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Abstract 

A Public Key Cryptosystem uses encoding keys that are the form of modulus � and the exponent �  

which can be distributed to the public while the decoding method remains secure.  Public Key 

Cryptosystems are also known as RSA coding, which are used often because the internet runs on 

open networks. Public Key Cryptosystems are used with open systems mainly because there are 

higher risks than with older forms of e-commerce that run on closed networks such as electronic 

data interchange (EDI) or electronic fund transfer (EFT). Open networks create a variety of security 

challenges such as the integrity of the information being transmitted, the confidentiality of private 

or personal information, the authenticity of the communicating parties, and the assurance that the 

communicating parties have the authority to enter into the transactions. Public Key Cryptosystems 

allow secure internet transactions by providing authentication, confidentiality, digital signatures, 

data integrity, and  non- repudiation, which prevents the receiver of a message from denying that 

the message had been received . Cryptography plays an essential role in protecting the privacy of 

electronic information against threats from a variety of potential attackers. 

The purpose of this paper is to comprehend the evolution of codes and ciphers; along with 

understanding how to encode and decode a message using RSA coding. In this paper “Unbreakable 

Codes” we will highlight the historical advances of communicating secure messages, by illustrating 

the process of RSA coding with an example.  

 

  



3 

 

Table of Contents  

 

� Advisor Approval                1 

� Abstract     2 

� List of Figures    4 

� Introduction    5 

� RSA encryption    8 

� Definitions, Theorems and Proofs  9 

� How RSA encryption works  14 

� An Example     15 

� Conclusion      21 

� References      22 

  



4 

 

List of Figures and Tables 

 

 

1. Polybius Square   5 

2. Two Letter Cipher   6 

3. Numerical Cipher   15 

4. Message Coded using Cipher  15,20 

 

 

  



5 

 

Introduction 

Throughout history civilizations have needed encryption to transmit messages.  From Ancient 

Greeks to the present, we still find it necessary to send protected messages. In today’s society we 

use encryption more than ever. Which is mainly due to the openness of the internet, currently we 

need encryption to protect ourselves from identity thief.   

Codes and ciphers have been used since ancient times. The word cryptography, meaning the 

science of codes, comes from the Greek words kryptos (secret) and graphos (writing).A code can be 

a common phrase, which may consist of one or more letters, numbers, or words, are replaced by, 

four or five letters or numbers, called a code group. A cipher system or cryptographic system is any 

system which can be used to change the text of a message with the aim of making it unintelligible to 

anyone other than intended recipients. Breaking a code can be extremely complex and long without 

a cipher. 

Ancient Greeks and Romans were the earliest civilization to use ciphers and codes. One of the oldest 

categories of ciphers is shorthand, which was developed by the Greeks by the fourth century BC. 

This code was effective and in use for 600 years until Emperor Justinian forbade its use in the year 

534AD, no other system of short hand has been used for such an extensive time period ([5] Haldane 

p35). The first clear record of an enciphered message goes back to the year 405 BC during the 

Peloponnesian War. The general Lysander of Sparta was sent a coded message written on the inside 

of a servant's belt. When Lysander wound the belt around a wooden baton the message was 

revealed. The message warned Lysander that Persia was about to go to war against him. He 

immediately set sail and defeated the Persians.  Another example of a cipher was developed in 

Greece by Polybius, who created a system of signaling, using a combination of letters and numerals, 

it was used as the basis of a German cipher ADFGX during WWI. To indicate letters, the numeral at 

the left hand side was written first followed by the one on top, for example R would be written as 

42 and A as 11. This can be seen below. 

Fig. 1  Polybius Square  

 

Julius Caesar created his own cipher; where he moved each letter of the alphabet along three places. 

Julius Caesar’s cipher is not a sophisticated method, since it reveals the amount of letters and words 

in the message.  This cipher is called a simple substitution cipher where the normal alphabet is 

replaced by a permutation of itself. Each letter of the normal alphabet is replaced, whenever it 

occurs, by the letter that occupies the same position in the permutated alphabet.  This form of 
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cipher is commonly used in children toys, where children get a secret message and have to wait to 

get a decoder ring to find out the secret message. A simple cipher, can be broken by making a 

frequency count of the letters, attempt to identify the spaces and then attempt to identify the cipher 

representations of some high frequency letters like E,T,A,I,N and O which together typically 

amount for over 40% of the entire text, with E being the most common used letter. Next, with some 

parts of words identified look for short words with one or two letters still unknown. Finally, 

complete the solution by using grammatical and contextual information ([1]Churchhouse p17-19). 

Code-breakers can begin to speculate at the meanings by studying mathematical calculation to 

crack a code. A code-breaker can be assisted by the capture of a cipher, like an enemy codebook, or 

by mistakes made by the person sending the message. Once a code has been broken and a cipher 

has been found, other messages sent in that code can easily be deciphered. 

Another form of cipher is a two letter cipher which is an encryption system where a plaintext letter 

becomes more than one letter in the cipher and there are also other systems in which encipher the 

text two (or more) letters at a time. The first type is a monograph to digraph, where the alphabet is 

written on a 5 X 5 square with one letter omitted. The omitted letter is usually J, which is replaced I, 

if required. The five rows and columns of the square are A, B, C, D and E, an example of this can be 

seen below. Each plaintext letter is now replaced by its row and column letters, so for instance R 

becomes DB. This cipher is pretty weak but it can become more secure by shuffling the alphabet 

inside the 5 X 5 box ([1] Churchhouse p54-55).  

Fig. 2 Two Letter Cipher 

  A B C D E 

A A B C D E 

B F G H I/J K 

C L M N O P 

D Q R S T U 

 E V W X Y Z 

 

In stencil ciphers certain letters on a page are part of the secret message and all the other letters are 

merely fillers which are used to compose a mundane looking communication. An appropriate 

stencil would use letters that are separated from each other by irregular intervals and which are 

not necessarily the first letters of words. For added security the letters in the secret text would 

probably not occur in the correct order in the overall text.  In order for a recipient to be able to 

decode the message the sender would have to have a regular format where the cards have holes 

punched in them at the positions of the letter of the secret message.  

“During the 1914-1918 war radio began to be used by military units for sending messages to each 

other and to their headquarters” ([1] Churchhouse p 111). Radio allowed communication between 

units along great distance almost immediately but the downfall of radio is that it allowed the enemy 

to intercept the message. After the war a number of people across the world tried to create a 

machine that was able to encode and decode messages. In the early 1920’s a German engineer, 

Arthur Scherbius created a number of cipher machines, which were created to provide a large 

number of alphabet substitutions. “A different alphabet would automatically be used every time a 
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letter was enciphered, and no substitution alphabet would reoccur until thousands of letters had 

been processed” ([1] Churchhouse p111). Once Scherbius decided on his design he called it Enigma. 

The Enigma machine looked like a typewriter in a wooden box. An electric current went from the 

keyboard through a set of rotors and a plug board to light up the 'code' alphabet. Enigma could put 

a message into code in over 1017 different variations. Germans believed that no one could crack the 

Enigma code; At least once a day Germans altered the order of the rotors, their starting positions 

and the plug board connections. To decipher a message sent using Enigma, one had to work out 

exactly how all of these had been set. During the 1930's Polish cipher experts secretly began to try 

to crack the code. Just before the war, they managed to pass models and drawings of Enigma to 

British and French code-breakers ([7] Enigma and Codes).  

Electronic Data Interchange (EDI)has been around since the late 1960s it is used to transfer 

electronic documents from one computer system to another; transactions take place between 

computers or databases, not individuals. Two elements of EDI are that “electronic documents 

replace paper based ones and the exchange of documents takes place in a standardized format” 

(GXS). The paper documents that Electronic Data Interchange can take the place of purchase orders, 

invoices, health insurance claims, and shipping notices. “While rare, the possibility that data will be 

intercepted and stolen or altered in transit does exist. Messages also may be deliberately or 

mistakenly duplicated. This can result in overcharges, wasted resources, and damaged relations 

between trading partners” ([2]Electronic Data Interchange (EDI) - Security Issues.) 

 

Electronic Fund Transfer (EFT) is a computer based system used to perform financial transactions 

electronically.  It is used for direct deposit, cardholder-initiated transactions, and online banking. 

Through illegally altering payment instructions in the EFT process, an individual could steal a large 

amount of money. “Although it is difficult, if not impossible, to obtain accurate statistics on EFT 

fraud, one could suggest that companies lose huge sums each year due to fraudulent EFT payment 

instructions” ([6] Humphries).  

Codes and ciphers grow increasingly more complex, mainly because people have found cracks in 

previous forms of codes. Due to this risk people have found it necessary to develop more complex 

methods to create an unbreakable code that will safely store their information from others.  
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RSA Encryption 

The RSA public key cryptosystem is named after its three inventors Ron Rivest, Adi Shamir, and 

Leonard Adleman.  The name public key reflects that the encoding key consisting of modulus � and 

the exponent � can be distributed to the public while the decoding method remains secure. The 

concept of the having a code where knowledge of the encoding process does not enable one to 

decode a message was brought forward by Whitfield Diffie and Martin Hellman in 1976. By 1977 

Ron Rivest, Adi Shamir, and Leonard Adleman created the RSA public key cryptosystem.  The RSA 

public key cryptosystem is based on the belief that it is extremely difficult to factor large composite 

integers. RSA Coding has survived all forms of attack since August 1977.  RSA coding is not 

extremely fast but it is definitely secure; since 1977, the world’s best mathematicians who have 

access to any form of computing power have failed to attack the RSA system.  Due to the length of 

time RSA coding has remained secure it is currently accepted as a worldwide standard 

([3]Flannery).   

The cipher text of the RSA procedure is a one-way function of the plaintext. Meaning that 

“transitions from one number to another are easy in one direction and difficult in the opposite 

direction” ([8]Kippenhahn 243).  The reason that RSA coding is a one-way function is due to the 

fact that multiplying two large prime numbers by each other is relatively simple, but it is virtually 

impossible to factor such a number into its elements. Once someone is able to find the two prime 

elements of the large number the code is cracked. However, there is no simple way to factor a 

number that is more than a hundred digits long other than trial and error. Therefore, if one wanted 

to crack an RSA code he or she would have to take the public key and divide by prime numbers 

starting at two until there is he finds one that does not have a remainder; but with a large prime 

numbers this can take forever. According to Ron Rivest, Adi Shamir, and Leonard Adleman “one 

would have to perform some 14 billion mathematical steps in order to factor a five digit number… 

even though computers have become faster, a 500 digit number requires a forty digit number of 

mathematical operations-too much for even the most modern computers”([8]Kippenhahn 230). 

RSA encryption is efficient because it does matter whether an encryption can be cracked but 

whether it can be cracked quickly.  

“The RSA algorithm is the most widely used method of implementing public key cryptography and 

has been deployed in more than one billion applications worldwide”([8]RSA Security).RSA 

encryption is currently used in authentication, access control, credential management, data loss 

prevention, fraud prevention, encryption , key management, and information  security.  
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Definitions, Theorems, and Proofs 

Euclidean Algorithm: 

To compute the greatest common divisor of two numbers � and �, let �-1 =�, let �0 = �,  and compute 

successive quotients and remainders  

�i-1 = �i +1 ×  �i + �i+1. 

For 	 
 0,1,2, … until some remainder �n+1 is 0. The last nonzero remainder �n is the greatest common 

divisor of  � and �. 

Proof: 

Each time we compute a quotient with remainder, 

� 
 � � � � �, 

the remainder will be between 0 and � � 1. Since  � � �, then we can add one more onto the quotient 

� and subtract � from �. So the successive remainders in the Euclidean algorithm continually decrease: 

� 
 �� � ��  �  �� �  ��… 

All the remainders are greater than or equal to 0, so we have a strictly decreasing sequence of 

nonnegative integers. Eventually, we must reach a remainder that equals 0; we will reach 0 in at most � 

steps.  

Linear Equation Theorem: 

 Let � and � be nonzero integers and let �= gcd (�, �). The equation  

� �  �! 
 � 

always has a solution " 1,!1# in integers and this solution can be found by the Euclidean algorithm. 

Then every solution to the equation can be obtained by substituting integers $ into the formula 

" 1+ $ · �
�  

, !1 - $ · &
'

 #. 

 

Proof: 

Take ( and � are relatively prime, gcd"(, �# 
 1 and suppose the ",, -# is a solution to the equation  

(, � �- 
 1 

We can create additional solutions by subtracting a multiple of � from ,�   and adding the same multiple 

of ( onto -�.  



10 

 

For any integer � we obtain a new solution",�  �  ��, -� � �(#. We can check by computing  

(",�  �  ��# � �"-� � �(# 
 (,�  �  (�� � �-� �  ��( 
  (,�  �  �-� 
 1 

Looking at gcd"(, �# 
 1, we can show that gives all possible solutions. 

Suppose that we are given two solutions ",�  , -�# and ",�  , -�#  to the equation  (, � �- 
 1.  

(,�  �  �-� 
 1    and     (,�  �  �-� 
 1. 

Multiplying the first equation by -�, multiply the second equation by -� and subtract we are left with  

(,�  -� �  (,�  -� 
  -�  � -� 

If we multiply the first equation by ,�  , multiply the second equation by ,�  and subtract  

�,�  -� �  �,�  -� 
  ,�  � ,�  

So if we let � 
  ,�-� �  ,� -� then we find that  

,� 
 ,� � �� and  -� 
  -� �  �(  

This shows that the second solution ",�, -�# is obtained from the first solution ",�  , -�# by adding a 

multiple of � onto ,�  and subtracting the same multiple of ( from  -�. Therefore every solution to  

(, � �- 
 1 can be obtained from the initial solution ",�  , -�# by substituting different values of � 

into",� �  ��, -� �  �(#. 

If gcd"(, �# � 1 Let . 
 gcd"(, �#. We know from the Euclidean algorithm that there is at least one 

solution ",�  , -�# to the equation  

. 
 (, � �- 

But . divides both ( and � so ",�  , -�#, is a solution to the simpler equation  

(
.

, �
�
.

- 
 1 

Now our earlier work applies, so we know that all other solution can be obtained by substituting values 

for � in the formula  

" 1+ $ · �
�  

, !1 - $ · &
'

 #. 

This completes our description of the solution to the equation . 
 (, � �-. 

 

Euler’s Formula 

If gcd"(, �# 
 1  and � is relatively prime to � then  
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(/"0#  1 1 "�23 �#. 

Proof: 

Suppose the gcd"(, �# 
 1 then the numbers 

��(, ��(, ��(, … �/"0#( "�23 �# 

are the same as the numbers although they may be in a different order 

��, ��, ��, … �/"0# "�23 �#. 

Then the product of the numbers in the first list is equal to the product of numbers in the second list 

"��(# ·  "��(# ·  "��(# ··· 4�/"0#(5 1 �� · �� · �� ··· �/"0#"�23 �# 

Let us factor out 6"�# copies of a  

(/"0#� 1 �"�23 �#,       789�9 � 
 �� · �� · �� ··· �/"0#.  

Since each of it �:’< are relatively prime to �, � is relatively prime. Canceling � from both sides we get 

Euler’s formula 

(/"0#  1 1 "�23 �#. 

Fermat’s Little Theorem  

Let = be a prime number, and let ( be any number with ( > 0 "�23 =#. Then  

(?@� 1 1"�23 =#. 

Proof: 

We start by listing the first = � 1 positive multiples of (: 

(, 2(, 3(, . . . "= � 1#( 
Suppose that �( and <( are the same �23BC2 =, then we have 

 � 
  < "�23 =#, 
 so the = � 1 multiples of ( above are distinct and nonzero; that is, they must be congruent to 

1, 2, 3, . . . ,  = � 1 in some order.  

Multiply all these congruencies together and we find 

(. 2(. 3(. . . . . "= � 1#( 1  1.2.3. . . . . "= � 1#4�23 =5  or  ("?@�#"= � 1#!  1  "= � 1#! "�23 =#. 
Divide both sides by "= � 1#!  

(?@� 1 1"�23 =#. 

 

Phi Function Formulas 
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If E is a prime and $ � 1, then  

6 "Ek# =Ek
 –Ek-1  

. 

If gcd "F, G# 
 1, then 6 "�, H# 
 6"�#6"H#. 

Proof: 

64=I5 
 =�
IJ@�=�

IK@� … =L
IM@�6"=�=� … =L# 

6 "�, H# 
 6"�#6"H#. 

Since  =�=� … =L are all primes 

6"=�=� … =L# 
 6"=�#6"=�# … 6"=L#. 

 If p is a prime, then all numbers less than p are co-prime to p, which means, 

6"=# 
 = � 1 

applying this we find 

6"=�=� … =L# 
 "=� � 1#"=� � 1# … "=L � 1# 

giving us  

64=I5 
 "=� � 1#=�
IJ@�"=� � 1#=�

IK@� … "=L � 1#=L
IM@�

 

 

Successive Squaring to Compute 

Let � be a number larger than ( and �, where � is larger than (  

(I  "�23 �#. 

The following steps compute the value of (I  "�23 �##: 

1. Write � as a sum of powers of 2.  

� 1  B� � B�  · 2 � B�  · 4 �  B�  · 8 � Q �  BR · 2R 

Where each B:, is either 0 or 1. (This is called the binary expansion of �. ) 
2. Make a table of powers of modulo � using successive squaring.  

(�                             1  �� "�23 �# 

(�  1 "(�#2 1 ��
�  1 �� "�23 �# 

(S  1 "(�#2 1 ��
�  1 ��"�23 �# 

(T  1 "(S#2 1 ��
�  1 ��"�23 �# 

 U 

      (�R  1 "(�R@�#2 1 �R@�
�  1 �R"�23 �# 
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We note to compute each line of the table you only need to take the number at the end of the 

previous line, square it and reduce it modulo �. Also note that the table has � � 1 lines, where 

� is the highest exponent of 2 appearing in the binary expansion of � in Step 1.  

3. The product  

��
VW  · ��

VJ · ��
VK … �R

VX   "�23 �# 

Will be congruent to (I  "�23 �#.  
We note that all B:Ys are either 0 or 1, so this number is really the product of those �:’s for 

which B: equals 1.  
 

Algorithm: How to Compute k
th

 Roots Modulo m 

Let �, �, and � be given integers that satisfy  

gcd"�, �# 
 1 and gcd4�, 6"�#5 
 1 

The following steps give a solution to the congruence 

,I  1 �"�23 �#. 

1. Compute 6"�# 

2. Find positive integers B and Z that satisfy �B �  6"�#Z 
  1                                                         
Another way to say this is that B is a positive integer satisfying �B 1 1 4�23 6"�#5, so B is 

actually the inverse of � modulo 6"�#. 
3. Compute �u"�23 m) by successive squaring. The value obtained gives the solution ,. 
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How RSA encryption works  

The first thing we do is choose two large prime numbers = and [;where both = and [ have 100 or 200 

digits each and we keep = and [ secret. They are our private key. Next we multiply = and [ together to 

get the modulus  � 
 =[.  Once we find m we can compute 6"�# 
  6"=#6"[# 
 "= � 1#"[ � 1#  , 

then we choose a number � that is relatively prime to 6"�#. 

Now we publish the numbers � and � for the whole world to know, but we keep the values of 

= and [ secret. Anyone who wants to send us a message uses the values of � and � to encode the 

material in the following 

Encode 

In order to begin to encode a message one must convert their message into a string of digits by using a 

cipher. Next, one looks at the number � and breaks their string of digits into numbers whose digits are 

less than the digits of �.So now their message is a list of numbers (�, (�, … (R. The next step is to raise 

each ( value to the �]^ power and then reduce the number modulus m. Meaning that in order to 

encode the message one must  compute (�
I"�23 �#, (�

I  "�23 �#, … (R
I  "�23 �#. These values form a 

new list of numbers ��, ��, … �R.  This list is now the encoded message. The message that is sent to us is 

the list of numbers ��, ��, … �R. 
 

Decode 

To decode the encrypted message ��, ��, … �R, we use the published numbers � and � to obtain the 

numbers (�, (�, … (R.   
Each �: , is congruent to    (:

I  "�23 �# , so to find (:  , we need to solve the congruence 

 ,I 1 �: "�23 �#. 

Since we published � we know the prime factors  (= and [) of that number.  

We can now compute    

6"�# 
 6"=#6"[# 
 "= � 1#"[ � 1#. 
Using successive squaring and applying the algorithm to compute �]^ Roots Modulo � we solve each of 

the congruencies 

,I 1 �: "�23 �#. 

To find , we use the formula  

 �B �  6"�#Z 
  1 

to find the values of B and Z  in order to use the  B value to solve  for , by using the equation 

�u"�23 �# 

We are now able to compute �u"�23 �# by successive squaring.  

The solutions are the numbers (�, (�, … (R, and then it is easy to take this string of digits and recover the 

original message by using the cipher.  
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An Example 

ENCODEENCODEENCODEENCODE    

We want to encode the phrase What’s up doc?  

First we need a cipher that will replace letters with numbers  

Fig.3   Numerical Cipher 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using this as our cipher we get  

Fig. 4   Message Coded using Cipher 

W H A T S U P D O C 

33 18 11 30 29 31 26 14 25 13 

 

A 11 

B 12 

C 13 

D 14 

E 15 

F 16 

G 17 

H 18 

I 19 

J 20 

K 21 

L 22 

M 23 

N 24 

O 25 

P 26 

Q 27 

R 28 

S 29 

T 30 

U 31 

V 32 

W 33 

X 34 

Y 35 

Z 36 
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Giving us 33181130293126142513 

Now we begin to encode 33181130293126142513 through RSA coding  

First we pick two prime numbers to represent our = and [. To make our problem easy to follow, we will 

choose small primes. 

= 
 3   ,      [ 
 7 

To find � we need to multiplying = and [  

� 
 =[ 

3 ` 7 
 21. 

Find 6"�# 

6"�# 
 6"=#6"[# 
 "= � 1#"[ � 1# 

6"21# 
 6"3#6"7# 
 "3 � 1#"7 � 1# 
 "2#"6# 
 12 

We choose � 
 5 because (5,21)=1. 

Publish  

Now we publish  � 
 5 and � 
 21  for the world to see. 

Encode  

Since � is two digits long we break the message into 2 digit numbers  

33 18 11 30 29 31 26 14 25 13. 

Next we use successive squaring and raise each number to the � ]^power  

33c 
 39135393 1 3 �23 21 

18c 
 1889568 1 9 �23 21 

11c 
 161051 1 2 �23 21 

30c 
 24300000 1 18 �23 21 

29c 
 20511149 1 8 �23 21 

31c 
 28629151 1 19 �23 21 

26c 
 11881376 1 17 �23 21 

14c 
 537824 1 14 �23 21 
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25c 
 9765625 1 16 �23 21 

13c 
 371293 1 13 �23 21. 

So our code is now 3,9,2,18,8,19,17,14,16,13. 

DECODEDECODEDECODEDECODE    

Given the code 3,9,2,18,8,19,17,14,16,13 and � 
 5 and � 
 21. 

Since we know � is the product of two prime numbers 3 and 7 we find 6"�# 
 12. 

Now            �B �  6"�#Z 
  1 

We have          � 
 5          6"�# 
 12 

Therefore                5B � 12Z 
 1 

Thus           B 
 5           Z 
 2 

 we now compute �c"�23 �) by successive squaring . The value obtained gives the solution ,. 

Knowing this we can now begin to decode our message. Now we are looking for numbers between 11 

and 36 so that it corresponds with our cipher  

� V�23 � 

� 
 21  B 
 5 . 

Now we will demonstrate the method of successive squaring therefore, the first number we need to 

decode is 3. 

� 
 3 

3� 1 3 "�23 21# 

3� 1 9 " �23 21# 

3S 1  18 "�23 21# 

18 ` 3 
 54 

33 1 54 "�23 21# 

Now we continue this process with all of the numbers in our code . 

Next   � 
 9 
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9� 1 9 "�23 21# 

9� 1 81 "�23 21# 

9S 1 6561"�23 21#  1 9 "�23 21# 

9 ` 9 
 81 

81 1 18 "�23 21# 

 

When   � 
 2 

2� 1 2 "�23 21# 

2� 1 4 "�23 21# 

2S 1 16 "�23 21# 

2 ` 16 
 32 

32 1 11"�23 21# 

 

When   � 
 18 

18� 1 18 "�23 21# 

18� 1 324 1 18 "�23 21# 

18S 1 104976 1 18"�23 21# 

18 ` 18 
 324 

324 1 30"�23 21# 

 

When    � 
 8 

8� 1 8 "�23 21# 

8� 1 64 "�23 21# 

8S 1 4096 1 1 "�23 21# 

8 ` 1 
 8 

8 1 29 "�23 21# 
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When     � 
 19 

19� 1 19"�23 21# 

19� 1 361"�23 21# 

19S 1 130321 1 16"�23 21# 

19 ` 16 
 304 

304 1 31"�23 21# 

 

When      � 
 17 

17� 1 17"�23 21# 

17� 1 289"�23 21# 

17S 1 83521 1 4"�23 21# 

17 ` 4 
 68 

68 1 26"�23 21# 

 

When     � 
 14 

14� 1 14"�23 21# 

14� 1 196 "�23 21# 

14S 1 38416 1 7"�23 21# 

14 ` 7 
 98 

98 1 14"�23 21# 

 

When   � 
 16 

16� 1 16 "�23 21# 

16� 1 256 "�23 21# 

16S 1 65536 1 16 "�23 21# 

16 ` 16 
 256 
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256 1 25"�23 21# 

 

When    � 
 13 

13� 1 13 "�23 21# 

13S 1 1 "�23 21# 

13 ` 1 
 13 

13 1 13 "�23 21#  

Now we get the numbers  

33 18 11 30 29 31 26 14 25 13. 

 

Using Fig. 4  Message Coded using Cipher on pg 16  

We get  

W H A T S U P D O C 

33 18 11 30 29 31 26 14 25 13 

 

Giving us:  What’s Up Doc?  
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Conclusion 

Cryptosystems become more and more complex mainly because users and developers have found 

that a particular system has a weakness that can be extremely fatal outcome. Due to this risk people 

have found it necessary to develop more complex methods to create an unbreakable code that will 

safely store their information from others.  Currently RSA public key encryption is the most widely 

used method of public key cryptography and is used in authentication, access control, credential 

management, data loss prevention, fraud prevention, encryption, key management, and information 

security across the world.  
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