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Theory and Practice of the AES Algorithm

1. Introduction

This note is an introduction to the theory and practice of the Advanced Encryption Standard
(the AES algorithm) and related algebraic block ciphers. The symmetric block cipher AES,
called Rijndael, was certified as FIPS-PUB 197 in October, 2000. The new standard is
intended to replace the block cipher DES specified in the standard FIPS PUB 46-1, 2, 1977,
1988, which was decommissioned in 2004. The cryptosystem AES-32b was designed to resist
all forms of known cryptoanalysis such as linear, differential, and cyclic analysis. It is
expected to have a lifetime of about 30 years as its predecessor. Further it was designed to
have efficient implementations on various microprocessor platforms.

The first section introduces preliminary information and a block diagram of the AES
algorithm. Subsequent sections provide specific descriptions of the AES algorithm, and its
components. Theoretical and practical material used in the analysis and design of AES
algorithm and block ciphers is provided in the Appendix. Each section in the Appendix is
essentially independent of the rest and it is geared to supply deeper coverage of specific topic.
The material in the Appendix is useful in the analysis of the current AES cipher, related
ciphers, and future designs.

2. The AES Algorithm
The plaintext length, ciphertext length and key length of the AES-32b algorithm are

32b bits plaintext, 324 bits ciphertext, and 32k bits key
respectively, and the parameters b, ke {4,5,6,7,8}. The standard FIPS-PUB 197 specifies
only three versions AES-128, AES-192, and AES-256. These versions have plaintext and key

of lengths 128, 192 and 256, a total of nine combinations are possible.

The diagram of the encryption function is the following.

325 Bits Plaintext

Y

Advanced Encryption
Standard Algorithm < 32k Bits Key
(AES)

U
32b- Bits Ciphertext

S
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The descriptions and analysis of the AES-325 algorithm given here are for the smallest plain
text length and key length of 128 bits. This corresponds to the parameters b = k = 4. However,
the analysis of all cases (with different values of the parameters b, k) are essentially the same
mutatis mutandis.

The software and hardware implementations of AES algorithm are series of bit/byte
operations and look-up table substitutions. An implementation can be realized at the bit level
and there is no need for any finite field arithmetic of any sort. The importance of transferring
the bit/byte level description of AES algorithm to an algebraic description has to do with the
optimization, analysis, and further development of the algorithm. Once an algebraic
description is on hand, the vast knowledge of finite rings and finite fields theory is
immediately available to analyze it and improve it. This is analogous to machine level
programming as oppose to high level language programming, (it is far easier to analyze and
debug a program written in a high level language than a program written in machine
language).

Several algebraic descriptions of the AES-325 algorithm are already known. Among these are
(1) Matrix Description,

(2) Polynomial Description,

(3) Isomorphic Description.

A few of these descriptions will be introduced here.

3. Matrix Description of the AES Algorithm

The matrix description of the AES algorithm is given in the original source [DRO1]. This
description is presented here in slightly different form as vector/matrix equation. A
generalization of the matrix description to a larger encryption system appears in [MY02].

Bytes Space
The bytes space is a direct product of 8 copies of the smallest finite field F, = { 0, 1 }. A byte
is viewed as a vector b = (by, bs, bs, bs, b3, by, by, by) of eight bits in the bytes space

F} =F, xF, xF, xF, xF, xF, xF, xF, .

Equivalently, a byte is also viewed as an element of the finite field F,. . More generally, any
8-bit arrangement will be used as equivalent.

State Space
The states space is a direct product of 16 byte spaces F;** = F} x---xF, . A state is viewed as
a 16-byte vector

X = ( X15, X14, X13, X12, X11, X10, X9, X8, X7, X6, X5, Xa, X3, X2, X1, X0 ),
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where x; € Fy . The equivalent byte spaces is F,» = F, x--xF, . The original manuscript
identifies a 16-byte block with a 4 x 4 array of bytes

Aoy Ggy Gy Gy Xo Xy Xy X

4= A, 4y Gy G| 1% X5 X Xy )
ay, 4y A4y Ay X, Xo Xio Xia
Ay, Gy Gy Ay Xy X5 Xy X

However, the vector notation is more common in the mathematical analysis of this algorithm.
All these arrangements of a 128-bit block will be used interchangeably.

3.1 S-Box
The S-box used in the AES algorithm is a function © : F. > F,. (or ¢ : F; —» F}) acting on

the individual coordinate of the vector x = (xis, ..., Xo ). Some of the essential properties of an
s-box are:

(1) Invertible,

(2) Nonlinear,

(3) Correlation resistance,
(4) Large cycle lengths.

These properties are derived from the current knowledge of functions on discrete structures,
see the section on Functions in Finite Fields in the Appendix. The S-box is defined by o(x) =
gofix) = ax”' + b. This is a composition of the nonlinear function fx) = x”', and a linear
function g(x) = ax + b over the finite field F,, (or bytes space F}). This combination is

intended to resist linear, differential, and cyclic analysis, etc.

Polynomial Description of the S-Box.
The evaluation of o(x) takes place in the finite field F,. and the finite ring Fa[z}/( 2* + 1).
Specifically 2)

o) = +2+2+z+ D mod (B + 2 + 2 +z+ 1) +28 + 20 +z+ 1] mod (2 + 1),

A nonlinear operation in the finite field F,[z]/(f(z)) follows by a linear operation in the finite
ring F2[z)/(z* + 1). The constants are a =z* + 22 + 22 +z+ I, b=+ +z+1 e Fu ora=
1F, b = 63 in hexadecimal notation.
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The inverse function is usually computed via either the power map fx) = x™' = x*2, or the
y p P p

Euclidean algorithm. For the finite field of ¢ = 2* elements, the former case is given by x =
X254.

Example of S-Box Calculation. Compute the value of o(x) atx=2"+z° + 2’ € F. (orx=
A8 in hexadecimal notation).

Since (27 + 2° + 22y =z°+ 22 + z in Fs, the evaluation gives
o) =ax" +b=[+2+2+z+ D)+ +2)" + (P + 2 +z+ 1)) mod (2* + 1)
=[@+2+2+z+ NP+ +2)+ P+ +z+ 1) mod (Z* + 1)

=71+ 20+ 2

In hexadecimal notation, this is z' + z° + z = C2. All the values of the s-box are listed on the
16x16 substitution table.

0 1 2 3 4 5 6 7 8 9 A B C D E F

63 C 77 7B F2 6B 6F CS 30 01 67 2B FE D7 | AB | 76

Ca 82 C9 7D FA 59 47 FO | AD | D4 | A2 AF 9C A4 72 CO0

B7 FD 93 26 36 3F F7 CC 34 AS ES Fl 71 D8 31 15

04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75

09 83 2C 1A 1B 6E SA | A0 52 3B | Dé6 B3 29 E3 2F 84

53 D1 00 ED 20 FC Bl 5B 6A | CB | BE 39 4A 4C 58 | CF

DO EF AA | FB 43 4D 33 85 45 F9 02 7F 50 3C 9F | A8

51 A3 40 8F 92 9D 38 F5 BC | B6 | DA 21 10 FF F3 | D2

CD | 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73

60 81 4F DC 22 2A 90 88 46 EE | B3 14 DE | SE 0B | DB

E7 C38 37 6D 8D | DS 4E | A9 | 6C 56 F4 | EA 65 7A | AE | 08

BA 78 25 2E 1C Ab B4 | C6 | E8 | DD ] 74 1F 4B | BD | 8B | 8A

70 3E BS 66 48 03 F6 O0E 61 35 57 B9 86 Cl 1D | 9E

El F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 | DF

8C Al 89 oD BF E6 42 68 41 99 2D OF BO 54 BB 16

0
|
2
3
4
5
6
7
8
9
A | EO | 32 1 3A L oA ] 49 | 06 | 24 J sc [ c2] D3 Ac] e | 91195 | E4 (|79
B
C
D
E
F
B

S-Box Substitution Table 1.

In general, an s-box is a nonlinear function © : F, = F, acting on the coordinates of the state

vectors. It is selected based on certain cryptographic criteria such as nonlinearity, high degree,
diffusion, etc. Distinct s-boxes can be used in each coordinates of the state vector x = ( X, ...,
xo ). For example, the AES algorithm use the same s-box in each coordinates, but the DES
algorithm uses distinct s-box in each coordinate.

Partial Matrix Description of the S-Box

The nonlinear map f{x) = x' as any nonlinear function does not have a matrix representation.
But the linear part g(x) = ax + b does has a matrix component. Given x = a2’ + -+ aiz+ a0 €
F,., the inverse is x' = (a2’ + ~ + @iz + ao)” = bz’ + + + biz + by € Fp. Thus the
composition o(x) = ax™' + b has the partial matrix representation
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Gl 1 111100 0fbl |0
el 1011111 0 ol |1
ol o011 11 1 ofpl |1
el looo1 111 1)6] |0
|11 o001 11 1]s| ol @
| [1 10001 1 1{s] |0
¢l {1t 110001 1)s] 1
] L1 111000 1)p] [1]

where the 8x8 matrix corresponds to the linear function g(x) = ax + b. Note that this is a
circulant matrix C = (1, 1, 1, 1, 1, 0, 0, 0), which is generated by a single row, and its inverse
C'=(0,1,0,1,0,0, 1, 0) is also a circulant.

3.2 Round Function
The encryption process in the AES algorithm is a series of repetition of a simpler process
called a round function. The round function consists of four basic steps.

(1) SubByte : This step performs component-wise substitution of the 4x4 array 4 of bytes.
(2) ShiftRow : This step permutes the rows of the 4x4 array A of bytes.

(3) MixColumn : This step scales and permutes the column of the 4x4 array 4 of bytes.
(4) AddRoundKey : This step adds a round key vector to the 4x4 array 4 of bytes.

32b Bits Plaintext
U
SubByte
ShiftRow
ColumMix < 32b Bits Key
AddRoundKey

Y
325 Bits Ciphertext

Finer analytical details on each step are given below.

SubByte Step
The SubByte step performs a vector substitution. The vector s-box is computed component-
wise on each coordinates using a substitution look-up table. Other methods of implementing
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this function are also used in the actual implementation. In vector notation, the SubByte
operation is given by

(Xls, X14, X135 X125 X115 X10, X9, X8, X7, X6, X355 X4, X3, X2, X1, Xo ) (4)

—SubBye ( o(x15), o(x1s), 6(x13), -, o(x4), o(x3), o(x2), o(x1), o(xo) ),

-1
where o (x)=ax’ +b xi e Fpu.

ShiftRow Step

The ShiftRow step performs a series of left shift of the rows in a state array. The right cyclic
shift increment R; depends on the parameter b, and the ith position of the row in the array. The
precise amount of shift is tabulated below.

b Ro R, R, R;
4 0 1 2 3
5 0 1 2 3
6 0 1 2 3
7 0 1 2 4
8 0 1 3 4

The state diagram for b = 4 is given here: the first row remains fixed, the second row is right
cyclic shifted by one place, the third row is right cyclic shifted by two places, and the fourth
row is right cyclic shifted by three places.

Xy X, Xz X Xy X, Xy X

Xp Xs X X3 ShifiRow X3 X X X %)
X, Xg X X X X4 X X '

Xy X, Xy X X, Xy X5 X

The ShiftRow step is realized by a 1616 permutation matrix, it can be obtained by inspection
of the state diagram. In vector notation, the ShiftRow operation is given by

( X1s, X145 X13, X125 X11, X10, X9, X8, X7, X6, X5, X4, X3, X2, X1, X0 ) (6)

ShiftR
__SifRow o (" x X6, X, X125 X135, X2, X5, X8, X11, X14, X1, Xa, X7, X10, X13, X0 ).

MixColumn Step

The MixColumn step scales and permutes the columns of a state array. This step is realized by
a 16x16 diagonal matrix D = diag( Do, D1, D, Ds ), here each diagonal entry is a 4 x 4
submatrix, and Do = Dy = D, = Ds. The submatrix and its inverse are given by

10
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D

and D' = (7)

I SN
O v mw

9
D
Bl
E

T U o™

1
1
3
2

e ™ B 7S T

B
E
9

These pairs of circulant submatrices have entries from K., but are commonly given in
hexadecimal notation. In vector notation, the MixColumn operation is given by

MixColumn

(xls,xl4,xl3,x12, ---,Xs,xz,xl,xo) —_— (yls, Vi, Vi, izs -5 V3, V2, Vi, Yo ), (8)
where (¢3, ¢, ¢1,¢0)=(2,3,1,1), and

Yis = c3x)5 T CaX1a T C1Xi3 + CoXz,
Via = CoXis T CaxXig + Caxp3 + Cix,
Vi3 = Cixys T CoXg T C3x13 + Caxg,
Y12 = CaXis T CiXia F coXi3 + Caxg,

yi=cxst caxa + aixy t coxo,
V2= coxs + ez + caxy + Cixo,
yi=cix3 t+ coxa + eaxy + caxo,
Vo = Cax3 + ¢1x2 + coxy + Caxo.

For example, the first byte , xo is replaced by yo = 3x3 + x, + x; + 2x0.

The Key Schedule

The key schedule generates a sequence of key vectors from the initial key vector. The ith key
vectors are given by k= ( kieis, kiei1a, Kreins, ki6in2, ooy kieis, kisio, Kisi, kisio ),i=0,1,2,3, ..,
where

i

9
o (k, ©)

i j+l

Y+k _, +k  if j=0mod4,

i j~k i

{ku_l +k if j# Omod4,

Y= mod(y* +1) is the round key constant, and the key vector kg is the initial key.

ki, =Y
Currently block ciphers use a static key sequence, that is, only the first few vectors of the key
sequence are actually used in the encryption process, AES uses less than i < 15. On the other
hand, stream ciphers use dynamic key sequences, that is, all the vectors of the key sequence
are actually used in the encryption process.

11
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Theory and Practice of the AES Algorithm

The round function is the crux of the AES algorithm, it is repeated a number of times
depending on the security criteria. The number of round N, = 10 to 14 in the AES-32b
algorithm varies according to the plaintext length and key length. The AES-128 uses 10 to 14
full rounds and 2 shorter rounds, AES-192 uses 12 to 14 full rounds and 2 shorter rounds, and
the AES-256 uses 14 full rounds and 2 shorter rounds. The small table below catalogs all the

possibilities.

Nr\Ng 4 5 6 7 8
4 10 11 12 13 14
5 11 11 12 13 14
6 12 12 12 13 14
7 13 13 13 13 14
8 14 14 14 14 14

The arrangement of the initial round, inner rounds and the final round is depicted in the
diagram. Here P denotes a plaintext block, C: denotes the ith round ciphertext block, and K

denotes the ith round key vector.

325 Bits Plaintext P
Y

AddRoundKey

U
Gy

SubByte

ShiftRow

ColumMix

AddRoundKey

SubByte

ShiftRow

ColumMix

AddRoundKey

Y
G

SubByte

ShiftRow

AddRoundKey

U
32k Bits Ciphertext C

12

Ko

K,

K

Ko
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4. Polynomial Description of the AES Algorithm
A polynomial description of the block cipher AES is essentially given in the original source
[DRO1]. A few other authors have also developed polynomial descriptions of the AES

algorithm, see [LA02], [RLO3]. The polynomial description given here is a synthesis of the
descriptions given by these three authors, and uses the notations of the last two authors.

As before the plaintext data and key lengths are 325 bits and 32k bits respectively, and the
parameters b, k = 4, 5, 6, 7, 8. The smallest plain text and key lengths are 128 bits for b = k =
4.

Bytes Space
The bytes space is identified with the finite field F,s of 2° elements

F, =E[2]/(f(2)) = {a(z) € Fy[z] : deg(a(2)) < 8}, (12)

where flz) =28 + z* + 22 + z + 1. A byte b = (b1, be, bs, bs, b3, bz, b1, bo) of eight bits is viewed
as polynomial b(z) = bsz’ + -+ + biz + by in Fo[z}/(f2)).

State Space
The states space is identified with the finite ring

F,[x,y,2)/(x* + 1,y +1, f(2)) = {v(x, y) € Fpu[x, 3, 2] : deg(v(x, )) < 4}. (13)

A state is viewed as polynomial in x, y over E,., (or x, y, z over F;), namely,

3 3 7
pP= zai,jxiyi = Z Zai,_/,kx’y"zk , (14)

i,j=0 i j=0k=0

where a, ; €F,, (or a;;, € F,).

The Key Schedule
The key stream is a sequence of polynomials { ki(x,y) = kiax® + kix®y + kyxy? + - + kigy’ €
F.[x,y] : kifz) € F:[z)/(fiz)) }, where ki(z) is defined by

ko tk if j # O0mod 4,
k (2)= (15)

ok, ) +k, ., +k  if j=0mod4,

i -k iJ

13
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(j—k)/4

where /?, JEX mod( f (2),x* +1) is the round key constant, and the polynomial ko(z) = ko3

2 + kooz? + ko,z + koo is the initial key. The ith round key is the polynomial k(z) = kiaz® + kioz?
+kiz+kioi=0,1,2,3,..,k=4,5,6,7,8.

S-Box
The s-box is the same polynomial representation as in (2).

SubByte Step
The SubByte step performs the substitution a, ;(z) = a(z)-a;, 1(2)+ b(2) mod(z* + 1) of each

coefficient a;(z) € F,» of the plaintext polynomial. Specifically this is given by

3 3
P=Sa iy - o(P)= Yol )5y a6

i,j=0 i,f=0

Each coefficient is a polynomial a(z) = @iz’ + aijez® + -+ + aijuz + aijo in F2]/(A2)), with
a;« € F». The inverse @, ,(2) is also a polynomial of degree deg( a;(2))<8.

ShiftRow Step
The ShiftRow map shifts the degree of one of the variable of the plaintext polynomial P. This
is given by

3 3
P=Ya xy - pP)=a xy" mody +1), (17)

ij=0 i.j=0

Here the polynomial p(P) is reduced modulo y* + 1, or equivalently the exponent 3i+jis
computed modulo 4.

MixColumn Step
The MixColumn map corresponds to multiplication by o = (z + 1)x* + x* + x + z, that is,
3 . . 3 . .
P=Ya xy - pP)=a Da x'y’ mod(x*+1). (18)
ij=0 i.j=0

After multiplication by a, the resulting polynomial p(P) is reduced modulo x*+ 1

AddRoundKey Step
The AddRoundKey consists of a polynomial addition:

3 3 3 3
P=2axy — t(P)= Ya Xy + 2k xy =D (a k)XY (19)
ij=0 i,j=0 i,j=0 i,j=0
K is the key polynomial.

14
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4.1 Encryption And Decryption Process

LetKe K=F"* PeE=F" andCe F= F;* be a key, plaintext, and ciphertext vectors
respectively from the key, plaintext, and ciphertext spaces. The encryption function
ey 1B xF* 5 F, is defined by a chain of compositions:
(20)
€r =T, POT_HPOT,  HUPOT, HPGC T, UPOT, UPCT, UPCT, ,

where the parameters 4 < b, k < 8 specify the key, plaintext block lengths respectively, and 10
< r < 14 specifies the number r of rounds.
The round function of the AES algorithm is defined an 4-tuple

T, HPo , 1 <n<14, (21

A step by step evaluation of a round function is as follows: Given the nth round key and
plaintext polynomials

3 3
K:Z@yy,P:ZQ;y, (22)

ij=0 ij=0
the nth round ciphertext C' =1, ppo (P)is computed as follows:
3 . .
T,1p0 (P) =T, upa (D a, ;x'y")
=0

3
=t,up(D o(a,)xy’) mod(z*+z*+2° +2+1)

i j=0

=T, 1(D 0 (a,)x'y"") mod(y* +1) (23)

i j=0

3
=1,(a ZO' (@, )x'y"™) mod(x* +1,2* + 2 + 22 +z +1)
ij=0

3
= Z(ac(a,_,)y“ +h x'y’ mod(x*+1,y* +1, 28 +z* + 27 + 2 +1).
ij=0

Line 1 corresponds to the SubByte step, line 2 corresponds to the ShifiRow step, line 3
corresponds to the MixColumn step, and line 4 corresponds to the AddRoundKey step.

This clearly shows the commutative property of a round function T, HPS , see Lemma 1 for
the matrix/vector equation.

15
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Similarly the decryption function &, :F,* xF;* > F* is defined by a chain of
compositions:
(24)

P S R T S SR IS B -1 -1, =1l
8, =To0 P RO P TR T, O PTH T,

_G—JP—IP—lt;,I_lc-]p-]T/c—,l .
Naturally the composition 8xoex = 1 of ex and &« is the identity function on F,*" . For example,
Sxoek (P) = 8K(8K(P)) = SK(C) =P.

5. Isomorphic AES Algorithms
An isomorphic AES algorithm is an exact image of the AES algorithm but in a different form.

Any isomorphic AES algorithm is mapped to the AES algorithm by a linear map o. The
relationship is depicted in the diagram.

F232b x F232k E F232b (25)
Y1 o
b 3 w(E 32h

F232 XF;N( (E) F;z

Here E denotes entryption by the standard AES algorithm, and o(E) denotes encryption by the
isomorphic AES algorithm, (1 is the identity map).

Two of the mechanisms used to produce isomorphic algorithms are as follow:
(i) Finite Field Conjugation. In the case of F,., there are eight possible conjugates,

() = X, §x) = x*, 0'0) =2, .., §T0) = X' (26)

(if) Composite Representations of the Finite Field F,. . There are exactly 450 composite

representations of F,. using two subfields, see the section on Irreducible Polynomials in the
Appendix for more details.

This technique (isomorphic AES algorithm) has several applications, among these are:

(a) Fast implementation of the AES algorithm. This is already proven to be very effective, see
[RAO01], and [WRO2] etc.

(b) Cryptoanalysis of the AES algorithm. The probable advantage of using isomorphic AES
algorithm is the possibility of obtaining simpler but equivalent round function, for instance,

with diagonal submatrix in the MixColumn step. There is no result in this area yet.

Fact: The AES algorithm has over 3600 isomorphic AES algorithms.

16
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Reason: Each isomorphic algorithm has eight conjugate algorithms, and there are at least 450
composite representations of the finite fields.

Example 1. The conjugate map ¢(x) = x* generates one of the simplest isomorphic AES

algorithm ¢(E). In this case the steps SubByte, ShiftRow, ColumMix, and AddRoundKey of
the standard AES algorithm are conjugated (squared). As an illustration, the s-box (2)
becomes

doo(x) = [ +2° + 22 +2)(x® mod (P + 2+ 20 +z+ 1)) +27+28+22+z+ 1]mod (Z* + 1).
=[(f+ 2+ 2+ )" mod (P + 2z 1) +27+28+22+z+ 1] mod (z* + ).

6. Properties of the S-Box and the Round Function
The matrix/vector equation form of the round function consists of four operations shown in
the diagram:

k1l
x » |PDo(x)+k |—> y

where k = (kis, ..., ki, ko), X = (X155 ..., X1, X0), ¥ = (115, -+, Y1, Yo), are key, plaintext, and
ciphertext vectors respectively, and D = (d,,;) and P = (p:. ;) are 16x16 matrices. All the

entries ki, xi, Vi, dij Pij» € F,. . Some observations on the function f{x) = y are recorded here.
Lemma 1. Let x and k be the nth state vector and key vector. Then the (r+1)th state vector

y=PDo(x) +k=DPo(x) +k= --- = Do(Px) + k,

where 6(x) = (6(x15), 6(x14), ..., 6(x1), 6(x0)), and 6(x) = ax™ + b, n> 1.
This shows that most of the steps of the round function commutes, and almost any two

orderings of the steps in a round function are equivalent.

6.1 Invariant Sets of the AES Algorithm
A subset S is called an invariant subset of a map f if the image S) = { As) : s € § }is
contained in the subset, that it, AS) < S. Define the subsets of state vectors
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So={x=1(x,x,X,%, X X,X X, X, X, X, X, X, X, X, X) . X € qu 3,
Si={x=0»%%x5%,5,%y,%y,5y,%5y):x,ye Fu } and
S:={x=(x, 5,2, W, X, ¥, 2, W, X, ¥, Z, W, X, ¥, Z, W) 1 X, J, Z, W € qu }.

Lemma 2. Suppose that the key vector k € S, i = 0, 1, 2. Then the subsets S, S, and S, are
invariant subsets of the nonlinear function f{x) = PDo(x) + k.

Proof: The matrix PD is a product of two 16x16 matrices, where P is a permutation composed
of four 4x4 submatrices, and diagonal matrix D = diag(Do, D1, D,, D) is composed of four
identical 4x4 submatrices. Let vector x € S,. The action of the matrix P leaves the vector x
fixed, and the action of each submatrix D; on a subvector of x is given by

2 3 1 Ijx X
1 2 3 1}|x x 7
11 2 30x| |x| 27)
31 1 2«x x
which also fixes x. Thus for any vector x € S,, the image of the function is
Ax) =PDo(x) + k=(»,y, ..., y, ) (28)
is again a vector in Sy. The verifications of the other invariants subsets are similar. n

Recall that the entries on the submatrix are in hexadecimal notation, for instance, x01 = 1, x02
=z,Xx03 =z+1,and x =x;z" + - + x;z + xo in Fy .

The invariants of the AES algorithm are used in the cyclic analysis of this encryption system,
see [DTO2]. This is related to the collision analysis of a function. Collision analysis seeks
repetitions in the sequence of values f{x)), fix2), fixs), ..., flxn) of a function on a finite set of
cardinality V. A repeated value can be used to obtain the argument x of f{x) or some other
related information. The expected number of distinct values f{x) of a function on a set of

cardinality N before it repeats itself is about /aN/2, see [MS96]. Usually the collision

analysis, based on the birthday paradox, is intended for functions that are not one-to-one, such
as Hash functions. Nevertheless it can be used to analyze any function.

Another possible application is chosen plaintext analysis to recover the key k € Sy U S, U S,

6.1 Trace Description of the Round Function

The trace analysis provides a straight forward and important description of the round function
of the AES algorithm. The reader should consult the sections on Functions of n Variables, and
Sequences in the Appendix for background materials.
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The trace description of the round function of the AES algorithm expresses the vector round
function of the encryption function as a multivariable polynomial f:F — F," over the

ground field F =F,, . This is defined by

(Xneis «ov 5 X1, xo) - (ﬁ;,,_l(x,,_l . )Co), ....,ﬁ)(X,,.] ces XO)), (29)

where n = 4b, and X; € F,. . A more general ith coordinate function f;:F; = F, is given by a
function of n-variables of the form

[ x) =T (Bt ) + Tr(B el + oo+ Tr(B g (30)

where T7 is the absolute trace from F, to F,, B € F is a primitive element, and the g, are fixed
integers. In the case of the AES algorithm, each coordinate function is actually much simpler,
just 4 of the 16 variables xis, ... , x1, xo appear in any one of them.

Lemma 3. The coordinates of the vector round function of the AES algorithm
functions are given by

Jo(XsX10%5X0) = Tr(B]66xl'51)+Tr(B‘“xl_ol)wLTr(B'S“x;')+Tr([326x51), €3))
f127(x.|5x|0x5xo) = Tr(Ble_zl)."‘Tr(BSlxl_l])"' Tr(BZ(,XgI) + Tr(‘BZ(’XT'),

respectively. The complete set of 128 coordinate functions used to describe AES algorithm are
derived in [YTO03]. Note that the key vector k = ( ki, ..., ko ), ki € F3, have to be added to the
coordinate functions to get the round function state vector ( fizr + k17, ..., fo + ko ).

6.2 Maximal Sequence Description of the Round Function
The maximal sequence description of the AES algorithm is a continuation of the analysis used

to derive the trace description. As previously stated the coordinate functions f;: F;** — F, are

from the plaintext space to the ground field, 0 < i < 127. Consult the section on Sequences in
the Appendix for background material.

Lemma 4. (1) Each coordinate function f; is a maximal sequence of period g — 1 = 255.
(2) The maximal sequences defined by the coordinate functions are in the same equivalent
class.

Proof: Let B & F, be a primitive element, and for each 0 # x; € F,, write variable x, =", 0 <
si<q~—1.Then
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Tr(Box)=Tr(B"B™) =Tr(B“"). (32)

Moreover, (g — 2)s; + a; is a linear function of s;, so the argument of trace Tr runs over all the
. . A | . .
elements 0 # x; € F, as s; varies over the integers. Hence Tr(B“x") is a maximal sequence

over F,. Since the sum of maximal sequences with the same minimal polynomial is again a
maximal sequence, it proves the claim. B

The first statement implies that the output of a round function of the AES-128 algorithm,
(when viewed as a compound pseudo random sequence), has a period of (g — 1)** = (2* - 1)!**

< 2'%% This is better than a maximal sequence in ¥, of period 2'* — 1. However, the second

statement claims that there is a linear relationship between the output of any two coordinate
functions fi(x) and fi(x). Thus it probably does not have such a large period.

Observe that the structure of the sequence (3) is simpler to handle than an arbitrary coupled
sequence of four variables, for instance, (33)

g(x,y,z,w)=Tr(B I(""x"'y"zw) +Tr(B "’(’x"yzmw‘l) +Tr(p 154xy_lzws) +Tr(P 2(‘xs“yg“’zw_‘) .

6.3 The S-Box And Inversive Pseudorandom Number Method

Merging information from several area of analysis, for instance, matrix algebra, combinatoric
of functions, and inversive pseudorandom number methods could be very productive in the
cryptoanalysis of the round function of the AES algorithm.

For each fixed key, an iterated block cipher has many similarities to an iterated pseudorandom
number generator. For example, the iterated AES-128 can be viewed as a pseudorandom
number generator over the finite field F, . It is expected that the linear complexity is very

large in order to avoid prediction analysis such as the Massey-Berlekamp algorithm.

The inversive pseudorandom number method can be utilized as a reference to compare the
statistical and other properties of the round function of the AES algorithm against the
statistical and other properties of inversive pseudorandom number generators. The round
function of the AES algorithm is almost identical to an inversive pseudorandom number
generator. The marked difference is in the calculation steps: An iterated round function is
computed as 34)

s =@+ 2+ 2 +z+ 1) mod P+ + 2 +z+ 1) +28+2° +z+ [Jmod (2 + 1),

in the both the finite field Fo[z]/( 28 + z* + z° + z + 1) and the finite ring Fa[z)/(z* + 1). This
accounts for the richer cycles structure and the fairly large period 277182 of the sequence so,
s1, 82, ... . The orbits and cycles are the following;

()I‘b(S()ZZ5 + 1) = {So, Sty «v.y 557, S58 }, Ol'b(S():(ZS + 1)2)= {SO,SI, ...y 579, 880 },
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Orb(so = (2* + 1)) = { 50, 51, ..., S35, 86 },  Orb(so = (2° + 1)*2) = { 50, §1, ..., 525, 526 },

Orb(so = (2° + 1)) = { 50, 51 },

and
#Orb(z’ + 1) = 59, #Orb((z° + 1)*) = 81, #Orb((z° + 1)) = 87,
#Orb((z* + 1)*) =27 #Orb((Z° + 1)**) = 2,

respectively. The period is computed via the lowest common multiple of the individual cycles:
lem(59, 81, 87, 27,2) =277182.

Note that the maximal order of a permutation on 256 items is 451,129,701,092,070. These
statistics of the iterated s-box, which can be computed using MAPLE or similar software,
have been verified by several authors, see [LA02], [RLO3].

In contrast, the inversive pseudorandom number generator is simply
s =@+ 2+ 242+ D) 420+ +z+ mod (P +2+2 + 2+ 1), (35)

n o

where all calculations take place in the finite field. The generator has the maximal period of
g = 256, and there is a single orbit

Orb(so) = { S0, S, ..., §57, S255 } = sz,

Of cardinality #Orb(se) = 256 for any so € F, .These statistics can be verified theoretically,
see Inversive Pseudorandom Method in the Appendix, or using machine calculations.
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A. Introduction to Finite Fields

The background material in finite field analysis provided here is substantially more than it is
required to understand and implement the AES algorithm. However it is just a bit of the
extensive and expanding knowledge employed in the design and cryptoanalysis of the AES
algorithm and similar class of block ciphers. Many selected and useful results are included,
but only the proofs of those with elementary proofs are given.

The ideas and concepts encountered here range from the very simple to the very difficult and
some open problems.

Definition 1. A finite ring is a finite set with two operations + and x defined on it. The ring
is said to be a finite field if every element x has an additive inverse —x, and every nonzero

element x has a multiplicative inverse x'.

Definition 2. The characteristic p > 0 of a field (or ring) is the least integer p such that 1 + 1
+ .+ 1=1-p= 0. If there is no such integer, then p = .

The smallest finite field F, = { 1,-2,-3, ..., p — 1 } of characteristic p is called the prime field.
Theorem 3. Every finite field has g = p” elements, some prime p and integer n > 1.

A finite field F, = { (@w1, Gu2s..., a1, a0): ai € F, } of g = p” elements is an extension of the
prime field F, of degree n > 1. As a set it consists of all the p-adic sequences of length n.

Theorem 4. (Binomial Theorem) Let q = p” be a prime power. Then (x +y)’ =x* + y*in F,.

Theorem 5. (Lucas Theorem) Let n, k be a pair of integers and F, a finite field of p”
elements. Then the binomial coefficient satisfies the congruence

()G

where n=np" + - +mp+no, and k=kp + -+ kp + ko, ki, ni € F.
These results give a characterization of the binomial coefficients in the expansion of (x + yY’
modulo p. However these results do not hold in finite ring, for instance, (x + )¢ # x® + y* mod

6.

Theorem 6. The product of all the nonzero elements in a finite field equals —1. This
generalizes the well known identity 1:2-3--(p — 1) = -1 mod p, called Wilson’s theorem.
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Theorem 7. (Fermat Little Theorem) For every nonzero element o € F,, the relation %' = |
holds.

Automorphism And Conjugation

An automorphism ¢ : F, — F, of a finite field is a map with the following properties:
(1) 5(0) =0, o(1) = 1, preserves the identities.

(2) o(a+p) = o(a) + o(P), additive,

(3) o(ap) = o(a)o(P), multiplicative.

The galois group of a finite field extension Fqn of F, is the set of all automorphisms:
Gal(F./F)={1=06%0" 0% ..., 0" }. 2)

The generating map is defined by o(a) = a?. The ground field F, is an invariant set (also
called fixed field) of the galois group, in other words, o(a) = o whenever a € F,.

The set of conjugates of an element a. € Fqn is the orbit of the galois group:

OL,G((I)=OL",02(0L)=OL"2, ...,cs""((x):on""—l. (3)

The Trace and Norm Functions
The trace and norm are maps defined by the sum

n-1

Tr(x)=x+x' +x% + 417 4

and the product

N(x)zx-x"-x"z---x"" . (5)

More generally, These are maps from a field extension Fq,, to a subfield F.. , d | n. The case d

=1 given above is called the absolute trace from Fqn to F,. The composition Tr,.Ax)o Trs(x) =
Trn L Tra1(x)) 1s computed by computing the sub traces

d-1

Try, K, > F, where Tr, (x) =x+x/ + x* 4+ x9 (6)

and
d(e-1)

N d 2d
Tr,, .Fq" —’qu,where Tr,(x)=x+x? +x* +.--+x*

Similar rule applies to the composition of the norm function.
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Theorem 8. Properties of the Trace Function
(1) Tr(ax) = aTr(x), forall a € F,, and x € ..
(2) Tr(ax + by) = aTr(x) + bTr(y), foralla, b € F,.
(3) Trpi(x) = Tradx)e Trai(x) , for any divisor d | n.
(4) The trace equation Tr(x) = a has ¢g™' solution, and it has the factorization

Tr(x) = H(x —OL)""—1 .

ae
F,

Theorem 9. Properties of the Norm Function

(1) N(ax) = a'N(x), for all 0 # a € F,, and x € F,..

(2) NGxy) = NGON(), for all x, y € ¥

(3) Nui(x) = Nyfx)oNai(x) , for any divisor d | .

(4) The equation N(x) = 1 has ¢"~' + =+ + g + 1 solutions in Fqn )

Theorem 10. (1) The kernel { 0 #x € Fqn Nx)=1} of N: Fqn — F, is a cyclic group of
Fqn consisting of all x/o(x), 0 #x € Fqn , and its cardinality equals (¢" — 1)/(g — 1)..

(2) The kernel { x € F,,~ cTr(x)=0} of Tr: Fqn - F, is an additive group of Fqn consisting

of all x — 6(x), x € F,-, and cardinality g™'.

Proof (1): Let U= {x € F,,~ Nx)=1}and Y ={y= x/o(x) :x € Fl,n }. From N(o(x)) =
N(x), it is clear that Y < U. Now let z € U and suppose that z # x/c(x) for all 0 # x € Fqn .
Then 1 = N(z) # N(x/o(x)) = 1. This shows that U < Y. Moreover, if 0 # a € F,, then ax/c(ax)

= x/o(x), and the inverse o(x)/x of x/o(x) is also in U. Thus the quotient Fqn/ F,=Uisa

group isomorphism, so #U = (¢" — 1)/(g — 1). The proof for (2) is the additive version of this.
]

Polynomials and Coefficients
A polynomial of degree n > 0 and coefficients from the finite field F, is an expression of the
form
£Ax) = ax" + @rixX™" + apox™? + - +ax t ag, a; € Fy.
The set of all polynomials of one variable is denoted by F,[x].

The minimal polynomial of an element is defined by
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fi()=(x—a)x-a)(x—a’ ) (x—a?"), (7

and the degree deg(a) = deg(f,) is defined as the number of distinct conjugates or equivalently

distinct roots of f,. A single root of a polynomial flx) determines all its coefficients. The
minimal polynomial also has the form

fi(x)=x"+a,_x"+a,_,x"+-+ax+a, (®)

where a,-; = —Tr(a) and ao = (—1)"N(a) are the trace and norm of the element a. The other
coefficients a; are also given in terms of the traces of powers of a. These are obtained by
means of the Newton identities in finite fields for i < p/2, prime p | g, and other methods.

Let xpi, ..., xi, xo be the roots of a polynomial fx) = (x — xs1)(x — Xs2) - (x — x0). The
elementary symmetric functions of n variables are defined by

o, = an G, = Zx,.xj, Gy = inxjxk’ v 0, =(=D"x, x5 X, C))

0<i<n O<i<j<n 0<i<j<k<n

and the power functions are defined by

5= Yk 5= T 5= Y 5= T o)

0<i<n 0<i<n 0<i<n 0<i<n

The elementary symmetric functions form an algebraic basis of the ring of symmetric
polynomials. An important special case of this fact is expressed by Waring’s formula

PR AR SRR |
Sk: Z(_l)k: ky ( 1 2 n }Ylk""G:”, (ll)

ky+2ka+3ky+-tnk, =k kl!kz!"'kn!

These sums are used to obtain a variety of information on the coefficients of polynomials.
This 1s due to the relationships of these sums to the coefficients, for example,

Sx) =x"—ox + ox™ + - + (=1)"'o,mx + (=1)"co. (12)

Some of the most important formulae are Newton'’s identities. These are obtained by replacing
a root xo = o in the power functions, and using the cyclic nature of the roots.

Newton Identities In Finite Fields
For every element a € qu of degree n | m, the followings recurring formulas hold:

(1) Tr(o!) + ai Tr(a") + - + @ Tr(o) + kla = 0,1 <k <n,
(i) Tr(a*) + &\ Tr(o") + - + a,Tr(c*") = 0, n < k.
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These follow from standard Newton identities sx — GiSi1 + Gasia + =+ + (=1)'Orusi +
(-=1)*%k'cs = 0, 1 < k < n, the identity a; = (~1)'c; in any characteristic, and the identity s; = Tr
(a*) in finite fields of characteristic p > 0.

Representations of Finite Fields

There are various methods of representing finite fields, and all these representations of finite
fields are isomorphic or equivalent. These methods are of both theoretical and practical
interests. The most common representations are vector spaces and polynomial quotient rings,
cyclic representations, quotients of number fields, composite representations, matrix

representations, and /—adic representations respectively. These are listed and described here in
order.

(1) Vector Spaces
A basis {00, o, ..., 0.} is a subset of linearly independent elements. A vector spaces

representation is the linear span of the basis Fq~ = { Xp1Qut + 0+ X100 T X000 1 x; € Fy ). The
most common vector space representations of finite fields are the polynomials quotient rings
Fq~ = F,[x)/(Ax)) = { amxX™ aupx™? + -« + ax + ao : a;i € F, }, where fix) € F,[x] is an
irreducible polynomial of degree n.

Addition and Multiplication

(1) a(x) + b(x) = (@nr + buot )X+ (@na + bp2)x™ + - + (@1 + bi)x + a0 + bo.

(2) a(xX)b(x) = X'+ Caax™ + - + cix + co, mod flx), where flx) is the field defining
polynomial.

The fastest addition and subtraction algorithms are implemented in vector space
representations.

Example 10. The finite field F« = { ax’+ ax? + ax + a0 : ai € F2 } of 16 elements is
represented as the set of all cubic polynomials with coefficients in F» = { 0, 1 }. The subset of
elements { x°, x*, x, 1 } forms a basis because it is linear independent over F2. The operations

are done modulo f{x), with respect to any of irreducible polynomials fix) = x* + x + 1, x* + x° +
Lorx*+x*+x*+x+ 1.

(2) Cyclic Groups

A cyclic group representation is of the form Fqn ={a=E:keZ} v {0} The nonzero
elements of the finite field are expressed as powers of a fixed & generator of the multiplicative
group of Fq,, .
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Addition and Multiplication
(Da+p=8+g=EE"+1.
(2) ap =&

The fastest multiplications, divisions, discrete exponentiations, and certain root extractions
algorithms are implemented with cyclic representations.

Example 11. The finite field Fo = {€':0<k <16 } U {0} of 16 elements is represented as

the set of all powers of a root & of either fix) = x* + x + 1 or x* + x’ + 1. These are both
primitive polynomials over F,.

(3) Quotient of Number Fields
The representations of finite fields in number fields are of the forms Fqn = Ox/(¥), where ¢ is

a maximal ideal and O is the ring of integers in a numbers field K. These representations are
used in theory and applications. The fastest algorithms for computing discrete logarithms in
finite fields appear to be those implemented in polynomial quotient rings and quotient of
number fields, see [AM93], [EL85] etc.

Example 12. (i) Characteristic p = 4m + 1. The prime p splits as a product of two irreducibles
p=m-T  where 1 = a+b-/—1. The quotient the ring of the quadratic integers Z[n] and the

ideal (n) gives an isomorphism F, = Z[n]/(n). Otherwise p = 4m + 3 is inert and F,,z =

Z[r)/(m).

(ii) Characteristic p = 3m + 1. The prime p splits as a product of two irreducibles p =7 T,
where 1 = a + b-/—3 . The quotient the ring of the quadratic integers Z[n] and the ideal ()

gives an isomorphism F, = Z[n]/(r). Otherwise p = 3m + 2 is inert and F. = Z[r)/(m).

(4) Composite Representations
A composite representation of finite field F .~ over F, rewrites the field as a finite extension of

some of its subfield: F,.» = F4[x]/(f (%)), where fix) € F,s[*] is irreducible of degree deg(/)

= n/d. There is growing interest in this construction. A possible generalization of this notion
would rewrite a finite field as a composition of two or more similar or distinct representations

of finite fields. For example, the ground field qu could be represented as a cyclic

representation, and the last stage F,. = F.,[x]/(/(x)) as polynomials quotient ring.

Example 13. The finite field F,. of 256 elements has three types of composite
representations (using only two extensions):
() F, = BIxI(f(X) = { ax’+ ax® + asx’+ ax* + ax’+ ax’ +ax +aytai € Fy §, where f(x)

is irreducible over F,. The composition diagram is F, = F, .
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(i) Fp 2 Fu X1/ (X)) = { @+ ax’ +ax +ao: ai € F.} Here F: = {0, 1,0, o}, where
o is a root of x2 + x + 1 € Fyfx], and flx) = x* + asx® + @’ + ax + ao is irreducible over F..
The composition diagram is F, = F, — F,.

(iii) Fp = Fu[x)(f(x)) = { aix + ao : a; € F,o }. Here F.={0,1,0,0,..,0a"}, wherea
is a generator of the nonzero elements, and fx) = x> + ax + ao is irreducible over F. . The

composition diagram is ¥, = F,. = F,.. For more details on this representation, see
Irreducible Polynomials in the Appendix.

(5) Matrix Groups
Fq~ = { Subset of n x n matrices in the group of nonsingular matrices GL.(F,) }.

(6) Others Types
There are a few other representations of but these are not very common, for instance, /-adic

representation of finite field Fqn = { [~adic Vectors }, the vectors are defined by a function ¢ :

F.- F  For example, for odd prime powers g, two instances of this map are the 2—adic
representation (binary):

00 = ([(x+a, )™+ (e, ) ™72172, o [(r+ag) ™ + (x+0)  T1/2)
and the 3-adic representation (ternary):

o(x) = (x+a, )2, (x +a ) (x+ag) TN,

where o, Qi ..., Onot € Fqn are fixed, and n < 2log(q). An application appears in [GZ97].

Some of these techniques of representing finite fields will be encountered in the analysis of
block ciphers. A current topic of interest in cryptography is the implementation of highly
efficient algorithms to compute multiplications and multiplicative inverses in vector space and

polynomials quotient ring representations of the finite fields Fq" over F,. The technique of

constructing composite representations of finite fields has proven to be very effective in the
design of fast multiplication algorithms, a few the fast implementation of AES uses this
technique. But it appears that composite representations have weakness In some
cryptosystems, see the literature for details.
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B. Irreducible, Primitive, and Normal Polynomials

The polynomials over finite fields are classified in many different ways, and there are many
different classes of polynomials. A large and important class of polynomials is the set of
irreducible polynomials and its subclasses.

A polynomial flx) € F,[x] of degree n > 1 is said to be irreducible over F, if it has no proper
factors other than constants and itself.

Lemma 1. A polynomial fix) € F,[x] of degree n> 1 is irreducible over F, if and only if
(i) x" —x=0mod f(x), and

(i1) gcd(f(x),x"m —x) =1 for every prime divisor r of a.

Proof: Suppose that f{x) is reducible and both (i) and (i1) hold. Then by (i) there is a factor g(x)
of f{ix) of degree d | n that divides " — , which implies that g(x) divides x¢"" —x, n/r =d.
But by (ii) no factor of fx) divides x¢"" —x, 1 <r < n. This is a contradiction, so f{x) is
irreducible over F,. The converse is similar. ]

This result is based on the fact that the polynomial yx¢" — x is the product of all irreducible
polynomials of degrees d | n, and the roots of a polynomial f{x) € F,[x] of degree n > 1 are
contained in an extension Fq" of F, of degree n. Another approach to the irreducibility test of

a polynomial would be to use the powers ¢“ for every integer d < n/2, this eliminates the need
to factor the integer », but it can be very inefficient.

Example 2. To test the irreducibility of the polynomial fix) = x* + x* + x> + x + 1 € Fy[x] of
degree deg(fix)) = n = §, the gcd is checked for every integer d < n/2 = 4:

(1) x* —=x=0mod f(x), fx) is a factor of x2* — .

(2) ged(f(x),x* —x)=1, f(x) has no linear polynomial factor.

(3) ged(f(x), x> =x)=1, (x) has neither linear nor quadratic polynomial factors.
(4) ged(f (x),x2J -x)=1, Sfx) has neither linear nor cubic polynomial factors.

(5) ged(f(x),x* =x)=1, f(x) has neither linear, quadratic nor quartic polynomial
factors.

Steps 2-4 are shown for illustrative purpose only. By Lemma 1, it is clear that steps 1 and 5
are sufficient to test the irreducibility of this polynomial over F.

Lemma 3. (Gauss) The total number of irreducible polynomials f{x) € F,[x] of degree n > 1
is given by
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1”(Q)=”_IZH(d)fI"/d, (1)

d|n

where p is the Mobius function.
Example 4. Determine the number of irreducible polynomials of degree n = 8 in F[x].

Solution: Using the formula and simplifying, there are

8 w(d)2¥ =87 (n(1)2* + u(2)2* + u(4)2* + pu(8)2) =8(2* -2) =30

dj8

irreducible polynomials of degree 8. Different choice of irreducible polynomial amount to a
choice of polynomial basis.

The coefficients of the irreducible polynomial f{z) = x* + g’ + aex® + asx® + aax* + axx® + ax?
+ aix + 1 are cataloged in the table 1.

a1qeA5Q4Q3a2d, aA1a6AsAsA3draAy ardedsAsAzdrA, a1aeasAsAsadrd) a1aedsAadszarA;
0001101 0100110 0111011 1010001 1101011
0001110 0101111 0111101 1010100 1101110
0010101 0110001 1000011 1011000 1110011
0010110 0110010 1000101 1011110 1111011
0011100 0110100 1000110 1100001 1111010
0011111 0111000 1001111 1100111 1111100
Table 1

The small table 2 provides a list of values of /,(¢) for g = 2.

n 1(2) n 1,(2) n 1,(2)

1 1 11 186 21 99858
2 1 12 335 22 190557
3 2 13 630 23 364722
4 3 14 1161 24 698870
5 6 15 2182 25 1342176
6 9 16 4080 26 2580795
7 18 17 7710 27 4971008
8 30 18 14532 28 9586395
9 56 19 27594 29 18512790
10 99 20 52377 30 35790267

Table 2

The ideas of element of degree » and irreducible polynomial in F,[x] of degree n are
somewhat equivalent notions. The function y.(q) = nl.(q) of the variables n and g enumerates
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the number of elements of degree n in a finite field F. of elements g". This function is
monotonically increasing and does not deviate very much from the center value g”".

Lemma5. Let 1 <n e N and g be a prime power, then ¢" — ¢"'* <v.(g) < ¢" — q.

Proof: The upper estimate v.(q) < ¢" — g is clear since every integer » has at least two divisors.
And for the lower estimate one has

v, (@)= u(d)g"”

din

=q"- 2, ndyg""
K;‘n : @

ni2

>qn_zqd>qn_qn/2

d=1

This inequality gives a useful estimate of the integer 1.(g) = y.(g)/n. It is also common to state
this in O-notation as I.(q) = O(g"/n). The number v.(q) = nl.(g) can also be viewed as the

number of elements in Fq" not contained in any proper subfield. In other words,

y"(q)=#(Fqn - UF,,J]. 3)

d|nd<n

Probability of Irreducible Elements

The probability of a randomly selected element a in Fq,, of being an irreducible element is
defined by

P(deg(@)=m) = X u(d)g" " =[11-1/4") @)

din pln ’

where d runs through the divisors of n and p runs through the prime divisors of n respectively.
The probability P(deg(a) = ») of finding an elements a of degree » in Fq~ rapidly approaches
1 as n and or g increases.

Lemma 6. Let g be a prime power and n 2 2. Then

1 — 1/g"'? < P(deg(o) =n) < 1 — 1/g".
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In particular, P(deg(a) = n) =1 — 1/¢" if n is prime.
Proof: Use the previous Lemma. [ ]
A refined version of Gauss’s Lemma gives information about the trace of the polynomials.

Lemma 7. ([RMO1]) Let g be a prime power. The number of irreducible polynomial of
degree n > 0 over F, with a given nonzero trace ¢ is

I(g.0)=(ng)" D ()" (5)

din ged(d, p)=1

Time Complexity Of Constructing Irreducible Polynomials

The basic ideas of generating itreducible polynomials date back to the time of Galois and
Gauss: The algorithm selects a random polynomial of degree n and tests its irreducibility over
F, using Lemma 1. By Lemma 2, the probability of selecting an irreducible polynomial of
degree n is about 1/n. Today there are several modern variants of the basic probabilistic
polynomial irreducibility algorithm derived from Lemmas 1, and 2, see [SP93].

On the other hand, there is no algorithm of polynomial time complexity for constructing
irreducible polynomials. The existence of such algorithm is an open problem. However, under
the assumption of the extended Riemann hypothesis there is a polynomial time algorithm, see
[AL86]. A deterministic, but exponential in running time is developed in [SP90], and by other
authors. This algorithm runs in O(g'*log(q)* n*) operations in F,.

Statistics of Composite Representations

The following result gives a method for counting the composite representations of finite
fields. Some composite representations are useful in the implementation of fast algorithms.
The performance of an algorithm can vary significantly from one representation to another.
For example, the AES algorithm can have slightly different properties with respect to any

composite representation of the finite field F,. One of the things that change is the

multiplicative order of the maps (such as the s-box) since the coefficients of the maps have
different order with respect to different irreducible polynomials. Probably these
representations will be more important in the next generation of larger block ciphers. But even

in the small finite field F,s this technique has proved to be effective.

Lemma 8. For every pair (n, g) there are (using one or two extensions)
cng)= Y 1,(9)1,,,4") (6)

dind<n

composite representations of the finite field Fq" , where Ii(g) = 1.
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Example 9. Determine the number of composite representations of the finite field F..

Solution: Here n = 8, ¢ = 2. The total is (using one or two extensions)
c(n, q) = 1L(2)(2) + 12(2)14(22) + 14(2)12(24) =450.

Instances of the three possible types using one or two extensions are:
OHF - F,[x)/(x" + X+ +x+1)=F,,

(i) F, » F[x]/(x*+x+D)=F, >F, /(Y +y +xy+x+)=E,,
(iii) F, » F[x}/(x* +x+ ) =F,, = F, (Y +y+x)=F,
Accordingly, computations in F,. can be done as

(i) v(x) mod (x* + x* + x* + x + 1), (ii) v(x,y) mod (2 +x+ 1,y + 2+ x + 1), (i) v(x,y) mod
(x*+x+ 1,y  +y+x),etc.

Primitive Polynomials
An irreducible polynomial f{x) is referred to as a primitive polynomial if every root of f{x) has

the maximal order in the multiplicative group of Fq" .

Definition 10. An element a € Fqn has multiplicative order N = ord(a) if and only if N =

min {d € N:o?=1}.In particular, an element of order ord(a) = ¢" — 1 is called primitive.

Lemma 11. (Standard primitive test) An element a e F,,n is primitive (has maximal order) if
and only if
a7 %1 for all prime divisors p |¢" - 1. (7

In general this is not a polynomial time algorithm to determine or recognize a primitive
elements in an arbitrary finite field. The existence of a polynomial time algorithm to
determine or recognize a primitive elements is an open problem. However there are classes of
finite fields for which the primitive elements are recognized or generated in probabilistic
polynomial time, for instance, if the integer ¢" — 1 is easy to factor. In some cases every
elements in the field is primitive, exempli gratia, ¢" —=1=2"-1= prime. And in other cases
almost every elements in the field is not primitive, exempli gratia, ¢" — 1 = 2:3:5-+(r = 1), 2
product of the first consecutive primes.

Lemma 12. The total number of primitive polynomial fx) € F,[x] of degree n is given by
P(g)=n"0(q"-1), ®)
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where @(n) is the totient function over the integers Z.
Example 13. Determine the number of primitive of degree n = 8 in Fy[x]. There are
870 (2' -1)=8"9(3-5-17) =893 B)p(17) =8"(2-4-16) =16

primitive polynomials in F,[x] of degree 8. These are, a subset of table 1, listed here as a
reference:

XB+xt+xr+xr+1 BESEC 0+
B+ +x+1 XHxT+xr+x+1
+xXr+r+x°+1 B+ +x+1
P+ 1 BHx+x0+ x4+ 1
B+t 1 B +x0+x+1
X+ x+1 X+ 1
B+ +x2+ 1 XX+ +x+ 2 +x+ 1
B+ +x+1 B+ +x+xr+ 2+ 1

Table 3 has a sample of these values for g = 2.

n o(2" - 1)/n N ©(2" = 1)/n N 02" = 1)/n
1 1 11 176 21 84672

2 1 12 144 22 120032
3 2 13 630 23 356960
4 2 14 756 24 276480
5 6 15 1800 25 1296000
6 6 16 2048 26 1719900
7 18 17 7710 27 4202496
8 16 18 7776 28 4741632
9 48 19 27594 29 18407808
10 60 20 24000 30 17820000

Table 3

The probability of a randomly selected element o of being a primitive element in Fq" is
defined by

Plord(@) = a" —1) = @@ =D _ (1_1)_ 5
rde)=g" === =TI |1~ ©)

The main obstacle to the calculation of this probability is the present of the product term. In
most cases only estimates can be computed.
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Normal Polynomials

A normal polynomial f{x) is an irreducible polynomial with linearly independent roots over
the ground field F,. The set of roots of a normal polynomial serves as a normal basis of the
vector space representation of Fqn over F,. A normal basis is applied in [RL03] to analyze the
S-box of the AES algorithm.

Theorem 14. (Standard Normal Test) An element v € Fqn is a normal element over F, if

and only if the system of inequalities

onz( (10)

holds for all irreducible factors a(x) of x” — 1 € F,[x] .

The techniques employed in the proof of this result are extensively used in the literature, see
[GN90], [LS87], etc. As an illustration, consider a root 1 of the irreducible polynomial f{x) =
X+ x"+x%+x+1 e Fyfx] of trace Tr(n) = 1. Since the factorization of x® ~ 1 = (x — 1), there
is only one irreducible factor x — 1, and the normal test reduces to a single inequality

x* =1

1 on=(x"+x%x+1)om =0 41> +-+n’ +n=Tr(n) 2 0. (11)
x.—

The last sum is equal to the trace so it is a normal polynomial, and the set of roots form a basis
of the finite field F,« . Accordingly, any element o € F,« has an expansion of the form

a=a7n27+a6n26+---+a,n2+a0n, (12)
where a; € F,.
Lemma 15. There total number of normal polynomial fix) € F,[x] of degree » is given by
N,(q)=n"®(x"-1), (13)
where the function @ is the totient in the ring of polynomials F,[x].

Methods of evaluating the totient function @ are widely available in the literature, see [LN97],
etc. The evaluation of the special case ®(x"-1) can be done using the factorization of x* — 1
over F, or related methods. In this case there is the formula
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-1 1y = 1 — n-dee(N)
ndx"-)=n"gq }x—n[_,(l q )’ (14)

where f{x) runs over the irreducible factors of x” - 1 can be used.
Example 16. Determine the number of normal polynomials of degree n = 8 in Fy[x].
Solution: The factorization of x* — 1 = (x — 1) in F[x], so there are

87 d(x*~1)=8".28(1-27%N) =8 . 2%(1-1/2) =16

normal polynomials in F;[x] of degree 8. By the previous test every irreducible polynomial of
nonzero trace a; # 0 in table 1 is normal, some of these are listed here as a reference:

B+ +x+1 XX+ +x+1
B+ +x+1 LHx+x+x+1
B+x"+x+x2+1 B+ +x+x+ 1
B+t +x+ 1 Brx’+ X +x + P +x7+ 1

The classification of primitive normal polynomials of degree » in almost any polynomial ring
F,[x] is essentially numerical since there are no general formula to count them. For the
parameters g = 2, and n = 8, the complete list of primitive normal polynomials is

B+ +x+ 1 B+ x+ 1
x4 ] AT+ x4 ]
B+t BAxT+x+Hx ]

Frx+x+x+1

38



Theory and Practice of the AES Algorithm

C. Functions in Finite Fields
The set of functions on the finite field is denoted by F = { f: F, — F, }. The cardinality of
this set is #F = ¢*.

Theorem 1. Every function on F, has a polynomial representation of degree <gq — 1.

Proof: Given a set of pairs (xo, yo), (X1, 1), ..., (X», yn), the evaluation of an n degree
polynomial f{x) = a,x" + -+ + a\x + ao at the n + 1 points becomes a system of equations

n-1

n -
Xyt a, X, tetaxt ag= y,,

(1)

n-1

n -
X, 1t a, x, toeeet a1x+ a,= y,.

The matrix form of this system of equation involves a van der Monde matrix V, =( x!) of

"

determinant

det)= ][ (x- x)). )

it J

But for n + 1 distinct points x., ..., xo, the determinant det(¥,,) # 0, so there is a unique solution
Qu1, An-, ..., do. In particular, this valid forg =n + 1. n

This result does not hold in finite ring of characteristic N. The reason is that the determinant
might be det(V,) = 0 even if there are n + 1 distinct points. However, if each difference x; — x;
is coprime to N, then det(¥,) # 0, and it has an unique solution.

Interpolation Formulas

The polynomial representation of a function f: F, — F, is obtained via interpolation method
or other methods. The formula

fx)= Zf(a)(l—(x-a)"") (3)

aeF,

gives a compact polynomial representation of any function f{x) on F,. It also obtainable via the
finite field cardinal series

f@=FO-x+ Y fF s, @

anaqu
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Definition 2. The weight of a polynomial f{x) = ax" + - + aix + ay is defined by w(f) =#{ a,
#0 ). The polynomial is called dense if w(f) = g — 1.

The known polynomial representations of some functions believed to be one-way functions on
finite fields are dense. For example, the discrete logarithm on finite fields, used in many
cryptographic protocols, has the maximal weight w(f{x)) = g — 1 possible. In other cases the
weight w(flx)) of a function depends on the equivalence class of the prime power g, for
instance, the square root has a constant weight w(f(x)) = k for any prime power g = 2n+1.

The polynomial representations of functions in finite fields is a topic of much interest in the
design of cryptographic systems.

Linear Maps and Linear Functionals
The polynomial representations of functions in finite fields are classified in accordance to
various criteria. The simplest classification is extracted from the degrees of the polynomials.

Definition 3. The A linear map /: F, — F, on a finite field F, is a map of the form fx) =ax
+ b, a, b € F,. Otherwise a map on F, is nonlinear.

Example 4. The map
=@ +2+2+z+ Dx+20+27 +z+ 1 mod (2" + 1)

is linear on the finite ring F[x)/(x* + 1). And since ged(x* +x* +x* +x + 1, x* + 1) = 1, is has
an inverse

)= +2 +2)x+22+ 1 mod (z° + 1).

Definition 5. A linear functional L is a map from Fq,, to the ground field F,; in symbol this is
L:F. 5 F,

The canonical linear functional F, is the trace polynomial Tr(x)=x" +---+ x’ + x. This
functional is of central importance in finite field analysis.

Lemma 6. Every linear functional has a linear form, and a trace representation:
(i) L(X) = GprXnt + -+ + aix1 + aoxo, wWhere (Xo-1,...,%1,X0) is the coordinates vector of x with
respect to some basis, and (@n-1,...,a1,a0), ai € Fy is a fixed vector.

n—1

(ii) L(x) =Tr(px) = Za,»x"' forallx e F,. and some fixedu € ..

q9
i=0
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Permutation Polynomials

The value set of a polynomial f{x) of degree deg(f) = n is defined by V() = { fix) : x € F, }.
Trivially this integer satisfies the inequalities g/(1 + n) < V(f) < q. The lower estimate follows
from the fact that f{x) = a has at most n solutions. If required, better lower estimates are also
available in the literature. Functions that have maximal value sets V(f) = F, are one-to-one
functions, and often called permutation polynomials.

An invertible function on a finite set is a permutation of the set. Only a few classes of
invertible functions on finite sets such as finite fields are easy to describe. For instance, all the
monomial f{x) = ax" € F,[x] polynomial functions such that ged(n, g — 1) = 1 are invertible.
An encryption procedure is necessarily an invertible function.

The set of injective (or equivalently one-to-one) functions is denoted by ¢ = { /: F, > F, }.
The cardinality of this set is #§ = q!.

Lemma 7. (1) The set of injective functions ¢ = { /: F, > F, } is closed under composition
of functions modulo x¢ — x. This set is isomorphic to the set of polynomials F,[x])/(x? - x).
(2) The cardinality of this set is #¢ = g!, and there are ¢! — ¢* nonlinear injective functions.

Properties of Injective Functions

The followings are equivalent:

(1) The function fon F, 1s one-to-one.

(ii) For each a € F,, the equation fix) = o has only one solution.

Families of One-to-One Functions
(1) Linear functions f{ix) = ax + b, where a, b € F,.

=l

(2) Linearized polynomials f(x) = a"x”" +a, x” +---+ax with a single root in F,, g = p".
(3) Power functions f{x) = ax”, with gcd(n, ¢ - 1) = 1.

G n (n-k k =2k .
(4) Dickson polynomials D, (x)= o Y (—a)' x"" if and only if gcd(n, ¢* ~ 1) =1,
k=07

and a # 0. The case a = 0 reduces to the power function f{x) = x".
(5) Fractional linear transformations f{x) = (ax + b)/(cx + d), with ad — bc # 0.

Probability of One-to-One Functions
Injective functions on finite fields are rare and with the exception of specific families of these

functions, these are difficult to identify.

Lemma 8. Almost every function in a finite field is not one-to-one.

Proof: Apply the Sterling’s inequality n™'?¢™ < n! < 3n™"?¢™" of the factorial to compute the
ratio of the number of injective functions to the total number of functions:
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L/é<i!<3\g
et _qq - et )

This ratio quickly vanishes as the size g of the finite field F, increases. [ ]

An encryption procedure is a parametized one-to-one function on a finite set, the key is the
parameter. The parameter selects a random instance from the set of parametized one-to-one
functions.

Example 9. The statistic for the finite field F,., n < 10, are tabulated below. For n = 8, the
chance that a randomly selected function on the small finite field F,, of 256 elements is a one-
to-one function is practically zero: 256! / 22 < 2.7 x 107

g=2" q'/q° qg=2" q'/ ¢
2 5.00 x 10™ 2° 3.220 x 107
2 9.375 x 107 2’ 7.299 x 1077
2 2.403 x 107 28 2.654 x 107""°
2 1.134 x 107° 2° 2.483 x 107
2° 1.800 x 107" 2" 1.537 x 10°*%
Testing Algorithms

A dense machine representation of a rational function fix) = r(x)/s(x), where r(x), s(x) are
polynomials of degrees < n, uses about 2nloga(q) bits. A rational function problem has
polynomial time complexity if it is computable in O(n“log(q)") operations in Fq, where a, b>0
are constants. Otherwise is either subexponential or exponential.

The decision problem of identifying an arbitrary rational function as either one-to-one or not
is a topic of current research. There are algorithms of exponential time complexities, and
probabilistic polynomial time complexities, but there is no algorithm of polynomial time
complexity. Except for a few cases, for instance, modulo 2".

Theorem 10. (Hermite Test) A function fis one-to-one on if and only if the following hold:
(1) fix) has exactly one root in F,.
(2) fixy mod (x? — x) is of degree < g — 2, forall0<z<g-1.

This test is of theoretical interest. But its practical significance is limited since it has an

exponential time complexity of O(q?) operations in F,. This is effective only for small prime
power g = O(n°), where deg(f) = n is the degree of the polynomial and c is a constant.
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The identity * = %~ [[F (x- S (1) supplies another means of testing the 1-to-1 property of a

function. However it also has exponential time running time complexity, that is O(q(log n)’)
operations in F,, see [GN91].

Theorem 11. Let flx) = r(x)/s(x) € Fy(x) be a rational function of degree n, and € > 0 a real
number. Then

(1) The function f{x) is recognizes as a permutation or not in probabilistic polynomial time in
O(n’(log g)(log ")) operations in F, with probability at least 1 — &.

(2) A deterministic algorithm recognizes a rational function as a permutation or not in O(q'"*#’
(log q)) operations in F,.

The actual algorithms are described in [GN94].

Combinatorics and Functions
There is a rich structural relationship between combinatorics and functions on finite fields. A
few elementary details are introduced here.

Theorem 12. The group of all one-to-one functions on a finite field F, is isomorphic to the
symmetric group S,-1, and it is generated by flx) = x2and g(x)=ax+ b,a,b € F,.

Theorem 13. (Wells 1969) (1) Every 2-cycle (transposition) over F, is represented by a
unique polynomial of degree g — 2.

(2) If g = 2 mod 3, then every 3-cycle over F, is represented by a unique polynomial of degree
q-2.

(3) If ¢ = 1 mod 3, then every 3-cycle over F,, but 2g(g — 1)/3 3-cycles is represented by a
unique polynomial of degree g — 2.

The polynomial representations of a 2-cycle and a 3-cycle are
fix) =x+ (a=b)(x—a) + (b - a)lx - b,
A =x+ (a=b)x—ay +(b-)x— by +(c—a)x =),

respectively. The polynomial fo(x) simply exchanges two elements of the finite field F, and
leaves everything else fixed: fo(a) = b, fo(b) = a, and f(c) = ¢, forall ¢ # a, b. Nevertheless it
has very high degree. This indicates that even simple one-to-one maps such as 2-cycles and 3-
cycles can have polynomial representations of very high degrees. Information about the
degrees of injective functions has been of interest for quite sometimes. The following was just
recently proved.
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Theorem 14. ([KNO1]) Almost every permutation of F, is represented by a polynomial of
degree g — 2.

Cycles And Orders
A permutation ©t € S, is a product of disjointed cycles of length »; such that ny + - + n, = n.

The conjugate permutation t = p~'mp has the same cycle structure decomposition as 7.

The lengths of the cycles of a permutation ©t € S, on a finite set S of cardinality #5 = n are the
cardinalities of the orbits orb.(x) = { n(x), 7*(x), ©(x), ... }, x € S. The set is disjoint union
S=U,orb, (x) induced by the map n. The order of the map in the symmetric group S, is

given by lem(ny, na, n3, ...), with n; = # orba(x)).
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D. Functions of n Variables In Finite Fields
The algebraic normal form of a function f: ¥/ — F, of n variables is the sum of products

J, X)) = Zae'xn X , (1)

where the index e = (€n1, €ns, ..., €1, €), 0 < e; < g — 1. The total degree of f'is the integer d =
max{ e + *++ + ey :a.#0}.

Example 1. (1) Every Fy-valued function of three variables in algebraic normal form is of the
shape

Sltaxixe) = ao + axo + ax + asxa + asxexy  asxoxz + asxix2 + anxexixz.
(2) Every F.-valued function of three variables in algebraic normal form is of the shape

foxx) = ay +ax, + a,x + ax, + XX, + a4 XX, + agx,x; + a,xg +oeet

2 2 2 2.2.2
+ --~+a8x] + dyX, + a,% X, + e a, X X X,

The maximal degree in any single variable is 1 in the first case and 2 in the second case
because x> = 1 in F, and x* = 1 in F respectively

Lemma 2. The number of functions f{xe.- - *xo) € Fy[Xsi,...,x0] whose ANF have at most k <

¢" monomials is given by
YU P e O @)
1 2 k

A pair of functions fand g are equivalent if there exists a linear change of variables such that f
(x) = g(yx), where yx = (aooXp1 + =+ + Aop-1X0, -. ey An-10%n1 + 0 Q1 -1 X0).

The algebraic thickness of a function is defined by T(f) = min { wi(fyx)) : v € GL.(F,) }. This
is the minimal number of monomials a,x;"!x:"7.--x;° as y varies over the set of all n x n
invertible matrices.

Lemma 3. The set F [x,_ % )/(xi_, =X, ,...x] =%;) of functions of n variables with
values on the finite field F, is an algebra.

Definition 4. A polynomial f: F; — F, of n variables on a finite field is a 1-to-1 function if
for each y € F,, the equation f{x,-i- - *xo) = y has g"' solutions (x- * * Xo).
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The functions that satisfy the condition stated above are called balanced, usually only binary
valued, because the frequencies of occurrences of all elements of F, are the same.

Lemma 5. Almost every functions fix,-i- - -xo) € Fo[xn-1,...,%0] 18 balanced.

Proof: Assume the binary case f{x,i"* *xo) € Fa[xn-1,...,x0] for simplicity. Then the number of

n

n=1

ways of arranging 2" zeros on the true table of f of 2" rows is exactly ( J Taking the ratio

to the total number 5?" of all functions yields

2" —2“
oL (3)

as »n increases. [ ]

Let Bi- - *Po and 8, -+ - 3o be dual bases of Fqn over F,. Dual bases are characterized by the
relation Tr(B:)) = &, where &, is the delta function. The trace normal form of a function 1

Fq,, — F, is the sum of traces

S (X Xg) = EaeTr(Six::l X3 Xg") , 4)

where x = X,iPBa1 + - + XoPo € Fq" ,0<e <g" — 1. This is sort of a dual of the algebraic

normal form of a function, it expresses a function of a single variable on Fqn as a function of

n variables on F,.

Theorem 6. Let fix) = (fmi(Xn-1** *X0), --., fo(Xa-1* * *Xo)) be a function of n variables on F,,
and let B, + - Po be a basis oqun over F,. Then

F (ot %0) = 2By 30) )

is a permutation of Fqn if and only if f{x) is a permutation of F.

Some of the essential details on the duality of permutation of F; and of permutation of F.
appear in [CM97], [NR71] and similar references.
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Lemma 7. Let F(x) = x be a power map on ¥ | and let fi(x.-: ... xo) = Tr(8x?), with ged(d,

q" — 1) = 1. Then the function f{x) = (fi-i(Xu-1 ... X0), ..., fo(Xa-1 ... X0)) Of 1 variables is one-to-
one.

Lemma 8. let0=a e Fqn ,and d €N, gcd(d, ¢" = 1) = 1. Then the degree of the function
Ax) = Tr(ax?) is equals to deg(Tr(ox”) mod g(x)) = binary weight of d, where g(x) is the
defining polynomial of the finite field F,, .

A discussion of this result appears in [CK04]. This is important in determining the algebraic
complexity of a function.

Discrete Transforms

The discrete Fourier transform transforms a function on t-domain to an unique image function
on the s-domain. There are various form of the discrete Fourier transform depending on the
t-domain and s-domain and other criteria. One of the necessary conditions for the existence of
discrete Fourter transform of length N is the existence of Nth primitive roots of unity in the s-
domain. An Nth primitive root @ is characterized by w?, 0 <d <N.

Example 9. (1) Let f: Zv — C be a complex valued function. Since the set of complex
numbers C contains Nth primitive roots of unity e?*¥ for any N > 1, the DFT of any length N
exists. More precisely a DFT pair is defined by

F 6= X O™ and £(0)= 3 Fls)e ©)

(2) Let f: Zy — F, be a finite field-valued function. Since the finite field F, contains Nth

primitive roots « of unity whenever N is a divisor of ¢ — 1, the DFT of any length N|{g — 1
exists. More precisely a DFT pair is defined by

(=2 00" and £0)= 12 Fs0™" ™

Scaling Properties of Discrete Fourier Transform
() ™™ £ty > f(s+x), modulation in z-domain.
(2) f(t+x)—> N f(s), translation in -~domain.

3) f(xt) > f(x7's), decimation in -domain.
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Modulation in the r-domain is transformed to a translation in the s-domain, and conversely.
Decimation by x > 0 in decimation in #-domain is transformed to decimation by x™' mod N in
decimation in s-domain.

Summation Properties of the Discrete Fourier Transform

(1) Parseval Identity: .
2/ =q" ®
(2) Poisson Sum/Convolution Sum:
PDWICHEREDWIOL O] ©)

All these identities and properties are easy to derive from (4) or (5) or similar definition of the
discrete Fourier transform.

Definition 10. Let g = p* be a prime power. The complexification of a finite field F,-valued
function {r) of n variables is specified by the complex valued function

fx(t)_:e"zﬂ(rr(f(’))/l’- (10)

This is an embedding ¥ : Fy[xm1,...,x)) — €, which transfer the analysis of functions on
finite fields to the analysis of functions on the unit complex disk D = {zeC:|z|=1}.

Definition 11. The discrete Fourier transform of an F,~valued function f(?) is defined by the
pair of complex valued function

7 _ i (Tr(f ()+s-1) p _ —2R(Tr (fy ()4 50} p
5,9 =2e f,0=Ye
x B L

' , (11)
teF, seFy

where s+ = Sailm1+ = ++ + Soto is the inner product of the two vectors.

In characteristic 2 with g = 2¢, the complexification of a F,-valued function f{t) is simply the

polarization fif) — f(f) = (=1)™", it changes it from an F,-valued function to an {-1, 1}

valued function. And the discrete Fourier transform is called the Walsh transform.

Example 12. Compute the Walsh spectrum of the F>-valued function f{tstatito) = 3 + 6y + fo +
tof» + 1,128, This is a binary function of 4-variable over F; and its discrete transform 1s

7 FUgt a1 V43383 4531y 4341+
f(S) — Z(_l) 4090 g )+ 8305 + 59l +5) +50kg ' (12)

1eF2

These were computed and tabulated below.
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I=tihhl Atstatito) S = 5382581 So fx (S3S2.S‘150)
0 0000 0 0000 —4
1 0001 0 0001 0
2 0010 1 0010 4
3 0011 1 0011 0
4 0100 0 0100 4
5 0101 1 0101 0
6 0110 1 0110 -4
7 0111 0 0111 0
8 1000 1 1000 4
9 1001 0 1001 0
10 1010 0 1010 4
11 1011 1 1011 8
12 1100 1 1100 —4
13 1101 1 1101 0
14 1110 1 1110 -4
15 1111 1 1111 8
Graph of the Binary Function f(¢)
3 4 S 7 8 9 10 11 12 13 14 15 16

t -Domain
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Spectrum of the Binary Function f(s)

8 —_
4 4
> 0
1 2 3 4 5 6 7 8 9 10 Il 12 13 14 15 16
4
84
s -Domain

Definition 13. A function f € F,[x,-1,...,xo] of n variables is called a bent function if the
absolute value of the of the discrete Fourier transform f, (s) of £(r) = (=1)"" satisfies

| £.()|=1, foralls e F,. (13)

This shows that the Walsh transform of a bent function has a flat spectrum. The standard
references on bent functions are [DN74], [RS76], and its generalization in [KSW85].

Lemma 14. The function f{s) is a bent function if and only if its autocorrelation satisfies the
relation

- 0= f(s "ifr=0
rt)= Y eI Gr=renp - q - 14
’ ZF: 0 ifr#0. (14)

Example 15. The map fix) = x* € F,[x] is a bent function for prime power g = p*, p odd. This
follows from the properties of the quadratic Gaussian sum.

Definition 16. A function f € F,[x.,...,x0] is called perfect nonlinear if its difference
polynomial g(x) = fix+a) — f{x) is a I-to-1 function for all a # 0.

Theorem 17. A function f € F,[x,,...,xo] is perfect nonlinear if and only if it is a bent
function.
Proof: It is about a page long, but it is not difficult, see [CM97]. |

Lemma 18. The sum of square errors of the spectrum of a function from any bent function is
given by the sum of square autocorrelation

2@ =q" X () =" (15)

n n
O:IGFq squ
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This is a generalization of the case g = 2¢, that appears in [KT03] to all prime powers.

Measures of Nonlinearity

Linear functions of n variables have measures of zero nonlinearity, and nonlinear functions of
n variables over F, have maximal measures of nonlinearity of N; < 2™' — 2>, the maximal
measures of nonlinearity of nonlinear functions of » variables over F, is not known, see
[CT99] etc. for more details. A sketch of the methods used to derive these results is delineated
here.

Definition 19. The discrete measure 1 on a finite set S is defined by the cardinality of the set
H(S) = #S.

Definition 20. A distance function d : S — R, defined by d(x,y) = d(x — y), is a metric on set
if it satisfies the following properties

() dxy)=0 < x=y,

(i1) d(x,y) = 0, positive definiteness.

(1ii) d(x,y) = d(y,x), symmetry,

(1v) d(x,y) < d(x,z) + d(z,y), triangle inequality.

Example 21. The discrete distance p(x — y) (known as hamming weight) defines a topology
on the vector space F, ={(x,_,,....x,):x; € F, } . The sphere and disk of radius r are given by

S,(x)={xeF :u(y-x)=r}, D (x)={xeF n(y-x)<r}, (16)

respectively. These are sets of (discrete area and volume) cardinalities
n r(n
#S,(X)=( ) #D,(X)=Z( J 7
¥ —=\k

respectively, where the bracket denotes the binomial coefficient.
The support of a function is defined by u(f) =#{x € F, : fix) # 0 }.

Lemma 22. Let §(f, g) = 8(f— g), with f, g € F. Then p is a metric on the set of functions F.

The binary distance between two functions is also (in term of the Walsh transform) written as

8(f.g)= A Z(_l)f(x)+g(x) .

xe Fz"

(18)
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The nonlinearity measure of a function f quantifies the closeness of the function f{x) to every
linear function g(x), in terms of discrete metric, this is defined by

Nf =2"" 2" max Z(_l)/(x)w-x

xeFl,,

(19)

The optimization is over all linear functions g(x) = u-x = @u1Xn-t + Ap-2Xn2 + -+ + aoXo.

Theorem 23. Let ¢ > 0 be an arbitrary constant. The density of the set of binary functions
{fiN, 227 —en2 2y (20)

is 1 — c*loga(e). In particular, if #n > 4, then almost every binary function has nonlinearity N, >
211_1 _ nl/ZZ(n—l)/Z.

For more details, see [CT04].

Some Properties of Functions

Several characteristics of function of » variables over a finite field have simple and unified
descriptions in the s-domain. Specifically the characteristics are given in terms of the Walsh
spectrum of the functions. The same characteristics of functions can also be described in terms
of probability in the ~-domain, but are more difficult to understand, [NY93], [BT93], etc.

Definition 24. A function f € F,[x,-i,...,x0] is called balanced if it has the spectrum value
£, (0)=0. This property indicates that the values f{x) of a function as x ranges over all the n-

tuples (xi,...,x0) are essentially uniformly distributed and each value has the same
frequencies g™

The discrete weight of a vector x = (x,1,...,%0) is the integer w(x) =# { x; #0 : x = (X1,...,
x0)}. The discrete sphere and disk of radius r are the sets of vectors S, = { x = (X,-1,...,%0) :
w(x)=r} and D, = { x = (Xs1,...,%0) : W(x) < r } respectively.

Definition 25. A function f € F,[x,,...,xo] is called correlation immune of order r if the
spectrum values | f, (s)|=0 for every nonzero vector s in the discrete disk D, of radius r. This

property indicates that the function f{x) is not properly approximated by any linear function g
(x) = a,1x,oy + ==+ + aox, of r variables.

Definition 26. A function f € F[x,-.,...,x0] is called resilient of order r if its spectrum
| /,(s)|=0 vanishes on the discrete disk D, of radius .

Definition 27. A map f: F, — F, is called almost perfect nonlinear function if the
difference equation flx+a) — fix) = b has at most two solutions in F,.
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The set of powers S(d) = { e = dp* mod (p" — 1) : k> 0} classifies an equivalent class of
almost perfect nonlinear power functions on Fpn .

Highly nonlinear encryption functions have high resistance to linear and differential
cryptoanalysis.

Example of almost perfect nonlinear power function fix) = x“on F,, .

Case Power Constraint
I 2F+1 ged(k, n) =1
II 2% 2k + 1 ged(k, n) =1
11 2% 4 23 4 2% 4 2k ] n= 5k
v 2k +3 n=2k+1
\ 2% 2k ] 2k+1=0modn
Vi 2" -2 n=2k+1

The proof of case 11l is given in [DN99].
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E. Recurent Sequences and Pseudorandom Number Methods
A linear recurring sequence of order £ is a sequence of elements generated by

Sn = QetSnet T QkdSn-2 + 0 F AoSneky n>k, (H
where a1, akz, ..., o are constants.

The first k terms Si-i, Sk-2, ..., So, called the initial condition, specify an unique sequence. The
characteristic polynomial of the sequence is a polynomial s(x) = aw + -+ + aix + a, of least
degree that satisfies the previous recurrent relation.

Recurrent sequences are periodic of period p and satisfy the periodicity relation s,+, = s, for all
n>ny, and ao # 0.

Theorem 1. If the irreducible polynomial s(x) is the characteristic polynomial of a sequence

s» and B is a root of s(x), then there exists an element o € Fqn such that s, = Tr(ap"), n > 0.

Theorem 2. The period p of a k order linear recurrent sequence s, with characteristic
polynomial s(x) is equal to the order of ord(s(x)), which is a divisor of ¢* ~ 1.

Lemma 3. ([LN97]) The set of maximal sequences with the same minimal polynomial f form
a vector space of dimension deg(y).

Definition 4. Linear complexity L > 0 of a sequence is equal to the degree deg(s(x)) of
characteristic polynomial s(x) of the sequence.

Sequences of period N satisfy the relation s,y — s, = 0, so the minimal polynomial of the
sequences divide x* — 1. This shows that the linear complexity L < M.

Theorem S. The linear complexity of a recurrent sequence s, is equal to the Hamming weight
of its inverse Fourier transform.

Proof: See [BT03, p.136], it also appeared in the IEEE Journal of Information Theory.

Definition 6. Given a set of arbitrary points xy.1, xv-2, ..., Xo € [0, 1], in the s-dimensional
cube, the discrepancy

Dy (xy_yXy) = N"sgplFN(J)—V(J), Q)
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where V(J) is the volume of the interval J [0, 1T, and FuJ) is the number of points striking
the interval J.

The discrepancy of N successive points of a sequence is used to measure the statistical
independence of the N successive points vectors.

The law of iterated logarithm claims that the discrepancy of almost every true random set of
points has an order of magnitude of

Dy (xy_i%y) = N™"*(loglog N)"'?, (3)

The recurrent sequence y, = aftn) + b over Fg is purely periodic of period g if the function f'is
one-to-one.

The discrepancy of a compound ajfi(n) + b (using s distinct recurrent sequences and over the

full period of each sequence) is independent of the parameters ai, b;, f; when the functions f,,
..., fo are algebraic independent over F,. Its value satisfies the estimate

Dy (xy_%) < (d=Dg "' *(loglogq)*, (4)

where the degrees d, = deg(f)), and d = max { d: }.
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F. Nonlinear Pseudorandom Number Methods
A nonlinear periodic sequence over a finite field F, is defined by a nonlinear function

Sn = f(Sn).

The most common nonlinear periodic sequences are the followings:
(i) Inversive pseudo random number generators defined by the recursion

S, = as, +b, (1)

where s is the initial condition (seed), a, b € F,, and n > 0.
(i1) Quadratic pseudo random number generators defined by the recursion

s, =as.+b, 2
In general s,,, =af(s,)+b is a pseudo random number generators of maximal period q
whenever f'is a one-to-one function.

The theory of inversive pseudorandom number generators is a fairly advanced subject and a
topic of current research. A short exposition of the theory of inversive pseudorandom number
generator is included here.

Lemma 1. ([NR94]) The inversive pseudorandom number generator s,,, =as, +b over

the finite field F, has period of length ¢ if and only if the order of the product c.a™ of the roots
of the irreducible polynomial x* - bx — a = (x - a)(x — &%) is equal to g + 1.

The condition stated in the result can be verified using the fixed parameters a, b and ¢ of the
sequence. Assuming that f{x) = x* — bx — a is irreducible over F,, it is sufficient to compute the
power

(x—a)" mod fix) # 1.

This follows from the relation

-1
1 x—a)
CyT 9 — _ — — g-1
X-x _x""—( ; =(x-a)". (3)
Definition 2. Let v, = (Su, Sws1, S+, ..., Swa-1) D€ @ vector in F:, and let

d-2
V={v= a(v~-v):ae F, } be the linear span of the set of vectors { vi— v }, i > 1. The
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pseudorandom sequence s,«1 = f{sx), where fis a function on F,, passes the lattice test of fixed
dimension d > 2 if the linear span V is identical to the vector space F

The lattice test is necessary but not sufficient to have a pseudorandom sequence. A method for

constructing sequences that pass the lattice test but fail to be pseudorandom sequences is
discussed in [ER88].

Theorem 2. ([NRO2]) A sequence s,,, = as]' + b in finite field F, of maximal period g has a
linear complexity of at least L > q /2 and passes the lattice test for all dimension d < (g — 1)/2.

A compound inversive pseudorandom sequence is a vector

=(ayV, +b,a,_V,

t t,n

+b,_ e @V, +0). 2)

- 1n '
of inversive pseudorandom sequences.

Theorem 4.  ([EH96]) A sequence of pseudorandom Vectors vo, Vi, V2, . .. generated by
compound inversive method is always purely periodic of period length g1 - ¢ if and only if

all the underlying sequences V; . = dVi, ' + b, of pseudorandom numbers have period length
qi, 1= 1, ..., ¢t
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