View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by DigitalCommons@Pace

Pace University

Digital Commons@Pace

Ivan G. Seidenberg School of Computer Science

CSIS Technical Reports and Information Systems

1-1-2002

An Efficient Multiway Hypergraph Partitioning
Algorithm for VLSI Layout

Lixin Tao
Pace University

Follow this and additional works at: http://digitalcommons.pace.edu/csis_tech reports

Recommended Citation

Tao, Lixin, "An Efficient Multiway Hypergraph Partitioning Algorithm for VLSI Layout" (2002). CSIS Technical Reports. Paper 7.
http://digitalcommons.pace.edu/csis_tech_reports/7

This Article is brought to you for free and open access by the Ivan G. Seidenberg School of Computer Science and Information Systems at
Digital Commons@Pace. It has been accepted for inclusion in CSIS Technical Reports by an authorized administrator of Digital Commons@Pace. For

more information, please contact rracelis@pace.edu.

https://core.ac.uk/display/46709955?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.pace.edu?utm_source=digitalcommons.pace.edu%2Fcsis_tech_reports%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.pace.edu/csis_tech_reports?utm_source=digitalcommons.pace.edu%2Fcsis_tech_reports%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.pace.edu/csis?utm_source=digitalcommons.pace.edu%2Fcsis_tech_reports%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.pace.edu/csis?utm_source=digitalcommons.pace.edu%2Fcsis_tech_reports%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.pace.edu/csis_tech_reports?utm_source=digitalcommons.pace.edu%2Fcsis_tech_reports%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.pace.edu/csis_tech_reports/7?utm_source=digitalcommons.pace.edu%2Fcsis_tech_reports%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rracelis@pace.edu

TECHNICAL BREPORT

Number 184, December 2002

An Efficient
Multiway Hypergraph Partitioning Algorithm
for VLSI Layout

Lixin Tao

PACTE

UNIVERSITY

SCHOOL OF COMPUTER SCIENCE AND INFORMATION SYSTEMS

Lixin Tao is Professor of Computer Science at Pace University.

Dr. Tao holds the Ph.D. in Computer Science from the University of
Pennsylvania. He has conducted extensive research in parallel and
distributed computing, Internet computing, distributed component
technologies, software engineering, and operations research. His
contribution in operations research focuses on graph embedding,
combinatorial optimization and their applications.

An Efficient Multiway Hypergraph Partitioning Algorithm for VLSI Layout

Lixin Tao

Abstract

In this paper, we propose an effective multiway hypergraph partitioning algorithm. We introduce the
concept of net gain and embed it in the selection of cell moves. Unlike traditional FM-based iterative
improvement algorithms in which the selection of the next cell to move is only based on its cell gain, our
algorithm selects a cell based on both its cell gain and the sum of all net gains for those nets incident to
the cell. To escape from local optima and to search broader solution space, we propose a new perturbation
mechanism. These two strategies significantly enhance the solution quality produced by our algorithm.
Based on our experimental justification, we smoothly decrease the number of iterations from pass to pass
to reduce the computational effort so that our algorithm can partition large benchmark circuits with
reasonable run time. Compared with the recent multiway partitioning algorithms proposed by Dasdan and
Aykanat [5], our algorithm significantly outperforms theirs in term of solution quality (cutsize) and run

time: the average improvements in terms of average cutsize over their PLM3 and PFM3 are 47.64% and
36.76% with only 37.17% and 9.66% of their run time respectively.

Index Terms: Multiway circuit partitioning, hypergraph partitioning, iterative improvement, VLSI design

1. Introduction

The problem of hypergraph partitioning has been around for at least a quarter of a century. It
focuses on dividing a given hypergraph into a collection of smaller blocks subject to balance
constraints while having the number of connections among these blocks minimized. Early
applications of the problem were centered on VLSI circuit design [1], and it is still a major
research direction. In recent years, with the rapid development in the field of database and its
applications, such as very large databases, web database and large decision support systems, the
application of multiway hypergraph partitioning has been extended into other areas including
data mining [14], data classifications and efficient storage of very large databases on disks [19].

Usually, circuits are represented as hypergraphs [2] while the cells and the nets in circuits are
represented by vertices and hyperedges respectively. The hypergraph partitioning problem is an
NP-hard problem [8]. (In [8], graph partitioning was proved to be an NP-complete problem,

which is a special case of hypergraph partitioning). The only way to solve this problem is to use
heuristic approaches for obtaining suboptimal solutions.

In this paper, we propose a new effective algorithm for multiway circuit partitioning and compare the
results obtained by our algorithm with recently developed algorithms [5] by Dasdan and Aykanat on a set
of widely used benchmark circuits. The experimental results show that our algorithm significantly
outperforms theirs in both solution quality and execution time. The remainder of this paper is organized
as follows. In Section 2, we present some definitions and notations for partitioning and describe the
formulation of the multiway partitioning problem. Section 3 briefly surveys the related work. We give the
motivation for our new algorithm in Section 4. Section 5 formally presents our algorithm. Section 6
presents the experimental justification for our algorithm. Section 7 gives the data structure and the
complexity analysis. In Section 8, we report the experimental studies. We conclude in Section 9.

2. Problem Description and Notations

We use a hypergraph H(C,N) to represent a circuit, where C ={c¢;[i=12,....... M.} (M. is the
number of cells) is the vertex (cell) set; N ={n il j=12,....,M,} (M, is the number of nets) is
the hyperedge (net) set with each n j being a subset of C with cardinality |n j [22.

Definition 1 A k-way partition (k 2 2) #={B; |i=1,2,......,k} of a circuit divides the cell set
C into k disjoint blocks By, B>, ... , Bi such that:

k
B.nB.=0(i#j)and U B, =C.
b i=1 '

Definition2 A net n j is said to be incident to a cell C; if cien;. Ifanetn jis incident to a

cell c;, then we say that ¢; ison n It The set of nets incident to ¢; is denoted by
N(c,.)={nj eNlc, €n; }.

Definition 3 A net » j is said to be incident to ablock B, if n j NB; 2.

Definition 4 Cells # and v are neighbors if and only if Nu) " N(v) #D.

Definition 5 The degree d(c;) of the cell ¢; is defined as the number of nets incident to it,

d(c;)= IN(c:)\|. The maximum cell degree max d(c) is defined as max [d(c;)]. The
i
| M, d(c;)
average cell degree ave d(c) is defined as Y
i=1 c

. The weight of the cell c; is
represented by w(c;).

Definition 6 The degree d(n j) of the net n j is defined as the number of cells on it, d(n,)=|n;|. The

maximum net degree max d(n) is defined as rr’11ax [d(n j)]. The average net degree ave

J
M;d(n)
J
d(n) is defined as Zl /7 The weight of the net n; is represented by w(n j) :
J= j

Definition 7 The pin is a connection point of a cell and a net.

M M,
The total number M, of pins for a given circuit is M, = Zc d(c;)= Zl d(n j) :
i=l J=

Definition 8 The density D of a circuit is defined as:

M,
X, (@) dn)=1)
Mc (Mc - 1)

D=

Definition 9

Definition 10

Definition 11

Definition 12

Definition 13

Definition 14

Definition 15

If a net n; is incident to a block B; and O<|nj NB;|<|n;|, then the net njis a

cut,ie., anetn jis a cut if it is incident to more than one block. A cutset is the set

of all cut nets. If a net n j is incident to a block B; and |n; NB; |=|n; |, then the

net n jis not a cut.

Ifa net n j is incident to A (h > 2) blocks, there are three cost metrics depending

on the cost assigned to the cut net » i

It is called “cost 1” metric if we assign a cost of 1 to the cut net » It
Tt is called “cost h - 1" metric if we assign a cost of & - 1 to the cut net n D
It is called “cost h (h — 1)/2” metric if we assign a cost of 4 (h - 1)/2 to the cut net

nj’

Like most hypergraph multiway partitioning algorithms, we will concern ourselves

with the “cost I” metric in this paper.
A set E(B;) of external nets of a block B; is defined as
EB) = {nj eN|0<lnj me |<|nj [}.

A set I(B;) of internal nets of a block B; is defined as
1B)=n; N |ln; By l=|n 1}

n; () is defined as the number of cells on net n j that are in block B, ie.,
nj(l)=|nj N B,|.

Given two blocks B, and B, s # ¢, for each cell ¢, € B,, its external cost C, (s, 1) is
definedas C;(s,)= X w(nj),

n; €E;(s,1)

where E(s, 1) = {nj € E(By)|c; € n;nn;)] =|nj |-1} is the subset of £(B,) that
would be deleted from the cutset if ¢; is moved from B, to B,. Each cell has (k - 1)
external costs, each of which corresponds to a move direction (target block).

The cost Ci(s, s) of a cell ¢,in block B, is called its internal cost and is defined as

Cls,)= % wn)),

njeli(s)

where I(s) = {n ;€ I(Bg)|c;en j } is the subset of I(B;) that would be added to

the cutset if ¢; is moved from B, to any other block. Each cell only has one
internal cost.

Definition 16 The cell gain g, (s,t) of the move of cell ¢; from its source block B.to its target

block B, is defined as g, (s,1) =C;(s,) - C;(s,s).
Definition 17 The cutsize of a k-way partition 7 ={B; |i=12,....,k} is equal to the sum of the

weights of all cuts.

cutsize(7) = Z w(n)— Z 3 w(nj).
g=ln eI(Bq)

Definition 18 The weight w(B;) of a block Bj is defined as w(B;) = Z[w(c;)|c; € B;].

M.
The weight w(H) of a circuit H is defined as w(H)= 'Zl w(c;).
j=

Definition 19 Given a k-way partition 7 ={B; |i=1,2,.....,k}, 7 is said to be balanced if for

each B; (i=1,2,......, k), the following balancing constraint is satisfied:

{ﬂg—l-(l—t)—'Sw(Bi)S L—“L(f—)-(l+t)J, O0<t<l,

t is called the balance tolerance.

Definition 20 The k-way partitioning problem is to find a balanced partition
m={B,;|i=12,...,k} such that the cutsize(=) is minimized. The k-way
partitioning is called bipartitioning for k = 2, and multiway partitioning for k> 2.

3. Related Work

In 1970, Kemighan and Lin (KL) [12] proposed a well-known heuristic for the two-way graph
partitioning algorithm which has become the basis for most of the subsequent partitioning algorithms in
this area. The algorithm is called an iterative improvement algorithm because it is based on the cell moves
to improve the solution iteratively until a local minimum is obtained. The KL starts with a balanced two-
way partition, and it performs a number of passes until a local minimum of cutsize is found. A pass
consists of a number of pairwise cell swappings between the two blocks. Schweikert and Kernighan

proposed a more practical model, namely the the hypergraph model, for the circuit partitioning problem
[17].

Fiduccia and Mattheyses (FM) [7] presented a modified version of algorithm KL to speed up the
search. They introduced a new data structure (bucket list of cell gains) to achieve the linear run
time per pass. They also proposed a cell move instead of swapping a pair of cells in one move.
This allows for more flexibility in selecting candidate cell moves.

Krishnamurthy (KR) [13] suggested that the lack of an “intelligent” tie-breaking scheme among
many possible cell moves with the same gain could cause the algorithm FM to make “bad”

choices. He enhanced the algorithm FM with a look ahead scheme that looks ahead up to ™ level
of cell gains to choose a cell move.

Sanchis (SA) [18] extended the algorithm FM with Krishnamurthy’s look ahead scheme to multiway
partitioning. Sanchis’s algorithm is the first hypergraph multiway partitioning algorithm since all previous
algorithms are for two-way partitioning. SA is extensively used as a benchmark in performance
comparison for different multiway hypergraph partitioning algorithms. All the FM-based partitioning
algorithms, such as KL, FM, KR and SA, are iterative improvement algorithms. They dominate both
VLSI CAD research community and industry practice for several reasons. They are generally intuitive
(the obvious way to improve a given solution is to repeatedly make it better via cell moves), flexible in
adapting to different optimization objectives, easy to implement, and relatively fast.

Park and Park [15] pointed out that the cell move operation is largely influenced by the balancing
constraint, and they proposed a cost function that comprises both the cutsize and the balance degree (that
is the sum of all size differences for every pair of different blocks) with a positive weighting factor. They
proved that a minimum cost multiway partitioning obtained by their algorithm corresponds to a balanced
minimum cutsize as defined in SA if the weighting factor is larger than the number of cells in a circuit.
The SA is then used to solve the multiway partition problem under this objective function.

Dutt and Deng [6] pointed out that the FM-based iterative improvement algorithms could only remove
small clusters from the cutset while it likely locks bigger clusters in the cutset. They divided the cell gain
into initial gain calculated before a cell movement and the update gain generated from the cell movement

afterwards. By focusing on the update gain when choosing cells to move, they reported very successful
results for bipartitioning experiments.

Cong et al. [3] proposed the concept of loose nets and stable nets. They focused on the status of nets
instead of cells as often emphasized in the traditional algorithms. Their algorithm was developed for
bipartitioning and the experimental results are also encouraging.

Karypis et al. [11] proposed a partitioning algorithm (hMETIS) based on the multilevel paradigm. A
sequence of successively coarser hypergraphs is constructed. A bipartioning of the smallest hypergraph is
performed and it is used to generate a bipartitioning of the original hypergraph by successively projecting
and refining the bipartitioning to the next level of finer hypergraphs.

Ouyang et al. [16] introduced a cooperative multilevel hypergraph partitioning algorithm. The
experimental results show that their algorithm outperforms hMETIS (a reduction of 3% to 15% in terms
of the cutsize for 4-way and 8-way partitioning).

Recently, Dasdan and Aykanat [5] (DA) developed two multiway partitioning algorithms using a relaxed
locking mechanism. The first one (PLM) uses the locking mechanism in a relaxed manner. It allows
multiple moves for each cell in a pass by introducing the phase concept so that each pass may contain
more than one phase, and each cell has a chance to be moved only once in each phase. The second
algorithm (PFM) does not use the locking mechanism at all. A cell can be moved as many times per pass
as possible based on its mobility value. The performance of the proposed algorithms was experimentally
evaluated in comparison with the Simulated Annealing algorithm (SAA) and SA on some common
benchmark circuits. Their results outperform SA significantly on multiway partitioning and their
performance is comparable to that of SAA with much less run time.

Cong and Lim [4] proposed a multiway partitioning algorithm with pairwise cell movements. It starts
with an initial multiway partition, and then applies the bipartitioning heuristic (FM) to pairs of blocks
concurrently to improve the quality of the overall multiway partitioning solution.

Yang and Wong [20] presented a network flow based partitioning algorithm to solve bipartitioning
problem and they claimed that multiway partitioning can be accomplished by recursively applying the
network flow based algorithm.

Yeh et al. [21] proposed a primal-dual multiway partitioning algorithm that alternates “primal” passes of

cell moves with “dual” passes of net moves. Hauck and Borriello [10] concluded that dual passes “are not
worthwhile”.

The existing multiway partitioning can be classified into two primary approaches: recursive and direct.
The recursive approach [12] applies bipartitioning recursively until the desired number of partitions is
obtained; the direct approach partitions the circuit directly. Among all the previous work mentioned
above, the DA, the primal-dual, and the pairwise movement algorithms are direct multiway partitioning
algorithms. The recursive approach is computationally simple and fast. However, it suffers from the
following three major limitations. First, if the number & of partitions is not a power of 2, we cannot obtain
the desired multiway & partitioning by using the bipartitioning recursively. Second, it becomes harder and
harder to reduce the cutsize since cut nets in early stages cannot be removed when the bipartitioning
performs on finer graphs. For instance, a highly optimized cutset at one stage may cause the following
stage to work on dense blocks. Those dense blocks cause negative effects on the solution while applying
further bipartitioning on them. Third, the recursive partitioning actually aims at minimization of cost
(k - 1) metric, not cost 1 metric that is often the objective to be minimized.

Tie-breaking strategies play an important role in circuit partitioning. Even when gain vectors are used,
ties may still occur among the cell gains. Hagen et al. [9] observed that Sanchis [18], and most likely
Krishnamurthy [13], used random selection schemes. They [9] found that the LIFO (Last-In-First-Out)
bucket organization is distinctly superior to FIFO (First-In-First-Out) and random bucket organizations.
They attribute the success of LIFO to its enforcement of “locality” in the choice of cells to move, i.¢.,
cells that are naturally clustered together will tend to move sequentially.

All FM-based iterative improvement algorithms are started with a random initial solution. Each cell has
(k-1) cell gains. A cell with maximum move gain in a particular moving direction is chosen from all
possible movements that will not violate the balance constraint. The selected cell is then moved to the
target block and is locked. The cell gains of all the affected neighbors are updated accordingly. The next
cell is chosen in the same way from all the remaining free (unlocked) cells and is moved to its target
block. The cell move process is repeated until all the cells are locked or there are no legal moves available

due to the balance constraint. Assume that there are g (g <M) cell moves all together. Then all the
. . P . . .
partial gain sums Sp = Zlgx (ay,. b)), p=12,..,q, where g, (a,, b,) is the gain of moving the
xX=

x" cell from block a,to block b, given that the first (x — 1) cell moves have already been made, are

calculated and the maximum partial gain sum S, is chosen. This corresponds to a point of minimum
cutsize in the entire moving process. All the cells moved after the ™ cell move is reversed to the original

blocks so that the actually moved cells are the sequence of moving first cell from block @, to block 3, ,
second cell from a, to b2 ,..., the B ™ cell from aﬂ to bﬁ , where

ay, ay,.,a g, bl’ bz,..., b,e{l,2,..,k}, kis the number of blocks. The whole process is called a pass.

A number of passes, which is called a run, is performed until the maximum partial gain sum is no longer
positive. Then we say that the local optimum with respect to the initial solution is obtained.

4. Motivation

For several reasons, the solution quality produced by FM-based iterative improvement algorithms is often
poor, especially for larger circuits. First, it has been criticized for its well-known shortsightedness as its
way of choosing a cell to move. It is only based on local information (cell gain) of the immediate decrease

in cutsize. For example, it may be better to move a cell with smaller gain, as it may allow many good
moves later. Thus it tends to be trapped in local optimum, which strongly depends on the initial solution.
Second, many cells have the same cell gain, especially for larger circuits. The FM-based iterative
improvement approach has no insightful scheme to choose which of these cells to move. Only cntical net
information is used for the cell gain calculation. We call a net a critical net if its cutstate (that indicates
whether the net is cut or not) will be changed immediately after a move of that related cell. After taking a
close look at a particular net, we find that if one cell on the net is locked in a block, the only way to
remove the net from the cutset is to pull all other cells to the block where the locked cell has already been
moved in. If two or more cells of a net are locked in two or more blocks, then there is no way to remove
the net from the cutset in the current pass. Due to the missing of dynamic net information, bigger clusters

are very likely to be locked in the cutset. Third, the cell gain ranges from - max [d(c;)] to max [d(c;)].
i i
The bucket structure consists of an array of {2- max [d(c;)] + 1} entries to which cells with the same
i

cell gain are linked. Since the entire M . (k — 1)cell gains are distributed in this short range, many cells

may have the same cell gain; a better tie-breaking scheme like the look-ahead capability proposed by
Krishnamurthy [13] is needed. Fourth, even though the uphill moves, which are always the best one from
among all legal moves, are accepted in each pass, the possibility for exploring broader solution space and
finding better solution is limited as the result of lacking a better strategy to escape from a local optimum.

To enhance the solution quality for the iterative improvement algorithms, we must try to overcome the
weak points mentioned above. This is the motive for developing our new algorithm.

5. Proposed Algorithm

Basically, the structure of our algorithm is similar to that of other FM-based iterative algorithms. The
whole algorithm consists of a user specified number of runs. Each run comprises a number of passes that
cannot be known in advance. We use the conventional locking mechanism in our algorithm. That is, each
cell can only move at most once in each pass. Each pass has at most M. iterations (cell moves). A local

optimum is obtained at the end of each run. The algorithm outputs the best one from all the local optima
at the end.

Before getting into the details of our algorithm, we need some definitions for the convenience of
description. A net is called a free net if all cells incident to it are unlocked. If all the locked cells
incident to a net are distributed in a single block, the net is called a loose net. In this case, the
block in which the locked cells are located is called the locked block for that net, and all the other
blocks in which the free cells are located are called the free blocks for that net. If the locked cells
are distributed in two or more blocks, the net is called a locked net.

In an attempt to remove big clusters from the cutset, more dynamic net information is needed. Here we
introduce the concept of ner gain for each loose net. If a cell is moved to a block and locked there, we use
net gain values to encourage its neighboring cells to be moved subsequently to the locked block where the
moved cell is just locked in. The net that straddles the cut line is thus removed. Unlike other FM-based
iterative improvement algorithms in which the selection of the next cell to move is only based on its cell

gain, our algorithm selects a cell based on both its cell gain and the sum of all net gains for those loose
nets incident to the cell.

For each net, there is a net gain array (called net_gain) of size k associated with it. Initially, all nets are
free and all the & elements are set to zero for each array. After a cell ¢ is moved to a block B, , it is then

locked during the current pass. For each loose net, there is exactly one locked block and the number of

7

free blocks is between 1 and (k ~1). The elements of a net_gain array are only defined for loose nets since
it makes no sense to have it for either locked nets or free nets.

As mentioned earlier, we use the values in the net_gain array to encourage the free cells in free blocks of
a loose net to move to the locked block of the net. The net gain of a loose net n, for one of its free blocks

By, is defined as follows:

n’11zjilx[d (n j)] ceZSP +d(c) - cut(c)]

d(ng) S +d(e)-cu(e)] |
ce o

net_gain[ny}[Br]=

where
Hrlzax[d (n j)]is the maximum net degree in the given circuit;
J

d(n,) is the degree of the net n_;
S is the set of locked cells of net n, in its locked block Bj ;

S F 1s the set of free cells of net # in its free block B P
(24

d(c) is the number of nets incident to cell ¢ ;

cut (c) is the number of nets incident to cell ¢ that are in cutset.

Basically, each element of a net gain array is a product of two fractional expressions:

max[d(n ;)] %[l +d(c) - cut(c)]
—J (1), and =L .
d(ny) %[l +d(c) —cut(c)]
ce jo

The purpose of expression (1) is to give smaller cut nets higher chance to move. The smaller the net
degree of n is, the bigger the value of expression (1) is. Expression (2) indicates that the more locked

cells the net n has in its locked block B; , or the fewer cells the net n has in its free block B, the
higher value net_gain[n,][B 7} has. It also indicates that for locked cells with more internal nets (which

are not in the cutset) and for free cells with fewer internal nets, the net_gain[n,,][B] gets higher value.

This approach is more appropriate than that used by [3] for the bipartitioning problem since [3] does not
distinguish the internal nets from the external nets, and it does not have a mechanism to remove this gain
once the loose net becomes locked.

All the free cells of the loose net n, in the free block By have the same net_gain[7,][Br]. The
net_gain[n,][B] encourages all the free cells currently in the free block By to move to the locked

block B; for ultimately removing the loose net 7, from the cutset. The selection of cell movement in our

algorithm is based on the move gains of each cell. For each cell, there is a move gain array of size k£
(called move_gain) associated with it. Also, we use an array net cell gain for each cell that has the same
structure as move_gain array. The net_cell_gainc][B.] has the value

2. net_gain[n, J[Bf]

ne S,

where S, is the set of all loose nets that are incident to free cell ¢ and share the same locked block. For
each free cell ¢ of the loose net 7, in the free block By, the move gain of cell ¢ to the locked block B
1s defined as:

move _ gain [c][B;]=cell _gain [c][B;]+ net_cell_gain[c][B;]

where cell_gain[c][B;] is calculated as in the conventional FM-based algorithms (defined in Definition
16).

Unlike the cell_gain, each element of net_cell_gain is always positive. Originally, the range for elements
in cell_gain array is from - max [d(c;)] to + max [d(c;)]. Due to the introduction of net_cell_gain, the
i i

extended range for elements in a move_gain array reduces the opportunity of many cells having the same
gain value and makes the tie-breaking strategy such as look ahead unnecessary.

It should be mentioned that in the process of calculating cell gain values, only the information of critical
nets is used. We use the net gain concept to dynamically check the status of each net and to make the
selection of the next cell to move more effective. The status of each net in the cutset is changed as
follows: free — loose — locked, or free — loose — disappear. Once a cell is moved, the status of the nets
incident to it should be updated accordingly. If a net becomes locked, all elements of its net_gain array
are set to zero immediately to avoid making wrong decision for later cell selection.

In order to reduce the computational effort without significant degradation of the solution quality, we
smoothly decrease the number of iterations from pass to pass by a fractional factor . The following
experimental justification shows that most of the maximum partial gain sums are at the first half of the
array of partial gain sums of each pass; and, with the evolution from one pass to the next pass, the
maximum partial gain sum is gradually moved to the start part of the array.

Additionally, to escape from being trapped in a local optimal solution, and to try to explore broader
solution space, we perturb the current solution by the following scheme. Once a run is terminated, we find
the cut nets that are included in both the initial solution and the final solution of a run. These cut nets may
be the obstacles for the solution to escape from local optimum. We randomly force a certain percentage
amount of these cut nets to be removed from the current cutset by moving them into the current smallest
block if the balance constraint can be satisfied. The current solution becomes the start point for the next
run to explore the new solution space. We will present the experimental justification to show the
advantages of using the perturbation mechanism in improving the solution quality.

We call our algorithm NGSP (Net Gain Solution Perturbation).

NGSP Algorithm
Input : NumOfRun: positive integer, used to define the number of runs;
r: floating-point number, 0 <7 <1, used to decrease the number of moves

from pass to pass;

p: floating-point number, 0 < p <1, used to choose a percentage of nets in
the perturbation function;

function main_function():

Generate a random initial k-way partitioning as the initial solution;
finalCutsize = localCutsize = currentCutsize;
count =0,
ratio=1,
start /* for each pass */
Compute cell_gain for each cell and initialize all cells as unlocked,
Initialize net_cell_gain and move_gain;
Build bucket list;
repeat
Choose a legal cell ¢ with maximum move gain;
Make the cell move tentatively and lock it;

Update the cell_gain arrays and move_gain arrays of all affected cells;

Compute partial gain sum;
update_net_gain(c),

until the body has repeated M, - ratio times or there are no legal moves available

Find the maximum partial gain sum § B>

if (S B > 0)
Make the first B cell moves permanent;
currentCutsize = currentCutsize - S B ;

localCutsize = currentCutsize
ratio = ratio-r;
go to start;
else
if (finalCutsize > localCutsize)
finalCutsize = localCutsize,
count = count + 1;
if count > NumOfRun
output the finalCutsize and corresponding solution, stop;
else
new_explore(p);
go to start;

function update_net_gain(cell ¢)
/* updating net_gain arrays, net_cell_gain arrays and move_gain arrays*/
for each net n, incident to the moved cell ¢

net_gain[n, J{1] = net_gain[n,][2] = =npet_gain[n, J[k] =0
if net n, is a loose net
for each free block B of n, containing some free cells of 7,
Calculate net_gain[n, [[Br];
for each free cell f of net 7, in block B

net_cell_gain[f][B;] = net_cell_gain[f][B,] + net_gain[7, IIBg)

10

move_gain{f][B;] = move_gain[f][B;] + net_cell _gain[f][B;];
Update bucket lists;

function new_explore(float p)
/* Tt is used to perturb current local optimum solution for exploring new solution space. The perturbed
solution is used as an initial solution for next run. */
commonNets = (cut nets in initial solution for the run) ~ (cut nets in current solution);
h = size of commonNets,
ifh=0
Output the finalCutsize and corresponding solution;
Stop.
else for =0, j<p-h, j++) [*0<p<l ¥
Randomly take a net from commonNets and move all cells incident to it to the smallest
block if the balance constraint is satisfied,

6. Experimental Justification for the Proposed Algorithm

We have conducted the following experiments on many benchmark circuits for different values
of partition number £ to provide experimental justification for our algorithm.

6.1 Decreasing the number of iterations from pass to pass to reduce the run time

As stated in the previous section, we decrease the number of iterations from pass to pass by a fractional
factor r to reduce the overall run time needed by our algorithm. Following experiments find where (at
which moves) the maximum partial gain sum occurs for each pass. In these experiments, we take r = 1
(i.e., the maximum number of moves in each pass is equal to the number of cells) to see the exact number
of moves before the maximum partial gain sums occur. The “move no.” in Tables 1 through 3 is bound
from above by the number of cells.

The experimental results for different values of £ on three benchmark circuits (defined later) are
as follows. We use MPGS to denote the maximum partial gain sum.

Table 1
test06 (number of cells = 1752) for 10-way partitioning
pass no. 1 2 3 4 5 6 7 8 9 10 11 12 13
MPGS 773 | 267 | 123 66 2 6 15 4 33 3 10 7 1
move no. 1294 | 1215 | 1116 | 1086 1 39 14 914 | 157 | 55 21 20 1
pass no. 14 15 16 17 18 19 20 21 22 23 24 25 26
MPGS 1 1 1 3 6 1 4 10 1 1 2 2 1
move no. 1 1 1 60 41 2 26 71 10 2 21 10 4

11

Table 2
primary2 (number of cells = 3014) for 7-way partitionin

pass no. 1 2 3 4 5 6 7 8 9 (1011|1213]14]|15]16] 17
MPGS 1608 | 393 50 36 | 6 19 | 6 27 to |1 vt v 1 t]1]1
move no. 2412 | 2293 | 1859 [125 | 24 1665 |14 1351 |27 1 |1 |1 | v] 1|1 1|1
pass no. 18 19 20 21 | 22| 23 [24| 25 | 26|27 |28 |29 30| 31]32]|33]34
MPGS 3 5 24 1 4 13 4 9 t w211 |1
move no. 15 44 81 5 240 97 60 8 6 94 4 2 1 1 1 17 3
Table 3
avq_large* (number of cells = 25178) for S-way partitioning
pass no. 1 2 3 4 516 7 8 9 |10 {11 | 12|13]| 14| 15 16 | 17
MPGS | 16861 | 1042 | 1365 186 | 18 | 21 73 236 | 11| 2| 49| s | 2] 33 4 6
moveno. | 20104 | 19109 | 17221 | 15693 | 82 | S0 | 14850 | 15708 | 60 | 244 | 37 [23 | 5 1 | 137 4 5
pass no. 18 19 20 21 22 | 23 24 25 | 26| 27 | 28| 29| 30| 31] 32 33 | 34
MPGS 6 2 5 10 2 | 2 4 1 2 7 31 s 1|3 1 1 37 4
move no. 7 18 2 7 311 2 1 2 | 13| 4| 13]2 1 1 | 5673 | 3
pass no. 3s 36 37 38 39 | 40 4 42 43| 44 | 45| 46 | 47 | 48 | 49 50 | s1
MPGS 15 12 2 7 3] 3 2 11 6 9 4| 4|13 1 8 7 2
move no. 61 41 2 4 3 | 27 17 12 20| 4 | 2(9 6| 1] 79 25 | 27

* The total number of passes is 203. For the remainder 152 passes, the move number is no more than 104 and the maximum
partial gain sum is less than 22. For saving space, we omit the details.

The experimental results show that for 81.8% (test06), 89.3% (primary2), 97.1% (avq_large), 98.7%
(golem3, table not included due to the space limitation) of the passes in a run, the maximum partial gain
sums occur in the first half of cell moves. With the increase of the number of cells in the circuits, the
chance is significantly increased for the maximum partial gain sum to occur in the first half of the cell
moves. With the evolution from pass to pass, the location of the maximum partial gain sum tends to be
smaller and closer to the initial part of the cell moves. This is the reason why we introduce a parameter »
to reduce the number of iterations from pass to pass. This strategy makes the algorithm very effective for
solving large circuit partitioning problems.

6.2 Improving the solution quality with the perturbation mechanism

To show the evidence of improvement in the solution quality by using the perturbation
mechanism, we execute our algorithm s times (s initial solutions) with the perturbation
mechanism, with p runs for each execution; then we execute the algorithm s- p times (s- p
initial solutions) without the perturbation mechanism. We take the average cutsize over s
solutions for the first case, and the average cutsize over s- p solutions for the second case. The

12

experimental results on benchmark circuits struct (k = 10), primary2 (k = 10), biomed (k = 7,
and avq_large (k = 5) are shown in Tables 4 through 7 respectively.

Table 4
struct for 10-way partitioning

EXPERIMENTAL CASE (1) Wikh pertuirbation: cach execution (2) Without perturbation
EXECUTION TIMES 10 100
AVERAGE CUTSIZE 156.8 183.5

TOTAL RUN TIME (sec.) 86 137

IMPROVEMENT of (1) over (2) in 14.6
cutsize (%))
Table 5
primary2 for 10-way partitioning
EXPERIMENTAL CASE (1) With perturbation , each execution (2) Without perturbation
includes 10 runs
EXECUTION TIMES 10 100
AVERAGE CUTSIZE 575.4 621.7
TOTAL RUN TIME (sec.) 112 141
IMPROVEMENT of (1) over (2)in 4
cutsize (%))
Table 6
biomed for 7-way partitioning

EXPERIMENTAL CASE (1) With perturbation,, each excoution (2) Without perturbation
EXECUTION TIMES 10 80
AVERAGE CUTSIZE 3357 363.9

TOTAL RUN TIME (SEC.) 401 467
IMPROVEMENT of (1) over (2) in 77
cutsize (%))
Table 7
avq_large for S-way partitioning
EXPERIMENTAL CASE () With Pe';‘ﬂ‘::::g; » each execution (2) Without perturbation
EXECUTION TIMES 10 50
AVERAGE CUTSIZE 889.8 999.9
TOTAL RUN TIME (sec.) 4386 4633
IMPROVEMENT of (1) over (2) in n
cutsize (%)

We conclude from Tables 4 through 7 that the improvement of average cutsize for the algorithm
with perturbation over that without perturbation is from 7.4% to 14.6% with almost the same run

time. Therefore, the perturbation mechanism is necessary for improving the performance of our
algorithm.

13

6.3 A convincing example

The following simple example shows how the concept of net gain is applied, and the advantage
of embedding it in the selection of cell moves in our algorithm. The simple circuit comprises 6
nets with 15 cells. We assume that all the cell weights and all the net weights have the value of 1.
We solve the k-way partition problem with ¥ = 3 here. The number of cells in each block is
limited to the range of 4 to 6 due to the balance constraint.

Figure 1 shows the initial solution with the cutsize of 5. At the beginning, all the values for net_gain
arrays and net_cell gain arrays are set to 0, and each move_gain value is set to the same as its
corresponding cell_gain value. As defined previously, we select a candidate cell for moving based on its
move_gain value. The 2-dimentional move_gain array can be represented by the following matrix (3),
where each row corresponds to a cell and each column corresponds to a block:

t[- 0 o] 1[- o o]
2/ - 0 0 2| - 0 0
3] - 0 30 - 0 0
4/ - o0 4| - 0 o0
50 - 1 51 - - -
6/ 0 - -1 6|-2 - -2
711 - o0 7 -0
move_gain[15]{3]= 8| 0 - 1 3) move_gain[15][3] = & -1)
9(-1 - -1 9|-1 - -1
10 0 - 10l 0 - o
1o o - 1o 1 -
12l o0 o - 1200 1 -
130 0 - 13l o 0o -
14l 0 0 - 14 0 0 -
150 0 - | 15 0 0 - |

In this case, cell 5, which has the highest move_gain value, is moved from block 1 to block 2. Then, it is
locked in block 2 for the current pass. This movement removes net 2 from the cutset, and hence reduces
the cutsize from 5 to 4. Net 3 is the only other net incident to the moved cell 5 and becomes a loose net.
Based on the definition of the loose net, block 2 is the locked block for net 3, and block 3 is the free block
for net 3. The net_gain value of net 3 for free block 3 is thus updated as follows:

4 (1+2-1) -1
4 1+1-D)+(1+2-2) '

net_gain[3][3] = [

Moreover, all the net_cell_gain values and move_gain values corresponding to the free cells (cell 11 and
cell 12) on net 3 for free block 3 are updated according to the algorithm. The updated move_gain matrix
is shown in (4). .

At this stage, neither cell 11 nor cell 12 can be moved due to the balance constraint. The algorithm moves
cell 7 from block 2 to block 1 and locks cell 7 in block 1. The cutsize is then reduced to 3. Now, net 1
becomes a loose net. Since all free cells of net 1 are in locked block 1, no further updating for this
movement is needed. The next step is to move cell 8 to block 3. The cutsize is further reduced to 2.

14

Without embedding the concept of net gain, as in the conventional SA algorithm, the cell_gain values for
all the free cells (1, 2, 10, 11, 12, 13) have the same value of 0, and they are all legal moves (balance
constraints are satisfied). Using the conventional approach, a cell is randomly selected for this situation.
In the case of moving cell 10 from block 2 to block 1, the cutsize cannot be reduced further more.

Having the net_gain values as part of a cell’s move_gain values, we obtain the move_gain matrix shown
in (5). Both cells 11 and 12 have the highest move_gain value of 1. We choose cell 11 to move to block 2
and lock it. (It is easy to see later that either choice will lead to the same final solution.) Net 3 is still a
loose net. Currently, there are two locked cells 5 and 11 in locked block 2 and one free cell 12 in free
4 (1+2—1)+(1+1—1)1 3
4 1+2-2)

block 3 for this loose net. Now, the net_gain[3][3] is [3. The new

move_gain matrix is shown in (6).

move gain[15][3] = - - -1 0 move_gain[15][3] = - - - | (6

— =
HO\DOO\)O\MAWND—'
{
i
§
—_
__O\OOO\]O\LJ-AWN'—-
|
|
|

Y
(8]
|
[
[

o o |1 <
|

—
w
=]

|

—

w

....
-~
|
—
|
—
|
—
A
t
—
|
—
|

—
w
1
—
|
[
|
—
W
—
|
—
i
—
|

After moving cell 12 from block 3 to block 2, the cutsize is reduced to 1. The optimal solution is obtained
as shown in Figure 2.

15

Figure 1

Block 2

Block 3

Figure 2

(O Unlocked Cell QO Locked Cell

16

7. Data Structure and Complexity Analysis

The bucket data structure [5] is used in our algorithm. Basically, a bucket data structure has an array of
pointers and each of these pointers points to a doubly-linked list of nodes. An upper bound of the bucket

array size is set to a user-defined parameter u (1 2 max [d(c;)]) to avoid having extremely huge bucket
i

size. The size of a bucket array is therefore (mcax [d(c;)] + u + 1). There are k(k-1) such bucket arrays
i

defined and each corresponds to a moving direction (from a source block to a target block). Based on the
experimental results from [9], we also employ the LIFO structure for the doubly-linked list. Single
insertion or deletion can be done in constant time on the bucket list while finding a node among k(k-1)
bucket lists need O(k%) time.

As other FM-based approaches, we need to compute the cell gains and initialize the move gains for each
initial solution. This takes O(M,k) time. Building the bucket list can be done in ® (¥ u) time. One
insertion can be done in constant time on the bucket array lists. Therefore, inserting all cell nodes into the
bucket arrays of lists takes O(M.k) time. Since there are k(k-1) different possible moves, selecting a legal
candidate needs © (%°) time. By adapting the locking mechanism, the move gain updating procedure after
Mpku

c

each cell move needs O(

O(k - max[d(c;)]- max[d(n;)])
i J

). The update net gain function can be done in

Therefore, the repeat loop takes OMK + Myku + MJ max [d(c,)] - max [d(n,)]). Since a program

structure is employed inside the repeat loop tracking the subsequence of the maximum partial gain sum,
finding the maximum partial gain sum can be done in constant time. Overall, our NGSP algorithm has the
complexity of

O(FPu + M + Mpku + Mckmgx [d(c)]- max [d(n;)]) per pass.

The total number of passes for one run cannot be known in advance though the maximum number of
passes recorded in our experiments is around 300.

8. Experimental Studies

This section presents the details of the experimental framework and lists the experimental results.
We conduct the experimental studies for our NGSP algorithm in comparison with SA, DA
(including six versions: PLM 1, 2, 3 and PFM 1, 2, 3) algorithms. Like [5], the level parameter of
SA is set to one. We chose PLM3 and PFM3 among DA algorithms for comparison since they
produced better results than other versions of PLM and PFM respectively in [5]. The
performance comparisons have been done on seven widely used ACM/SIGDA benchmark
circuits. All algorithms are implemented using the C++ programming language and all
experiments are done on a 433MHz Pentium Celeron based Windows NT 4 workstation with
128M physical memory. To make a fair comparison, all algorithms are performed with a random
initial solution and the same balance criterion among all blocks (balance tolerance of 0.1). All
weights for cells and nets are set to 1.

17

8. 1 Benchmark circuits

Table 8 shows seven benchmark circuits that are used for performance comparisons. Among these circuits,
the number of cells ranges from 1752 to 103048 and the density of circuit ranges from 0.00449 to
0.07983.

Table 8
The characteristics of the benchmark circuits used for performance comparison
Be(l;icrhcl'r:;rk M. M, M, ave.d(c) ave.d(n) max.d(c) max.d(n) D
test06 1752 1641 6638 3.79 4.05 6 388 0.079830
struct 1888 1888 5375 2.85 2.85 4 16 0.004490
primary2 3014 3029 11219 372 3.70 9 37 0.008204
biomed 6417 5711 20912 3.26 3.66 6 860 0.062038
industry2 12142 12949 47193 3.89 3.64 12 584 0.011770
avg large 25678 25384 82751 3.29 3.26 7 4042 N/A
golem3 103048 144949 338419 3.28 2.33 22 39 N/A

8. 2 Performance comparisons

The results obtained by SA, PLM3, PFM3, and NGSP on seven benchmark circuits for four
partitions (k = 2, 5, 7, 10) are shown in Table 9 (for the average cutsize and the standard
deviation) and Table 10 (for the best cutsize and the worst cutsize) respectively. The bold values
in each row are the best ones. For benchmark circuits test06, struct, primary2, and biomed, the
average is over 50 runs; for industry2 and avg_large, the average is over 20 runs; for large circuit
golem3, the average is over 10 runs.

Table 9
The average cutsize (the standard deviation) for four algorithms
Benchmark
Clreuits k SA PLM3 PFM3 NGSP
2 82.7 (10.6) 79.2 (6.2) 89.1(9.4) 67.7 (7.0)
test06 5 298.2 (24.8) 207.2 (19.6) 158.4 (20.0) 133.0, (8.7)
7 336.2 (20.7) 2402 (22.2) 183.8 (25.7) 139.74 (9.01)
10 375.5 (16.9) 264.4 (19.0) 210.7 (28.2) 177.06 (12.59)
2 51.3 (4.3) 49.9 (3.7) 50.6 (11.2) 34.9 (2.9)
stract 5 3113 (27.3) 209.2 (23.9) 151.1(27.7) 91.2 (5.7)
7 400.4 (30.1) 309.0 (31.7) 235.1 (33.4) 116.4 (7.0)
10 503.4 (30.0) 4217 (26.0) 339.7 (33.6) 155.3 (11.1)
2 272.2 (40.0) 257.7 (44.6) 240.8 (28.5) 159.0 (22.4)
primary2 5 874.4 (27.0) 738.7 (30.5) 512.7 (24.0) 430.4 (18.4)
7 952 (24.2) 829.5 (26.3) 615.9 (29.3) 500.74 (17.22)
10 1028.9 (21.3) 876.4 (23.9) 746.5 (23.3) 584.2 (13.7)
2 128.8 (47.0) 174.6 (17.6) 192.8 (25.3) 87.7 (4.6)
biomed 5 714.4 (56.5) 573.4 (36.1) 487.5 (15.0) 263.6 (19.7)
7 845.9 (44.6) 686.3 (33.1) 588.4 (23.2) 3242 (15.7)
10 940.5 (29.7) 817.7 (29.6) 729.3 (23.6) 378.9 (12.6)
2 633.9 (154.4) 624.4 (173.1) 690 (88.1) 232.9 (41.23)
industry2 5 2750.4 (109.5) 2002.9 (113.9) 1368.4 (104.1) 907.3 (79.5)
7 2995.5 (78.9) 2156.3 (105.8) 1656.7 (106.7) 1206.35 (113.76)
10 30913 (77.8) 2306.2 (57.1) 1750.2 (104.7) 1487.55 (78.09)
2 803.4 (158.6) 880.2 (77.9) 611.3 (49.9) 412.9 (96.92)
5 3992.5 (114.4) 2215.6 (79.2) 1478.4 (69.1) 8353 (64.3)
avg_large
7 4608.4 (78.8) 2816.6 (66.1) 1975.6 (62.9) 948.3 (42)
10 5081.3 (88.39) 3661.1 (101.6) 2758.9 (131.1) 1200.45 (53.36)
golem3 2 3299.8 (289.7) 4012 (301.0) 3208.3 (198.7) 1607.1 (170.74)
5 23492 (416.9) 9846.8 (545.3) 5931* 3878.9 (231.01)

18

7 27177 (453.9) 12320 (411) N/A 4552.9 (241.38)

10 29010 (328.8) N/A N/A 5264.4 (155.77)

* We only execute one time with run time = 28223 seconds.

Table 10
The best cutsize (the worst cutsize) for four algorithms
Benchmark
Cirenits k SA PLM3 PFM3 NGSP
2 60 (109) 68 (89) 69 (109) 60 (82)
test6 5 238 (347) 170 (249) 113 (213) 110 (149)
7 289 (372) 191 (287) 133 (240) 121 (160)
10 335 (408) 217 (302) 151 (2622) 150 (202)
2 43 (63) 43 (55) 33 (75) 33 (45)
struct 5 226 (364) 137 (252) 90 (233) 82 (105)
7 334 (492) 228 (378) 154 312) 99 (139)
10 439 (595) 367 (485) 267 (409) 134 (176)
2 180 (373) 173 (353) 171 (311) 139 (215)
primary2 5 809 (933) 665 (804) 463 (570) 381 (463)
7 879 (1024) 772 (882) 536 (683) 459 (533)
10 977 (1083) 810 (918) 703 (797) 549 (611)
2 83 (279) 130 (215) 140 (231.3) 83 (104)
biomed 5 574 (841) 497 (637) 428 (531) 222 (307)
7 682 (935) 612 (744) 534 (645) 292 (366)
10 784 (997) 797 (894) 683 (790) 352 (404)
2 282 (1067) 386 (941) 454 (845) 190 (354)
industry2 5 2485 (2963) 1710 (2176) 1175 (1583) 714 (1054)
7 2809 (3154) 1958 (2361) 1481 (1835) 952 (1354)
10 2847 (3276) 2205 (2408) 1582 (1921) 1309 (1650)
2 359 (1112) 768 (1019) 519 (696) 185 (476)
avg large 5 3593 (4205) 2026 (2318) 1394 (1580) 712 (973)
7 4438 (4816) 2745 (2933) 1887 (2073) 887 (1059)
10 4831 (5272) 3501 (3811) 2615 (2895) 1103 (1289)
2 2624 (3886) 3491 (4542) 2972 (3607) 1417 (1927)
- 5 22606 (24388) 8999 (10931) 5931* 3396 (4166)
= 7 26409 (28290) 11727 (12944) N/A 4125 (4815)
10 28577 (29580) N/A N/A 5022 (5478)

* We only execute once with run time = 28223 seconds.

For the large benchmark circuit golem3, the cutsize for PLM3 with k = 10, the cutsize for PFM3 with k =
7 and k = 10, are not available due to the unacceptable execution time which is much more than 28800
seconds (8 hours) for one execution.

We can conclude from Table 9 and Table 10 that for all the 28 instances (7 benchmark circuits multiplied
by 4 different partitions), NGSP always significantly outperforms SA, PLM3, and PFM3 in terms of
solution quality (minimum cutsize, average cutsize, and maximum cutsize). For the standard deviation,
NGSP also gets the minimum values for most of the instances. It implies that NGSP is the most stable one
among all the four algorithms since its final solutions do not heavily depend on the initial solution.

Based on Table 9, the average improvements of NGSP over SA, PLM3, and PFM3 in terms of the
average cutsize for k = 2, 5, 7, 10 are shown in Table 11. From Table 11, we observed that the average
cutsizes of both PLM3 and PFM3 are greater than that of SA for bipartitioning. This observation 1s
consistent with that in [5]. NGSP beats SA in the average cutsize significantly for bipartitioning.

19

Table 11

Average improvements (%) of the average cutsize of NGSP over SA, PLM3 and PFM3

k SA PLM3 PFM3
2 40.91 44.03 41.79
5 67.51 52.67 33.84
7 65.87 49.63 36.2

10 62.12 44.23 35.22

Based on Table 10, the average improvements of NGSP over SA, PLM3, and PFM3 in terms of the best
cutsize for k=2, 5, 7, 10 are shown in Table 12. Table 12 shows that in terms of the best cutsize SA also
beats PLM3 and PFM3 for bipartitioning. But for multiway partitioning the rank for the best cutsize
among these three algorithms is PFM3, PLM3, and SA.

Table 12
Average improvements (%) of the best cutsize of NGSP over SA, PLM3 and PFM3
k SA PLM3 PFM3
2 25.3 39.55 3531
5 66.53 50.97 29.15
7 65.94 52.48 31
10 62.45 64.31 326

Table 13 shows the average run time for different k values on seven benchmark circuits. Table
14 shows the total amount of run time required by SA (28 instances), PLM3 (27 instances),
PFM3 (26 instances), and NGSP (28 instances). Table 15 presents the ratio of total amount of
run time required for SA, PLM3 and PFM3 with respect to NGSP. It can be seen that SA takes
the smallest run time (around 1/11.2 of NGSP), PFM3 takes far more time than NGSP (10.35
times of NGSP), and PLM3 takes run time 2.69 times of that of NGSP. It should be pointed out
that the run time for large benchmark circuits is also affected by the limitation of physical
memory in the test machine since hard disk swapping was needed.

Table 13

Average run times (seconds) for different algorithms on seven benchmark circuits

Benchmark

s k SA PLM3 PFM3 NGSP
2 035 0.80 148 9.08
e 5 0.47 11.08 2768 11.96
7 0.56 28.70 6752 129
10 0.70 76.36 16532 2276
2 0.35 062 1.56 270
et 5 0.50 10.90 24.44 428
7 057 2732 5928 548
10 0.76 59.18 158.10 7.08
2 1.02 2.60 2.58 5.80
) 5 1.03 25.08 7268 2874
primary2 7 128 66.04 159.70 35.96
10 152 182 309.24 2060
biomed 2 202 3.30 1378 14.30
5 243 4848 98.68 30.56

20

7 275 131 211.42 38.74

10 3.58 373 63124 53.40

2 512 12.18 B35 726
) 5 6.34 122.50 514.90 148.15
industry2 7 871 327.54 1396.75 12635
10 11.05 818.21 4507.95 160.95

2 1091 18.40 99.95 256.7
5 14.79 195.80 989.20 356.55
avg large 7 1842 532 2419.60 509.45
10 2085 3073 5508.25 649.15

2 82.60 147 1701 348.9

golem3 5 145.05 2715 28223 1139
160.03 7200 NA 1455
10 228.5 N/A N/A 21499

Table 14
Total amount (seconds) of time required for SA, PLM3, PFM3, and NGSP
SA PLM3 PFM3 NGSP
732.76 (28) 16208.08 (27) 47410.45 (26) 4579.04 (26), 6034.04 (27), 8183.94 (28)

Table 15
The ratio of total amount of time required for SA, PLM3, and PFM3 with respect to NGSP
SA PLM3 PFM3 NGSP
0.089 2.69 1035 1

The previous experimental results show that our NGSP significantly outperforms DA (both PLM
and PFM) in solution quality with much less run time. Although SA is a very fast algorithm, its
very poor solution quality is not acceptable. The large run time for PLM3 and PFM3 makes them
unsuitable to solve multiway partitioning for large circuits (for example, golem3).

9, Conclusion

In this paper, we proposed a new effective multiway partitioning algorithm called NGSP. The new
algorithm incorporates the concept of net gain into the selection of cell moves and uses a new
perturbation mechanism to extend solution space in enhancing the solution quality. NSGP uses a
mechanism to smoothly decrease the number of iterations from pass to pass to reduce the computational
effort. It makes our algorithm capable of dealing with large size benchmark circuits. According to our
experimental studies, NGSP significantly outperforms, in term of solution quality and run time, the recent
multiway partitioning algorithms proposed by Dasdan and Aykanat [5].

Our ongoing research will seek an adaptive scheme to further reduce the number of moves in a pass and
try to find a refined perturbation mechanism to guide the searching of solution space more effectively.

21

[1]

[2]
[3]

(4]

[5]

(6]
[7]
(8]

[9]

(10]

(1]

[12]
[13]

[14]

[15]

[16]

[17]

References

C. J. Alpert and A. B. Kahng, “Recent Directions in Netlist Partitioning”, Integration, the VLSI
Journal, vol. 19, pp. 1-81, 1995.

C. Berge, Graphs and Hypergraphs, , New York, American Elsevier, 1976.

J. Cong, P. Li, S. Lim, T. Shibuya and D. Xu, “Large scale circuit partitioning with loose/stable
net removal and signal flow based clustering”, Proc. IEEE/ACM Int’l Conf. on Computer-Aided
Design, Nov. pp. 441-446, 1997.

J. Cong and S. Lim, “Myltiway partitioning with pairwise movement”, Proc. ILEE/ACM
int’l Conf. on Computer-Aided Design, pp. 512-516, 1998.

A. Dasdan and C. Aykanat, “Two novel multiway circuit partitioning algorithms using
relaxed locking”, IEEE Trans. on Computer- Aided Design, vol.16, no.2, pp. 169-178,
1997.

S. Dutt and W. Deng, “VLSI circuit partitioning by cluster-removal using iterative improvement
techniques”, Proc. IEEE/ACM Int’l Conf. On Computer-Aided Design, Nov. pp.92-99, 1996.

C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for improving network partitions”,
Proc. ACM/IEEE Design Automation Conf., pp.175-181, 1982.

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the theory of NP-
completeness, W. H. Freeman, San Francisco, CA, 1979.

L. W. Hagen, D. J. Huang and A. B. Kahng, “On implementation choices for iterative

improvement partitioning algorithms”, Proc. European Design Automation Conference,
pp. 144-149, 1995.

S. Hauck and G. Borriello, “An evaluation of bipartitioning techniques”, JEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, vol. 16, no. 8, pp. 849-866,
1997.

G. Karypis, R. Aggarwal, V. Kumar and S. Shekhar, “Multilevel hypergraph partitioning:
Applications in VLSI domain”, IEEE Trans. on Very Large Scale Integration (VLSI) Systems,
vol. 7, no. 1, March, pp.69 —79, 1999.

B. W. Kernighan and S. Lin, “An efficient Heuristic procedure for partitioning graphs”, Bell
System Tech. Journal, vol. 49, Feb., pp.291-307, 1970.

B. Krishnamurthy, “An improved min-cut algorithm for partitioning VLSI networks”, IEEE
Trans. on Computers, vol. 33, no. 5, pp.438-446, 1934.

B. Mobasher, N. Jain, E. H. Han and J. Srivastava, “Web mining: Pattern discovery from world
wide web transactions”, Technical Report TR 96-50, Department of Computer Science, University
of Minnesota, Minneapolis, 1996.

C.I Park and Y. B. Park, “An Efficient algorithm for VLSI network partitioning problem using a
cost function with balancing factor”, IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 12, no.11, pp.1686-1694, 1993.

M. Ouyang, M. Toulouse, K. Thulasiraman, F. Glover and J. Deogun, “Multilevel Cooperative
Search for the Circuit/Hypergraph Partitioning Problem”™, to appeare in IEEE Trans. on CAD.

D. G. Schweikert and B. W. Kernighan, “A proper model for the partitioning of electrical
circuits”, Proc. 9" Design Automation Workshop, pp.57-62, 1972.

22

[18] L. A. Sanchis, “Multiple-way network partitioning”, IEEE Trans. on Computers, vol. 38, no. 1,
pp.62-81, 1989.

[19] S. Shekhar and D. R. Liu, “Partitioning similarity graphs: A framework for declustering
problems”, Information Systems, vol. 21, no. 4, pp. 475-496, 1996.

[20] H. H Yang and D. F. Wong, “Efficient network flow based min-cut balanced
partitioning”, IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, vol.15, no.12, pp.1533-1539, 1996.

[21] C. W. Yeh, C. K. Cheng and T. Y. Lin, “A general purpose, multiway partitioning
algorithm”, IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
vol. 13, no.12, pp. 1480-1488, 1994.

23

School of Computer Science and Information Systems
Pace University

Technical Report Series

EDITORIAL BOARD

Editor:
Allen Stix, Computer Science, Pace--Westchester

Associate Editors:
Connie Knapp, Information Systems, Pace--New York
Susan M. Merritt, Dean, SCSIS--Pace

Members:

Howard S. Blum, Computer Science, Pace--New York

Donald M. Booker, Information Systems, Pace--New York

M. Judith Caouette, Office Information Systems, Pace--Westchester
Nicholas J. DeLillo, Mathematics and Computer Science, Manhattan College
Fred Grossman, Information Systems, Pace--New York

Fran Goertzel Gustavson, Information Systems, Pace--Westchester
Joseph F. Malerba, Computer Science, Pace--Westchester

John S. Mallozzi, Computer Information Sciences, Iona College
John C. Molluzzo, Information Systems, Pace--New York

Narayan S. Murthy, Computer Science, Pace--New York
Catherine Ricardo, Computer Information Sciences, Iona College
Sylvester Tuohy, Computer Science, Pace--Westchester

C. T. Zahn, Computer Science, Pace--Westchester

The School of Computer Science and information Systems, through the Technical Report Series,
provides members of the community an opportunity to disseminate the resuits of their research

by publishing monographs, working papers, and tutorials. Technical Reports is a place where
scholarly striving is respected.

All preprints and recent reprints are requested and accepted. New manuscripts are read by two
members of the editorial board; the editor decides upon publication. Authors, please note that
production is Xerographic from the pages you have submitted. Statements of policy and mission
may be found in issues #29 (April 1990) and #34 (September 1990).

Please direct submissions as well as requests for single copies to:

Allen Stix
School of CS & IS - Suite 412 Graduate Center
Pace University
1 Martine Avenue
White Plains, NY 10606-1932

	Pace University
	DigitalCommons@Pace
	1-1-2002

	An Efficient Multiway Hypergraph Partitioning Algorithm for VLSI Layout
	Lixin Tao
	Recommended Citation

