
Connecticut College
Digital Commons @ Connecticut College

Computer Science Faculty Publications Computer Science Department

10-2011

Using Cyclic Genetic Algorithms to Learn Gaits for
an Actual Quadruped Robot
Gary Parker
Connecticut College, parker@conncoll.edu

William T. Tarimo

Follow this and additional works at: http://digitalcommons.conncoll.edu/comscifacpub
Part of the Computer Engineering Commons

This Conference Proceeding is brought to you for free and open access by the Computer Science Department at Digital Commons @ Connecticut
College. It has been accepted for inclusion in Computer Science Faculty Publications by an authorized administrator of Digital Commons @
Connecticut College. For more information, please contact bpancier@conncoll.edu.
The views expressed in this paper are solely those of the author.

Recommended Citation
Parker, G.B.; Tarimo, W.T., "Using Cyclic Genetic Algorithms to learn gaits for an actual quadruped robot," Systems, Man, and
Cybernetics (SMC), 2011 IEEE International Conference on , vol., no., pp.1938,1943, 9-12 Oct. 2011 doi: 10.1109/
ICSMC.2011.6083871

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@Connecticut College

https://core.ac.uk/display/46706285?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.conncoll.edu?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/mathcomsci?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bpancier@conncoll.edu

Using Cyclic Genetic Algorithms to Learn Gaits for an Actual Quadruped
Robot

Keywords
Genetic Algorithm; Cyclic Control; Quadruped; Gait; Evolutionary Robotics; Learning Control; Cyclic
Genetic Algorithm

Comments
©2011 IEEE

DOI:10.1109/ICSMC.2011.6083871

This conference proceeding is available at Digital Commons @ Connecticut College: http://digitalcommons.conncoll.edu/
comscifacpub/12

http://dx.doi.org/10.1109/ICSMC.2011.6083871
http://digitalcommons.conncoll.edu/comscifacpub/12?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub/12?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages

Using Cyclic Genetic Algorithms to Learn Gaits for
an Actual Quadruped Robot

Gary B. Parker and William T. Tarimo
Department of Computer Science

Connecticut College
New London, CT, USA

parker@conncoll.edu, wtarimo@conncoll.edu

Abstract—It is a difficult task to generate optimal walking gaits
for mobile legged robots. Generating and coordinating an
optimal gait involves continually repeating a series of actions in
order to create a sustained movement. In this work, we present
the use of a Cyclic Genetic Algorithm (CGA) to learn near
optimal gaits for an actual quadruped servo-robot with three
degrees of movement per leg. This robot was used to create a
simulation model of the movement and states of the robot which
included the robot’s unique features and capabilities. The CGA
used this model to learn gaits that were optimized for this
particular robot. Tests done in simulation show the success of the
CGA in evolving gait control programs and tests on robot show
that these control programs produce reasonable gaits.

Keywords -Genetic Algorithm; Cyclic Control; Quadruped;
Gait; Evolutionary Robotics; Learning Control; Cyclic Genetic
Algorithm

I. INTRODUCTION
 The use of mobile legged robots necessitates the

development of optimal walking gaits, which is typically not
an easy task. Multiple legs and degrees of movement per leg
offer the robot increased walking capabilities, but it is a
challenge to learn and coordinate many such separate
movements into a stable gait. The quadruped servo-robot with
three degrees of movement per leg poses a stability challenge
compared to hexapod and octopod robots. For the quadruped
robot to achieve and sustain fast forward movement, it is
necessary for it to maintain dynamic stability, whereas
hexapod robots can reach a maximum speed while maintaining
static stability. For a reasonable gait, each leg needs to repeat a
series of movements in synchronization with the other legs. In
this paper, we use a Cyclic Genetic Algorithm (CGA)
operating on a movement model (simulation) of an actual
quadruped robot to generate near optimal gaits. The gaits are
then tested on the actual robot to verify their viability.

Learning using evolutionary computation involves evolving
many separate traits of a solution to a problem; this is common
to learning gaits where many separate movements per leg are
to be learning in synchronization. In a recent review article,
Daoxiong Gong, Jie Yan, and Guoyu Zuo presented, in much
detail, the suitability of evolutionary computation techniques
in gait optimization for mobile legged robots [1]. Evolutionary

computation techniques and in particular, Genetic Algorithms
(GA), have previously been used to develop gaits for legged
robots. Graham Spencer used genetic programs in his work to
learn gaits for a virtual robot using only minimal knowledge of
the mechanisms of walking [2]. Sonia Chernova and Manuela
Veloso used evolutionary computation to learn gaits for four-
legged robots emphasizing gait optimization [3]. Susanne Still
et al. presented how a chip can be used to control the leg
movements of a four-legged robot by driving motors with time
varying voltages from a small network of coupled oscillators
[4].

CGAs were developed to generate walking gaits for a
hexapod servo-robot [5]. The CGA is distinct from the other
methods of gait learning in that it learns the machine/assembly
code that can be directly loaded in to the controller. Compared
to the current quadruped robot, each of the six legs of the
hexapod robot could move vertically and horizontally and the
increased number of legs made it possible to produce statically
stable gaits.

In previous work [6] we tested the effectiveness of a similar
CGA in evolving walking gaits for a robot with more complex
legs. The servo-robot used has four legs, each of which has
three degrees of freedom, in/out, up/down, and forward/back.
Compared to hexapods, quadrupeds have more stability
challenges since it is easier for quadrupeds to fall out of
balance while moving. The CGA learned gaits that kept the
robot stable while producing forward movement, but the final
results were not as consistent as desired (two different general
gait types developed with only one being near-optimal), and
only initial tests were done on the robot.

For the research reported in this paper, we adjusted the
fitness module of the model to emphasize speed over stability.
In the previous work, static stability was rewarded
significantly more than dynamic stability. In this work, it is
still rewarded more, but not to the same degree. The result is
that the gaits produced are more near-optimal. In addition, in
this paper we report a full set of tests on the robot to confirm
the viability of the system.

II. QUADRUPED SERVO-ROBOT
The robot used is a quadruped servo-robot (Figure 1) by

Michael Cantor, and it was constructed in the Connecticut
College robotics laboratory. The robot body and legs are made
of masonite. It has standard hobby servo-motors for actuators
and uses a Basic Stamp II for control. The robot has three
degrees of movement per leg: in/out, up/down and
forward/back movements. These movements are controlled by
timely signals from a control program running in the Basic
Stamp. The program in the Basic Stamp is made up of
movement signals that are sent to all the servo-motors. These
movement signals (or commands) are sent in parallel and tell
each of the servo-motors on the legs to move in one direction
or the other. There is no command to stop movement so this
only happens when the leg goes full throw in its possible
movement, or discontinues signals on that direction, or the
servo-motor reaches the end of its movement. The movement
signals or activations are sent to the legs every 20
milliseconds. A sequence of these activations is needed to
have continuous movement of the legs and a proper sequence
of activations is required for the control program to produce a
proper gait. The coordination of the concurrent movement of
all of the actuators along with the requirement for the previous
steps to end in the proper position to start the next step is what
makes this problem so challenging. Moreover, there is the
problem of dynamic stability where the robot has to be
dynamically stable (creating constant forward movement) at
all times.

TABLE I: INFORMATION STORED IN THE SIMULATION
MODEL OF THE ROBOT.

Name Description
current-up The current vertical height of the leg
max-up & max-down The highest and lowest positions that the

leg could reach
rate-up & rate-down The rates of up/down movements per

control pulse
on-ground Indicates which legs are on ground, using a

0 or 1
current-back The current horizontal position of the leg

from the back most position.
max-back The back most position a leg can go.
current-in The current in/out distance of the foot from

the side of the robot body.
max-in & min-in The in most and out most distances the foot

could reach.
rate-in & rate-out The rates of in/out movements per control

pulse
current-theta The angle relative to the line perpendicular

to the heading of the robot
max-back-theta &
max-fwd-theta

The back most and forward most angles of
the leg

rate-back-theta &
rate-fwd-theta

The rates at which the angle changes per
control pulse when the leg moves
horizontally.

temp1, temp2 &
temp2

Temporary variables if a need arises.

To successfully learn optimal gaits for the particular
quadruped robot, the developed cyclic genetic algorithm was
used to train a simulation model of the robot to walk.
Throughout the training the algorithm emphasizes forward
distanced covered and stability of the robot. With this in mind,
the approach was to develop a movement simulation model of
an actual robot with data from its physical features and
movement capabilities. This model, with information for each
leg, would present all the movement states of the robot at any
instance in time.

The movement model of the quadruped servo-robot was
created by taking accurate physical measurements of the legs
and combined movement capabilities and rates for all the
degrees of movement per leg. This data was stored in a lookup
table that the CGA could read and write to throughout the
training. The information stored is as shown in Table I.
Distances are measured in millimeters and angles in radians.

The legs of the quadruped can move in/out while moving
back/forward and therefore the resulting horizontal
movements are not linear but radial. It was necessary to find
an appropriate way to determine the horizontal position of a
leg as a function of both the current angle of the leg relative to
the line perpendicular to the heading of the robot and the
in/out distance from the base of the leg to the foot. To
calculate the relative horizontal position of the leg, the current
in/out distance of the leg is multiplied by the sine of the angle.

Figure 1: Photograph of the quadruped servo-robot used.

III. CYCLIC GENETIC ALGORITHM
A Cyclic Genetic Algorithm (CGA) is a type of Genetic

Algorithm (GA) [7] that was designed to evolve solutions to
problems with a cyclic nature or pattern [8]. The CGA is a
suitable method for learning cyclic control programs like gait
control for legged robots. The main difference between a CGA
and the standard genetic algorithm is in the structural makeup
of the chromosomes. The genes of a standard GA chromosome
represent traits of a learned solution where as in a CGA the
genes represent tasks to be completed in a set amount of time
(Figure 2). This, in effect, makes the CGA a method for
evolving gait control programs since learning gaits involves

the timely coordination of may separate movements to achieve
a sustained movement. The tasks in this case are activations
that need to be sent to the servo-motors every 20 milliseconds
to maintain continuous control. The chromosome of the
original CGA has genes that represent three sets of tasks
depending on location in the chromosome. Each of these
sections can be made up of any number of tasks, each of
which can be repeated multiple times in order to achieve the
desired solution.

Figure 2: A comparison of chromosome structure between the classic
GA and CGA.

In learning gait control signals for a legged robot, the start
section should set up the robot to move into a continuous cycle
(the cyclic section) where sustained fluid motion can take
place. The tail section can optionally be added at the end of
the cyclic section to provide a smooth translation back to the
at-rest stance of the robot. CGAs use the same genetic
operations, (selection, crossover and mutation), as in the
standard GA’s except that two point crossover is used in the
cyclic section since swapping a section of the cycle is what is
being accomplished.

IV. GAIT PRODUCTION FOR THE QUADRUPED ROBOT

A. Chromosome Structure
The CGA chromosome structure for the problem is shown

in Figure 3 with an example shown in Figure 4. The fixed
length chromosome was made up of 4 parts: coordinator,
inhibitor, start section, and cyclic section.

[C I {(R A)} {(R A)1 (R A)2 (R A)3 … (R A)11 (R A)12}]
 -------- -- start section cyclic section

Figure 3: A CGA chromosome structure with coordinator (C),
inhibitor (I), and the start and cyclic sections which are made up of
genes with repetitions (R) and activations (A) in each.

[8946 2432 {(32 2353)} {(35 3452) (9
2543) (32 8323) (36 564) (7 5032) (22
1321) (12 88) (7 4123) (3 1255) (0
1231) (0 6524) (0 17)}]

Figure 4: An example CGA chromosome structure written in the
Scheme programming language with a coordinator, inhibitor, and
start and cyclic sections.

 Coordinators and Inhibitors are part of robot’s
coordination mechanism, which could evolve to increase gait
control and proper movement. These two numbers were
initialized as random numbers and were learned by the CGA.
The coordinators and inhibitors were applied to the activations
of the start and cyclic sections before the control program was
run in the robot (simulation or actual).

 C: Coordinators coordinated the three movements of each
leg. For example, one coordinator, if activated, made sure that
if that leg was going back it was either already down or
moving in that direction. Another coordinator ensured that if a
leg was going up it was either already forward or moving in
that direction. The coordinator for all legs is a 12-bit binary.

 I: Inhibitors affected pairs or triples of legs. They
prevented certain legs from moving in the same direction at
the same time. For example, the inhibitor for legs 2&3
prevented both legs 2 and 3 from going back or forward at the
same time. It allowed 2 to move back, but inhibited 3. The
inhibitors for the set of legs are represented as a 15-bit binary
number. Coordinators and inhibitors are applied equally to all
genes and they are listed at the start and cyclic sections of the
chromosome.

 The start section has one gene and the cyclic section has
12 genes. This setup was found to be sufficient to provide the
maximum number of required chromosome changes during
the evolution process. Each gene has two parts: repetitions
and activations.

 R: Repetitions represent the number of times to repeat the
activations which are concurrent signals sent to the servos.

 A: Activations represent the signal sequence sent to the 12
servo-motors. Each activation signal is a 12-bit binary number,
with 3 bits dedicated to each leg, one bit for each of the in/out,
up/down and forward/back movements. Since each bit can
either be a 0 or a 1, one bit is sufficient to represent the two
states of any movement. A signal of 0 on any of the
movements is interpreted as a command to send the legs
down, in, or forward. A signal of 1 would command any of the
legs to go up, out, or back. Table II below shows the
interpretation of all the 12 bits.

TABLE II: INTERPRETATION OF THE 12-BIT CONTROL SIGNAL
IN THE ACTIVATIONS PART OF THE CHROMOSOME. LEG 0 IS THE
RIGHT FRONT, 1 IS THE LEFT FRONT, 2 IS THE RIGHT REAR, AND
3 IS THE LEFT REAR.

Bit
Index

Affected leg Command
when 0

Command
when 1

0 3 Down Up
1 3 In Out
2 2 In Out
3 2 Down up
4 1 Down Up
5 0 Down Up
6 2 Forward Back
7 1 Forward Back
8 0 Forward Back
9 3 Forward Back
10 1 In Out
11 0 In Out

B. Gait Learning and Genetic Operations
The CGA used a population of 64 individuals. The initial

population was created by randomly assigning numbers
(according to the allowed input range at each part of the
chromosome) to all the parts of the chromosomes. Five
separate tests were conducted with the CGA learning on the 5
different random starting populations. During the genetic
evolution process the CGA evaluated each chromosome of an
individual using the movement simulation model of the robot
and assigned each a fitness score.

 Fitness was determined by running the simulated robot for
500 activations (control signals) of the gait/control program
for each individual. This assured each individual was tested in
a long enough time to ensure at least more than one whole
step. The motivation for this choice was to ensure that the
algorithm also learns the best and smoothest way to join
different strides and steps without losing stability or forward
thrust. Fitness was computed by summing the fitness from
each of the 500 individual activations making up the test gait.
The activation fitness was computed in terms of the forward
distance and balance produced by the gene's activation signal,
which is repeated the indicated number of repetitions. This
was done on the model by:
• taking the current state of legs;
• applying the vertical movement;
• determining the probable legs on the ground from the

model’s current vertical position of each leg;
• calculating the balance of the robot from the nature and

number of legs on the ground;
• applying the horizontal movement to alter the leg’s state, but

only counting legs on the ground in computation of the
forward distance travelled;

• deducting fitness for lack of balance and/or asymmetry of
movement;

• and repeating the process using the next activation and the
new state.

This was sequentially done from the start to the end of the
chromosome, each time repeating as many times as required in
the cyclic section. Earlier observations and studies on the
nature of the robot’s movement and the nature of servos under
pressure, as well as the presence of friction between the legs
and the floor, revealed that back/forward and in/out
movements are hugely affected by these resistive forces.
Adjustments were required in determining the back/forward
and in/out movements when direction changes were first
applied. Each in/out and forward/back movement in a new
direction was set to produce ⅛ of the movement in the first
pulse, ¼ in the second pulse, ½ in the third pulse, and full
movement from the forth pulse and on. These adjustments
were made in the simulation to make it a better model of the
actual robot.

 At each generation, new chromosomes were created by
performing a roulette wheel selection to select two parent
chromosomes, with the probability for selection based on
fitness. These parents produced children using crossover and
mutation. Crossover was performed at randomly selected
single point in the start section where as in the cyclic section
two points were used. Each new offspring went through a
possibility of mutation where each bit was given a 1 out of 150
chance of flipping from a 0 to a 1 or vice versa. After 64
children chromosomes were created in this way, the
generation was complete. The process was repeated for a total
evolution run of 5,000 generations, this number ensured that
the populations can evolve to the highest possible fitness. The
program stored copies of the population every 10 generations
from generation 0 up to generation 100, every 20 generations
up to generation 300, every 50 generations up to generation
800, and every 100 generations up to generation 5000.

V. RESULTS
 From the results stored from all the five CGA runs, we
calculated the average fitness per population for all the
populations collected. We then plotted these results in graph of
average fitness per population versus the appropriate
generation number. Figure 5 shows this graph for populations
collected throughout the 5000 generations. Figure 6 shows the
same graph focused on the pattern observed from the first
1500 generations.
 As can be seen on these two graphs, the learning pattern of
the CGA can be observed. The evolution shows a rapid
increase in average fitness in the first generations which then
becomes steadier after about 500 generations. The CGA was
successful at evolving more fit generations in successive
generations, and continued to slowly improve the control
program until somewhere in the 1500 to 2000 generation
range. Figures 7 and 8 show fitness of the most fit individuals
from populations collected throughout the 5000 generations.
As expected, the CGA evolving individual gaits that get
progressively more fit as the evolution goes on.

Figure 5: A plot of average fitness per population from populations
selected from generation throughout 5000 generations. The average
of the five trials is shown in bold.

Figure 6: A plot of average fitness against generation number focused
on the first 1500 generations. The average of the five trials is shown
in bold.

Figure 7: A plot of the best individual’s fitness in a population
against generation number from populations throughout the 5000
generations. The average of the five trials is shown in bold.

Figure 8: A plot of the best individual’s fitness in a population
against generation number focused on the first 1500 generations. The
average of the five trials is shown in bold.

 The second crucial set of results was from the tests made
on the actual robot. Since all the five simulation tests
maintained a similar evolution pattern and display reasonable
gaits, we only saw the need to use results from one the five
runs to perform tests of the robot. From this run, the best gaits
from populations 0, 10, 100, 200, 500, 1000, 2000, and 5000
were processed for further tests on the robot. Each of these
gaits was downloaded to the Basic Stamp and allowed to
control the movement of the robot for a total of 500
activations as in the simulation. Each gait was run 3 times
while collecting the forward distance (in millimeters) travelled
and the final score was the average of the three distances.
Figure 9 below shows a plot of the distances travelled by the
gaits on the actual robot compared to the distances produced in
simulation by the same individuals.

Figure 9: A comparison of distances (mm) travelled by the same
individuals between the actual robot and the simulation.

As can be seen on Figure 9 above, the same gaits travelled
shorter distances on the robot as compared to the simulation.
What is more important as an observation from these results is
the similar evolution pattern of the two sets of results. It is
clear that the results from tests on robot are consistent with the

simulation results --there is almost a constant difference in
distances separating the two plots, which implies that the
difference is due to the experimental nature and minor errors
in the robot capability tests. There are physical factors and
errors in the environment that could not all be easily
incorporated in the simulation, especiually friction and
resistance from the floor.

 All runs resulted in reasonable near optimal gaits, the same
movement patterns were observed on simulation and in actual
robot tests. This shows that the CGA was successive in
learning near optimal gaits that could be successfully
transferred to the robot. Most of the gaits evolved were
functionally equivalent to the best quadruped gaits that had
been manually programmed into the robot. The CGA
produced gaits can be described as diagonal-paired gaits where
a pair of diagonal legs moves in directions opposite to the
other pair. This gait is shown in the Figure 10 below.

Figure 10: Movement of the robot based on the overall gait pattern
learned by the CGA. The black rectangles indicate legs not on the
ground. Leg 0 is the right front, 1 is the left front, 2 is the right rear,
and 3 is the left rear. Reading the figure from left to right, legs 1&2
start on the ground as legs 0&3 reposition.

 The black areas show legs that are off the ground. The
dashed line areas are where legs are on the ground and
producing thrust. With respect to up/down, forward/back and
in/out; legs 1&2 start out moving back and down (providing
forward thrust); legs 0&3 are moving forward and up. Legs 2
and 3 move in while moving forward and out while moving
back and Legs 0 and 1 do the opposite. Half way through the
full movement of the legs moving forward, they start to move
down as they keep moving forward to reposition for the next
step.
 This evolved gait made use of alternate pairs of legs
moving in a two-step cycle that involved reaching forwards
with two lifting legs while the two lowering legs moved back.
This gait is not statically stable. If the motion stopped the
robot would tip one way or the other. However, it is
dynamically stable and the force of the servos and resultant leg
movement is sufficient to produce enough forward momentum
that the robot has minimal rocking motion as it walks.

VI. CONCLUSIONS
 The CGA was successfully used to learn near optimal gaits
for the 4-legged robot with 3 degrees of freedom per leg.
Learning was done on a model of an actual robot and tested on
the robot. In all five trials the CGA learned an effective gait
and did so within 2000 generations. Tests on the actual robot
confirmed the effectiveness of the learned gait and showed
that the model adequately represented the robot during gait
evolution. These results are a further indication that the CGA
is capable of directly learning the control programs for multi-
legged robot locomotion. This algorithm can be a useful tool
for learning gaits in any real world scenario; all that is needed
is an accurate movement model of the robot that effectively
represents its unique features and capabilities.

 In future work, we will conduct more intensive studies
with CGA learning applied to the actual robot locomotion,
considering different terrain environments and how the CGA
can adapt to the changes in the capabilities of the robot. In
addition, future work will include the application of the CGA
to learn gaits for six and eight legged robots with three degrees
of freedom legs.

REFERENCES
[1] Daoxiong Gong, Jie Yan, and Guoyu Zuo (April 2010), “A Review of

Gait Optimization Based on Evolutionary Computation,” School of
Electronic Information and Control Engineering, Beijing University of
Technology, Beijing 100124, China.J. Clerk Maxwell, A Treatise on
Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892,
pp.68–73.

[2] Spencer, G. (1994), “Automatic Generation of Programs for Crawling
and Walking,” Advances in Genetic Programming. (pp. 335-353) K.
Kinnear, Jr. (ed.), Cambridge, MA: MIT.

[3] Sonia Chernova, Manuela Veloso (September 2004). “An Evolutionary
Approach To Gait Learning For Four-Legged Robots,”in Proceedings of
IROS’ 04, Sendai, Japan, September 2004.

[4] Susanne Still, Bernhard Schlkopt, Klaus Hepp, and Rodney J. Douglas,
(2000), “Four-legged Walking Gait Control Using a Neuromorphic Chip
Interfaced to a Support Vector Learning Algorithm,” NIPS2000.

[5] Parker, G., Braun, D., and Cyliax, I.(1997), “Evolving Hexapod Gaits
Using a Cyclic Genetic Algorithm,” in Proceedings of the IASTED
International Conference on Artificial Intelligence and Soft Computing
(ASC’97). (pp. 141-144).

[6] Gary B. Parker, William T. Tarimo, and Michael Cantor., “Quadruped
Gait Learning Using Cyclic Genetic Algorithm,” in Proceedings of 2011
IEEE Congress on Evolutionary Computation (CEC 2011).

[7] Holland, J., “Adaptation in Natural and Artificial Systems,” Ann Arbor,
MI: The University of Michigan Press, 1975

[8] Parker, G., and Rawlings, G. (1996), “Cyclic Genetic Algorithms for the
Locomotion of Hexapod Robots,” in Proceedings of the World
Automation Congress (WAC’96), Volume 3, Robotics and
Manufacturing Systems. (pp. 617-622.

	Connecticut College
	Digital Commons @ Connecticut College
	10-2011

	Using Cyclic Genetic Algorithms to Learn Gaits for an Actual Quadruped Robot
	Gary Parker
	William T. Tarimo
	Recommended Citation

	Using Cyclic Genetic Algorithms to Learn Gaits for an Actual Quadruped Robot
	Keywords
	Comments

