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Abstract—In this paper we present a comparison of the effects of 
varying play speeds on a genetic algorithm in the space combat 
game Xpilot. Xpilot-AI, an Xpilot add-on designed for testing 
learning systems, is used to evolve the controller for an Xpilot 
combat agent at varying frames per second to determine an 
optimal speed for learning. The controller is a rule-based system 
modified to work with a genetic algorithm that learns numeric 
parameters for the agent’s rule base. The goal of this research is 
to increase the quality and speed of standard learning algorithms 
in Xpilot as well as determine a suitable speed for employing 
Punctuated Anytime Learning (PAL) in the Xpilot-AI 
environment. PAL is the learning component of an overall system 
of autonomous agent control with real-time learning. 

Keywords-Xpilot; Xpilot-AI; Punctuated Anytime Learning; 
Fitness Biasing; Genetic Algorithm; Real-time Learning; Video 
Game Learning; On-line learning; Autonomous system control 

I.  INTRODUCTION 
The objective of this research is to analyze the effects of 

frame rates in using genetic algorithms for learning combat 
behavior in the Xpilot-AI game environment. An important 
area of autonomous agent learning is interactive games. Having 
the ability to learn autonomous and intelligent behavior in 
games is beneficial to those who develop and improve games 
and to researchers in other areas as well. Computer games 
serve as an important test bed for methods of evolutionary 
robotics. The real-life nature of the physics in these games 
allows for an easy translation to real world applications. Xpilot, 
with the help of the Xpilot-AI learning add-on, is an 
environment where evolutionary systems can be tested for 
learning game agent behavior and robot control. 

Much work has gone into developing systems that use 
video game environments for the purpose of developing 
human-like agents through static and learning systems. When a 
population-based genetic algorithm is used for this learning, it 
is a benefit to be able to speed up the game’s frames per second 
(FPS) rate to increase the speed of learning. In Xpilot, the 
normal speed of play is 16 FPS. In order to speed up learning in 
past research, Xpilot was run at 64 FPS as a genetic algorithm 
(GA) needed to perform many experiments in attempts to 
develop intelligent behavior. In one work, a GA was used to 
evolve parameters for a rule-based system [1]. The rule-based 
system-controlled agent was altered to allow for learning by 
GA. It evolved optimal numeric parameters for the rules of the 
control program. In addition, GAs have been used to evolve 

weights for neural network-controlled agents [2]. Specific 
abilities were learned individually. Once the agent had 
successfully learned how to optimally perform each task in 
isolation, the three resultant agents were combined together 
using a multi-layer neural network. In other research, a cyclic 
genetic algorithm was used to directly evolve a control 
program for an Xpilot combat agent [3]. 

Observationally, running at 64 FPS appeared to be the 
fastest the system could run without encountering adverse 
effects on the quality of learning. A few attempts were made at 
128 FPS, but the agent’s performance led researchers to believe 
it was not learning as well as at 64 FPS. It was determined that 
the higher frame rates were not effective. However, since 
experimental testing was not done, it was determined that tests 
were needed to analyze the effects of varying frame rates on 
Xpilot agent learning. 

In an ideal situation, researchers would be able to run the 
game at considerably higher speeds, thus improving the speed 
of learning while making better use of the power of modern 
computers. Though a game learning at 64 FPS is a four-fold 
increase over the human-playable speed of 16 FPS, it can still 
take several hours for an agent to achieve near optimal 
behavior. At 64 FPS, we are not taking full advantage of the 
power of the computer, which runs at low capacity even with 
an Xpilot server and multiple client agents running. In this 
paper, we test a genetic algorithm evolving agents at a 
sequence of increasing FPS to experimentally determine the 
realistic break point for increased speeds in Xpilot. The intent 
is to determine if 64 FPS is the top speed where an agent can 
learn with acceptable degradation. 

In addition to exploring the effects of FPS rate to find the 
maximum feasible rate for use of a genetic algorithm, this work 
will also help in the development of a method of real-time 
learning during game play. Intelligent opponents that appear to 
learn, improve, and adapt are a large part of what makes a 
video game enjoyable. Creating artificially intelligent systems 
that are capable of doing so in real-time is, as a result, not only 
one of the most difficult aspects of video game development 
but also one of the most important [4]. In the DEFCON 
computer game, researchers used decision-tree learning and 
case-based reasoning combined with simulated annealing 
methods in order to create human-like behavior for game 
agents [5]. Others combined evolutionary learning techniques 
with neural networks by adding layers and connections to the 



network slowly while the game runs to allow their agent to 
learn increasingly complex behavior in real-time [6]. 

Real-time learning is an important aspect of learning 
systems for game agents as well as robots. It allows the system 
to continually learn and update as the agent performs its 
assigned tasks. In previous Xpilot research, real-time learning 
was attempted using evolutionary strategies [7]. Though the 
system was capable of real-time learning, its evolution was 
slower than through other methods due to its reliance on 
mutations of a chromosome to learn. As a result, it was 
determined to be ineffective. In other research [8], dynamic 
programming based reinforcement learning, specifically Q-
learning, was used to implement real-time learning for Xpilot 
agents. Due to the nature of reinforcement learning, the tests 
were done in very simple environments. Q-learning requires an 
accurate model of its environment to be successful. As the 
Xpilot combat environment is highly complicated, this 
technique was applied only to a single agent in a simple 
scenario with no opponents. Though it was a successful 
implementation of real-time learning, it was determined that it 
lacked the scalability required of a robust algorithm. As the 
system’s complexity increased, the agent’s ability to adapt 
rapidly deteriorated. 

The research reported in this paper will help in determining 
an acceptable maximum speed for Punctuated Anytime 
Learning (PAL). PAL, which was originally developed for 
evolutionary robotics [9], is the learning component of a 
system of autonomous agent control with real-time learning. In 
separate research, we are using PAL in an effort to find a 
method for learning Xpilot agent controllers in real-time, while 
engaged in combat with a human player. PAL was developed 
as a means of linking the offline learning, taking place in a 
simulation, with the actual robot. An agent using PAL as a 
learning system is split into two parts: the “real-world” agent 
and the “simulation” agent. The simulation agent performs 
learning on a model of the real-world environment. 
Periodically, the simulation agent communicates new and 
improved control programs to the real-world agent. At all 
times, the real-world agent takes the best of the control 
programs given to it by the simulation and uses that as its 
primary control program. In addition, when the simulation 
agent checks in with the real-world agent, the real-world agent 
returns information as to how well the new control programs 
worked in the real-world. The learning system then uses this 
information to improve the quality of its learning algorithm. In 
this way it is able to learn faster than the real-world agent while 
still maintaining accuracy and quality. 

The maximum acceptable speed for PAL learning in Xpilot 
can be higher than for typical GA learning since PAL is 
designed to compensate for discrepancies in the simulation. 
Determining max PAL FPS will help us in the development of 
a real-time learning system for Xpilot to learn controllers for 
game agents. The learning will take place in a simulation at 
increased FPS. After the agent has optimized its control 
program, we will compare how well the agents perform at 16 
FPS, the typical speed played by humans.  The analysis 
reported in this paper will help determine what effects the 
varying FPS have on the quality and outcome of the learning 

processes, and help us determine the maximum reasonable FPS 
for a PAL system. 

II. XPILOT-AI 
Xpilot-AI is based on Xpilot (Figure 1), which is an open 

source multiplayer two-dimensional space combat game 
consisting of two main components: the server and the client. 
The server is used to configure settings for a game. For 
example, it can change the number of frames per second (FPS) 
in a game and the map being used. It is also the server’s 
responsibility to track the players playing the game, their 
scores, and other information. The users control the client to 
play the game. Specific keystrokes allow the users to control 
their ship by thrusting, turning, and shooting. Xpilot contains 
relatively realistic physics. Agents explode if they run into a 
wall too fast, but will merely bounce off and lose some speed if 
they run into a wall at a very slow speed.  Since the 
environment is in a space setting, an agent can glide without 
thrusting and still maintain constant velocity. 

 

 
Figure 1.  The Xpilot environment.   Morton5ga8_64 is the player’s 
ship in combat with Sel_41913.  The triangles represent the ships, 
walls are in blue, and the numbers (1, 2, 3) show base locations.  The 
top left box is the radar view that shows the entire map with dots 
representing the locations of the ships.  Below this, the current score is 
displayed. 

 

Xpilot-AI is an add-on to the Xpilot game that allows users 
to control Xpilot agents by writing scripts in any of a number 
of different programming languages. These scripted agents can 
play alongside other scripts, humans, or server-controlled 
robots on any standard Xpilot server. The scripts can be used to 
control the agents, which allows the researcher to use the 
environment to train the agents and develop systems to learn 
intelligent behavior. As a result, Xpilot-AI has become a 
powerful environment for researchers of artificial intelligence 
to test algorithms and learning systems.  

The game provides an interesting opportunity to test 
autonomous agents in that it allows the researcher to run their 
scripts against other computer-controlled agents as well as 
human players. Seeing the agent in action in both scenarios 



allows researchers to increase the quality of learning algorithms 
by better understanding how the scripts perform against all 
types of opponents. 

III. EXPERIMENT 
In order to determine the best FPS for learning, a standard 

genetic algorithm was used to do learning at different speeds. 
The genetic algorithm optimized parameters in the rules for a 
rule-based system used to control an Xpilot combat agent. 
These parameters are shown in Figure 2. This type of learning 
was shown to be successful in the past [1] with the model agent 
running at 64 FPS. To calculate the fitness for a given control 
program, each agent was allowed to engage in combat for a set 
time on an Xpilot server against a robust hand-coded rule-
based agent named Sel. During its time in battle, the learning 
agent would receive one point of fitness for every frame it was 
alive and gain 1000 points of fitness for every time it killed its 
opponent. In addition, whenever it died, it would lose 1/6 of its 
total time. 

The genetic algorithm was run on various Xpilot servers set 
at varying frames per second, starting at 16 FPS up through 
1024 FPS. Each agent was allowed to learn for 115 
generations. Once learning was completed, the best agents 
from the 50th and 100th generations were individually taken 
and placed against Sel while running on a 16 FPS server. This 
was done to determine if the results stayed consistent when 

playing on a normal server after learning. If the agents only 
appear to learn less while running at higher frame rates but still 
perform equally well as those that learned at slower frame rates 
when placed in matches at the same FPS, then Xpilot would 
only have the appearance of a degradation of quality at higher 
frame rates. On the other hand, if those agents that appear to 
learn poorly at higher frame rates also perform poorly when 
placed in lower frames per seconds, then it is clearer that the 
higher frame rates have a negative effect on the quality of 
learning. 

IV. RESULTS 
Five test runs using five randomly generated populations at 

each of the tested frames per second were run for a total of 115 
generations each. Tests included agents running at frames per 
seconds ranging from 16 through 1024. Figure 3 shows the 
fitness of the agents over time as they evolved at their 
respective frames per seconds. Based on the data, it can be 
observed that there was a great discrepancy in the quality of 
learning as the FPS changed. As the FPS increased, the amount 
learned by the agents decreased. For the agents running at 16 
FPS, their fitnesses grew at an average of 18.6 per generation. 
Meanwhile, the agents running at 1024 FPS actually lost fitness 
by the end, shrinking at a rate of 0.213 fitness per generation on 
average as can be observed on the Figure 3 graph. The agents 
learning at 128 FPS and above all performed a minimal amount 
of learning.  

•  span – the angle between the line from the agent’s nose to a target location and the edge of the nearest wall. Used to determine if the agent 
is blocked from a bullet by a wall.  

•  offset_inc – indicates the increments used to determine the optimal direction to turn to avoid crashing into a wall 
•  same_spread – the difference allowed between the distances returned by two wall feelers which would result in considering them equal. 
•  wall_span1 – the angle off the ship’s track used to feel for the closest wall.  
•  wall_span2 – the angle off the ship’s track used to feel for the second closest wall. 
•  vd_bullet_dist – determines the bullet alert value required to consider the bullet very dangerous. 
•  d_bullet_dist – determines the bullet alert value required to consider the bullet dangerous. 
•  vd_dodge_bullet_angle – the angle the ship will turn away from a bullet considered very dangerous in order to dodge it.   
•  d_dodge_bullet_angle – the angle the ship will turn away from a bullet considered dangerous in order to dodge it.    
•  close_wall_speed – the speed of the ship in relation to the distance to the closest wall. Used to determine if the ship should take action to 

avoid the wall.  
•  medium_wall_speed – similar to close_wall_speed, but for walls that are farther from the agent.  
•  c_angle_before_thrust – the angle of the ship’s heading away from the closest wall before the ship will thrust.  
•  m_angle_before_thrust – similar to c_angle_before_thrust, but used in a rule with lower priority 
•  wall_avoid_angle – how small the angle has to be between the ship’s heading and its desired track to avoid a wall before it will thrust.  
•  screen_thrust_speed – if the ship’s speed is lower than this and it is turning to attack an enemy on the screen, it will thrust.   
•  radar_no_thrust_speed – if the ship’s speed is lower than this and it is turning to attack an enemy on radar, it will thrust.  
•  ship_error_to_shoot – the maximum angular difference between the desired aim direction and the ship’s heading before it will shoot at an 

enemy on the screen.  
•  radar_error_to_shoot – the maximum angular difference between the desired aim direction and the ship’s heading before it will shoot at an 

enemy on radar.  
•  wall_turn_angleR – the angle between the ship’s track and heading that the ship turns to avoid colliding with a wall when responding to a 

right feeler indicating a wall that is too close.  
•  wall_turn_angleL – the angle between the ship’s track and heading that the ship turns to avoid colliding with a wall when responding to a 

left feeler indicating a wall that is too close.  
•  wall_turn_angleB – the angle between the ship’s track and heading that the ship turns to avoid colliding with a wall when responding to 

an equal distance from both walls.   
•  shoot_dir_rand – the angular range that the ship will use to randomly affect its direction to aim.  

 
Figure 2. A list of the parameters from the control program that the genetic algorithm learned for the Xpilot combat agent 



 

Figure 3. Growth curves for the GA learning with the game running at varying frames per second. The average of the population for 
five tests at each speed are shown. 

Figure 4. The average of the best individuals produced by the genetic algorithm after 50 and 100 generations. Each column 
represents the average of five agents, each of which were evaluated 30 times, for a total of 150 data points. 



In addition, observations of the agents’ behaviors were 
made from 16 to 64 FPS. They appeared normal and behaved 
intelligently. At speeds above 64 FPS, it appeared that agents 
were incapable of reacting properly to the events occurring 
around them. They would have a higher chance of a running 
directly into walls they would otherwise have avoided when 
running at slower speeds. If an enemy agent were to come into 
a learning agent’s vicinity, it would be less likely to fire and 
often not seem to register that anything was different. 

To further analyze the data, the best agents from each trial 
were analyzed after 50 and 100 generations. Each agent was 
evaluated in a test environment running at 16 FPS (normal 
game speed), regardless of the FPS the agent learned at, in the 
same way their fitnesses were evaluated during learning. Each 
agent from the five different trials was tested in 30 separate 
trials, yielding a total of 150 trials for each FPS learning speed 
at each of the two generations, 50 and 100. Figure 3 shows the 
averaged fitnesses of these trials. This data shows similar 
trends to that of the average fitnesses learned by the agents, 
with the agents learning at 16 FPS performed the best while the 
agents performing at 1024 FPS were clearly the worst. 
However, the best individual tests shown in Figure 4 show that 
the 128 through 512 FPS learning speeds may have merit. Even 
though they show less effective learning than the slower 
speeds, they still show some level of improvement. There is 
notable improvement from 50 to 100 generations in all cases, 
except at 1024 FPS. It’s clear that a GA running at this speed 
produces little or no improvement in the Xpilot controller. 

The above empirical data can also be confirmed by 
observation. At the beginning of the learning process for the 
lower FPS agents, the agents would regularly make obvious 
mistakes in combat. For example, some control programs 
would thrust while turning to avoid a wall and as a result run 
directly into the wall rather than avoid it or simply not turn 
sharply enough to avoid a bullet. However, by the end of the 
learning process, these mistakes were correct in the majority of 
the learned control programs. They exhibited intelligent 
behavior that was capable of defeating their opponent in the 
majority of situations. Meanwhile, the agents running at higher 
FPS generally displayed unintelligent behavior. For example, 
during the learning process, they would often thrust directly 
into the wall immediately upon spawning or aim incorrectly at 
opponents while firing. Even after learning was completed, 
these traits still remained strong in the majority, if not all, of 
the population. 

Another consideration of the data from Figure 4 is a 
comparison of fitnesses from differing learning speeds at 50 
and 100 generations (Figure 4). One can compare 16 FPS after 
50 generations with 32 FPS after 100 generations (Figure 5), as 
the learning will take about the same time. With this in mind, 
consider 16 FPS at 50 generations versus 32 FPS at 100 
generations. Since the fitness of 32 FPS at 100 generations is 
higher than 16 FPS at 50 generations, it can be concluded that 
32 FPS is a better learning speed than 16 FPS. Now consider 
32 FPS at 50 generations and 64 FPS at 100 generations 
(Figure 6). These fitnesses are close to the same with 32 FPS 
slightly better than 64 FPS. Considering 64 FPS at 50 
generations and 128 FPS at 100 generations shows that 64 FPS 
has the clear advantage (Figure 7). 

 
Figure 5.  Comparison of GA run at 16 FPS versus 32 FPS.  Since twice as 
many generations can be completed in the same amount of time, 100 
generations at 32 FPS is equivalent in training time to 50 generations at 16 FPS.  
Running at 32 FPS produces better results. 

 

 
Figure 6.  Comparison of GA run at 32 FPS versus 64 FPS.  Since twice as 
many generations can be completed in the same amount of time, 100 
generations at 64 FPS is equivalent in training time to 50 generations at 32 FPS.  
The two speeds are roughly equivalent, although 32 FPS produces slightly 
better results. 

 

 
Figure 7.  Comparison of GA run at 64 FPS versus 128 FPS.  Since twice as 
many generations can be completed in the same amount of time, 100 
generations at 128 FPS is equivalent in training time to 50 generations at 64 
FPS.  At this point the breakdown at higher speeds shows its effect.  Running at 
64 FPS produces better results.   



V. CONCLUSIONS 
Based on the collected data, it can be deduced that learning 

at a considerably higher FPS has a significant negative impact 
on the quality of learning produced. That said, running at 16 
FPS is not necessarily the ideal solution either. Agents that 
learned at 16 FPS had the best results per generation, but those 
that learned at 32 FPS had the best results over time, since they 
were effectively learning at twice the speed. In Xpilot, learning 
algorithms often produce a large variation in their results due to 
the nature of the environment. As a result, even though the 
average fitness within the population run at 32 FPS is 
noticeably lower than that of the population run at 16 FPS, the 
average of the best agents is quite comparable. Given the 
increased of speed of learning due to the faster FPS, it makes 
sense to use 32 FPS for learning. In addition, since the 64 FPS 
versus 32 FPS results are nearly equal, 64 FPS is also a 
reasonable choice for learning. Speeds at 128 FPS and above 
are not recommended for standard GA learning. 

Another conclusion that can be drawn from the data is what 
range of FPS is acceptable and useful for learning in PAL. 
When determining an appropriate speed for the simulation 
server, the ideal FPS would still learn but need not be adequate 
if learning on its own. Running Xpilot at 64 FPS would be a 
safe bet, but higher speeds are also possible. Agents are still 
able to learn and improve over time, but when compared to the 
16 to 64 FPS agents, do not learn nearly as well or as fast. 
Although running PAL at 64 FPS would be sure to yield good 
results, depending on the goals of the research, running the 
simulation at FPS between 128 and 512 would also be 
acceptable given that they still improve and learn over time. 
They show a larger disconnect from the ideal FPS of 16 and as 
a result would not learn effectively on their own. However, if 
combined with PAL they could serve well as the simulation 
server speed. Any agent running at or above 1024 FPS, though, 
is ineffective. Algorithms run at this speed show neither 
intelligence nor improvement over time. 

These tests will help in determining the maximum FPS that 
we can use to test the limits of a Punctuated Anytime Learning 

system. PAL for Xpilot-AI agents is now being tested with the 
simulation running at 128, 256, and 512 FPS. As the FPS the 
PAL learning system can handle increases, so does its ability to 
improve game agents during play. The stability of the PAL 
learning system at higher FPS is also an indicator of the PAL 
system’s capabilities to deal with inaccuracies in robot models 
for actual robot real-time learning. 
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