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Analyzing Shape Context Using the Hamiltonian Cycle

Carl E. Abrams, Sung-Hyuk Cha, and Charles C. Tappert

Computer Science Department, Pace University
861 Bedford Road, Pleasantville, New York, 10570 USA
carl.abrams@us.ibm.com, {scha, ctappert}@pace.edu

Abstract. Shape matching plays important roles in many fields such as object recogni-
tion, image retrieval etc. Belongie, et al. recently proposed a novel shape matching algo-
rithm utilizing the shape context as a shape descriptor and the magnitude of the aligning
two shape contexts as a distance measure. It was claimed to be an information rich de-
scriptor that is invariant to translation, scale, and rotation. We examine the limitation of
the algorithm using graph theory and present several geometrically different shapes that
are considered identical by the shape context algorithm. Theoretical contributions per-
tain to linking shape context and the Hamiltonian cycle.

1 Introduction

Shape matching which is often used in the field of object recognition {7, 16] is usually addressed in
two steps: shape representation (descriptors) and shape similarity. Shape descriptors can generally be
categorized as either external or internal descriptors [11). Internal descriptors abstract the shape us-
ing the points on the shape boundary, whereas external descriptors use the boundary points to create
the shape abstraction. Numerous distance or similarity measures can be found in literature [4, 5, 9.

Belongie, et al. recently proposed a novel shape matching algorithm utilizing the shape context as
a shape descriptor and the magnitude of the aligning two shape contexts as a distance measure [1-3].
The notion of a shape context is to represent the relationship of each point on the boundary of a
shape to all the other boundary points and then convert that representation to polar histograms. With
each point represented as a polar histogram, matching one shape to another is simplified to compar-
ing histograms and finding the best overall fit as the least cost assignment of points of one shape to
the points of the other. The matching of the points is a form of the classic bi-partite graph-matching
assignment problem which can be efficiently solved by the Hungarian method [6, 10]. We shall refer
to this algorithm as the SC algorithm.

Every comparison-based shape-matching algorithm is subject to special exceptional cases where
two shapes look similar to a human observer while the shape matching algorithm suggests otherwise
[9, 14]. A well-known case involves the shapes of the numerals ‘3, ‘8’, and ‘8’. When these shapes
are represented by pixel values only, a simple Hamming distance suggests that the distance between
‘3 and ‘8’ is smaller than that between ‘8’ and ‘8’ [9, 14]. Finding and understanding these special
exceptional cases can be the key to discovering a better shape matching method. The SC algorithm is
not an exception. Here, we present several geometrically different shapes that are considered identi-
cal by the shape context algorithm. Utilizing the Hamilronian cycle from graph theory, we generated
numerous exceptional cases for the SC algorithm.

The rest of the paper is organized as follows. In section 2 we review the shape context and shape
matching method used in the SC algorithm. Section 3 presents several exceptional shapes and theo-
retical results based on graph theory. Section 4 concludes this work.



2 Shape Context Algorithm

In this section, we summarize the SC algorithm developed by Belongie, et al. [1-3]. There are
two steps in the algorithm: shape representation and shape matching.

2.1 Shape Representation

The shape of an image is represented by a shape context which we denote as S. Inputs for this step
include an image 7 containing a single shape and n, the number of points that define the boundary.
We assume that the shapes are perfectly segmented and the boundary edge has been detected. The n
points are placed on the boundary of the shape such that the boundary distances between adjacent
points are the same and are ordered (p,,p,,...p,) Where p, is the starting point. Let the distance
between two adjacent points be d. Figure 1 (b) shows the boundary of a shape and six points are
placed.

Fig. 1. The Shape and shape context point.

Next, vectors from each point on the boundary to every other point on the boundary are drawn.
For example, p, shown in Figure 1 (c) has five vectors to all of the remaining points on the bound-
ary. The same procedure is applied for the remaining n-/ points as shown in Figure 2.

Fig. 2. Shape Context Vectors for Pottery Shape



The set of n sets of vectors for each point represent the shape context for the boundary. The vec-
tors are then transformed into a form that is useful for the computation of the comparison of shapes:
compact, comparable and computable. The transformation is accomplished by converting the vectors
at each point into a polar histogram. A representative polar histogram is shown in Figure 1 (d). That
is, since a vector is defined by its angle with respect to a reference point and its distance, quantizing
both dimensions will yield a set of six histograms, one at each point. The bins spacing selected for
the histogram is 30 degree increments for the angles yielding 12 angle bins. The radius r is divided
into 5 increments. The log r is used to make the shape histogram more sensitive to points closer in to
the reference point. The total number of bins in a polar histogram is 60.

Rotational invariance is achieved by the proper selection of the reference point for the vector an-
gles. By using the turning angle at a point as the reference angle from which the angles to all the

other points on the shape are compared, shape contexts that are insensitive to rotational changes in
the shape are created.

Building polar histograms at all » points results in a compact representation of the boundary as a
set of n shape-context histograms. The shape, S, is represented by n polar histograms.

S= U k)

=Py Py
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2.2 Shape Matching

Shape matching step takes two shapes, S and §” represented by n polar histograms as inputs. The output is the
scalar distance value indicating the similarity between two shapes. The lower the value, the more similar the two
shapes. The quantitative comparison of the two shapes is easily obtained using the simple )(2 histogram com-
parison as shown in eqn (2)

b
G = 1/22 [h(k)—h‘(k)]2 {(h(k)+ h'(k)) wherei,j=p,...p, 2)
k=1
C;,; is the cost of the p; point on the shape S and the p; point on the other shape S’. b is the number of bins in

the polar histogram.

The resulting cost matrix derived from Equation 2 is an nxn cost matrix. The comparison of the two shapes is

now performed by matching a point on the first shape to one and only one point on the second shape such that
the sum of the costs of all points so matched is minimized. The matching of the points in this manner is 2 form
of the classic bi-partite graph matching problem known as the “Assignment Problem”. The assignment problem

is solved by the Hungarian method [6, 10] which runs in O(r*) time complexity. The SC algorithm returns a
single scalar distance value, denoted by SCdistance(S,S") given in Equation 3.

pﬂ
SCdistance(S§,5") = m(1r)1 z C, ry Where 7(i) is a permutation of { 3)
i=p

3 Hamiltonian cycle and shape context

In this section, we utilize graph theory to generate exceptional cases for the SC algorithm. Let
G=(V,E) be a simple unit graph with n vertices ¥ ={...v,} such that G contains a Hamiltonian
cycle and all edges have the same unit length d. A Hamiltonian cycle is a closed path graph, # such
that each vertex of G is visited exactly once except for v, which is the starting and ending vertex.



There are twelve possible Hamiltonian cycles for G in Figure 3. Note that a clockwise Hamiltonian
cycle is identical to the counterclockwise one in shape. If a unit graph G has n =|V| vertices, then

every H =(V,E") has exactly n vertices and n=|E| edges where E'c E .

Let a shape S on a binary image / be a connected component where every pixel whose value is 1 is
an element of S. A shape S partitions the two dimensional plane into two regions: the interior (union
of pixels whose value is 1) and exterior (union of pixels whose value is 0).

G

e p ;

Fig. 3. A unit planar graph G and its Hamiltonian cycles.

Lemma 1: Every H, for a unit graph G forms a certain shape §;

Proof: H, is a closed cycle graph by definition or an n-gon if G is planar. By Jordan curve theorem
[12,15], H, partitions the plane into two regions, the interior and exterior. Painting the interior and

exterior regions with black and white colors, respectively, produces a connected component shape.
Thus, every H, for a unit graph G forms a certain shape S;. "

Note that if one travels the boundary of H, in clockwise, the object is always on the right hand

side if G is planar. All examples given in this paper are unit planar graphs. If G is not a planar graph,
one can easily find an example where the object side is changed from right hand to left hand.

Figure 4 shows another example of a unit planar graph and some of its Hamiltonian cycles. Now
consider shapes S, and S, in Figure 5 (a) produced by Hgand H, in Figure 4, respectively. S, was

generated by slightly changing S, while maintaining the boundary distance of S§,equal to that of
S, =nd . S, is so similar to S, that the human visual system can hardly distinguish the two, while S;
is very different from both S; and S,. However, the SC algorithm calculates the SCdistance(S,,5;) =0,
i.e., S and S; are identical, while SCdistance(S,,S,) > 0 as presented in the distance matrix of Figure 5

(®).
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Fig. 4. A unit planar graph G and some of its Hamiltonian cycles

(a)

Sl SZ S3
Sy 0 105 0
S;1 105 0 106
S;U 0 106 0

(b)
Fig. 5. SC algorithm performance on three shapes

Theorem 1: All shapes S, formed by H, for a unit planar graph G are considered identical shapes by
SC algorithm if py eV .

Proof: Let S and S’ be two distinctive shapes formed by two Hamiltonian cycles for a unit graph G
where ¥ ={..v,}. The SC algorithm will place p;s exactly on vertices on G since all edges are unit
distance d in length. Let k and 4’ be polar histograms for S and §’, respectively. Since locations of
vertices are the same in two shapes, & = 4’. Hence, we can derive the following from the Equation 2.

b
Gy =112 [h(k) = B I(h(K)+ h'(K) = 0 where i =v,...v,
k=1

SCdistance(S,8") =Y C;; =0

Therefore, all shapes S, formed by H, for a unit planar graph G are considered identical shapes by

the SC algorithm if py eV . .

Corollary 1: The number of shapes that are considered identical by the SC algorithm but geometri-
H; for a unit planar graph G

2

cally different2

where vy =v, =v,.



Proof: Each H, produces a shape ;. S, can be formed by H; or H] where H/ is the reverse order

H

H, for a unit planar graph G
5 .
The maximum number of Hamilton cycles can be found at [13].

of H;. Hence, |S|2 .

5 Discussions

In this paper, we reviewed the shape context and matching algorithm developed by Belongie et al.
We then used the concept of Hamiltonian cycles to generate several shapes that appear different to
human observers but that are considered identical by the SC algorithm.

Another way to visualize the SC algorithm is using n pins and a bendable loop of size nd. As
shown in Figure 6, given a shape S whose boundary length is nd, one can place a bendable loop on
the boundary of S and fix the loop with pins such that the distance between two pins is exactly d.
Albeit the loop is fixed by pins, the loop can deform between pins. This gives great deformable in-
variant ability to the SC algorithm.

6 ]
1 1

Fig. 6. Shape descriptors and graph representation.

However, one can change the loop while satisfying the distance between pins, e.g., S'. Note that
the SC algorithm is indifferent to the order of the points [8]. Thus, §,, S,, and §; are equivalent
shapes by the SC algorithm while their graph representations, G,, G,, and G,, are different. In this
paper, we used graph theory concepts to generate what can be considered counterexamples for the SC

algorithm. We plan to explore the combination of the shape context representation and matching with
graph invariance to obtain improved object recognition algorithms.
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