
Connecticut College
Digital Commons @ Connecticut College

Computer Science Faculty Publications Computer Science Department

10-2012

Evolving Expert Agent Parameters for Capture the
Flag Agent in Xpilot
Gary Parker
Connecticut College, parker@conncoll.edu

Sarah Penrose
Connecticut College, spenrose@alumni.conncoll.edu

Follow this and additional works at: http://digitalcommons.conncoll.edu/comscifacpub
Part of the Robotics Commons

This Conference Proceeding is brought to you for free and open access by the Computer Science Department at Digital Commons @ Connecticut
College. It has been accepted for inclusion in Computer Science Faculty Publications by an authorized administrator of Digital Commons @
Connecticut College. For more information, please contact bpancier@conncoll.edu.
The views expressed in this paper are solely those of the author.

Recommended Citation
Parker, G.; Penrose, S., "Evolving expert agent parameters for capture the flag agent in Xpilot," Systems, Man, and Cybernetics (SMC),
2012 IEEE International Conference on , vol., no., pp.791,796, 14-17 Oct. 2012 doi: 10.1109/ICSMC.2012.6377824

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DigitalCommons@Connecticut College

https://core.ac.uk/display/46706289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.conncoll.edu?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/mathcomsci?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bpancier@conncoll.edu

Evolving Expert Agent Parameters for Capture the Flag Agent in Xpilot

Keywords
Xpilot-AI; evolutionary computation; autonomous agent; genetic algorithm

Comments
© 2012 IEEE

DOI10.1109/ICSMC.2012.6377824

This conference proceeding is available at Digital Commons @ Connecticut College: http://digitalcommons.conncoll.edu/
comscifacpub/16

http://dx.doi.org/10.1109/ICSMC.2012.6377824
http://digitalcommons.conncoll.edu/comscifacpub/16?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub/16?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages

Evolving Expert Agent Parameters for
Capture the Flag Agent in Xpilot

Gary Parker and Sarah Penrose
Department of Computer Science

Connecticut College
New London, CT, USA

parker@conncoll.edu, spenrose@conncoll.edu

Abstract—Xpilot is an open source, 2d space combat game.
Xpilot-AI allows a programmer to write scripts that control an
agent playing a game of Xpilot. It provides a reasonable
environment for testing learning systems for autonomous agents,
both video game agents and robots. In previous work, a wide
range of techniques have been used to develop controllers that
are focused on the combat skills for an Xpilot agent. In this
research, a Genetic Algorithm (GA) was used to evolve the
parameters for an expert agent solving the more challenging
problem of capture the flag.

Keywords – Xpilot-AI; evolutionary computation; autonomous
agent; genetic algorithm

I. INTRODUCTION
Video games are popular for entertainment and many can

be used to test autonomous agent control programs. It is
desirable that these agents are competitive so that the human
player is challenged. Creating competitive non-player agents
can be difficult, especially if a diversity of controller or agents
that can adapt are desired. One method of learning that can
create distinct competitors and has the potential for adapting to
different players is Evolutionary Computation (EC). Video
games can make viable test beds for researching different
methods for evolving control programs for autonomous agents
including actual robots. The video game used for this research,
Xpilot, is an excellent environment due to its low
computational requirements and the Xpilot-AI add-on that
allows a user to create an agent to control ships during the
game [1].

Many researchers choose to use video games to test various
artificial intelligence techniques because they offer a large
dynamic environment. These environments make the learning
that is required for an evolved agent to compete seriously in
these games much more challenging. The resultant evolved
solutions for video game agents are also often more versatile,
because they are not hard-coded, and may develop strategies a
human programmer would never consider.

 Research with learning control for video game agents has a
long history. In the past, researchers have evolved agents for
the video game Quake3, a 3-dimensional multiplayer game [2].
They used genetic algorithms to evolve an agent that preformed
better than the bot provided with the game, and then went on to
co-evolve opponents to use instead of the provided bot. In other

work, the game Pac-Man was used to consider a predator-prey
scenario [3]. In this case, the connection weights for a neural
network were evolved by a GA to serve as the control for the
predators’ team behavior. Another example is the development
of an agent to play a real-time strategy game known as DEF-
CON through a combination of artificial intelligence
techniques such as simulated annealing, decision tree learning,
and case-based reasoning [4].

The goal of the research reported in this paper is to create a
competitive agent for Xpilot, a 2D combat-based video game.
Many experiments to evolve agents for the Xpilot environment
have been completed in the past, although all have concentrated
on the development of agents for a combat role. The
parameters for a combat expert agent were successfully
evolved [5], using a standard GA. Other artificial intelligence
strategies, such as multi-layer neural networks [6] and
reinforcement learning [7], have also been used.These
approaches have all been successful strategies to make a better
Xpilot combat agent. In most of these works, the agent
developed was far superior to those provided by the game.

The research reported in this paper differs from previous
work in Xpilot because it explores the capture the flag game
mode rather than the traditional combat scenario. The typical
combat style of game play in the Xpilot environment has
agents that may be controlled by either a computer script or a
human player. In the capture the flag mode, which has yet to be
researched, agents are still controlled by scripts or humans in a
combat environment. However, the goal is no longer to destroy
their opponents, but instead to retrieve the opposing team’s
flag, a large ball, and drag it to a goal to receive points. The
control for this type of play is more difficult, as humans
playing the game can easily attest. The ball is massive and
difficult to drag by a ship, which has much less mass. In this
paper we discuss the evolution of an agent whose goal is to
move toward the ball, pick it up, and transport it to the goal. An
expert agent was written and a GA was used to evolve the
parameters for that agent.

II. XPILOT-AI
Xpilot-AI is a modification of the computer game Xpilot, a

2-dimensional space game (Figure 1), most often played in a
combat scenario, but with the capabilities for capture the flag
and racing. Xpilot has server and client and client components,

with the server handling the game-wide configuration and is
the central source for all information about each ship and object
in the game. The client gets this information from the server,
accepts the commands of the user and relays them to the server.
This allows the user to thrust, shoot, and pick up objects.
Xpilot-AI works in between the client and the server, so that
the information about the game is available to a programmer. A
typical Xpilot server runs at 16 frames per second. Between
each frame, the server and client exchange information, and
Xpilot-AI intercepts the communications to obtain necessary
information for the user. The programmer can write scripts that
get info from functions Xpilot-AI provides, use this
information to determine what actions to take depending on the
situation, and set variables describing this action that the client
sends back to the server.

Figure 1. The Xpilot Environment. The ship is shown in the center in black,
and is surrounded by a shield. The green blocks along the edges and in the
upper left are walls, and in the lower right hand corner there is a base (the two
signifies that it is a base for team two). The background is typically black,
with a white ship and blue walls, but the colors have been inverted to save
printer ink and so that the details can be seen.

Xpilot-AI provides many functions to the programmer that
give information about the current state of the game. For
example, the speed of the ship and its location are available, as
well as the speeds and locations of any other ships currently
playing in the map. The programmer also has the ability to get
the location and heading of the bullets that are in play, and the
ability to determine if there is a wall between two points. The
programmer can make use of this information in a control
program that determines when to determine when to turn,
shoot, and thrust. These control programs can take many forms,
but one means of writing a control program is to write a rule-
based system, using rules such as “if there is an enemy close
by, then turn toward the enemy and shoot at the enemy.” This
rule would check the functions provided by Xpilot-AI to
determine if the agent is close and then call functions that cause
the agent to turn and to shoot.

III. GENETIC ALGORITHMS
A Genetic Algorithm is a form of computational

intelligence (a subset of artificial intelligence) that attempts to
mimic natural selection and heredity [8]. In the natural world, a
species’ traits can shift over generations of time in response to
changes in the environment. The individuals that are best suited
to deal with those changes are more likely to reproduce, and
thus those traits are passed to the next generation. A genetic
algorithm attempts to replicate this phenomenon to find the
solution to a problem.

 To initialize, a population of random chromosomes is
created. A chromosome represents a possible solution to the
problem, and is typically represented as a string of binary
digits. Each chromosome, or individual, of the population is
evaluated to determine how well it solves the problem. The
next population is generated by recombining individuals in the
current population. To accomplish this, two parents are chosen
from the current generation. This selection process has a
random element, but chromosomes that preformed better
during evaluation have a greater chance of being selected. A
common method of selection is called roulette wheel selection,
in which each member of the population is assigned a portion
of a roulette wheel (circle), with the size of the portion
dependent on the fitness. A random point on the circle is
determined, and whichever chromosome has that point of the
circle inside of its designated area is selected. Two distinct
parents are selected in this way and are recombined together to
create a new individual that will be placed into the next
generation.

A standard method of recombination, known as crossover,
is done by choosing a random point from within the
chromosome. From the first chromosome, everything is taken
up to that point, while the second chromosome supplies the
latter part of the new chromosome. These two sections are then
joined together to create a new chromosome. Once the
chromosome has been generated, there is a chance for it to
undergo mutation. Mutation is included because it occurs in
natural evolution, even though it is typically detrimental. In
biology, mutation rarely produces a more viable offspring
because there are typically many more opportunities for the
mutation to cause harm rather than better the child. Because
mutation is not often beneficial there is a low probability, for
example, one in one three hundred, of it happening. Each gene
in the chromosome, each one or zero, is considered in turn and
has a chance of being flipped. A mutation could turn the
chromosome ‘101’ into ‘100’ if the last bit happened to have
been selected.

Although mutation is typically bad, in some rare instances
it can create a better or different solution. Consider the case
when a population of chromosomes has the identical bits in one
spot, i.e. every chromosome has a zero for the fifth bit. When
crossover is done in this population, there is no possibility of
getting the zero in the fifth bit to change into a one. However,
through mutation, this gene can be switched and potentially
improve that chromosome.

Genetic algorithms are applicable in situations where brute
force algorithms are not possible and there are many possible
solutions that are less than optimal. In addition, a genetic

algorithm is best suited to a problem where there can be
multiple solutions that are not necessarily on the path to the
best solution. Gradient assent hill climbing, another method of
evolutionary computation, involves using mutation alone and
selecting the best to continue searching for the solution.
Because a genetic algorithm has both crossover and mutation, it
is much less likely to get stuck on an ineffective solution.
Having crossover allows for jumps in the search space that is
not possible with mutation alone.

IV. CAPTURE THE FLAG
In typical Xpilot play players fight each other in one-on-one

combat or in a team combat situation. In the capture the flag
game in Xpilot agents are divided into teams, and each team
has a ball that they must protect. The goal is to protect their
own ball from being taken and to steal the other teams’ ball and
bring it to their own goal for points (Figure 2 shows an agent
dragging a ball). The combat part of Xpilot is still in effect, so
players can shoot at each other in their pursuit or defense of a
ball. The unique challenges associated with capture the flag are
effectively controlling the ball and protecting the ball from the
other team. In addition, the agent will die if it touches the ball
or the goal, so it has to take care to maintain a safe distance.

This research is concentrating on the development of
controllers for an agent in the capture the flag scenario. The
developed agent is focused solely acquisition, control, and
delivery of the ball, without other agents in the game. In a
capture the flag game in Xpilot, an agent attempting to put the
ball in the goal can be in one of four situations. The first
situation is when the agent is travelling to the ball before the
ball has been acquired. At this stage the ball is stationary
because the ball does not move before an agent touches it. The
second situation occurs when the agent has picked up the ball
and is dragging it to the goal. In this stage, the ball is being
dragged behind the agent, making it difficult to maneuver.
Maneuvering in Xpilot is already hard because there is no
friction in space, and the ball is several times heavier than the
agent, which adds to the difficulty. The third scenario is the
release of the ball and timing it correctly so that the ball ends
up in the goal. The fourth scenario occurs when the user
attempts to pick up the ball while the ball is travelling
throughout the map. Ideally, the fourth scenario would not be
needed, but there can be times when the user has dropped the
ball, either by accident or in a failed attempt to deposit it in the
goal. If the ball has been dropped, it continues its movement
and only changes direction if it bounces off a wall or another
object.

Figure 2. Capture the Flag play in Xpilot. The agent has acquired the ball by pressing a key when close to the ball. Once acquired, it is connected by a tether. If
the agent pulls too hard, or turns too sharply, the tether will break. Since the ball has much more mass than the ship, it’s difficult to deal with its momentum. The
background is usually black, with blue walls (seen here in dark brown), a white ship, and a green ball (seen here in purple). The colors have been inverted to save
printer ink and so details can be seen. The left hand panal has not been changed.

In this research, we concentrated on the first three
situations. That is, the agent would attempt to move toward the
ball, pick it up, drag it to the goal, and deposit it there. While
the expert agent did have the capability to move towards a
moving ball, most of the tests did not cover this situation
because the expert agent did not typically drop the ball.

V. EVOLVING THE CONTROLLER
For this research, a GA was used to learn the parameters of

a rule-based system. This method of learning was selected
because it has been the most successful method used in
previous research in learning Xpilot combat agent controllers.

A rule-based system to serve as an expert agent was written
to move toward the ball, pick it up, and place it in the goal.
This rule-based system contained a number of rules that dictate
what actions to take in each scenario. These rules were written
by the researchers, but were far from optimal. There are a
number of numeric parameters that are used for control, though
their optimal value is not known. For example, the agent will
turn to avoid a wall if it is less than x distance away and
traveling at more than y speed. These parameters can be
determined by the programmer through hours of trial and error,
or can be learned by a GA.

Parameter Name

Max angle, ball,
screen, no wall

Min speed, ball,
screen, no wall

Max angle, ball,
screen, wall

Min speed, ball,
screen, wall

Max angle, ball,
radar, no wall

Min speed, ball,
radar, no wall

Max angle, ball,
radar, wall

Min speed, ball,
radar, wall

Max angle, ball,
not visible, no wall

Min speed, ball,
not visible, no wall

Max angle, ball,
not visible, wall

Min speed, ball,
not visible, wall

Max angle, goal,
no wall

Min speed, goal,
no wall

Max angle, goal,
wall

Min speed, goal,
wall

Wall feeler length,
reactive

Wall feeler length,
proactive

Velocity multiplier

Wall feeler angle

Max speed

Spin distance

Description

Max angle between agent and ball where the agent is considered to be pointing to the ball when the ball is on screen and there are no
walls

If the agent is going slower than this speed when the ball is on the screen and there no walls between the agent and the ball the agent
will thrust

Max angle between agent and ball where the agent is considered to be pointing to the ball when the ball is on screen and there are walls

If the agent is going slower than this speed when the ball is on the screen and there are walls between the agent and the ball the agent
will thrust

Max angle between agent and ball where the agent is considered to be pointing to the ball when the ball is on radar and there are no
walls

If the agent is going slower than this speed when the ball is on the radar and there no walls between the agent and the ball the agent
will thrust

Max angle between agent and ball where the agent is considered to be pointing to the ball when the ball is on radar and there are walls

If the agent is going slower than this speed when the ball is on the radar and there no walls between the agent and the ball the agent
will thrust

Max angle between agent and ball where the agent is considered to be pointing to the ball when the ball is not visible and there are no
walls

If the agent is going slower than this speed when the ball is not visible and there no walls between the agent and the ball the agent will
thrust

Max angle between agent and ball where the agent is considered to be pointing to the ball when the ball is not visible and there are
walls

If the agent is going slower than this speed when the ball is not visible and there no walls between the agent and the ball the agent will
thrust

Max angle between agent and goal where the agent is considered to be pointing to the goal when there are no walls

If the agent is going slower than this speed toward the goal and there are no walls between the agent and the goal the agent will thrust

Max angle between agent and goal where the agent is considered to be pointing to the goal when there are walls

If the agent is going slower than this speed toward the goal and there are walls between the agent and the goal the agent will thrust

Distance away the agent checks for walls when the agent gets too close

Distance away the agent checks for walls when planning path around the wall to the ball or goal

Number multiplied by speed to determine if thrust should be used to get by a wall

Angle at which the agent checks for walls

Above this speed the agent will slow down

Distance away from the goal the agent will begin to spin

Figure 3. Table describing the 22 parameters with descriptions for each

Another example of a parameter that needed to be learned
is the angle parameter that determines whether or not the agent
is pointing towards the goal. That is, if the agent is 5 degrees
off from pointing to the goal, does that count as pointing
towards the goal? Using an angle of zero difference would be
unreasonable because this rule would be very unlikely to ever
fire. On the other hand, if the difference between the agent’s
heading and the angle towards the goal was too large then the
agent would have trouble getting to the goal because it would
determine that it was pointing toward the goal even when it
wasn’t close, and would therefore go in the wrong direction.
The parameter needs to be fine tuned to be between the
extremes, something that the GA can do very well.

In total, 22 parameters were evolved (Figure 3). The first 16
represent whether or not the agent is going slow enough to
thrust and whether the agent is headed in the right direction.
When the agent is moving towards the ball, it either can see the
ball on the screen, can see the ball on radar, or cannot see the
ball, in which case the agent goes towards the last known
position. In each of these three cases, the agent can either have
walls between itself and the ball, or it can be empty space
between the agent and the ball. These three scenarios based on
wall position are therefore made into six scenarios based on
whether there is a direct path or not. The agent always knows
the exact location of the goal, but it again could have an
obstacle in the way. Therefore, in total, there are eight cases
that the agent can be in while playing: 6 based on the
knowledge about the ball and wall location, and two based on
wall position between the agent and the goal. Each of these
scenarios needs two parameters each, one based on speed and
one based on the angle difference allowed for the agent to be
considered to be pointing at its current target. These parameters
were allowed to be different based on the current game
scenario so that, for example, the agent could move faster if it
is far from the ball (ball on radar not on screen) and if there
were no walls between the agent in the ball.

These 16 parameters described were combined with six
others: two parameters relating to the distance that the agent
should check for walls, a multiplier for the velocity of the agent
to help determine if a wall was close enough to be a threat, the
angle at which the agent looks for walls, a speed at which the
agent is determined to be going too fast, and the distance away
from the goal that the agent should start its “spin.” Because the
agent cannot touch the goal, it must stay far enough away and
cause the ball to swing into the goal. In order to do this, when
the agent is within a certain radius of the goal it tries to move
away from the goal, and when it gets back outside the radius it
goes back to trying to move toward the goal. This back and
forth movement causes the ball to swing around and hopefully
get into the goal. This “spin distance” is the distance of the
radius of the circle that the agent should swing around the goal.

These twenty-two parameters were combined into a single
chromosome to be learned by the GA. In order to allow the GA
to learn the optimal parameter from a wide range of possible
values, each parameter was assigned four or six bits, making
the entire chromosome ninety-four bits long. Some of the
parameters needed a larger range than the straight binary
conversion, so some of the parameters were multiplied by a
factor to increase their maximum value.

The 8 angle difference parameters were all 4 bits (a range
of 0-15) and were multiplied by 2 making the range 0-30 with
increments of 2. The 8 speed parameters are also 4 bits giving
them a range of 0-15. The wall feeler parameters were given 6
bits (making the range 0-64) and were multiplied by 10 so that
the range was from 0-640 with increments of 10. The
parameter to determine if the agent is moving too fast and the
speed multiplier are given 4 bits (0-15 range). Finally, the spin
distance parameter was assigned four bits giving it a range of
0-15.

A standard GA, as described in section 4, was used to learn
these parameters. The population size was chosen to be 128,
roulette wheel selection was used, and standard crossover was
employed. The mutation rate was one in 50. A typical server
runs at around 16 frames per second (FPS), but this research
uses 64 FPS to increase the speed in which the agent can learn.

Each individual was evaluated three separate times and the
fitness assigned to that chromosome was the average of those
three. The fitness function used for this agent was based mainly
on the Euclidian distance of the agent to the ball or to the goal.
If the agent had not yet reached the goal then its fitness was the
1000-x where x was the closest distance the agent ever was to
the ball. In this way, agents that went towards the ball were
rewarded more than agents who did not. If the agent reached
the ball and picked it up the agent’s fitness was then equal to
10,000-x, where x was the closest distance the agent ever was
to the goal. Finally, if the ball was put into the goal then fitness
awarded was 20,000.

VI. RESULTS
Six trials with randomly generated unique initial starting

populations were run for 245 generations. At each generation,
the fitness of every individual from the population was
determined by averaging three runs, each from different
starting locations.

Figure 4. Best fitness for six trials averaged together. At generation 60
lowest best fitness of the 6 trials was 7877 and the highest best was 13890. At
generation 120 the lowest best fitness of the six trials was 7887 and the
highest best was 13951. At generation 180 the lowest best fitness was 7877
and the highest best was 13970. At generation 240 the lowest best fitness was
13866 and the highest was 13970.

Figure 4 shows the average of the best individual from each of
the six populations for every generation from 0 to 245. The
figure shows that in most cases the agent has learned to go to
the ball, and bring the ball to the goal. The maximum fitness is
20,000, and that occurs when the agent brings the ball all the
way to the goal.

In all six trials, the average fitness of the best individual
was around 13,000 (Figure 4). The results for each map were
also looked at separately, and it was found that this 13,000 was
typically reached because the agent reached the ball and goal in
two of the maps (achieving around 20,000) and did very poorly
in the other map, attaining a fitness of less than 2000. The
reason for this is due to the fact that the base where the agent
starts is much closer to a wall than in the other two maps. This
resulted in much higher rate of collisions before the ball could
be reached. Although the agent typically did not reach the ball
and goal on this harder map, it was capable of doing it, just
with a much lower frequency. The parameters needed for the
harder map are likely different than the parameters needed for
the other two maps, so it was difficult to learn the optimal
parameters for all three maps. Nevertheless, there were
individuals in some of the trials that did reach the goal in all
three runs. This can be seen in generation 241 where one
individual from the six reached 20,000 and the other five were
around 14,000.

A look at the average fitnesses of all the individuals of the
six populations (Figure 5) also shows a steep learning curve in
the beginning, with continual slower learning after that, which
is typical in genetic algorithms.

Figure 5. The average fitness for the six trials was averaged and the results
are displayed above. At generation 60 the lowest average fitness was 4251 and
the highest was 9356. At generation 120 the lowest average fitness was 5622
and the highest was 9419. At generation 180 the lowest average fitness was
5648 and the highest was 8727. At generation 240 the lowest average fitness
was 6049 and the highest was 9234.

Observations of the agents in action reveal that as the agent
makes its way toward the ball it often spins, which slows the
agent down because it thrusts when it is pointing away from
where it is heading, and then turns back around and continues

towards the ball. This is a benefit since when the agent is going
too fast it is more likely to die when it hits a wall and it is more
likely to have difficulty turning away from the wall in time.
Therefore, this spinning and slowing down helps to prevent
deaths. Once it attaches to the ball, the agent spins much less
frequently because the agent does not reach speeds as high due
to the heavy weight of the ball. When the agent towing the ball
gets close to the goal it starts to spin again so that the ball will
swing into the goal while the agent is kept a safe distance
away.

VII. CONCLUSIONS AND FUTURE WORK
The results of this experiment indicate that the agent can

and has learned how to handle the ball and bring it to the goal
in capture the flag play. Viewing better agents from later
generations shows that they have a reasonable technique in
accomplishing performing this difficult task and are more
skilled at this task than the researchers in the lab. This is the
first learned control program capable of controlling an agent
performing capture the flag in Xpilot.

The maps used in this experiment were relatively small, as
the agent can only know where the ball is when it is on screen
or on radar. Future research could include having the agent
search the map until the ball is in radar contact using some sort
of AI search method. In addition, it would be interesting to
explore control learning for capture the flag while the agents
are engaging in one-on-one combat. In further work, team play
can be learned; this could involve heterogeneous agents where
one is the tow agent and others are escorts.

REFERENCES
[1] G. Parker and D. Arroyo, “The Xpilot-AI Environment,” Proceedings of

the 2010 World Automation Congress International Symposium on
Intelligent Automation and Control (ISIAC 2010), September 2010,
Kobe, Japan.

[2] S. Priesterjahn, O. Kramer, A. Weimer, and A. Goebels, “Evolution of
human-competitive agents in modern computer games,” Proceedings
of the 2006 IEEE Congress on Evolutionary Computation (CEC 2006),
Vancouver, BC, Canada, July 2006.

[3] G. Yannakakis and J. Hallam, “Evolving opponents for interesting
interactive computer games,” Proceedings of the 8th International
Conference on the Simulation of Adaptive Behavior (SAB 2004), pp.
499 – 508, 2004.

[4] R. Baumgarten, S. Colton, and M. Morris, “Combining AI methods for
learning bots in a real-time strategy game,” International Journal of
Computer Games Technology, vol. 2009.

[5] G. Parker and M. Parker, “Evolving parameters for Xpilot combat
agents,” Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Games (CIG 2007), Honolulu, HI, April 2007.

[6] G. Parker and M. Parker, “The evolution of multi-layer neural networks
for the control of Xpilot agents,” Proceedings of the 2007 IEEE
Symposium on Computational Intelligence in Games (CIG 2007),
Honolulu, HI, April 2007.

[7] M. Allen, K. Dirmaier, and G. Parker, “Real-time AI in Xpilot using
reinforcement learning,” Proceedings of the 2010 World Automation
Congress International Symposium on Intelligent Automation and
Control (ISIAC 2010), Kobe, Japan, September 2010.

[8] Mitchell, Melanie. An Introduction to Genetic Algorithms. 8th ed. MIT,
1996.

	Connecticut College
	Digital Commons @ Connecticut College
	10-2012

	Evolving Expert Agent Parameters for Capture the Flag Agent in Xpilot
	Gary Parker
	Sarah Penrose
	Recommended Citation

	Evolving Expert Agent Parameters for Capture the Flag Agent in Xpilot
	Keywords
	Comments

