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ABSTRACT 

 

The synthesis of a tunneled hollandite-type manganese oxide with interstitial and framework Cr
3+

 is 

described.  This unique material is prepared from a layered buserite precursor under conditions 

previously believed to only yield todorokite-type manganese oxides with larger tunnels.  The influence 

of Cr
3+

 in promoting the hollandite structure has been investigated by selectively placing the cation 

either in interstitial or framework sites.  The use of framework Cr
3+

 in combination with other interstitial 

cations generates related hollandite and todorokite derivatives.  Catalytic oxidation reactions with benzyl 

alcohol and carbon monoxide have also been examined. 

 

 

Introduction 

 

 Tunneled manganese oxides are interesting and versatile materials with potential applications in 

heterogeneous catalysis, chemical sensing, hazardous waste remediation, and rechargeable battery 

technology. [1,2]  The most studied of these are hollandite and todorokite, which have frameworks 

consisting of 2x2 and 3x3 arrangements of edge-shared MnO6 octahedra, respectively, Fig. 1.  Their 

frameworks are negatively charged due to Mn(III)/Mn(IV) mixed valency and as a result the tunnels 

play host to cations and water molecules. 

 The most common hollandite-type manganese oxide is cryptomelane, which has interstitial K
+
 

serving as a template for the 2x2 tunnels.  It can be prepared by a variety of methods, including reflux 

heating, hydrothermal treatment, and sol-gel processing. [3-5]  It is also generated in syntheses of 

hierarchical urchin-like nanostructured manganese oxides. [6,7]  The 3x3 todorokite structure is 

typically synthesized from layered buserite precursors under hydrothermal conditions.  Buserite is a 

layered manganese oxide with metal cations and water molecules in the inter-lamellar region.  

Todorokite is typically generated with divalent metals as the templating cation, particularly Mg
2+

 and 

cations of mid-late first-row transition metals. [8-10]  Syntheses of hollandite and todorokite can also be 

designed for isomorphous doping of metal cations into the manganese oxide framework. [9-12] 

 In a previous communication, we reported the synthesis under hydrothermal conditions of a 

hollandite-type manganese oxide with Cr
3+

 in both interstitial and framework locations. [13]  The 

appearance of Cr-hollandite is unique because divalent and trivalent transition metal cations were 

previously known only as templates for the todorokite structure. [8-10]  Here we report further 

investigation into the formation of Cr-hollandite, including the influence of Cr
3+

 both in tunnel and 

framework sites, as well as efforts to generate similar materials using other cations.  We also examine 

the catalytic activity of Cr-hollandite in benzyl alcohol and carbon monoxide oxidation reactions. 
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Material and Methods 

 

 Reagent grade chemicals were obtained commercially and used as received.  Syntheses of 

layered birnessite- and buserite-type manganese oxides were based on previously reported procedures. 

[10]  Abbreviations for manganese oxide materials are as follows: birn = birnessite (layered, 7 Å 

interlayer spacing); buse = buserite (layered, 10 Å interlayer spacing); holl = hollandite (2x2 tunnels); 

todo = todorokite (3x3 tunnels).  Interstitial cations are indicated in front of the material and framework 

dopants are in parentheses.  A designation of (0) indicates absence of framework dopant.  For example, 

Na-birn(Cr) is birnessite with interlayer sodium ion and manganese oxide framework doped with 

chromium ion; Na-birn(0) is sodium birnessite without framework dopant. 

 

Cr-holl(Cr)  

  A 1.69-g (10 mmol) sample of MnSO4·H2O was dissolved in 20 mL of water and 30 mL of 6 M 

NaOH was added slowly with stirring.  The resulting tan slurry of Mn(OH)2 was stirred for 10 minutes, 

then a solid mixture of 1.89 g (7.0 mmol) K2S2O8 and 0.37 g (1.4 mmol) CrCl3·6H2O was added 

incrementally over 45 minutes.  The resulting black slurry was allowed to age for at least one week.  The 

aged sample of Na-birn(Cr) was then filtered, washed 3 times with water, immediately slurried in 50 mL 

of 0.25 M Cr(NO3)3, and stirred overnight.  The resulting Cr
3+

-exchanged Cr-buse(Cr) was filtered and 

washed 3 times with water.  The damp Cr-buse(Cr) was loaded into a 30-mL Teflon-lined stainless steel 

autoclave, slurried with about 15 mL of water, and heated at 160 °C for 1 week.  Black Cr-holl(Cr) was 

isolated by filtration, washed 3 times with water, and dried at 110 °C.  A typical yield was 0.5 g. 

 

Cr-holl(0) 

 Na-birn(0) was prepared, aged, and isolated similarly to Na-birn(Cr) above but without addition 

of CrCl3·6H2O.  Ion exchange was carried out in 20 mL of 1.0 M Cr(NO3)3 with stirring for 24 h.  The 

resulting Cr-buse(0) was filtered without washing and treated hydrothermally at 160 °C for 1 week.  

Grey-black Cr-holl(0) was isolated by filtration, washed 3 times with water, and dried at 110 °C. 

 

K-holl(Cr) 

 By hydrothermal treatment of K-birn(Cr).  Na-birn(Cr) was prepared, aged, and isolated as 

above.  Ion exchange was carried out in 50 mL of 1.0 M KNO3 with stirring overnight.  The resulting K-

birn(Cr) was filtered, washed 3 times with water, slurried with a 15 mL solution of 0.1 M HCl and 1.0 M 

KCl, and treated hydrothermally at 160 °C for 1 week.  Black K-holl(Cr) was isolated by filtration, 

washed 3 times with water, and dried at 110 °C. 

 By calcination of K-birn(Cr).  K-birn(Cr) was prepared as above.  After drying at 110 °C, the 

sample was calcined at 500 °C for 2 hours.  Black K-birn(Cr) was washed 3 times with water and dried 

at 110 °C. 

 

M-birn(Cr), M = Mg
2+

, Fe
3+

, Ga
3+

 

 Ion exchange of Na-birn(Cr) was carried out in 25 mL solutions of 0.25 M metal nitrate with 

stirring overnight.  Mg(NO3)2·6H2O and Fe(NO3)3·9H2O were used for Mg
2+

 and Fe
3+

, respectively.  

Gallium nitrate was obtained with indeterminate waters for hydration, Ga(NO3)3·xH2O, so a value of 

x=9 was used. 

 

Na-birn(M), M = Mg
2+

, Fe
3+

 

 Na-birnessite(M) was prepared as described for Na-birn(Cr) above, except Mg
2+

 and Fe
3+

 

substituted for Cr
3+

 in the same mole quantity using MgSO4·7H2O and Fe(NO3)3·9H2O, respectively. 

 

Catalysis with Cr-holl(Cr) 



 Catalytic oxidation of benzyl alcohol to benzaldehyde was performed in batch mode.  A 50-mg 

sample of Cr-holl(Cr) was slurried with 10 mL of toluene and 1 mmol of benzyl alcohol.  The mixture 

was heated at reflux for 4 hours, after which the catalyst was removed by filtration and the filtrate 

analyzed by GC-MS. 

 CO oxidation catalysis was examined in a flow reactor using a 100-mg sample of Cr-holl(Cr) 

pre-purged at 180 °C in He prior to exposure to the reaction mixture.  The catalyst was equilibrated at 

the experimental temperature in a 1% CO + 1% O2 in N2 mixture.  Flow was initiated at a space velocity 

of 35,000 mL/h·gcatalyst.  After 20 minutes, the flow over the catalyst was directed to an online SRI 

8610C GC equipped with a silica gel column and TCD detector. 

 

Characterization 

 Powder X-ray diffraction (XRD) patterns were obtained with a Rigaku Miniflex diffractometer 

using Cu K-radiation.  The operating voltage and current were 30 kV and 15 mA, respectively.  Scan 

rates were 2.5 °/min.  Sloped backgrounds were observed in low-intensity patterns due to fluorescence 

by chromium and could not be adequately corrected with background subtraction.  Scanning electron 

microscopy was performed with a LEO 435VP SEM using an acceleration voltage of 20 kV.  Energy 

dispersive analysis with X-rays (EDAX) was performed with an Oxford Instruments EDAX analyzer.  

Transmission electron microscopy was performed with an FEI Morgagni TEM using an acceleration 

voltage of 100 kV.  Samples were mounted on holey carbon coated Cu grids.  Thermogravimetric 

analyses were carried out using a TA instruments Q50 TGA under a N2 atmosphere and with a heating 

rate of 15 °C/min.  Total surface areas were determined by BET measurements with a Micromeritics 

Gemini V surface area analyzer.  Elemental analyses of metals were determined by atomic absorption 

spectroscopy using a Varian 240FS AA.  GC-MS was performed with a Hewlett-Packard 5890 GC 

coupled to a 5971 MSD.  Cyclic voltammetry was run on a CH Instruments electrochemical analyzer 

using carbon paste electrodes with 30% loading of manganese oxide. 

 

Results and Discussion 

 

Cr-holl(Cr) 

 The synthesis of Cr-hollandite is shown in Scheme 1.  XRD and SEM data for Na-birn(Cr) and 

Cr-buse(Cr) are shown in Figs. 2 and 3, respectively.  The XRD pattern of Na-birn(Cr) exhibits weak 

signals, indicating poor crystallinity even after prolonged aging, Fig. 2(a).  By contrast, patterns of Na-

birnessite generated without Cr in the framework (Na-birn(0)) were much stronger.  Nonetheless, ion 

exchange with Cr
3+

 produces Cr-buse(Cr) with good crystallinity based on a well-defined XRD pattern, 

Fig. 2(b).  Incorporation of an additional layer of interlamellar water results in the expected peak shift 

for 7.0 Å interlayer d-spacing in Na-birn(Cr) to 9.6 Å spacing in Cr-buse(Cr).  SEM images of both 

layered materials show the anticipated platelet morphology, Fig. 3.  Elemental analyses and TGA 

measurements give formulas for Na-birn(Cr) and Cr-buse(Cr) of Na0.25Cr0.14MnO2.13·0.89H2O and 

Cr0.32MnO2.24·1.24H2O, respectively. 

 Hydrothermal treatment of Cr-buse(Cr) yields hollandite-type manganese oxide with chromium 

in both interstitial and framework sites, Cr-holl(Cr).  Progress of the reaction was monitored by XRD 

over the course of a week, Fig. 4.  The buserite structure is lost within hours, followed by growth of the 

Cr-holl(Cr) XRD pattern.  After two days, the pattern remains relatively unchanged but SEM reveals a 

thickening of the rod shaped particles across 2-7 days, Fig. 5.  SEM and TEM images obtained at earlier 

stages of the hydrothermal reaction suggest more than one mechanism of particle growth at work, Fig. 6.  

Striations in the Cr-buse(Cr) platelets resembling wooden floorboards indicate that rod formation occurs 

by collapse of the layered structure.  At the same time, rods exceeding the diameter of the platelets are 

also observed, suggesting a solid-dissolution-solid growth process that promotes both elongation and 

thickening of the rods.  Both processes have been proposed for the formation of tunneled manganese 



oxides from layered structures. [10,14-16]  In this system, it appears the layered structure initially 

collapses to form tunnels around the Cr
3+

 template, resulting in platelet conversion into rods.  The solid-

dissolution-solid process then takes place with lateral growth being favored over elongation. 

 The formation of Cr-holl(Cr) is unique.  Layered buserites with interlayer transition-metal 

cations were previously known only as precursors for todorokites. [8-10]  Hollandites with interstitial 

transition metals are obtainable through ion exchange of K
+
 in cryptomelane, but these substitution 

reactions are incomplete. [17,18]  Indeed, only one other purely transition-metal hollandite, Ag-

hollandite, has been reported to date [19-21] and none are known with transition-metal cations having 

charges greater than 1+. 

 Elemental analysis, EDAX, and TGA were used to determine a composition of Cr0.30MnO2..4 for 

Cr-holl(Cr).  Analyses of the layered precursors give Cr:Mn ratios of 0.14 for Na-birn(Cr) and 0.32 for 

Cr-buse(Cr).  Thus the formula of Cr-buse(Cr) can be written as Cr0.16(Cr0.14Mn)O2.4 to express the 

distribution of Cr
3+

 in tunnel and framework sites.  Loss of chromium in the hydrothermal conversion of 

Cr-buse(Cr) to Cr-holl(Cr) is supported by the detection of chromium in the aqueous supernatant after 

reaction.  Direct measurement of the Mn oxidation state by redox titration was not carried out because 

Cr-doped manganese oxides do not suitably dissolve for analysis.  However, a value of 3.9 can be 

calculated from the analytical data that was used to determine the chemical formula.  TGA reveals a lack 

of interstitial water, which is common in hollandite type manganese oxides, Fig. 7.  The weight loss of 

8% from 350-560 °C is due to oxygen evolution and concomitant formation of the Mn2O3 structure.  

Subsequent 4% loss from 560-630 °C corresponds to formation of the Mn3O4 structure.  Surface area 

analysis by BET gives a value of 37 m
2
/g, which is below the range of 50-250 m

2
/g typically cited for 

cryptomelane materials. [1]  This can be attributed to the morphological preference of Cr-holl(Cr) for 

thick rods instead of more commonly observed needles and fibers. 

 

Cr-Holl(0) 

 To investigate the influence of Cr in the manganese oxide framework sites, layered precursors 

Na-birn(0) and Cr-buse(0) were prepared without isomorphous doping of Cr
3+

 in the layers.  This 

resulted in a difficult conversion of Cr-buse(0) into Cr-holl(0).  Week-long hydrothermal treatment of 

Cr-buse(0) yielded poorly crystalline hollandite, Fig. 8.  Crystallinity was not noticeably improved with 

longer reaction times and higher temperatures.  SEM images reveal fibrous morphologies, with regions 

of needles and long wires, Fig. 9.  So despite a poorly crystallized hollandite structure in the absence of 

framework Cr
3+

, the morphology of Cr-holl(0) is well defined.  The preference to form needles and 

wires is typical of cryptomelane and other hollandite-type manganese oxides, but contrasts the thicker 

Cr-holl(Cr) rods obtained when Cr
3+

 is present as part of the tunnel framework.  The relatively low 

surface area of 33 m
2
/g and lack of interstitial water as measured by TGA are same characteristics to Cr-

holl(Cr).  The analyzed formula of Cr-holl(0) was determined to be Cr0.18MnO2.2.  In comparing the 

crystallinity and morphology of Cr-holl(0) vs. Cr-holl(Cr), it appears that framework doping of Cr
3+

 

facilitates formation of the 2x2 hollandite tunnel structure but inhibits lengthening of the nanorods into 

needles and wires. 

 

Other Hollandite and Todorokite Derivatives 

 To further investigate the importance of framework and interstitial Cr
3+

 in tunneled manganese 

oxides, reactions were investigated using other cations commonly found in synthetic hollandites and 

todorokites.  Given the prevalence of cryptomelane (K-holl) in hollandite chemistry, K-holl(Cr) was 

targeted to ascertain if Cr
3+

 as a framework dopant would have a disruptive effect on tunnel formation.  

Calcination of K-birnessite is a known synthetic route to cryptomelane [3,22] so similar treatment was 

applied to K-birn(Cr) after preparation by ion exchange with Na-birn(Cr).  Heating at 500 °C for 2 h 

produced crystalline K-holl(Cr), demonstrating that framework Cr
3+

 does not affect the formation of 2x2 

hollandite with interstitial K
+
.  This was confirmed by XRD, Fig. 10.  SEM images reveal nanorods that 



are much smaller than those of Cr-holl(Cr) and Cr-holl(0), Fig. 11.  K-holl(Cr) can also be obtained by 

hydrothermal treatment of a K-birn(Cr) slurry in 0.1 M HCl/1 M KCl for one week at 160 °C.  Acidic 

conditions are conducive to hollandite formation [3] and excess potassium ion minimizes proton 

exchange during the reaction.  The morphology is similar to that of K-holl(Cr) from calcination.  The 

two routes also yield similar compositions.  K-holl(Cr) obtained by calcination of K-birn(Cr) has a 

formula of K0.20Cr0.13MnO2.28 while K-holl(Cr) synthesized via hydrothermal treatment analyzed as 

K0.16Cr0.16MnO2.27. 

 The influence of framework Cr
3+

 was also examine on a todorokite synthesis using Mg-buse(Cr) 

under hydrothermal conditions.  Mg
2+

 is a common tunnel cation in synthetic todorokites, starting from 

Mg-buserite as a layered precursor.  Mg-buse(Cr) is readily prepared by ion exchange of Na-birn(Cr) 

with Mg(NO3)3 and subsequent hydrothermal treatment generates Mg-todo(Cr) with an analyzed 

formula of Mg0.16Cr0.14MnO2.20·0.63H2O.  The XRD patterns of Mg-buse(Cr) and Mg-todo(Cr) are 

shown in Fig. 12.  As reported by our group and others, these patterns are similar. [9,10,23,24]  TEM 

images show a mixture of rods and platelets, Fig. 13, which has been observed in other todorokite 

systems. [10,24,25]  However, in this system the particle sizes are considerably smaller and the rod 

shapes are more blunt.  This is consistent with the influence of Cr
3+

 as a framework dopant in Cr-

holl(Cr), Fig. 5.  Mg-todo(Cr) also displays a cyclic voltammetric response in a carbon paste composite 

that is absence with Mg-buse(Cr), [10] with broad cathodic and anodic peaks being observed at -0.72 

and +0.07 V respectively vs. SCE.  Another Mg-todo(Cr) material was recently synthesized by reacting 

Mn(CH3COO)2 and K2CrO4 in the presence of Mg(CH3COO)2 under aqueous reflux. [26]  The 

procedure incorporates even higher levels of Mg
2+

 and Cr
3+

 according to the published formula of 

Mg0.23Cr0.35Mn0.65O2.05·xH2O. [26] 

 In addition to serving an interstitial cation, Mg
2+

 has been employed as an isomorphous dopant in 

the todorokite framework to stabilize the 3x3 tunnel structure. [9,10]  Synthetic attempts were therefore 

made at Cr-buse(Mg) to see if framework Mg
2+

 would exert a similar stabilizing effect in the presence 

of interstitial Cr
3+

 and to determine if a preference would emerge for the hollandite or todorokite 

structure.  However, hydrothermal treatment of Cr-buse(Mg) gave no reaction. 

 Syntheses of K-holl(Cr) and Mg-todo(Cr) are not altogether surprising.  In hollandites, K
+
 is 

known as an excellent template for the 2x2 tunnel structure, both with and without foreign cation 

dopants in the manganese oxide framework.  Mg
2+

 is a similarly effective template for the 3x3 

todorokite system.  However, the inhibiting effect of framework Mg
2+

 in attempts to generate tunneled 

structures with interstitial Cr
3+

 was unexpected.  Indeed, with interstitial Cr
3+

 now established in 

hollandites and framework Mg
2+

 being well known in todorokites, it was predicted that one of the two 

tunneled materials, Cr-holl(Mg) or Cr-todo(Mg), would be obtained.  But in fact the presence of 

interstitial Cr
3+

 and framework Mg
2+

 together in the same system promotes neither. 

 Syntheses of Fe- and Ga-hollandites were also investigated, given the closeness of Fe
3+

 and Ga
3+

 

in size and charge to Cr
3+

.  Buserites with Fe
3+

 and Ga
3+

 as interlayer occupants or framework dopants 

were examined to determine if these materials would likewise serve as precursors to hollandite-type 

manganese oxide.  However, this proved not to be the case.  Buserites with Fe
3+

 in combination with 

Cr
3+

 were prepared as Fe-buse(Cr) and Cr-buse(Fe) and these materials were hydrothermally treated 

similar to Cr-buse(Cr).  In the case of Fe-buse(Cr), a weakly diffracting product was obtained with XRD 

peaks at 2.41, 2.12, and 1.64 Å, which most closely resembled the pattern of the MnO2 polymorph, 

akhtenskite (PDF#33-0820).  With Cr-buse(Fe), the only crystalline product represented in the XRD 

pattern had peaks at 4.38, 2.51, 2.39, and 1.85 Å, corresponding to HCrO2 (PDF#33-0600), with no 

crystalline manganese oxide phase being detected.  Buserite with interlayer Ga
3+

 was prepared, Ga-

buse(Cr), but this material was unresponsive to hydrothermal treatment.  Efforts to dope Ga
3+

 into 

layered frameworks of birnessite and buserite were unsuccessful, yielding only amorphous material by 

XRD and little or no detection of Ga by EDAX.  

 



Influence of Cr
3+

 on Hollandite Formation 

 Synthetic efforts at Cr-hollandite using Cr-buse(Cr), Cr-buse(0), and Cr-buse(Mg) as precursors 

reveal the importance of framework Cr
3+

 in promoting the 2x2 tunnel structure.  With interstitial Cr
3+

 

being constant in all three cases: 1) the presence of framework Cr
3+

 led to crystalline Cr-holl(Cr); 2) its 

absence resulted in poorly crystalline Cr-holl(0), and 3) substitution of Mg
2+

 as the framework dopant 

failed to produce any tunneled manganese oxide.  In addition, the ready formation of K-holl(Cr) from K-

birn(Cr) via calcination and hydrothermal treatment demonstrates that framework Cr
3+

 does not interfere 

with established synthetic routes to hollandite.  The lack of tunnel formation with framework Mg
2+

 and 

interstitial Cr
3+

 is particularly interesting given the proven utility of framework Mg
2+

 in todorokite 

syntheses and interstitial Cr
3+

 in hollandite preparation. 

 Interstitial Cr
3+

 plays a necessary role in Cr-hollandite formation.  Efforts to synthesize 

hollandites with other trivalent cations such as Fe
3+

 and Ga
3+

 were unsuccessful despite their identical 

charge and similar ionic radii. (For coordination number 6: Cr
3+

, 0.615 Å; Fe
3+

 0.645 Å; Ga
3+

, 0.62 Å. 

[27])  So while Cr-holl(Cr) is readily synthesized, Fe-holl(Cr) and Ga-holl(Cr) have thus far been 

unattainable.  Hydrothermal treatment of their buserite precursors yields non-porous oxide materials or 

no reaction.  When a divalent cation (Mg
2+

) is substituted for interstitial Cr
3+

 in the buserite precursor, 

Mg-buse(Cr), hydrothermal treatment produces the expected Mg-todo(Cr). [8-12]  

 

Catalysis 

 Manganese oxides are a well-known class of catalytic materials.  Hollandite-type manganese 

oxides in particular have attracted considerable interest for oxidation reactions.  The ability of Cr-

holl(Cr) to promote oxidation reactions was therefore investigated to assess the influence of chromium 

ion on hollandite catalytic activity.  In converting benzyl alcohol to benzaldehyde, the material is 

moderately active.  Reactions carried out in refluxing 0.1 M solutions of benzyl alcohol in toluene with 

Cr-holl(Cr) resulted 40-50% conversion after 4 h.  These results are in the range of moderate to high 

catalytic activity in cryptomelane (K-hollandite) for the same reaction. [28,29]  Glaser and co-workers 

found catalytic oxidation of benzyl alcohol by cryptomelane to be directly correlated with surface area. 

[28]  Based on these results, the relatively low surface area of 37 m
2
/g for Cr-holl(Cr) suggests a mild 

enhancement of catalytic activity due to the presence of Cr
3+

.  Suib and co-workers established a more 

effective approach to increased activity by substituting protons for potassium ions in cryptomelane. [29] 

 Cr-holl(Cr) was also examined as a catalyst for CO oxidation.  Conversions to CO2 of 45-50% 

were achieved at 200 °C.  These results do not improve on the performance of cryptomelane as a CO 

oxidation catalyst. [30,31] 

 

Conclusions 

 

 Chromium(III) ion uniquely promotes the formation 2x2 tunneled hollandite-type manganese 

oxide from layered buserite precursors.  It plays a crucial role both as an interstitial cation and an 

isomorphous framework dopant.  Interstitial Cr
3+

 can be replaced by K
+
 and Mg

2+
 to prepare K-

hollandite (cryptomelane) and Mg-todorokite with Cr
3+

 remaining in the framework, demonstrating that 

isomorphous doping of Cr
3+

 does not hinder established reactions of tunneled manganese oxides.  

However, attempts to generate the hollandite structure by replacing Cr
3+

 with other trivalent cations such 

as Fe
3+

 and Ga
3+

 were unsuccessful despite identical charge and similar ionic radii.  The reason behind 

this unique chemistry with Cr
3+

 remains unclear.  Cr-holl(Cr) is a modest oxidation catalyst for benzyl 

alcohol and carbon monoxide.  
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Figure Captions 

 

 Fig. 1 Structures of tunneled manganese oxides: 2x2 hollandite and 3x3 todorokite. 

 

 Fig. 2.  XRD patterns and d-spacings for (a) Na-birn(Cr) and (b) Cr-buse(Cr). 

 

 Fig. 3.  SEM images of (a) Na-birn(Cr) and (b) Cr-buse(Cr). 

 

 Fig. 4  XRD patterns of Cr-holl(Cr) at different hydrothermal reaction times.  The peaks can 

 be indexed against tetragonal cryptomelane (PDF #42-1348). 

 

 Fig. 5 SEM images of Cr-buse(Cr) after (a) 2 days and (b) 7 days. 

 

 Fig. 6  (a) SEM and (b) TEM images of Cr-holl(Cr) formation after 8 h of reaction. 

 

 Fig. 7  TGA of Cr-holl(Cr). 

 

 Fig. 8  XRD pattern of Cr-holl(0). 

 

 Fig. 9 SEM images of Cr-holl(0). (a) region displaying needles; (b) region displaying nanowires. 

 Note the change in scale bar. 

 

 Fig. 10  XRD pattern of K-holl(Cr). 

 

 Fig. 11  SEM images of K-holl(Cr) prepared from K-birn(Cr): (a) by calcination; (b) by 

 hydrothermal treatment. 

 

 Fig. 12  XRD patterns and d-spacings for (a) Mg-buse(Cr) and (b) Mg-todo(Cr). 

 

 Fig. 13  TEM image of Mg-todo(Cr). 

 

 

 Scheme 1.  Synthesis of Cr-holl(Cr). 
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