varying the number of subdomains and the
number of collocation points. Table 2 depicts that the residual errors for the BSQLM on
overlapping grids are smaller than errors for the single‐domain BSQLM. The condition numbers
of the coefficient matrices as well as the computational time in the BSQLM on overlapping grid
are also observed to be smaller when compared with those from the single‐domain BSQLM.
These observations suggest that the proposed method gives stable and highly accurate results
that are computed in a short CPU time. The high accuracy and computationally efficiency are
attributed to the use of overlapping multidomain grid, which makes the coefficient matrices to
be sparse, thus easy to invert. The sparsity of matrices minimizes the storage of huge matrices
and allows easier matrix‐vector multiplications on account of the many zero entries. Also, the
sparse coefficient matrices are beneficial in the sense that they are well conditioned, rendering a

(A)

(B)

FIGURE 3 Residual error graphs
[Color figure can be viewed at
wileyonlinelibrary.com]
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well‐posed problem and leading to stable results. Table 2 also indicates that the residual errors,
condition numbers, and CPU time decrease as the number of subintervals increases, whereas
there is a decrease in the number of collocation points. This means that the accuracy, stability,
and performance of the method improve when the number of subintervals increases, and few
grid points in each subinterval and the entire domain are required to achieve stable and
accurate results. The use of fewer grid points is advantageous in a way that it minimizes the
effects of round‐off errors that are linked to approximating functions with interpolating poly-
nomials of a higher degree.

Figures 6 to 11 elucidate the repercussions of flow parameters on the profiles of velocity,
thermal, and concentration. Figure 6 depicts the impact of variable viscosity and thermal
conductivity on the velocity profiles. Figure 6A shows that the magnitude of velocity diminishes
with the variable viscosity. Moreover, the plots show that for a particular value of variable
viscosity, the velocity increases rapidly to a peak value near the wall and then decays to the
relevant freestream velocity. Physically, larger values of variable viscosity parameter imply a
higher temperature difference between the surface and the ambient fluid. The opposite trend is

(A)

(B)

FIGURE 4 Residual error graphs
[Color figure can be viewed at
wileyonlinelibrary.com]
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true for the variable thermal conductivity, as an increment in temperature‐dependent thermal
conductivity elevates the magnitude of velocity, as shown in Figure 6B. Figure 7 exhibits the
impact of local inertia coefficient and Eyring‐Powell fluid parameter on the velocity distribu-
tion. Near the wall, the velocity profiles decline with rising values of the inertia parameter, as
seen in Figure 7A, because an increase in the inertia parameter decelerates the fluid flow for

(A)

(B)

FIGURE 5 Residual error graphs [Color
figure can be viewed at
wileyonlinelibrary.com]

TABLE 1 Comparison of f τ″(0, ) when ϖ Fs γ N ς fΓ = = = = = = = 0w

S M 2 τ Zheng et al19 Khan et al25 Present results

1.0 12 π1.5 11.678565 11.678656 11.6785617

π5.5 11.678706 11.678707 11.6787049

π9.5 11.678656 11.678656 11.6786536
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TABLE 2 Residual errors for different number of subdomains and collocation points after six iterations

p Ny V q Nτ W Res f( ) ∞ Res θ( ) ∞ Res ϕ( ) ∞ cond(B) CPU time, s

1 100 100 1 13 13 1.03387e–006 4.82840e–011 4.85392e–011 1.7122e+009 44.201376

1 100 100 3 5 13 1.11325e–008 4.82840e–011 4.85392e–011 2.8499e+008 33.892935

2 50 99 3 5 13 1.32873e–009 8.97381e–012 5.13287e–012 3.4627e+007 33.787799

4 25 97 3 5 13 3.06673e–010 2.90403e–012 9.63030e–013 4.2733e+006 31.901032

5 20 96 3 5 13 1.67599e–010 8.53648e–013 6.19184e–013 2.1765e+006 30.371750

10 10 91 3 5 13 1.22488e–010 7.03150e–013 1.88389e–013 2.6350e+005 26.475420

20 5 81 3 5 13 2.81906e–011 9.22077e–014 4.52945e–014 2.9892e+004 19.834545

25 4 76 3 5 13 1.38659e–011 4.03204e–014 2.40710e–014 1.4262e+004 17.535074

(A)

(B)

FIGURE 6 Velocity profiles at τ π= 2∕

[Color figure can be viewed at
wileyonlinelibrary.com]
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some distance near the wall. The inertial quadratic drag is also noticed to have a stronger effect
closer to the wall. The increase in Forchheimer drag significantly swamps the momentum
development, thereby decelerating the flow, in particular near the wall. Away from the wall, the
velocity increases slightly to the relevant freestream velocity. This observation indicates that the
momentum boundary layer thickness is weakly influenced by the Forchheimer effect far from
the oscillatory surface. Figure 7B shows that velocity distribution increases by amplifying the
Eyring‐Powell fluid parameter throughout the boundary layer regime. It is worth noting that
when Γ = 0, the flow equations reduce to those of a Newtonian viscous flow model. It is clear
that the magnitude of velocity is greater in the case of non‐Newtonian fluid when compared
with the Newtonian fluid. This is due to the fact that the Eyring‐Powell fluid is a shear‐thinning
fluid, where the viscosity diminishes with the shear rate, thus leading to enhancement in the
fluid velocity.

Figure 8 reveals the influence of variable thermal conductivity parameter and local inertia
coefficient on the thermal distribution. It is observed in Figure 8A that an increment in variable

(A)

(B)

FIGURE 7 Velocity profiles at τ π= 2∕

[Color figure can be viewed at
wileyonlinelibrary.com]
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thermal conductivity enhances the fluid temperature. This is because the thermal boundary
layer becomes thicker as thermal diffusivity improves. This observation implies that the in-
clusion of variable thermal conductivity can be significant in improving heat transfer char-
acteristics in different thermal extrusion processes. Similar results were reported by Ahmad
et al36 in the absence of variable fluid viscosity and mass diffusivity. Figure 8B shows that the
thermal distribution augments by increasing the Forchheimer parameter. This is due to the fact
that as the fluid flow is decelerated, energy is dissipated as heat, thus increasing the fluid
temperature. Figure 9 elucidates the repercussions of thermal radiation parameter and tem-
perature ratio parameter on the thermal distribution. The temperature field and thermal
boundary layer thickness enhance for larger values of both radiation parameter and tempera-
ture ratio parameter. Physically, an increment in the radiation parameter releases thermal
radiation energy into the flow, as the increase in the radiation parameter suggests a reduction in
the Rosseland radiation absorption. Consequently, this maximizes the rate of radiative heat
transferred to the fluid, thus increasing the temperature of the fluid. However, the increment in

(A)

(B)

FIGURE 8 Temperature profiles at
τ π= 2∕ [Color figure can be viewed at
wileyonlinelibrary.com]
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the temperature ratio parameter implies high temperature close to the walls of the oscillatory
stretching sheet and lower temperature far from the wall.

Figure 10 presents the influence of the temperature‐dependent mass diffusion coefficient
and chemical reaction parameter on the mass fields. It evident from Figure 10A that an upsurge
in the variable mass diffusion coefficient enhances the solutal boundary layer thickness, which,
in turn, results in elevation of the concentration profiles. Also, the concentration of solute in the
fluid of variable mass diffusivity is noted to be higher than the concentration of solute in the
fluid of constant mass diffusivity. This is because the solute of temperature‐dependent mass
diffusion coefficient diffuses faster than the solute of constant mass diffusivity. These results
suggest that the presence of variable mass diffusivity is more useful to improve the mass
transportation characteristics. Figure 10B indicates that the concentration profiles decrease
with growing values of the chemical reaction parameter. This is because the solute molecules
undergoing chemical reaction improve as chemical reaction parameter increases, which leads
to a decrease in the concentration field and solutal boundary layer thickness. Figure 11

(A)

(B)

FIGURE 9 Temperature profiles at
τ π= 2∕ [Color figure can be viewed at
wileyonlinelibrary.com]
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illustrates the impact of the mixed convection parameter and suction parameter on the con-
centration profile. Figure 11A reveals that the concentration distribution decreases with larger
values of mixed convection parameter. This is because the rapid fluid motion removes the
species, which stabilizes and causes shrinkage in the thickness of diffusion boundary layers
along the walls. The species concentration and solutal boundary layer thickness also decline
with increasing values of the suction parameter.

Figures 12 and 13 present the influence of selected pertinent parameters on the time series
of the velocity profiles. The impact of the Eyring‐Powell fluid parameter and variable viscosity
parameter on the velocity as a function of time is depicted in Figure 12. It is noted from
Figure 12A that a phase shift takes place and the amplitude of the flow motion increases by
escalating the Eyring‐Powell fluid parameter. This is because the Eyring‐Powell fluid parameter
has an inverse relation with the viscosity of the fluid. As the Eyring‐Powell fluid parameter

(A)

(B)

FIGURE 10 Concentration profiles at
τ π= 2∕ [Color figure can be viewed at
wileyonlinelibrary.com]
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intensifies, the fluid becomes less viscous, leading to an increase in the rate of deformation;
thus, the fluid velocity is enhanced. A similar observation was reported by Khan et al27 in the
case of constant fluid properties. Figure 12B exhibits that the amplitude of the fluid velocity
diminishes when the temperature‐dependent fluid viscosity parameter rises. This is because an
increment in the viscosity parameter improves the viscosity of the fluid, thus causing the fluid
velocity to decrease. Again, one can easily see that a phase shift occurs, which increases for
large values of the temperature‐dependent fluid viscosity. Figure 13A indicates that the buoy-
ancy force makes the mixed convection parameter to augment the amplitude of velocity. The
higher values of the mixed convection parameter result in a stronger buoyancy effect in the
mixed convection flow, thus accelerating the flow, which intensifies the velocity of the fluid
particles. These results concur with findings of Khan et al.33 Figure 13B shows that a phase shift
arises and the amplitude of velocity decreases with the increase in the suction parameter. This
is because an increment in the suction parameter implies reduction in the permeability of the

(A)

(B)

FIGURE 11 Concentration profiles at
τ π= 2∕ [Color figure can be viewed at
wileyonlinelibrary.com]
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porous medium. The presence of suction stabilizes the growth of the boundary layer, which, in
turn, diminishes the thickness of the momentum boundary layer.

Figures 14 and 15 are plotted to show the impact of some important flow parameters on the
time series of skin friction coefficient. Figure 14A discloses that amplitude of skin friction
coefficient increases by elevating the Eyring‐Powell fluid parameter. It can be seen that a phase
shift occurs, which increases for large values of the Eyring‐Powell fluid parameter. This ob-
servation suggests that skin friction for a Newtonian fluid flowing over an oscillatory stretching
sheet is less in comparison with its value for Eyring‐Powell fluid accomplishing the same
motion. However, a phase shift occurs and the amplitude of skin friction coefficient decreases
by increasing the variable fluid viscosity, as seen in Figure 14B. Figure 15A reveals that the time
series of skin friction coefficient decreases by increasing the Forchheimer parameter. This is
expected as the inertial quadratic drag swamps the momentum development and more re-
sistance is produced by the porous medium to the fluid flow. Figure 15B shows that a phase

(A)

(B)

FIGURE 12 Time series of the
velocity and profiles in the first five
periods π[0, 10 ] [Color figure can be
viewed at wileyonlinelibrary.com]
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shift takes place and the amplitude of skin friction coefficient is enhanced by increasing the
suction parameter.

The numerical values of Nusselt number and Sherwood number are presented in Table 3 for
some important physical parameters. It is noted that the Nusselt number augments with the
thermal radiation parameter, Eyring‐Powell fluid parameter, variable thermal conductivity,
mixed convection parameter, variable mass diffusion coefficient, and suction parameter,
whereas it retards with the variable fluid viscosity, Forchheimer parameter, and chemical
reaction parameter. However, the Sherwood number augments with the thermal radiation
parameter, Eyring‐Powell fluid, chemical reaction parameter, variable thermal conductivity,
variable mass diffusion coefficient, mixed convection parameter, and suction parameter,
whereas it diminishes with the variable fluid viscosity and Forchheimer parameter.

(A)

(B)

FIGURE 13 Time series of the
velocity and profiles in the first five
periods π[0, 10 ] [Color figure can be
viewed at wileyonlinelibrary.com]
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5 | CONCLUSION

In this study, numerical treatment of the unsteady MHD mixed convection flow of Eyring‐
Powell fluid over an oscillatory stretched surface adjacent to a non‐Darcian porous medium
with nonlinear thermal radiation, chemical reaction, and variable fluid properties was carried
out. The transformed conservation equations have been solved numerically using efficient
BSQLM on overlapping grids. Numerical simulations were conducted to highlight the con-
vergence behavior and accuracy of the proposed iterative scheme. Simulations showed that the
method converges to highly accurate and stable results that are computed in a short CPU time,
after few iterations and using minimal number of grid points in each subinterval. The improved
accuracy comes from the use of the overlapping grid, which makes the coefficient matrices in
the matrix system that results from collocation process to be less dense, thus leading to small
condition numbers and stable results. The computationally efficiency of the proposed method is

(A)

(B)

FIGURE 14 Time series of the
skin friction in the first five periods

π[0, 10 ] [Color figure can be viewed at
wileyonlinelibrary.com]
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attributed to the ease of inverting the less dense coefficient matrices in the matrix system. The
remaining conclusion remarks are summarized below:

• Introducing the temperature‐dependent fluid viscosity decelerates the amplitude of fluid flow
as well as the flow characteristics. However, the variable thermal conductivity and mass
diffusion coefficient increase the flow fields and heat and mass transfer rates.

• An increase in the thermal radiation parameter significantly enhances the fluid temperature
and heat and mass transfer coefficients.

• Higher values of the Forchheimer parameter augment the fluid velocity and concentration,
whereas they retard the heat and mass transfer rates.

(A)

(B)

FIGURE 15 Time series of the
skin friction coefficient in the first five
periods π[0, 10 ] [Color figure can be
viewed at wileyonlinelibrary.com]
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TABLE 3 Numerical values of the Nusselt number and Sherwood number for different values of ς Rd, Γ, ,

Fs k δ δ γ, , , ,c 1 2 , and fw when τ π N Pr S M λ θ ϖ Ec= 2, = 0.4, = 0.4, = 0.5, = 0.5, = 0.3, = 1.2, = 0.1, = 0.2,w∕

and Sc = 0.22

Rd Γ ς Fs kc δ1 δ2 γ fw Re Nux x
−1 2⁄ Re Shx x

−1 2⁄

0.2 0.1 0.2 0.1 0.5 0.2 0.6 0.5 1.0 0.3950233 0.6205288

0.6 0.1 0.2 0.1 0.5 0.2 0.6 0.5 1.0 0.4007908 0.6372256

1.0 0.1 0.2 0.1 0.5 0.2 0.6 0.5 1.0 0.4122425 0.6473552

1.5 0.1 0.2 0.1 0.5 0.2 0.6 0.5 1.0 0.4334121 0.6552868

0.2 0.0 0.2 0.1 0.5 0.2 0.6 0.5 1.0 0.3908409 0.6190016

0.2 0.2 0.2 0.1 0.5 0.2 0.6 0.5 1.0 0.3987293 0.6219446

0.2 0.4 0.2 0.1 0.5 0.2 0.6 0.5 1.0 0.4050897 0.6244970

0.2 0.5 0.2 0.1 0.5 0.2 0.6 0.5 1.0 0.4078674 0.6256558

0.2 0.1 0.1 0.1 0.5 0.2 0.6 0.5 1.0 0.3964990 0.6246651

0.2 0.1 0.3 0.1 0.5 0.2 0.6 0.5 1.0 0.3957452 0.6225122

0.2 0.1 0.6 0.1 0.5 0.2 0.6 0.5 1.0 0.3946778 0.6196007

0.2 0.1 1.0 0.1 0.5 0.2 0.6 0.5 1.0 0.3934251 0.6163052

0.2 0.1 0.2 0.1 0.5 0.2 0.6 0.5 1.0 0.3950233 0.6205288

0.2 0.1 0.2 0.3 0.5 0.2 0.6 0.5 1.0 0.3864498 0.6190650

0.2 0.1 0.2 0.6 0.5 0.2 0.6 0.5 1.0 0.3741135 0.6170428

0.2 0.1 0.2 1.0 0.5 0.2 0.6 0.5 1.0 0.3585552 0.6146252

0.2 0.1 0.2 0.1 0.2 0.2 0.6 0.5 1.0 0.4031733 0.5116399

0.2 0.1 0.2 0.1 0.4 0.2 0.6 0.5 1.0 0.3973449 0.5868259

0.2 0.1 0.2 0.1 0.6 0.2 0.6 0.5 1.0 0.3929870 0.6522514

0.2 0.1 0.2 0.1 0.8 0.2 0.6 0.5 1.0 0.3895648 0.7109270

0.2 0.1 0.2 0.1 0.5 0.1 0.6 0.5 1.0 0.3936677 0.6188513

0.2 0.1 0.2 0.1 0.5 0.3 0.6 0.5 1.0 0.3963380 0.6221431

0.2 0.1 0.2 0.1 0.5 0.6 0.6 0.5 1.0 0.4000757 0.6266369

0.2 0.1 0.2 0.1 0.5 1.0 0.6 0.5 1.0 0.4046774 0.6319138

0.2 0.1 0.2 0.1 0.5 0.2 0.1 0.5 1.0 0.3864174 0.5650341

0.2 0.1 0.2 0.1 0.5 0.2 0.3 0.5 1.0 0.3901337 0.5891735

0.2 0.1 0.2 0.1 0.5 0.2 0.6 0.5 1.0 0.3950233 0.6205288

0.2 0.1 0.2 0.1 0.5 0.2 1.0 0.5 1.0 0.4005749 0.6558012

0.2 0.1 0.2 0.1 0.5 0.2 0.6 0.3 1.0 0.2945285 0.6113618

0.2 0.1 0.2 0.1 0.5 0.2 0.6 0.5 1.0 0.3950233 0.6205288

0.2 0.1 0.2 0.1 0.5 0.2 0.6 0.8 1.0 0.4769445 0.6330776

0.2 0.1 0.2 0.1 0.5 0.2 0.6 1 1.0 0.5133172 0.6405679
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• An escalation in the Eyring‐Powell fluid parameter intensifies the amplitude of flow motion,
skin friction, and heat and mass transfer coefficients.

• Higher values of the suction parameter diminish the flow fields, whereas they amplify the
flow characteristics.

• The chemical reaction and mixed convection parameter decay the concentration distribution
and solutal boundary layer thickness, whereas they cause elevation in the rate of mass
transfer.

The results of the current work can be beneficial in industrial and engineering applications
such as metal extrusion, polymeric sheets, energy production, food processing, and other
manufacturing processes. The study facilitates a better comprehension of the absorption of
incident solar radiation and controlling heat transfer in polymer processing industry through
the involvement of a nonlinear radiation term. Considering the advantages of the proposed
method, it can be utilized in solving complex differential equations with large parameter values
and those defined over large computational domains. The overlapping grid approach can be
used in problems where solution profiles change rapidly within a narrow region on the problem
domain.

NOMENCLATURE
u v, velocity components, m/s
x y¯, ¯ Cartesian coordinates, m
t time, s
f dimensionless stream function
B0 magnetic field strength, kg/A·s2

b stretching rate
g gravitational acceleration, m/s2

T fluid temperature, K
C concentration, mol/m3

Tw temperature of the fluid at the wall, K
Cw concentration at the wall, mol/m3

T∞ ambient temperature, K
C∞ ambient concentration, mol/m3

uw stretching velocity, m/s
vw suction/injection velocity, m/s
Q0 volumetric heat transfer
D mass diffusivity, m2/s
D∞ mass diffusivity away from the sheet, m2/s

TABLE 3 (Continued)

Rd Γ ς Fs kc δ1 δ2 γ fw Re Nux x
−1 2⁄ Re Shx x

−1 2⁄

0.2 0.1 0.2 0.1 0.5 0.2 0.6 0.5 1.0 0.3950233 0.6205288

0.2 0.1 0.2 0.1 0.5 0.2 0.6 0.5 1.5 0.5625264 0.6770711

0.2 0.1 0.2 0.1 0.5 0.2 0.6 0.5 1.8 0.6662814 0.7141180

0.2 0.1 0.2 0.1 0.5 0.2 0.6 0.5 2.0 0.7363413 0.7402338
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cp specific heat capacity, J/kg·K
kp permeability of the porous medium
K thermal conductivity of the fluid, W/m·K
K∞ thermal conductivity at the ambient temperature, W/m·K
cb form of drag coefficient
Pr Prandtl number
k0 reaction rate constant, s−1

C1 fluid parameter of Eyring‐Powell model
k* mean absorption coefficient, m−1

M Hartmann parameter
S ratio of frequency to stretching rate
Sc Schmidt number
Sr Soret number
kc chemical reaction parameter
Fs local inertia coefficient
Ec Eckert number
N concentration buoyancy parameter
Rd nonlinear radiation parameter
fw suction/injection parameter
y similarity variable
Grx Grashof number
C Nu Sh, ,fx x x skin friction coefficient, Nusselt number, and Sherwood number
qw surface heat flux, W/m2

qm surface mass flux, mol/m2·s

GREEK SYMBOLS
ω oscillation frequency
ρ∞ fluid density, kg/m3

ν∞ kinematic viscosity far away from the sheet, m2/s
μ dynamic viscosity, kg/m·s
μ∞ dynamic viscosity far away from the sheet, kg/m·s
σ* Stefan‐Boltzmann coefficient, W/m2·K4

λ heat absorption/generation parameter
ς variable fluid viscosity parameter
δ1 variable thermal conductivity parameter
δ2 variable mass diffusion coefficient
σ electrical conductivity, S/m
β fluid parameter of the Eyring‐Powell model
βt thermal expansion coefficient, K−1

βc concentration expansion coefficient, K−1

γ mixed convection parameter
θw temperature ratio parameter
ϖΓ, material fluid parameters

θ dimensionless temperature
ϕ dimensionless concentration
τw wall shear stress, N/m2

Ψ stream function, m2/s
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Chapter 10

Conclusion

It this thesis, spectral collocation methods have been modified through computational grid-manipulation

to improve accuracy, convergence and computational efficiency. The grid-manipulation involved

using the multi-domain technique along with the overlapping grid approach. In Part A, the over-

lapping grid approach was used in the space domain to improve the accuracy of the spectral quasi-

linearisation method (SQLM) and bivariate spectral quasilineariation method (BSQLM). In Part B,

the overlapping grid technique was used in space and time domains to improve the accuracy of the

BSQLM. The improved numerical techniques were then used to solve fluid flow problems. The

convergence and accuracy of the methods was demonstrated through error analysis. The accuracy

of the methods was further determined by comparing the results with previously published results

produced using other methods. The results were found to be satisfactory and in line with those

in previous studies. Among the major findings, we found that the methods performed better and

converged to more accurate solutions than other comparative methods. Sufficiently accuracy and

stable results were achieved using only a few iterations, small computational time and the least

possible number of grid points in each subinterval. The low number of grid points in every subin-

terval reduced the propagation of round-off errors that could otherwise caused instabilities. By

increasing the number of overlapping subintervals, the accuracy further improved which is to be

expected because increasing the number of overlapping subintervals reduces the number of grid

points in the entire domain. The overlapping grid approach produces matrix systems with low den-

sity coefficient matrices that may be inverted in a computationally efficient manner. The findings

from each chapter are summarized below.

216



217In Chapter 2, the overlapping grid spectral quasilinearisation method was proposed and used to

solve highly nonlinear and coupled ordinary differential equations. The flow equations modelled

the flow of the MHD Casson nanofluid over a stretching surface with temperature dependent fluid

properties. The fluid velocity was shown to decline with variable fluid properties, whereas the

temperature and concentration distributions decreased. In Chapter 3, we developed and applied

the overlapping multi-domain bivariate spectral quasilinearisation method (OMD-BSQLM) to find

solutions for nonlinear partial differential equations arising in boundary layer fluid flows. The

method was tested on fluid flow problems in two and three variables, respectively. Series solutions

were used to authenticate the computed results and results showed a good correlation.

In Chapter 4, the focus was on the use of the OMD-BSQLM to solve nonlinear coupled partial

differential equations describing conjugate heat transfer in MHD free convective flow of nanoflu-

ids. The silver-water nanofluid had higher velocity and temperature fields, shear stress and surface

temperature than the copper-water nanofluid. This is because viscosity and thermal conductivity

of silver are higher than that of copper. Different results were obtained for surface temperature,

skin friction and heat transfer coefficients for parameters having the same values but in different

geometries (either vertical or horizontal flat plate). This findings confirm that the geometry may

affect the fluid properties. In Chapter 5, we studied the impact of Hall current, chemical reaction,

diffusion-thermo and thermal-diffusion on the MHD flow of nanofluid over a vertical cylinder.

The problem comprised of three coupled partial differential equations which were solved using the

OMD-BSQLM. The fluid properties were shown to be higher when considering a curved surface

than when considering a flat surface. This findings further highlight the significance of geometry

in flow behaviour. With regard to mass transport, the mass transfer rate increased on the inclusion

of a chemical reaction, Hall current and Soret effects.

In Chapter 6, we analyzed the problem of MHD mixed convective flow over an exponentially de-

creasing mainstream with a chemical reaction, heat convection boundary conditions and the influ-

ence of non-uniform heat source/sink. The OMD-BSQLM was used to solve the partial differential

equations. The numerical results were compared with results obtained using the SQLM, BSQLM
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and multi-domain bivariate spectral quasilinearisation method (MD-BSQLM). The OMD-BSQLM

was shown to use least number of grid points to yield accurate solutions. Increasing thermal Biot

number and non-uniform heat source/sink parameters was established to augment the fluid prop-

erties while diminishing the changes in shear stress and the heat transfer rate. In Chapter 7, we

investigated heat and mass transport, and the movement of motile microorganisms on MHD bio-

convective flow in a Casson nanofluid over a vertical surface. The fluid viscosity and thermal

conductivity were assumed to vary with temperature. We assumed zero mass flux at the bound-

ary and solved the flow equations using the OMD-BSQLM. The heat and motile microorgansms

transfer rates were enhanced by increasing the variable viscosity and Cassson fluid parameter. The

fluid temperature, heat and mass transfer characteristics were enhanced by incorporating variable

thermal conductivity and radiative heat flux in the problem.

In Chapter 8, the overlapping grid approach was used in both space and time domains when ap-

plying the BSQLM in solving the Emden-Fowler partial differential equations. To highlight the

merits of the method, we presented error bound theorems and their proofs. Approximate solutions

were compared with exact solutions to verify the accuracy and convergence of the method. The

numerical solutions were in good agreement with exact solutions. In Chapter 9, we analyzed the

flow of an Eyring-Powell fluid over an oscillatory stretching surface taking into account temper-

ature dependent fluid properties. The equations were solved using the overlapping grid BSQLM.

We determined the impact of pertinent parameters on the fluid properties and flow characteristics.

The heat and mass transport were enhanced with variable thermal conductivity and mass diffusion

coefficient while decreased with Forchheimer parameter. Increasing the Eyring-Powell fluid pa-

rameter accelerated the amplitude of flow motion, changes in shear stress, heat and mass transport.

The presence of suction enhanced the flow characteristics while reducing the fluid properties.

Contributions

The numerical techniques presented here add to a growing body of literature on accurate numerical

methods for solving complex nonlinear differential equations that model fluid flow problems. The
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methods can be used to validate results obtained using other numerical methods. The theoretical

studies have indicated that fluid properties may not be presumed to be always constants because the

physical properties of a fluid may vary considerably with temperature. Considering the variation

of the fluid properties with temperature and using similar analysis as in the presented study, many

previous results could be improved significantly. The use of nanofluids possess the effect of max-

imizing the effective heat transfer properties of fluids by improving the thermal conductivity and

convective properties of fluids. This understanding was confirmed in this study and can assist in

filling the gap between theory and practice. The study provided further insights into fluid flow with

convective transport over various geometries. These findings may have applications in areas such

as solar energy generation systems, polymer extrusion, nuclear reactor cooling systems, magnetic

field control of materials processing systems, paper production, glass blowing, energy production

and food processing.

Future Work

The methods presented here give accurate results and will find applications in other areas of science

and engineering. The overlapping grid spectral collocation methods are best suited for problems

with large computational domain and where the solution profiles vary rapidly within a narrow

region along the problem domain. The use of the overlapping grid approach discussed in this

work has been limited to one-dimensional ordinary differential equations and two-dimensional

time-dependent partial differential equations. In future, the method may be extended to three-

dimensional partial differential equations including those with two-space dependent variables and

two-time dependent variables. The current study had a narrow focus of establishing if the methods

are applicable to limited types of differential equations, and for these the efficacy of the method was

established. The novelty of the study centred around the use of the new methods. Some numerical

methods are more suitable for particular types of equations, whereas others may produce superior

accuracy. Owing to these limitations, the methods remain to be checked for other properties,

including stability and consistency. Since the current study was theoretical, experiments could

validate the results obtained through the mathematical modelling techniques.
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