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Abstract—It is a difficult task to generate optimal walking gaits 
for mobile legged robots. Generating and coordinating an 
optimal gait involves continually repeating a series of actions in 
order to create a sustained movement. In this work, we present 
the use of a Cyclic Genetic Algorithm (CGA) to learn near 
optimal gaits for an actual quadruped servo-robot with three 
degrees of movement per leg. This robot was used to create a 
simulation model of the movement and states of the robot which 
included the robot’s unique features and capabilities. The CGA 
used this model to learn gaits that were optimized for this 
particular robot. Tests done in simulation show the success of the 
CGA in evolving gait control programs and tests on robot show 
that these control programs produce reasonable gaits. 

Keywords -Genetic Algorithm; Cyclic Control; Quadruped; 
Gait; Evolutionary Robotics; Learning Control; Cyclic Genetic 
Algorithm 

I. INTRODUCTION 
 The use of mobile legged robots necessitates the 

development of optimal walking gaits, which is typically not 
an easy task. Multiple legs and degrees of movement per leg 
offer the robot increased walking capabilities, but it is a 
challenge to learn and coordinate many such separate 
movements into a stable gait. The quadruped servo-robot with 
three degrees of movement per leg poses a stability challenge 
compared to hexapod and octopod robots. For the quadruped 
robot to achieve and sustain fast forward movement, it is 
necessary for it to maintain dynamic stability, whereas 
hexapod robots can reach a maximum speed while maintaining 
static stability. For a reasonable gait, each leg needs to repeat a 
series of movements in synchronization with the other legs. In 
this paper, we use a Cyclic Genetic Algorithm (CGA) 
operating on a movement model (simulation) of an actual 
quadruped robot to generate near optimal gaits. The gaits are 
then tested on the actual robot to verify their viability. 

Learning using evolutionary computation involves evolving 
many separate traits of a solution to a problem; this is common 
to learning gaits where many separate movements per leg are 
to be learning in synchronization. In a recent review article, 
Daoxiong Gong, Jie Yan, and Guoyu Zuo presented, in much 
detail, the suitability of evolutionary computation techniques 
in gait optimization for mobile legged robots [1]. Evolutionary 

computation techniques and in particular, Genetic Algorithms 
(GA), have previously been used to develop gaits for legged 
robots. Graham Spencer used genetic programs in his work to 
learn gaits for a virtual robot using only minimal knowledge of 
the mechanisms of walking [2]. Sonia Chernova and Manuela 
Veloso used evolutionary computation to learn gaits for four-
legged robots emphasizing gait optimization [3]. Susanne Still 
et al. presented how a chip can be used to control the leg 
movements of a four-legged robot by driving motors with time 
varying voltages from a small network of coupled oscillators 
[4]. 

CGAs were developed to generate walking gaits for a 
hexapod servo-robot [5]. The CGA is distinct from the other 
methods of gait learning in that it learns the machine/assembly 
code that can be directly loaded in to the controller. Compared 
to the current quadruped robot, each of the six legs of the 
hexapod robot could move vertically and horizontally and the 
increased number of legs made it possible to produce statically 
stable gaits.  

In previous work [6] we tested the effectiveness of a similar 
CGA in evolving walking gaits for a robot with more complex 
legs. The servo-robot used has four legs, each of which has 
three degrees of freedom, in/out, up/down, and forward/back. 
Compared to hexapods, quadrupeds have more stability 
challenges since it is easier for quadrupeds to fall out of 
balance while moving. The CGA learned gaits that kept the 
robot stable while producing forward movement, but the final 
results were not  as consistent as desired (two different general 
gait types developed with only one being near-optimal), and 
only initial tests were done on the robot.  

For the research reported in this paper, we adjusted the 
fitness module of the model to emphasize speed over stability. 
In the previous work, static stability was rewarded 
significantly more than dynamic stability. In this work, it is 
still rewarded more, but not to the same degree. The result is 
that the gaits produced are more near-optimal. In addition, in 
this paper we report a full set of tests on the robot to confirm 
the viability of the system. 



II. QUADRUPED SERVO-ROBOT 
The robot used is a quadruped servo-robot (Figure 1) by 

Michael Cantor, and it was constructed in the Connecticut 
College robotics laboratory. The robot body and legs are made 
of masonite. It has standard hobby servo-motors for actuators 
and uses a Basic Stamp II for control. The robot has three 
degrees of movement per leg: in/out, up/down and 
forward/back movements. These movements are controlled by 
timely signals from a control program running in the Basic 
Stamp. The program in the Basic Stamp is made up of 
movement signals that are sent to all the servo-motors. These 
movement signals (or commands) are sent in parallel and tell 
each of the servo-motors on the legs to move in one direction 
or the other. There is no command to stop movement so this 
only happens when the leg goes full throw in its possible 
movement, or discontinues signals on that direction, or the 
servo-motor reaches the end of its movement. The movement 
signals or activations are sent to the legs every 20 
milliseconds. A sequence of these activations is needed to 
have continuous movement of the legs and a proper sequence 
of activations is required for the control program to produce a 
proper gait. The coordination of the concurrent movement of 
all of the actuators along with the requirement for the previous 
steps to end in the proper position to start the next step is what 
makes this problem so challenging. Moreover, there is the 
problem of dynamic stability where the robot has to be 
dynamically stable (creating constant forward movement) at 
all times. 

TABLE I: INFORMATION STORED IN THE SIMULATION 
MODEL OF THE ROBOT. 

Name Description 
current-up The current vertical height of the leg 
max-up & max-down The highest and lowest positions that the 

leg could reach 
rate-up & rate-down The rates of up/down movements per 

control pulse 
on-ground Indicates which legs are on ground, using a 

0 or 1 
current-back The current horizontal position of the leg 

from the back most position. 
max-back The back most position a leg can go. 
current-in The current in/out distance of the foot from 

the side of the robot body. 
max-in & min-in The in most and out most distances the foot 

could reach. 
rate-in & rate-out The rates of in/out movements per control 

pulse 
current-theta The angle relative to the line perpendicular 

to the heading of the robot 
max-back-theta & 
max-fwd-theta 

The back most and forward most angles of 
the leg 

rate-back-theta & 
rate-fwd-theta 

The rates at which the angle changes per 
control pulse when the leg moves 
horizontally. 

temp1, temp2 & 
temp2 

Temporary variables if a need arises. 

 

To successfully learn optimal gaits for the particular 
quadruped robot, the developed cyclic genetic algorithm was 
used to train a simulation model of the robot to walk. 
Throughout the training the algorithm emphasizes forward 
distanced covered and stability of the robot. With this in mind, 
the approach was to develop a movement simulation model of 
an actual robot with data from its physical features and 
movement capabilities. This model, with information for each 
leg, would present all the movement states of the robot at any 
instance in time. 

The movement model of the quadruped servo-robot was 
created by taking accurate physical measurements of the legs 
and combined movement capabilities and rates for all the 
degrees of movement per leg. This data was stored in a lookup 
table that the CGA could read and write to throughout the 
training. The information stored is as shown in Table I. 
Distances are measured in millimeters and angles in radians. 
 

The legs of the quadruped can move in/out while moving 
back/forward and therefore the resulting horizontal 
movements are not linear but radial. It was necessary to find 
an appropriate way to determine the horizontal position of a 
leg as a function of both the current angle of the leg relative to 
the line perpendicular to the heading of the robot and the 
in/out distance from the base of the leg to the foot. To 
calculate the relative horizontal position of the leg, the current 
in/out distance of the leg is multiplied by the sine of the angle. 
 

 
  
Figure 1: Photograph of the quadruped servo-robot used. 

III. CYCLIC GENETIC ALGORITHM 
A Cyclic Genetic Algorithm (CGA) is a type of Genetic 

Algorithm (GA) [7] that was designed to evolve solutions to 
problems with a cyclic nature or pattern [8]. The CGA is a 
suitable method for learning cyclic control programs like gait 
control for legged robots. The main difference between a CGA 
and the standard genetic algorithm is in the structural makeup 
of the chromosomes. The genes of a standard GA chromosome 
represent traits of a learned solution where as in a CGA the 
genes represent tasks to be completed in a set amount of time 
(Figure 2). This, in effect, makes the CGA a method for 
evolving gait control programs since learning gaits involves 



the timely coordination of may separate movements to achieve 
a sustained movement. The tasks in this case are activations 
that need to be sent to the servo-motors every 20 milliseconds 
to maintain continuous control. The chromosome of the 
original CGA has genes that represent three sets of tasks 
depending on location in the chromosome. Each of these 
sections can be made up of any number of tasks, each of 
which can be repeated multiple times in order to achieve the 
desired solution.  
 
 

 
Figure 2: A comparison of chromosome structure between the classic 
GA and CGA. 
 

In learning gait control signals for a legged robot, the start 
section should set up the robot to move into a continuous cycle 
(the cyclic section) where sustained fluid motion can take 
place. The tail section can optionally be added at the end of 
the cyclic section to provide a smooth translation back to the 
at-rest stance of the robot. CGAs use the same genetic 
operations, (selection, crossover and mutation), as in the 
standard GA’s except that two point crossover is used in the 
cyclic section since swapping a section of the cycle is what is 
being accomplished. 
 

IV. GAIT PRODUCTION FOR THE QUADRUPED ROBOT 

A. Chromosome Structure 
The CGA chromosome structure for the problem is shown 

in Figure 3 with an example shown in Figure 4. The fixed 
length chromosome was made up of 4 parts: coordinator, 
inhibitor, start section, and cyclic section.  
 
[C I {(R A)} {(R A)1 (R A)2 (R A)3 … (R A)11 (R A)12}] 
         --------   --------------------------------------------------       start section                       cyclic section 
 
Figure 3: A CGA chromosome structure with coordinator (C), 
inhibitor (I), and the start and cyclic sections which are made up of 
genes with repetitions (R) and activations (A) in each. 

[8946 2432 {(32 2353)} {(35 3452) (9 
2543) (32 8323) (36 564) (7 5032) (22 
1321) (12 88) (7 4123) (3 1255) (0 
1231) (0 6524) (0 17)}] 
 
Figure 4: An example CGA chromosome structure written in the 
Scheme programming language with a coordinator, inhibitor, and 
start and cyclic sections. 
 
      Coordinators and Inhibitors are part of robot’s 
coordination mechanism, which could evolve to increase gait 
control and proper movement. These two numbers were 
initialized as random numbers and were learned by the CGA. 
The coordinators and inhibitors were applied to the activations 
of the start and cyclic sections before the control program was 
run in the robot (simulation or actual). 

      C: Coordinators coordinated the three movements of each 
leg.  For example, one coordinator, if activated, made sure that 
if that leg was going back it was either already down or 
moving in that direction. Another coordinator ensured that if a 
leg was going up it was either already forward or moving in 
that direction. The coordinator for all legs is a 12-bit binary. 

      I: Inhibitors affected pairs or triples of legs. They 
prevented certain legs from moving in the same direction at 
the same time. For example, the inhibitor for legs 2&3 
prevented both legs 2 and 3 from going back or forward at the 
same time. It allowed 2 to move back, but inhibited 3. The 
inhibitors for the set of legs are represented as a 15-bit binary 
number. Coordinators and inhibitors are applied equally to all 
genes and they are listed at the start and cyclic sections of the 
chromosome.  

      The start section has one gene and the cyclic section has 
12 genes. This setup was found to be sufficient to provide the 
maximum number of required chromosome changes during 
the evolution process.  Each gene has two parts: repetitions 
and activations.  

      R: Repetitions represent the number of times to repeat the 
activations which are concurrent signals sent to the servos. 

      A: Activations represent the signal sequence sent to the 12 
servo-motors. Each activation signal is a 12-bit binary number, 
with 3 bits dedicated to each leg, one bit for each of the in/out, 
up/down and forward/back movements. Since each bit can 
either be a 0 or a 1, one bit is sufficient to represent the two 
states of any movement. A signal of 0 on any of the 
movements is interpreted as a command to send the legs 
down, in, or forward. A signal of 1 would command any of the 
legs to go up, out, or back. Table II below shows the 
interpretation of all the 12 bits. 
 



 

TABLE II: INTERPRETATION OF THE 12-BIT CONTROL SIGNAL 
IN THE ACTIVATIONS PART OF THE CHROMOSOME. LEG 0 IS THE 
RIGHT FRONT, 1 IS THE LEFT FRONT, 2 IS THE RIGHT REAR, AND 
3 IS THE LEFT REAR. 
 

Bit 
Index 

Affected leg Command  
when 0 

Command 
when 1 

0 3 Down Up 
1 3 In Out 
2 2 In Out 
3 2 Down up 
4 1 Down Up 
5 0 Down Up 
6 2 Forward Back 
7 1 Forward Back 
8 0 Forward Back 
9 3 Forward Back 
10 1 In Out 
11 0 In Out 

 

B. Gait Learning and Genetic Operations 
The CGA used a population of 64 individuals. The initial 

population was created by randomly assigning numbers 
(according to the allowed input range at each part of the 
chromosome) to all the parts of the chromosomes.  Five 
separate tests were conducted with the CGA learning on the 5 
different random starting populations. During the genetic 
evolution process the CGA evaluated each chromosome of an 
individual using the movement simulation model of the robot 
and assigned each a fitness score. 

      Fitness was determined by running the simulated robot for 
500 activations (control signals) of the gait/control program 
for each individual. This assured each individual was tested in 
a long enough time to ensure at least more than one whole 
step. The motivation for this choice was to ensure that the 
algorithm also learns the best and smoothest way to join 
different strides and steps without losing stability or forward 
thrust. Fitness was computed by summing the fitness from 
each of the 500 individual activations making up the test gait.  
The activation fitness was computed in terms of the forward 
distance and balance produced by the gene's activation signal, 
which is repeated the indicated number of repetitions. This 
was done on the model by:  
• taking the current state of legs;  
• applying the vertical movement;  
• determining the probable legs on the ground from the 

model’s current vertical position of each leg; 
• calculating the balance of the robot from the nature and 

number of legs on the ground; 
• applying the horizontal movement to alter the leg’s state, but 

only counting legs on the ground in computation of the 
forward distance travelled;  

• deducting fitness for lack of balance and/or asymmetry of 
movement;  

• and repeating the process using the next activation and the 
new state.  

This was sequentially done from the start to the end of the 
chromosome, each time repeating as many times as required in 
the cyclic section. Earlier observations and studies on the 
nature of the robot’s movement and the nature of servos under 
pressure, as well as the presence of friction between the legs 
and the floor, revealed that back/forward and in/out 
movements are hugely affected by these resistive forces. 
Adjustments were required in determining the back/forward 
and in/out movements when direction changes were first 
applied. Each in/out and forward/back movement in a new 
direction was set to produce ⅛ of the movement in the first 
pulse, ¼ in the second pulse, ½ in the third pulse, and full 
movement from the forth pulse and on. These adjustments 
were made in the simulation to make it a better model of the 
actual robot. 

      At each generation, new chromosomes were created by 
performing a roulette wheel selection to select two parent 
chromosomes, with the probability for selection based on 
fitness. These parents produced children using crossover and 
mutation. Crossover was performed at randomly selected 
single point in the start section where as in the cyclic section 
two points were used. Each new offspring went through a 
possibility of mutation where each bit was given a 1 out of 150 
chance of flipping from a 0 to a 1 or vice versa. After 64 
children chromosomes were created in this way, the 
generation was complete. The process was repeated for a total 
evolution run of 5,000 generations, this number ensured that 
the populations can evolve to the highest possible fitness. The 
program stored copies of the population every 10 generations 
from generation 0 up to generation 100, every 20 generations 
up to generation 300, every 50 generations up to generation 
800, and every 100 generations up to generation 5000. 

V. RESULTS 
      From the results stored from all the five CGA runs, we 
calculated the average fitness per population for all the 
populations collected. We then plotted these results in graph of 
average fitness per population versus the appropriate 
generation number. Figure 5 shows this graph for populations 
collected throughout the 5000 generations. Figure 6 shows the 
same graph focused on the pattern observed from the first 
1500 generations. 
      As can be seen on these two graphs, the learning pattern of 
the CGA can be observed. The evolution shows a rapid 
increase in average fitness in the first generations which then 
becomes steadier after about 500 generations. The CGA was 
successful at evolving more fit generations in successive 
generations, and continued to slowly improve the control 
program until somewhere in the 1500 to 2000 generation 
range. Figures 7 and 8 show fitness of the most fit individuals 
from populations collected throughout the 5000 generations. 
As expected, the CGA evolving individual gaits that get 
progressively more fit as the evolution goes on. 



 
 
Figure 5: A plot of average fitness per population from populations 
selected from generation throughout 5000 generations. The average 
of the five trials is shown in bold.  
 

 
 
Figure 6: A plot of average fitness against generation number focused 
on the first 1500 generations. The average of the five trials is shown 
in bold. 
     

 
Figure 7: A plot of the best individual’s fitness in a population 
against generation number from populations throughout the 5000 
generations.  The average of the five trials is shown in bold. 
 

 
Figure 8: A plot of the best individual’s fitness in a population 
against generation number focused on the first 1500 generations. The 
average of the five trials is shown in bold. 
 
      The second crucial set of results was from the tests made 
on the actual robot. Since all the five simulation tests 
maintained a similar evolution pattern and display reasonable 
gaits, we only saw the need to use results from one the five 
runs to perform tests of the robot. From this run, the best gaits 
from populations 0, 10, 100, 200, 500, 1000, 2000, and 5000 
were processed for further tests on the robot. Each of these 
gaits was downloaded to the Basic Stamp and allowed to 
control the movement of the robot for a total of 500 
activations as in the simulation. Each gait was run 3 times 
while collecting the forward distance (in millimeters) travelled 
and the final score was the average of the three distances. 
Figure 9 below shows a plot of the distances travelled by the 
gaits on the actual robot compared to the distances produced in 
simulation by the same individuals. 
 

 
Figure 9: A comparison of distances (mm) travelled by the same 
individuals between the actual robot and the simulation. 
 
As can be seen on Figure 9 above, the same gaits travelled 
shorter distances on the robot as compared to the simulation. 
What is more important as an observation from these results is 
the similar evolution pattern of the two sets of results. It is 
clear that the results from tests on robot are consistent with the 



simulation results --there is almost a constant difference in 
distances separating the two plots, which implies that the 
difference is due to the experimental nature and minor errors 
in the robot capability tests. There are physical factors and 
errors in the environment that could not all be easily 
incorporated in the simulation, especiually friction and 
resistance from the floor.  

     All runs resulted in reasonable near optimal gaits, the same 
movement patterns were observed on simulation and in actual 
robot tests. This shows that the CGA was successive in 
learning near optimal gaits that could be successfully 
transferred to the robot. Most of the gaits evolved were 
functionally equivalent to the best quadruped gaits that had 
been manually programmed into the robot. The CGA 
produced gaits can be described as diagonal-paired gaits where 
a pair of diagonal legs moves in directions opposite to the 
other pair. This gait is shown in the Figure 10 below. 

 
Figure 10: Movement of the robot based on the overall gait pattern 
learned by the CGA. The black rectangles indicate legs not on the 
ground. Leg 0 is the right front, 1 is the left front, 2 is the right rear, 
and 3 is the left rear. Reading the figure from left to right, legs 1&2 
start on the ground as legs 0&3 reposition. 
 
      The black areas show legs that are off the ground. The 
dashed line areas are where legs are on the ground and 
producing thrust. With respect to up/down, forward/back and 
in/out; legs 1&2 start out moving back and down (providing 
forward thrust); legs 0&3 are moving forward and up. Legs 2 
and 3 move in while moving forward and out while moving 
back and Legs 0 and 1 do the opposite. Half way through the 
full movement of the legs moving forward, they start to move 
down as they keep moving forward to reposition for the next 
step. 
      This evolved gait made use of alternate pairs of legs 
moving in a two-step cycle that involved reaching forwards 
with two lifting legs while the two lowering legs moved back. 
This gait is not statically stable. If the motion stopped the 
robot would tip one way or the other. However, it is 
dynamically stable and the force of the servos and resultant leg 
movement is sufficient to produce enough forward momentum 
that the robot has minimal rocking motion as it walks. 

VI. CONCLUSIONS 
      The CGA was successfully used to learn near optimal gaits 
for the 4-legged robot with 3 degrees of freedom per leg. 
Learning was done on a model of an actual robot and tested on 
the robot. In all five trials the CGA learned an effective gait 
and did so within 2000 generations. Tests on the actual robot 
confirmed the effectiveness of the learned gait and showed 
that the model adequately represented the robot during gait 
evolution. These results are a further indication that the CGA 
is capable of directly learning the control programs for multi-
legged robot locomotion. This algorithm can be a useful tool 
for learning gaits in any real world scenario; all that is needed 
is an accurate movement model of the robot that effectively 
represents its unique features and capabilities. 

      In future work, we will conduct more intensive studies 
with CGA learning applied to the actual robot locomotion, 
considering different terrain environments and how the CGA 
can adapt to the changes in the capabilities of the robot. In 
addition, future work will include the application of the CGA 
to learn gaits for six and eight legged robots with three degrees 
of freedom legs. 
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