
Connecticut College
Digital Commons @ Connecticut College

Computer Science Faculty Publications Computer Science Department

10-2011

Investigating the Effects of Learning Speeds on
Xpilot Agent Evolution
Gary Parker
Connecticut College, parker@conncoll.edu

Phil Fritzsche
Connecticut College, pfritzsche@gmail.com

Follow this and additional works at: http://digitalcommons.conncoll.edu/comscifacpub
Part of the Computer Engineering Commons

This Conference Proceeding is brought to you for free and open access by the Computer Science Department at Digital Commons @ Connecticut
College. It has been accepted for inclusion in Computer Science Faculty Publications by an authorized administrator of Digital Commons @
Connecticut College. For more information, please contact bpancier@conncoll.edu.
The views expressed in this paper are solely those of the author.

Recommended Citation
Parker, G.; Fritzsche, P., "Investigating the effects of learning speeds on Xpilot agent evolution," Systems, Man, and Cybernetics
(SMC), 2011 IEEE International Conference on , vol., no., pp.2561,2566, 9-12 Oct. 2011 doi: 10.1109/ICSMC.2011.6084062

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DigitalCommons@Connecticut College

https://core.ac.uk/display/46706287?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.conncoll.edu?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/mathcomsci?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bpancier@conncoll.edu

Investigating the Effects of Learning Speeds on Xpilot Agent Evolution

Keywords
Xpilot; Xpilot-AI; Punctuated Anytime Learning; Fitness Biasing; Genetic Algorithm; Real-time Learning;
Video Game Learning; On-line learning; Autonomous system control

Comments
© 2011 IEEE

DOI10.1109/ICSMC.2011.6084062

This conference proceeding is available at Digital Commons @ Connecticut College: http://digitalcommons.conncoll.edu/
comscifacpub/14

http://dx.doi.org/10.1109/ICSMC.2011.6084062
http://digitalcommons.conncoll.edu/comscifacpub/14?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub/14?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages

Investigating the Effects of Learning Speeds on
Xpilot Agent Evolution

Gary Parker and Phil Fritzsche
Computer Science

Connecticut College
New London, CT, USA

parker@conncoll.edu and pfritzsche@gmail.com

Abstract—In this paper we present a comparison of the effects of
varying play speeds on a genetic algorithm in the space combat
game Xpilot. Xpilot-AI, an Xpilot add-on designed for testing
learning systems, is used to evolve the controller for an Xpilot
combat agent at varying frames per second to determine an
optimal speed for learning. The controller is a rule-based system
modified to work with a genetic algorithm that learns numeric
parameters for the agent’s rule base. The goal of this research is
to increase the quality and speed of standard learning algorithms
in Xpilot as well as determine a suitable speed for employing
Punctuated Anytime Learning (PAL) in the Xpilot-AI
environment. PAL is the learning component of an overall system
of autonomous agent control with real-time learning.

Keywords-Xpilot; Xpilot-AI; Punctuated Anytime Learning;
Fitness Biasing; Genetic Algorithm; Real-time Learning; Video
Game Learning; On-line learning; Autonomous system control

I. INTRODUCTION
The objective of this research is to analyze the effects of

frame rates in using genetic algorithms for learning combat
behavior in the Xpilot-AI game environment. An important
area of autonomous agent learning is interactive games. Having
the ability to learn autonomous and intelligent behavior in
games is beneficial to those who develop and improve games
and to researchers in other areas as well. Computer games
serve as an important test bed for methods of evolutionary
robotics. The real-life nature of the physics in these games
allows for an easy translation to real world applications. Xpilot,
with the help of the Xpilot-AI learning add-on, is an
environment where evolutionary systems can be tested for
learning game agent behavior and robot control.

Much work has gone into developing systems that use
video game environments for the purpose of developing
human-like agents through static and learning systems. When a
population-based genetic algorithm is used for this learning, it
is a benefit to be able to speed up the game’s frames per second
(FPS) rate to increase the speed of learning. In Xpilot, the
normal speed of play is 16 FPS. In order to speed up learning in
past research, Xpilot was run at 64 FPS as a genetic algorithm
(GA) needed to perform many experiments in attempts to
develop intelligent behavior. In one work, a GA was used to
evolve parameters for a rule-based system [1]. The rule-based
system-controlled agent was altered to allow for learning by
GA. It evolved optimal numeric parameters for the rules of the
control program. In addition, GAs have been used to evolve

weights for neural network-controlled agents [2]. Specific
abilities were learned individually. Once the agent had
successfully learned how to optimally perform each task in
isolation, the three resultant agents were combined together
using a multi-layer neural network. In other research, a cyclic
genetic algorithm was used to directly evolve a control
program for an Xpilot combat agent [3].

Observationally, running at 64 FPS appeared to be the
fastest the system could run without encountering adverse
effects on the quality of learning. A few attempts were made at
128 FPS, but the agent’s performance led researchers to believe
it was not learning as well as at 64 FPS. It was determined that
the higher frame rates were not effective. However, since
experimental testing was not done, it was determined that tests
were needed to analyze the effects of varying frame rates on
Xpilot agent learning.

In an ideal situation, researchers would be able to run the
game at considerably higher speeds, thus improving the speed
of learning while making better use of the power of modern
computers. Though a game learning at 64 FPS is a four-fold
increase over the human-playable speed of 16 FPS, it can still
take several hours for an agent to achieve near optimal
behavior. At 64 FPS, we are not taking full advantage of the
power of the computer, which runs at low capacity even with
an Xpilot server and multiple client agents running. In this
paper, we test a genetic algorithm evolving agents at a
sequence of increasing FPS to experimentally determine the
realistic break point for increased speeds in Xpilot. The intent
is to determine if 64 FPS is the top speed where an agent can
learn with acceptable degradation.

In addition to exploring the effects of FPS rate to find the
maximum feasible rate for use of a genetic algorithm, this work
will also help in the development of a method of real-time
learning during game play. Intelligent opponents that appear to
learn, improve, and adapt are a large part of what makes a
video game enjoyable. Creating artificially intelligent systems
that are capable of doing so in real-time is, as a result, not only
one of the most difficult aspects of video game development
but also one of the most important [4]. In the DEFCON
computer game, researchers used decision-tree learning and
case-based reasoning combined with simulated annealing
methods in order to create human-like behavior for game
agents [5]. Others combined evolutionary learning techniques
with neural networks by adding layers and connections to the

network slowly while the game runs to allow their agent to
learn increasingly complex behavior in real-time [6].

Real-time learning is an important aspect of learning
systems for game agents as well as robots. It allows the system
to continually learn and update as the agent performs its
assigned tasks. In previous Xpilot research, real-time learning
was attempted using evolutionary strategies [7]. Though the
system was capable of real-time learning, its evolution was
slower than through other methods due to its reliance on
mutations of a chromosome to learn. As a result, it was
determined to be ineffective. In other research [8], dynamic
programming based reinforcement learning, specifically Q-
learning, was used to implement real-time learning for Xpilot
agents. Due to the nature of reinforcement learning, the tests
were done in very simple environments. Q-learning requires an
accurate model of its environment to be successful. As the
Xpilot combat environment is highly complicated, this
technique was applied only to a single agent in a simple
scenario with no opponents. Though it was a successful
implementation of real-time learning, it was determined that it
lacked the scalability required of a robust algorithm. As the
system’s complexity increased, the agent’s ability to adapt
rapidly deteriorated.

The research reported in this paper will help in determining
an acceptable maximum speed for Punctuated Anytime
Learning (PAL). PAL, which was originally developed for
evolutionary robotics [9], is the learning component of a
system of autonomous agent control with real-time learning. In
separate research, we are using PAL in an effort to find a
method for learning Xpilot agent controllers in real-time, while
engaged in combat with a human player. PAL was developed
as a means of linking the offline learning, taking place in a
simulation, with the actual robot. An agent using PAL as a
learning system is split into two parts: the “real-world” agent
and the “simulation” agent. The simulation agent performs
learning on a model of the real-world environment.
Periodically, the simulation agent communicates new and
improved control programs to the real-world agent. At all
times, the real-world agent takes the best of the control
programs given to it by the simulation and uses that as its
primary control program. In addition, when the simulation
agent checks in with the real-world agent, the real-world agent
returns information as to how well the new control programs
worked in the real-world. The learning system then uses this
information to improve the quality of its learning algorithm. In
this way it is able to learn faster than the real-world agent while
still maintaining accuracy and quality.

The maximum acceptable speed for PAL learning in Xpilot
can be higher than for typical GA learning since PAL is
designed to compensate for discrepancies in the simulation.
Determining max PAL FPS will help us in the development of
a real-time learning system for Xpilot to learn controllers for
game agents. The learning will take place in a simulation at
increased FPS. After the agent has optimized its control
program, we will compare how well the agents perform at 16
FPS, the typical speed played by humans. The analysis
reported in this paper will help determine what effects the
varying FPS have on the quality and outcome of the learning

processes, and help us determine the maximum reasonable FPS
for a PAL system.

II. XPILOT-AI
Xpilot-AI is based on Xpilot (Figure 1), which is an open

source multiplayer two-dimensional space combat game
consisting of two main components: the server and the client.
The server is used to configure settings for a game. For
example, it can change the number of frames per second (FPS)
in a game and the map being used. It is also the server’s
responsibility to track the players playing the game, their
scores, and other information. The users control the client to
play the game. Specific keystrokes allow the users to control
their ship by thrusting, turning, and shooting. Xpilot contains
relatively realistic physics. Agents explode if they run into a
wall too fast, but will merely bounce off and lose some speed if
they run into a wall at a very slow speed. Since the
environment is in a space setting, an agent can glide without
thrusting and still maintain constant velocity.

Figure 1. The Xpilot environment. Morton5ga8_64 is the player’s
ship in combat with Sel_41913. The triangles represent the ships,
walls are in blue, and the numbers (1, 2, 3) show base locations. The
top left box is the radar view that shows the entire map with dots
representing the locations of the ships. Below this, the current score is
displayed.

Xpilot-AI is an add-on to the Xpilot game that allows users
to control Xpilot agents by writing scripts in any of a number
of different programming languages. These scripted agents can
play alongside other scripts, humans, or server-controlled
robots on any standard Xpilot server. The scripts can be used to
control the agents, which allows the researcher to use the
environment to train the agents and develop systems to learn
intelligent behavior. As a result, Xpilot-AI has become a
powerful environment for researchers of artificial intelligence
to test algorithms and learning systems.

The game provides an interesting opportunity to test
autonomous agents in that it allows the researcher to run their
scripts against other computer-controlled agents as well as
human players. Seeing the agent in action in both scenarios

allows researchers to increase the quality of learning algorithms
by better understanding how the scripts perform against all
types of opponents.

III. EXPERIMENT
In order to determine the best FPS for learning, a standard

genetic algorithm was used to do learning at different speeds.
The genetic algorithm optimized parameters in the rules for a
rule-based system used to control an Xpilot combat agent.
These parameters are shown in Figure 2. This type of learning
was shown to be successful in the past [1] with the model agent
running at 64 FPS. To calculate the fitness for a given control
program, each agent was allowed to engage in combat for a set
time on an Xpilot server against a robust hand-coded rule-
based agent named Sel. During its time in battle, the learning
agent would receive one point of fitness for every frame it was
alive and gain 1000 points of fitness for every time it killed its
opponent. In addition, whenever it died, it would lose 1/6 of its
total time.

The genetic algorithm was run on various Xpilot servers set
at varying frames per second, starting at 16 FPS up through
1024 FPS. Each agent was allowed to learn for 115
generations. Once learning was completed, the best agents
from the 50th and 100th generations were individually taken
and placed against Sel while running on a 16 FPS server. This
was done to determine if the results stayed consistent when

playing on a normal server after learning. If the agents only
appear to learn less while running at higher frame rates but still
perform equally well as those that learned at slower frame rates
when placed in matches at the same FPS, then Xpilot would
only have the appearance of a degradation of quality at higher
frame rates. On the other hand, if those agents that appear to
learn poorly at higher frame rates also perform poorly when
placed in lower frames per seconds, then it is clearer that the
higher frame rates have a negative effect on the quality of
learning.

IV. RESULTS
Five test runs using five randomly generated populations at

each of the tested frames per second were run for a total of 115
generations each. Tests included agents running at frames per
seconds ranging from 16 through 1024. Figure 3 shows the
fitness of the agents over time as they evolved at their
respective frames per seconds. Based on the data, it can be
observed that there was a great discrepancy in the quality of
learning as the FPS changed. As the FPS increased, the amount
learned by the agents decreased. For the agents running at 16
FPS, their fitnesses grew at an average of 18.6 per generation.
Meanwhile, the agents running at 1024 FPS actually lost fitness
by the end, shrinking at a rate of 0.213 fitness per generation on
average as can be observed on the Figure 3 graph. The agents
learning at 128 FPS and above all performed a minimal amount
of learning.

• span – the angle between the line from the agent’s nose to a target location and the edge of the nearest wall. Used to determine if the agent
is blocked from a bullet by a wall.

• offset_inc – indicates the increments used to determine the optimal direction to turn to avoid crashing into a wall
• same_spread – the difference allowed between the distances returned by two wall feelers which would result in considering them equal.
• wall_span1 – the angle off the ship’s track used to feel for the closest wall.
• wall_span2 – the angle off the ship’s track used to feel for the second closest wall.
• vd_bullet_dist – determines the bullet alert value required to consider the bullet very dangerous.
• d_bullet_dist – determines the bullet alert value required to consider the bullet dangerous.
• vd_dodge_bullet_angle – the angle the ship will turn away from a bullet considered very dangerous in order to dodge it.
• d_dodge_bullet_angle – the angle the ship will turn away from a bullet considered dangerous in order to dodge it.
• close_wall_speed – the speed of the ship in relation to the distance to the closest wall. Used to determine if the ship should take action to

avoid the wall.
• medium_wall_speed – similar to close_wall_speed, but for walls that are farther from the agent.
• c_angle_before_thrust – the angle of the ship’s heading away from the closest wall before the ship will thrust.
• m_angle_before_thrust – similar to c_angle_before_thrust, but used in a rule with lower priority
• wall_avoid_angle – how small the angle has to be between the ship’s heading and its desired track to avoid a wall before it will thrust.
• screen_thrust_speed – if the ship’s speed is lower than this and it is turning to attack an enemy on the screen, it will thrust.
• radar_no_thrust_speed – if the ship’s speed is lower than this and it is turning to attack an enemy on radar, it will thrust.
• ship_error_to_shoot – the maximum angular difference between the desired aim direction and the ship’s heading before it will shoot at an

enemy on the screen.
• radar_error_to_shoot – the maximum angular difference between the desired aim direction and the ship’s heading before it will shoot at an

enemy on radar.
• wall_turn_angleR – the angle between the ship’s track and heading that the ship turns to avoid colliding with a wall when responding to a

right feeler indicating a wall that is too close.
• wall_turn_angleL – the angle between the ship’s track and heading that the ship turns to avoid colliding with a wall when responding to a

left feeler indicating a wall that is too close.
• wall_turn_angleB – the angle between the ship’s track and heading that the ship turns to avoid colliding with a wall when responding to

an equal distance from both walls.
• shoot_dir_rand – the angular range that the ship will use to randomly affect its direction to aim.

Figure 2. A list of the parameters from the control program that the genetic algorithm learned for the Xpilot combat agent

Figure 3. Growth curves for the GA learning with the game running at varying frames per second. The average of the population for
five tests at each speed are shown.

Figure 4. The average of the best individuals produced by the genetic algorithm after 50 and 100 generations. Each column
represents the average of five agents, each of which were evaluated 30 times, for a total of 150 data points.

In addition, observations of the agents’ behaviors were
made from 16 to 64 FPS. They appeared normal and behaved
intelligently. At speeds above 64 FPS, it appeared that agents
were incapable of reacting properly to the events occurring
around them. They would have a higher chance of a running
directly into walls they would otherwise have avoided when
running at slower speeds. If an enemy agent were to come into
a learning agent’s vicinity, it would be less likely to fire and
often not seem to register that anything was different.

To further analyze the data, the best agents from each trial
were analyzed after 50 and 100 generations. Each agent was
evaluated in a test environment running at 16 FPS (normal
game speed), regardless of the FPS the agent learned at, in the
same way their fitnesses were evaluated during learning. Each
agent from the five different trials was tested in 30 separate
trials, yielding a total of 150 trials for each FPS learning speed
at each of the two generations, 50 and 100. Figure 3 shows the
averaged fitnesses of these trials. This data shows similar
trends to that of the average fitnesses learned by the agents,
with the agents learning at 16 FPS performed the best while the
agents performing at 1024 FPS were clearly the worst.
However, the best individual tests shown in Figure 4 show that
the 128 through 512 FPS learning speeds may have merit. Even
though they show less effective learning than the slower
speeds, they still show some level of improvement. There is
notable improvement from 50 to 100 generations in all cases,
except at 1024 FPS. It’s clear that a GA running at this speed
produces little or no improvement in the Xpilot controller.

The above empirical data can also be confirmed by
observation. At the beginning of the learning process for the
lower FPS agents, the agents would regularly make obvious
mistakes in combat. For example, some control programs
would thrust while turning to avoid a wall and as a result run
directly into the wall rather than avoid it or simply not turn
sharply enough to avoid a bullet. However, by the end of the
learning process, these mistakes were correct in the majority of
the learned control programs. They exhibited intelligent
behavior that was capable of defeating their opponent in the
majority of situations. Meanwhile, the agents running at higher
FPS generally displayed unintelligent behavior. For example,
during the learning process, they would often thrust directly
into the wall immediately upon spawning or aim incorrectly at
opponents while firing. Even after learning was completed,
these traits still remained strong in the majority, if not all, of
the population.

Another consideration of the data from Figure 4 is a
comparison of fitnesses from differing learning speeds at 50
and 100 generations (Figure 4). One can compare 16 FPS after
50 generations with 32 FPS after 100 generations (Figure 5), as
the learning will take about the same time. With this in mind,
consider 16 FPS at 50 generations versus 32 FPS at 100
generations. Since the fitness of 32 FPS at 100 generations is
higher than 16 FPS at 50 generations, it can be concluded that
32 FPS is a better learning speed than 16 FPS. Now consider
32 FPS at 50 generations and 64 FPS at 100 generations
(Figure 6). These fitnesses are close to the same with 32 FPS
slightly better than 64 FPS. Considering 64 FPS at 50
generations and 128 FPS at 100 generations shows that 64 FPS
has the clear advantage (Figure 7).

Figure 5. Comparison of GA run at 16 FPS versus 32 FPS. Since twice as
many generations can be completed in the same amount of time, 100
generations at 32 FPS is equivalent in training time to 50 generations at 16 FPS.
Running at 32 FPS produces better results.

Figure 6. Comparison of GA run at 32 FPS versus 64 FPS. Since twice as
many generations can be completed in the same amount of time, 100
generations at 64 FPS is equivalent in training time to 50 generations at 32 FPS.
The two speeds are roughly equivalent, although 32 FPS produces slightly
better results.

Figure 7. Comparison of GA run at 64 FPS versus 128 FPS. Since twice as
many generations can be completed in the same amount of time, 100
generations at 128 FPS is equivalent in training time to 50 generations at 64
FPS. At this point the breakdown at higher speeds shows its effect. Running at
64 FPS produces better results.

V. CONCLUSIONS
Based on the collected data, it can be deduced that learning

at a considerably higher FPS has a significant negative impact
on the quality of learning produced. That said, running at 16
FPS is not necessarily the ideal solution either. Agents that
learned at 16 FPS had the best results per generation, but those
that learned at 32 FPS had the best results over time, since they
were effectively learning at twice the speed. In Xpilot, learning
algorithms often produce a large variation in their results due to
the nature of the environment. As a result, even though the
average fitness within the population run at 32 FPS is
noticeably lower than that of the population run at 16 FPS, the
average of the best agents is quite comparable. Given the
increased of speed of learning due to the faster FPS, it makes
sense to use 32 FPS for learning. In addition, since the 64 FPS
versus 32 FPS results are nearly equal, 64 FPS is also a
reasonable choice for learning. Speeds at 128 FPS and above
are not recommended for standard GA learning.

Another conclusion that can be drawn from the data is what
range of FPS is acceptable and useful for learning in PAL.
When determining an appropriate speed for the simulation
server, the ideal FPS would still learn but need not be adequate
if learning on its own. Running Xpilot at 64 FPS would be a
safe bet, but higher speeds are also possible. Agents are still
able to learn and improve over time, but when compared to the
16 to 64 FPS agents, do not learn nearly as well or as fast.
Although running PAL at 64 FPS would be sure to yield good
results, depending on the goals of the research, running the
simulation at FPS between 128 and 512 would also be
acceptable given that they still improve and learn over time.
They show a larger disconnect from the ideal FPS of 16 and as
a result would not learn effectively on their own. However, if
combined with PAL they could serve well as the simulation
server speed. Any agent running at or above 1024 FPS, though,
is ineffective. Algorithms run at this speed show neither
intelligence nor improvement over time.

These tests will help in determining the maximum FPS that
we can use to test the limits of a Punctuated Anytime Learning

system. PAL for Xpilot-AI agents is now being tested with the
simulation running at 128, 256, and 512 FPS. As the FPS the
PAL learning system can handle increases, so does its ability to
improve game agents during play. The stability of the PAL
learning system at higher FPS is also an indicator of the PAL
system’s capabilities to deal with inaccuracies in robot models
for actual robot real-time learning.

REFERENCES

[1] G. Parker and M.Parker, “Evolving parameters for Xpilot combat
agents,” Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Games (CIG 2007), Honolulu, HI, April 2007.

[2] G. Parker and M.Parker, “The evolution of multi-layer neural networks
for the control of Xpilot agents,” Proceedings of the 2007 IEEE
Symposium on Computational Intelligence in Games (CIG 2007),
Honolulu, HI, April 2007.

[3] G. Parker and M. Parker, “Using a queue genetic algorithm to evolve
Xpilot control strategies on a distributed system,” Proceedings of the
2006 IEEE Congress on Evolutionary Computation (CEC 2006),
Vancouver, BC, Canada, July 2006.

[4] G. Yannakakis and J. Hallam, “Evolving opponents for interesting
interactive computer games,” Proceedings of the 8th International
Conference on the Simulation of Adaptive Behavior (SAB 2004), pp.
499 – 508, 2004.

[5] R. Baumgarten, S. Colton, and M. Morris, “Combining AI methods for
learning bots in a real-time strategy game,” International Journal of
Computer Games Technology, vol. 2009.

[6] K. Stanley, B. Bryant, I. Karpov, and R. Miikkulainen, “Real-time
evolution of neural networks in the NERO video game,” AAAI-06, pp.
1671-1674, Boston, MA, 2006.

[7] G. Parker and M. Probst, “Using evolutionary strategies for the real-time
learning of controllers for autonomous agents in Xpilot-AI,”
Proceedings of the 2010 IEEE Congress on Evolutionary Computation
(CEC 2010), Barcelona, Spain, July 2010.

[8] M. Allen, K. Dirmaier, and G.Parker, “Real-time AI in Xpilot using
reinforcement learning,” Proceedings of the 2010 World Automation
Congress International Symposium on Intelligent Automation and
Control (ISIAC 2010), Kobe, Japan, September 2010.

[9] G. Parker, “Punctuated Anytime Learning for Hexapod Gait
Generation,” Proceedings of the 2002 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2002), EPFL,
Switzerland, October 2002.

	Connecticut College
	Digital Commons @ Connecticut College
	10-2011

	Investigating the Effects of Learning Speeds on Xpilot Agent Evolution
	Gary Parker
	Phil Fritzsche
	Recommended Citation

	Investigating the Effects of Learning Speeds on Xpilot Agent Evolution
	Keywords
	Comments

