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Introduction 

 

 The purpose of this work is to explore the methodology and uses of an 

inexpensive and non-invasive brain-computer interface for the control of robotic systems, 

and specifically a three degree of freedom robotic arm. Traditionally, brain computer 

interfaces have been explored in the control of various electrical and mechanical 

devices, but the brain-computer interfaces that have been studied in the past are very 

rarely non-invasive. The only non-invasive option for interfacing a brain with a computer 

is the electroencephalogram, or EEG, which is usually bulky, and expensive. 

Additionally EEGs are difficult to find outside of research institutions and require a 

trained technician to operate. For these reasons, this work explores the use of the 

Emotiv EPOC Electroencephalogram, which is a non-invasive brain-computer interface 

that is also inexpensive and commercially available. Shortcomings in the resolution of 

this system are made up for through a novel system of Artificial Intelligence, employing 

Linear Support Vector Machines to classify the data from the Emotiv EPOC into a set of 

outputs for a three degree of freedom robotic arm.  

 Brain-computer interfaces have been explored for years with the intent of using 

human thoughts to control mechanical systems. When one is not considering the 

accessibility of the electroencephalographic system, many technological feats in this 

area are already possible.  

 Electroencephalographic classification for the control of computers has been 

studied for control of software on computers as far back as 1991, by Wolpaw, 

McFarland, Neat, and Forneris [1]. Wolpaw et al. successfully created a system that 

allowed a user to control a cursor using electroencephalographic signals.  Wolpaw 

would go on to explore the area in a series of papers describing the state of the art 

throughout the early 2000s [2],[3]. This work was built upon by Iáñez et al. [4], who used 

a large, high resolution electroencephalogram to control a robotic arm. These studies all 

worked towards showing the power of electroencephalography, but unfortunately did not 
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address the issues of prohibitive cost and difficulty of use for the end-user. The Emotiv 

EPOC is a device that has been explored for exactly this reason.  

 The Emotiv EPOC has been used in a variety of applications, due to its 

accessibility for consumers and researchers. The device was explored by Lievesley, 

Wozencroft, and Ewins, out of the UK, who found it to be useful for the control of 

computers by patients with no voluntary muscle control [5]. These patients were able to 

access computer based assistive technology and navigate a virtual space using two 

discrete thought patterns, all with a greater than random chance of success. Poor et al. 

from Bowling Green State University, in Ohio, also found the Emotiv EPOC to be an 

effective method for computer control, having the subjects of their experiments perform 

a 3D rotation task in virtual space [6]. 

 The use of the Emotiv EPOC has also been explored in the area of controlling 

robotic systems through non-invasive BCI. In 2010, Wang and Fuhlbrigge published a 

review of the state of the art in brain-computer interface technology as applied to 

industrial robotics. They found the field to be growing quickly with the introduction of 

Figure 1. The Nao humanoid robot, by Aldebaran Robotics. Kadam and Sheng [8] used this robot for 

electroencephalographic teleoperation. 
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systems such as the Emotiv EPOC, and exhibited high hopes for the future [7]. Also in 

2010, Kadam and Sheng used the Emotiv EPOC to teleoperate a remote humanoid 

robot, showing yet another facet of robotics where non-invasive BCI can be successfully 

applied. Kadam and Sheng's system allowed for the remote control of an Aldebaran 

Robotics Nao humanoid robot (Figure 1), which the user was able to direct with 

electroencephalographic commands [8] to move forward, turn left, and turn right. Kadam 

and Sheng found that their system was effective to navigate a small course. In 2011 

Vourvopoulos and Liarokapis published yet another example of teleoperation in mobile 

robotics through the use of the Emotiv EPOC to control a Lego NXT robot [9]. In order 

to control the Lego NXT robot, Vourvopolous and Liarokapis used the Emotiv Emokey 

software (Figure 2) to send key commands to a java program. The Emokey software is 

provided by Emotiv, and allows a user to select different keystrokes to virtually actuate 

based on electroencephalographic data, with up to four outputs being trained [10]. In 

 
Figure 2. A screenshot of the Emotiv EmoKey software, which Vourvopolous and 

Liarokapis used to control a Lego NXT robot. 
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addition to the wide breadth of study that has been undergone in the area of non-

invasive brain-computer interfaces for the remote con trol of mobile robots, Ranky and 

Adamovich in 2010 explored the use of the Emotiv EPOC for the control of robotic arms, 

and determined that the EPOC could be an effective system for control through 

electroencephalography [11].  

In the work reported in this paper, we are looking to improve the effectiveness of 

each of these previous methods of control by increasing the number of possible outputs 

gathered from the electroencephalographic data. While the software provided with the 

Emotiv EPOC allows  a user to train a maximum of four outputs, the consistency and 

effectiveness of those outputs are questionable. While prior work with this device has 

shown that effective control with as many as three and sometimes four outputs can be 

consistent [5,6,8,9], none of these systems use more than four outputs. In this work, we 

look to classify the electroencephalographic data of the user to six outputs, greatly 

increasing the complexity of any mechanisms being controlled by the user. 

 When one is working to classify a set of data as complex as that recorded by an 

electroencephalogram, machine learning holds many of the most effective solutions. In 

this work, we use support vector machines (SVMs), which are the standard method of 

classifying electroencephalographic data. Support vector machines have been used for 

a variety of complex classification tasks, ranging from the classification of EEG data 

(Leuthardt et al. 2004) [12], to the classification of vision-based obstacle detection 

(Ubbens 2009) [13]. We show that the use of SVMs can increase the effective degrees 

of freedom that can be controlled using an Emotiv EEG system. 
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Background 

  

 EEG Technology 

 

 The Electroencephalogram (EEG) is a device used to measure a patient’s 

neuronal activity through the measurement of electrical currents along the surface of the 

scalp (Figure 3). The EEG was developed in the early 20th century by the Neurologist 

Hans Berger, when Berger was trying to find connections between extra sensory 

perception in humans and electrical activity in the brain [14]. Berger published the first 

use of his electroencephalogram on the human brain in 1929, and his discoveries were 

confirmed and furthered by British scientists Edgar Douglas Adrian and B. H. C. 

Matthews in 1934 [14]. The Modern EEG is not far different from that developed by 

these foundational scientists.  

 
 

Figure 3. A man at Brandeis University wearing a modern EEG. He is wearing a 128-channel high spatial 
density, high-impedance system, which gives more accurate electroencephalographic data, but is even more 

bulky then other similar systems. 
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Modern EEGs function by measuring voltage fluctuations along the surface of the scalp 

caused by ionic current flows within the neurons of the brain. A neuron is a cell found in 

the brain that transmits nerve impulses from the body. Neurons can receive different 

kinds of signals from the body, either through a chemical change, such as a response 

from olfactory receptors, or from a physical change such as a touch receptor in the skin 

or a light receptor in the retina. The signals that the neuron receives cause Sodium and 

Potassium ions to move across the neuron's plasma membrane, which in turn causes 

an electrical current flow. This current flow can be used to evaluate the activity of the 

brain, and is therefore read directly by the EEG. The current flow is measured by 

electrodes on the scalp, which operate under a standard sensitivity of 7 µvolts/mm. The 

readings gathered by these electrodes are then reported by the EEG as a measure of 

frequency, along a number of different consistent electrode placements. Decisions for 

Electrode placement are based on a number of standards, but the most common 

system is the International 10-20 system, developed in 1958 by a committee of the 

International Federation of Societies for Electroencephalography and Clinical 

Neurophysiology, and published by Jasper [15]. The International 10-20 system uses 

anatomic landmarks on the scalp to give a consistency of electrode placement among 

varying individuals.  
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Figure 4. The standard electrode placement of an EEG, recommended by the American EEG Society for use 
in the International 10-20 system. 

 

 

The anatomical landmarks used by this system (shown in Figure 4) are the nasion and 

the ision. The nasion is the depressed area of the skull just behind the eyes, and the 

ision is the bump on the back of a patients head, which is the lowest part of the skull. 

This system has shown to be effective over time, but requires a prohibitive number of 

electrodes. 

 

 

 Brain Computer Interfaces 

 

 A Brain-Computer Interface, or BCI, is a device that allows a user to interact with 

a computer using electrical signals from their brain. Most BCIs can be divided into three 

categories; invasive, partially-invasive, and non-invasive. Invasive BCIs are installed 

directly in the grey matter of the brain. These devices can receive the most clear and 

effective signals from the brain, and have been used effectively in both animal and 
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human tests for various applications, including the treatment of congenital blindness. 

Unfortunately, invasive BCIs are prone to a buildup of scar tissue around the implant, 

due to the body recognizing the implant as a foreign body. Invasive BCIs can also be 

dangerous to implant, due to the surgery involved, as well as extremely costly. For 

these reasons, invasive BCIs are becoming less common as alternative approaches are 

being found.  

 Partially invasive BCIs are another method of interacting with a computer through 

the activity of the human brain. A partially invasive BCI involves installing a device 

between the brain and the inside of the skull, which can then read brain waves without 

the interference of the human skull. These devices are nearly as effective as an 

invasive BCI, but involve significantly less complicated, dangerous, and expensive brain 

surgery to install. These devices are also not affected by scar tissue buildup, like the 

invasive BCIs. However, a partially invasive BCI still must be installed in the skull 

through a surgical procedure, which makes the device expensive and inaccessible to 

the majority of patients.  

 The third and most accessible method is the non-invasive BCI. A non-invasive 

BCI sits on the surface of the scalp, and can be removed or worn at the patient's 

discretion. There is no surgery involved, and most non-invasive BCIs can still interact 

with computers in a completely effective manner. Research has been done on using 

non-invasive BCIs, such as EEGs, to control many different computers, machines, and 

user interfaces, as well as to gather data about a patients mental health. Unfortunately 

the majority of BCIs are very expensive, awkward machines that are inaccessible to the 

average person. However, there are some smaller, lower-resolution consumer grade 

EEGs that can provide the safety and effectiveness of a non-invasive BCI with a low 

cost. 
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 The Emotiv EPOC EEG 

 

 The Emotiv EPOC EEG is a revolutionary new electroencephalogram that is 

already being explored for BCI research. The EPOC uses fourteen sensors and two 

reference points to track fourteen different channels of electroencephalographic activity.  

The Emotiv Epoc gathers data from the standard channels named AF3, AF4, F3, F4, F7, 

F8, FC5, FC6, P3 (CMS), P4 (DRL), P7, P8, T7, T8, O1, and O2 (Figure 5). It uses 

sequential sampling, has a 0.2 - 45Hz bandwidth and 16 bit resolution.  This leads to a 

lower resolution dataset than a standard EEG using the International 10-20 system, but 

the EPOC has many benefits to make up for this shortcoming. The Emotiv EPOC is 

available for personal or commercial use, and is extremely inexpensive compared to a 

standard EEG. 

 

  

  Figure 5. The location of the fourteen channels read by the Emotiv EPOC. 
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It can be worn and used without a trained technician or operator, and can feed data into 

a standard computer. The headset is also wireless, allowing a much greater range of 

experiments to be performed compared to that of a standard EEG.  Effectively, if the 

fairly significant problem of a lower resolution device was to be overcome in the 

package and price of the Emotiv EPOC, great strides could be taken in the accessibility 

and availability of BCI technology to the average consumer. This technology could 

contribute not only to the improvement of handicap devices and scientific inquiry, but 

also to entertainment on a broader scale. 

 

 

 Support Vector Machines 

 

 In order to use the data from the Emotiv EPOC EEG, which is lower resolution 

and therefore provides data with less characteristics from which to draw conclusions, 

the data has to be classified into discrete outputs. Classification is a common task in 

Machine Learning, and has been studied in depth. Some of the most common tools 

used to classify data are Support Vector Machines.  A Support Vector Machine, or SVM, 

is a supervised learning model that takes in a  set of data, and predicts , for any given 

input, which of two classifications the input belongs to Cortes and Vapnik, 1995) [16].  In 

order to classify these inputs, the SVM  must first find an optimal hyperplane that 

separates a small amount of training data (the support vectors). If the training vectors 

are  separated without errors by an optimal hyperplane, we can assign a value to the 

expectation of the probability of committing an error in a test example. This value is 

bounded by the ratio of the expectation value of the number of support vectors and the 

number of training vectors, and gives an idea of the effectiveness of the SVM.  
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Due to this ratio, if the optimal hyperplane can be constructed from a small number of 

support vectors relative to the training set,  then the generalization ability of the SVM will 

be very good, even in a high-dimensional space. This ability is part of what makes 

SVMs such an effective method of classification, even in complex real-world problems. 

 

 In order to construct an optimal hyperplane to separate a set of training data,  we 

use an algorithm devised by Vladimir Vapnik in his 1982 work on the subject. According 

to the introductory paper on Support Vector Machines, by Cortes and Vapnik in 1995 

[16], the set of labeled training patterns  

 

                                    

 

is said to be linearly separable if there exists a vector w and a scalar b such that the 

inequalities 

 

                      

                        

 

are valid for all elements of the training set described by the set of labeled training 

patterns above. Cortes and Vapnik rewrite the inequalities in the form  

 

                            

  

The optimal hyperplane described as 

 

          

 

is the unique hyperplane that determines the direction 
 

   
 where the distance between 

the projections of the training vectors of two different classes is maximized, and   and 
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  are the arguments that maximize that distance. This maximized distance value refers 

to the optimality of the constructed hyperplane.  The distance        is given by the 

equation 

 

          
       

   

   
    

        

   

   
  

 

The term Support Vector in Support Vector Machine refers to the training vectors used 

to classify input data to the machine. Support vectors are described as vectors    for 

which 

              

 

The vector    that determines the optimal hyperplane can also be written as a linear 

combination of training vectors: 

 

        
   

 

   

  

 

where   
   , and   is a vector of Lagrangian multipliers with a length of   [16]. This 

equation holds because   is only greater than 0 for support vectors. If the training data 

cannot be separated without error one must work to separate the training set with the 

least number of errors possible. To express this idea formally, Cortes and Vapnik 

introduce a new set of non-negative variables               These variables allow 

us to describe the training errors as  

 

        
 

 

   

 

 

for small    , subject to the constraints 
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Minimizing the summation above allows one to find the minimal subset of training errors. 

This subset can then be omitted from the training data to allow linear separation of the 

remaining training data. This idea can be expressed formally as minimizing the function 

 

 

 
         

  

 

   

 

 

subject to the aforementioned constraints, where      is a monotonic convex function 

and C is a constant. Using the described Support Vector Machines, one can separate a 

large set of data, whether or not it is linear classifiable, into two distinct groups. This 

classifying ability makes them useful for a variety of tasks, including classifying EEG 

data into discrete outputs. 
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Methodology 

 

 Using the Emotiv EPOC 

 

 Many of the benefits of the Emotiv EPOC EEG lie in its usability. In order to 

extract electroencephalographic data, the EEG must be prepared briefly before each 

use. On a normal EEG, a saline paste or gel must be applied to each of the many 

electrodes on the device, to maintain proper signal between the electrode and the scalp. 

The EPOC is simpler in that each felt electrode needs only to be wetted with a 

commercially available saline solution. After the EEG is prepared, the test subject sets it 

on their head (Figure 6), and begins checking the calibration through the feedback from 

the included graphical user interface. All communication between the device and the 

computer occurs through a standard USB dongle, transmitting on a proprietary wireless 

band at 2.4Ghz.  
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Once in use, the EPOC sends the electroencephalographic signal data from the scalp to 

the computer. This data travels in the form of encrypted packets, which are decrypted in 

the Emotiv TestBench software provided by the Emotiv Research edition SDK. 

 

 

 Using Emotiv TestBench 

 

 When the Emotiv TestBench software picks up the signals from the EPOC, each 

point of data is automatically displayed on the graphical user interface. The EPOC 

samples the data sequentially over fourteen electroencephalographic locations: AF3, 

AF4, F3, F4, F7, F8, FC5, FC6, P3 (CMS), P4 (DRL), P7, P8, T7, T8, O1, and O2. Each 

of the locations corresponds to a portion of the international 10-20 system, and were 

selected for an even distribution over specific areas of the scalp. The EPOC samples 

the data at a rate of 128HZ, with a 14 bit effective resolution. This resolution causes the 

data from the headset to be much more noisy than a traditional EEG but is still viable for 

use after classification.  

Figure 6. The Emotiv EPOC EEG in use 
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As shown in Figure 7, the Emotiv TestBench software displays the 

electroencephalographic data in real time along the fourteen monitored channels. Each 

of these channels will vary when the user thinks different thoughts, and will also pick up 

and electromyographical data, such as blinking and facial expressions. For that reason 

it is most effective to maintain a neutral expression both when training and testing the 

device. In addition to the data visualization aspect of the software, the Emotiv 

TestBench software also allows for the collection of data over a given period of time into 

the EDF physiological signal recording format. For our purposes this data is then 

converted to comma separated value (CSV) format (Figure 8), where it can then be 

read effectively into MATLAB for further processing. In order to effectively train the SVM 

in this experiment, a dataset was created for each of six different classes; passive, up, 

down, left, right, forward. Each dataset was recorded through a minute of concentration 

Figure 7. The Emotiv TestBench software in use. The data shown on the screen corresponds to 
the 14 channels being picked up by the EEG. 
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on each movement, followed by a minute resting period. The corresponding data was 

then saved and converted to CSV format, where it existed as six files, each containing a 

header, seven thousand rows of data points, and thirty six columns of data. The first 

fourteen columns of data were gathered from electroencephalographic data, with the 

other twenty two being gathered from electromyographical signals and preprocessed 

data. Seven thousand rows of data represent approximately one minute of continuous 

electroencephalographic signals, with fourteen columns representing fourteen features. 

Figure 8. An example of the data recorded by the EEG, in comma separated value format. Only the first four 
columns are shown here, because the full dataset is thirty-six columns wide. The first column of data is  a 
sequential numbering of the samples recorded by the EEG. The second column is for spacing out the data set, 
while the rest of the columns consist of data collected by the EEG. Each row is another sample, recorded 

sequentially.  
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For our research only the first fourteen columns were used. The header of each data file 

was also removed, to leave a seven-thousand row, fourteen column matrix. This 

process was repeated five times for each of the six classes for a total of thirty data sets. 

 

 

 Linear SVM for Dataset Classification 

 

 After the thirty datasets are compiled, they are read into MATLAB and stored as 

matrices. Each of these matrices is made up of 7000 rows, and 14 columns. Each of the 

14 columns in the matrix corresponds to a feature of the data; in this case, one of the 14 

outputs from the EEG. The 7000 rows of the matrix come from the data read by the 

EEG, corresponding to one sample of data per row, for a total of about one minute of 

data per matrix.  The 5 matrices for each classes are then concatenated vertically, to 

give 35,000 rows of data, or 35,000 samples for each of the 14 features, as shown in 

Figure 9. Each 35,000 value column is split into 50 subsets vertically (about 6 seconds 

of data per subset), giving each of the 14 columns 50 separate data sets. The data is 

After being split into 25 
training sets and 25 test sets 

After Fast Fourier Transform: 
50 sets of 140 

After division into 50 subsets 

Data for one class 35,000 Data 
Points 

700 

140 

140 Training 

700 

140 

140 Training 

700 

140 

140 Training 

... 700 

140 

140 Test 

Figure 9. The data formatting prior to training of the SVM. 
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then formatted appropriately and fed into a Fast Fourier Transform with ten bins. The 

Fast Fourier Transform function computes the discrete Fourier Transform and its 

inverse, for each of the subsets of data in each of the fourteen classes. The resulting 

subsets of data are then 140 data points long each, giving the data a feature space of 

140.  

 

 After the data is formatted  properly and partitioned into the correct subsets, it is 

ready to be fed into the support vector machine. For the purpose of this work we used a 

linear support vector machine capable of multi-label classification. We classified the 

data that we gathered using the Emotiv EPOC across six labels; Passive, Up, Down, 

Left, Right, and Forwards. Each label corresponded to a class, which in turn contained 

25 sets of data for training and 25 for testing. The training data was concatenated 

horizontally into an array, and then fed into the SVM, alongside a parallel vector of label 

training data. The linear SVM returns a struct describing the hyperplane that was 

constructed for classification in the format 

 

      

 

where   is the weight vector of the hyperplane,   is the bias, and x is the input data to 

be classified. The effectiveness of the given hyperplane to this classification problem 

can be evaluated by using the trained SVM to classify a set of test labels, which can 

then be compared to the training labels, and measured for effectiveness. 
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After the SVM is trained, it can classify any new data into one of the six trained 

labels. Each of the seven labels that were trained corresponded to one of the seven 

outputs mechanically for a robotic arm. For this experiment, we used the AL5D 4 degree 

of freedom robotic arm by Lynxmotion Robotics (Figure 10), with the revolute wrist joint 

disabled. The AL5D is an anthropomorphic arm in an R⊥R├ R configuration. This 

configuration involves three resolute joints, connected by one perpendicular axis and 

one orthogonal axis (Figure 11). This configuration is relevant both in its obvious 

anthropomorphic considerations as well as its use in industry, as R⊥R├ R arms make 

up almost 25% of industrial robots. The end effector of the arm was disabled for the 

purposes of this work, because movement through the robotic arm's reachable 

workspace was the method of evaluation. The arm is controlled through the use of an 

SSC-32 servo controller, which is communicated with through an open serial port. For 

evaluation purposes,  Lynxmotion's HyperTerminal software was used to send 

commands to the arm. The SSC-32 servo controller received the commands along the 

serial port as ASCII strings formatted for the device. Figure 12 shows an example ASCII 

 
Figure 10. The Lynxmotion AL5D Robot Arm. After disabling the end effector and 

revolute wrist joint, it is a 3DOF elbow, or anthropomorphic, manipulator. 
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string that controls the arm. This string consists of six commands. The first command 

shown, #2, refers to the number of the servo motor being addressed. Any number of 

servo motors can be addressed by the system, with the number corresponding to the 

output pin on the SSC-32 servo controller that the servo motor is connected to. After the 

output string addresses a specific servo, it gives a pulse width to the servo. In this 

example, the pulse width is given by P1500. This value indicates that a pulse width of 

1500, in microseconds, is sent to the servo motor to control it. A pulse width of 1500 

should move a servo motor as far as it can go in one direction, depending on the servo 

and its orientation. This pattern of commands is repeated for a second servo, and 

followed by the command T2000. This command indicates that all of the servos should 

reach their final destination at the conclusion of 2000 milliseconds of time elapsed from 

the moment at which the SSC-32 receives this command. Finally, the line is terminated 

by <cr>, which is the carriage return, and indicates that the SSC-32 should run the 

given line. 

 
Figure 11. A bare-bones diagram of a PUMA industrial robot arm, which is 

another example of a 3DOF elbow manipulator. 
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Figure 12. An example command sent via serial communication to the SSC-32 servo controller. The top box 
is the command in full. The second row of boxes breaks the command down into each token that the SSC-32 
servo controller is accepting. The third row of boxes is an explanation of each specific token. 

 

 

 The movement task that we hoped to solve using the Emotiv EPOC EEG was to 

navigate the arm through its workspace and touch each of a set of five targets (Figure 

13). Each of these targets is spaced out in a way such that the user must take 

advantage of 6 separate movements: forward, up, left, down, and passive. In this task, 

the passive class will direct the arm to move back to a neutral position, allowing the user 

to navigate towards a new target. This task is similar to a general setting in which a user 

may be trying to control an arm through teleoperation.  

 

 

 

#3 P1500 #2 P1250 T3000 <cr> 

#3 

The number of 
the servo being 

addressed 

P1500 

The position the 
servo is moving 

towards 

#2 

The number of 
the second servo 

in the group 
being addressed 
simultaneously 

P1250 

A different 
position, for 

servo #2 

T3000 

All servos will 
spend a total of 

3 seconds 
moving to their 

final location 

<cr> 

The carriage 
return, 

indicating that 
the line should 

be executed 
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Results 

 

 As a baseline for the evaluation of our system, we analyzed the success of the 

Emotiv Control Panel classification software, which was provided with the EEG. The 

Emotiv Control Panel allows a user to control a virtual object with their minds, allowing 

for the training of several distinct outputs, which are translated to the screen. The 

Emotiv system requires an 8 second training time for each action, and can only be 

trained for a maximum of 4 inputs. We set up the system to train for the maximum of 4 

inputs, and tested a user to observe the successful classification rate of the Emotiv 

System. The user being tested was unable to see the screen, and did not know whether 

they were testing the Emotiv system or our system. We found that after 80 trials, the 

Emotiv system correctly classified the user input 16 times, or 20.00% of the time. This 

classification rate is actually slightly below random chance, which would classify the 

user input correctly approximately 
 

 
 of the time, or 25.00% for 4 inputs (Figure 14).  This 

Figure 13. The movement task to be solved. The user must control the robotic arm 
to touch the green end effector to each of the 5 red targets. The five targets 
represent extremes in the robots frontal workspace. 



 O'Connor 26 
 

result leads us to believe that the Emotiv system is ineffective for classifying a user’s  

electroencephalographic data to four classes.  

 

 

 

 

 To compare our system of classification with the default system provided by 

Emotiv, we first tested our system on four classes, which is what is available with the 

Emotiv software. Using the trained linear support vector machine, we classify the test 

data that we prepared prior to the training phase. The test data consists of half of the 

data set, which was organized into a set of 150 outputs. Each of these outputs was 

classified to one of the four output labels by the hyperplane constructed by the linear 

support vector machine.  After the data is classified, it is put into a vector that 

corresponds to the label training vector, which contains the proper classification of the 

test data. The label training vector was created by ordering the labels in the same way 

that they correspond to the feature training data, to create a sort of answer key to both 

train and test the SVM. Once the data was classified, we compared the two vectors and 

calculated the percentage of correct classifications. Given that the SVM is classifying 

the user’s electroencephalographic data into four possible outputs, a system that used 

random chance would achieve success 25% of the time. The baseline Emotiv system 

achieved success 20% of the time, making it effectively random and ineffective for 

classification. Our system, when classifying four outputs, was successful 37% of the 

time, which is a 12% increase over random chance (Figure 15). This success showed 

promise towards the classification of electroencephalographic data into larger numbers 

of classes. 

 

Robot arm movement success rate (Emotiv Control Panel) 

Random chance 

•25.00% 

Observed rate with Emotiv System 

•20.00% 

Figure 14. The Emotiv Control Panel was ineffective in classifying data to 4 
outputs, with a success rate of 5% below random chance. 
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After classifying the EEG data into four classes more successfully than the 

Emotiv system, we looked to increase the number of classes to six. Having six separate 

classes of a data would provide the range of movements needed for our robot arm to 

successfully complete the given movement task. Using the same system described 

above for the four output system, we classified the electroencephalographic data into 

six classes. If the SVM were to classify the data according to random chance, it would 

classify one of every six outputs correctly since there are six labels (six possible 

outputs). Therefore the SVM would have a 
 

 
, or 16.66% chance of correctly classifying 

the input of the user. In reality this classification chance would mean that the robot arm 

that the user is controlling would move in the intended direction 16.66% of the time. 

When comparing our data to the label test data, we found that our system was able to 

classify the input of the user correctly 26.00% of the time, based on 150 test inputs. This 

indicates a nearly 10% increase in effectiveness over random chance (Figure 16).  

 

 

 

 

 

Robot arm movement success rate (SVM with four classes) 

Random chance 

•25.00% 

Observed rate with Emotiv System 

•37.00% 

Figure 15. Our system showed a significant increase over random chance in 
classifying data to four outputs, with a success rate 12% above random. This 
success rate shows that our system is much more effective than the Emotiv 
system at classifying data to four outputs. 
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Conclusions and Future Work 

 

 In conclusion, the system that we developed for controlling the AL5D Lynxmotion 

robotic arm through electroencephalographic data shows promise. We were 

successfully able to classify electroencephalographic data more accurately than the 

system included with the Emotiv EPOC EEG, and more importantly, we were able to 

classify user data to 6 outputs instead of the 4 outputs given by the Emotiv system.  

Unfortunately, we were unable to control the arm with the accuracy necessary to 

complete our movement task. In order to complete the given task, we will need to either 

reduce the complexity of the task and therefore decrease the number of outputs needed 

to a more manageable number, or improve the effectiveness of our classification system. 

Our system could be further improved through gathering more data and using different 

optimization techniques to increase the classification rate of our support vector machine.  

A longer training time for the user would allow the support vector machine to more 

successfully construct a separating hyperplane. Additionally, different machine learning 

techniques and methods of optimization for support vector machines would allow one to 

increase the classification rate of the system. If the classification rate of the system 

could be increased to anything greater than 50%, then we believe the robot arm could 

be successfully controlled in a real world situation. For future work, we would like to 

explore these techniques to increase the classification rate over 50% so that we could 

start running trials on the effectiveness of this control system. We could also then 

evaluate the use of the system on different people, and in different experimental 

environments.  

 

Robot arm movement success rate (SVM with six classes) 

Random chance 

•16.66% 

Observed rate with SVM 

•26.00% 

Figure 16. Our system showed a 9.33% increase in effectiveness over random 
chance when classifying data to six outputs. 
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Appendix A 

 

SixClassDataCollection.m 

 

%Jim O'Connor 

%EEG data analysis and formatting (6 classes) 

% 

%This script takes data returned fromo the Emotiv EPOC EEG  

%TestBench software, which is stored as a series of comma 

%separated value files, and performs a series of operations on  

%the data. First, a Fast Fourier Transform is applied to the  

%data, to get rid of the time domain and prepare the data for  

%use by the Support Vector Machine. The absolute value function  

%is then applied to the data, and the data is reshaped into an  

%appropriate feature space. Next, the feature is split into two  

%sections, one section composed of five samples for training,  

%and the other five sample section for testing. These features  

%are then ready to be used by the Support Vector Machine. 

 

  

addpath('lsvm'); 

addpath('helpfun'); 

addpath('svm'); 

  

global bins 

bins = 22; %0.26 at 22  

  

%Initialize the variables used in the looping and formatting 

processes 

initial_index=0; 

training_index=0; 

test_index=0; 
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%Read in the comma separated value data to matlab. The 2nd 

parameter of the 

%csvread function allows the function to skip the header of the 

CSV file, 

%which is not part of the data being analyzed. 

csv_data = vertcat(csvread('Shaun-Passive One-

28.04.13.20.00.16.CSV',1,0),... 

    csvread('Shaun-Passive Two-28.04.13.20.12.01.CSV',1,0),... 

    csvread('Shaun-Passive Three-28.04.13.20.20.49.CSV',1,0),... 

    csvread('Shaun-Passive Four-28.04.13.20.32.12.CSV',1,0),... 

    csvread('Shaun-Passive Five-28.04.13.20.42.21.CSV',1,0)); 

     

%The initial loop runs 50 times, allowing it to split the 7000 

line data 

%into 10 equal samples of 700 data points each, for 14 features. 

A Fast 

%Fourier Transform is then applied to the CSV data, followed by 

an absolute 

%value function. The resulting data is reshaped into 50 vectors 

of length 

%140, which is the feature space. 

for n = 1:50 

    initial_index = initial_index+1; 

    fft_signal{initial_index} = 

abs(fft(csv_data(((initial_index*700)-

699):initial_index*700,1:14),bins)); 

    new_fea{initial_index} = 

reshape(fft_signal{initial_index},numel(fft_signal{initial_index

}),1); 

end 
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%The resulting dataset is then split in half through the use of 

two loops, 

%each of which runs for half of the 50 vector long array, saving 

the two 

%halves in new matrices. Each of these matrices is named 

according to its 

%label and its use in either the training set or the test set 

for the 

%Support Vector Machine. 

for i = 1:25 

    training_index = training_index+1; 

    Passive_Training_Set{training_index} = 

new_fea{training_index}; 

end 

for i = 1:25 

    test_index = test_index+1; 

    Passive_Test_Set{test_index} = new_fea{test_index+25}; 

end 

  

  

%The index variables are re-initialized each time a new data set 

is looped 

%through and formatted. 

initial_index=0; 

training_index=0; 

test_index=0; 

  

csv_data = vertcat(csvread('Shaun-Up One-

28.04.13.20.03.19.CSV',1,0),... 

    csvread('Shaun-Up Two-28.04.13.20.13.21.CSV',1,0),... 

    csvread('Shaun-Up Three-28.04.13.20.22.18.CSV',1,0),... 
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    csvread('Shaun-Up Four-28.04.13.20.34.24.CSV',1,0),... 

    csvread('Shaun-Up Five-28.04.13.20.44.01.CSV',1,0)); 

  

for n = 1:50 

    initial_index = initial_index+1; 

    fft_signal{initial_index} = 

abs(fft(csv_data(((initial_index*700)-

699):initial_index*700,1:14),bins)); 

    new_fea{initial_index} = 

reshape(fft_signal{initial_index},prod(size(fft_signal{initial_i

ndex})),1); 

end 

for i = 1:25 

    training_index = training_index+1; 

    Up_Training_Set{training_index} = new_fea{training_index}; 

end 

for i = 1:25 

    test_index = test_index+1; 

    Up_Test_Set{test_index} = new_fea{test_index+25}; 

end 

  

%Each new set of loops handles a new set of data, each 

corresponding to a 

%new class. There are six classes total. 

  

initial_index=0; 

training_index=0; 

test_index=0; 

  

csv_data = vertcat(csvread('Shaun-Down One-

28.04.13.20.05.55.CSV',1,0),... 

    csvread('Shaun-Down Two-28.04.13.20.14.48.CSV',1,0),... 
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    csvread('Shaun-Down Three-28.04.13.20.24.12.CSV',1,0),... 

    csvread('Shaun-Down Four-28.04.13.20.36.13.CSV',1,0),... 

    csvread('Shaun-Down Five-28.04.13.20.45.49.CSV',1,0)); 

  

for n = 1:50 

    initial_index = initial_index+1; 

    fft_signal{initial_index} = 

abs(fft(csv_data(((initial_index*700)-

699):initial_index*700,1:14),bins)); 

    new_fea{initial_index} = 

reshape(fft_signal{initial_index},prod(size(fft_signal{initial_i

ndex})),1); 

end 

for i = 1:25 

    training_index = training_index+1; 

    Down_Training_Set{training_index} = new_fea{training_index}; 

end 

for i = 1:25 

    test_index = test_index+1; 

    Down_Test_Set{test_index} = new_fea{test_index+25}; 

end 

  

  

initial_index=0; 

training_index=0; 

test_index=0; 

  

csv_data = vertcat(csvread('Shaun-Left One-

28.04.13.20.07.45.CSV',1,0),... 

    csvread('Shaun-Left Two-28.04.13.20.16.18.CSV',1,0),... 

    csvread('Shaun-Left Three-28.04.13.20.25.33.CSV',1,0),... 

    csvread('Shaun-Left Four-28.04.13.20.37.42.CSV',1,0),... 
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    csvread('Shaun-left Five-28.04.13.20.47.22.CSV',1,0)); 

  

for n = 1:50 

    initial_index = initial_index+1; 

    fft_signal{initial_index} = 

abs(fft(csv_data(((initial_index*700)-

699):initial_index*700,1:14),bins)); 

    new_fea{initial_index} = 

reshape(fft_signal{initial_index},prod(size(fft_signal{initial_i

ndex})),1); 

end 

for i = 1:25 

    training_index = training_index+1; 

    Left_Training_Set{training_index} = new_fea{training_index}; 

end 

for i = 1:25 

    test_index = test_index+1; 

    Left_Test_Set{test_index} = new_fea{test_index+25}; 

end 

  

  

initial_index=0; 

training_index=0; 

test_index=0; 

  

csv_data = vertcat(csvread('Shaun-Right One-

28.04.13.20.09.14.CSV',1,0),... 

    csvread('Shaun-Right Two-28.04.13.20.17.37.CSV',1,0),... 

    csvread('Shaun-Right Three-28.04.13.20.28.11.CSV',1,0),... 

    csvread('Shaun-Right Four-28.04.13.20.39.11.CSV' ,1,0),... 

    csvread('Shaun-Right Five-28.04.13.20.48.56.CSV',1,0)); 
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for n = 1:50 

    initial_index = initial_index+1; 

    fft_signal{initial_index} = 

abs(fft(csv_data(((initial_index*700)-

699):initial_index*700,1:14),bins)); 

    new_fea{initial_index} = 

reshape(fft_signal{initial_index},prod(size(fft_signal{initial_i

ndex})),1); 

end 

for i = 1:25 

    training_index = training_index+1; 

    Right_Training_Set{training_index} = 

new_fea{training_index}; 

end 

for i = 1:25 

    test_index = test_index+1; 

    Right_Test_Set{test_index} = new_fea{test_index+25}; 

end 

  

  

initial_index=0; 

training_index=0; 

test_index=0; 

  

csv_data = vertcat(csvread('Shaun-Forward One-

28.04.13.20.10.41.CSV',1,0),... 

    csvread('Shaun-Forward Two-28.04.13.20.19.26.CSV',1,0),... 

    csvread('Shaun-Forward Three-28.04.13.20.29.56.CSV',1,0),... 

    csvread('Shaun-Forward Four-28.04.13.20.40.45.CSV',1,0),... 

    csvread('Shaun-Forward Five-28.04.13.20.50.32.CSV',1,0)); 

for n = 1:50 

    initial_index = initial_index+1; 
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    fft_signal{initial_index} = 

abs(fft(csv_data(((initial_index*700)-

699):initial_index*700,1:14),bins)); 

    new_fea{initial_index} = 

reshape(fft_signal{initial_index},prod(size(fft_signal{initial_i

ndex})),1); 

end 

for i = 1:25 

    training_index = training_index+1; 

    Forward_Training_Set{training_index} = 

new_fea{training_index}; 

end 

for i = 1:25 

    test_index = test_index+1; 

    Forward_Test_Set{test_index} = new_fea{test_index+25}; 

end 

  

%The Label Training Data consists of 150 values, each 

corresponding 

%to one of six different labels. These values are ordered in the 

same 

%way as the Feauture Training Data, so that each set of 25 test 

samples 

%in each feature corresponds to the correct label. 

Label_Training_Data = []; 

for n=0:5 

    for i=1:25 

        Label_Training_Data=(horzcat(Label_Training_Data,n)); 

    end 

end 
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%A cell matrix is filled up with the different sets of training 

data so 

%that it can be distributed into the Training Array. 

Feature_Training_Data{1} = Passive_Training_Set'; 

Feature_Training_Data{2} = Up_Training_Set'; 

Feature_Training_Data{3} = Down_Training_Set'; 

Feature_Training_Data{4} = Left_Training_Set'; 

Feature_Training_Data{5} = Right_Training_Set'; 

Feature_Training_Data{6} = Forward_Training_Set'; 

  

%The Training Array is initialized 

Feature_Training_Array = []; 

  

%The feature training data is formatted and moved from the cell 

matrix to 

%the training array. It is horizontally concatenated onto the 

array so that 

%each column of data corresponds to a feature, while each row is 

a data 

%point. There are 150 features that belong to 6 classes. 

for i=1:6 

    for n=1:25 

        Feature_Training_Array = 

horzcat(Feature_Training_Array,Feature_Training_Data{i}{n}); 

    end 

end 

  

  

%The test data is handled and formatted in the same way as the 

training 

%data.  

Feature_Test_Data{1} = Passive_Test_Set'; 
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Feature_Test_Data{2} = Up_Test_Set'; 

Feature_Test_Data{3} = Down_Test_Set'; 

Feature_Test_Data{4} = Left_Test_Set'; 

Feature_Test_Data{5} = Right_Test_Set'; 

Feature_Test_Data{6} = Forward_Test_Set'; 

  

Feature_Test_Array = []; 

  

for i=1:6 

    for n=1:25 

        Feature_Test_Array = 

horzcat(Feature_Test_Array,Feature_Test_Data{i}{n}); 

    end 

end 

  

  

%The SVM is trained using the feature training array and the 

label training 

%data with a lambda value of 2. The resulting SVM struct, which 

contains 

%the paramaters of the optimal hyperplane for classification, is 

saved as 

%model. 

model = lsvm_train(Feature_Training_Array', Label_Training_Data', 

2); %0.26 at 2 / 0.1,0.2 

  

%The effectiveness of the SVM is tested through the lsvm_predict 

function, 

%which builds a label prediction array based on the 

classification of a 

%Feature set without labels. 

predictlabel= lsvm_predict(Feature_Test_Array', model); 
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%The newly classified array, predictlabel, is compared to the 

correct 

%classification, or Label_Training_Data, which then returns a 

percentage of 

%accuracy. 

sum(predictlabel == Label_Training_Data')/(length(predictlabel)) 
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FourClassDataCollection.m 

 

%Jim O'Connor 

%EEG data analysis and formatting (4 classes) 

% 

%This particular version of the code uses four classes, in order  

%to compare our system to the benchmark of the Emotiv system. 

  

addpath('lsvm'); 

addpath('helpfun'); 

addpath('svm'); 

  

global bins 

bins = 23; %0.37 at 23 

  

%Initialize the variables used in the looping and formatting 

processes 

initial_index=0; 

training_index=0; 

test_index=0; 

  

  

  

%Read in the comma separated value data to matlab. The 2nd 

parameter of the 

%csvread function allows the function to skip the header of the 

CSV file, 

%which is not part of the data being analyzed. 

csv_data = vertcat(csvread('Shaun-Passive One-

28.04.13.20.00.16.CSV',1,0),... 

    csvread('Shaun-Passive Two-28.04.13.20.12.01.CSV',1,0),... 

    csvread('Shaun-Passive Three-28.04.13.20.20.49.CSV',1,0),... 
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    csvread('Shaun-Passive Four-28.04.13.20.32.12.CSV',1,0),... 

    csvread('Shaun-Passive Five-28.04.13.20.42.21.CSV',1,0)); 

     

%The initial loop runs 50 times, allowing it to split the 7000 

line data 

%into 50 equal samples of 700 data points each, for 14 features. 

A Fast 

%Fourier Transform is then applied to the CSV data, followed by 

an absolute 

%value function. The resulting data is reshaped into 50 vectors 

of length 

%140, which is the feature space. 

for n = 1:50 

    initial_index = initial_index+1; 

    fft_signal{initial_index} = 

abs(fft(csv_data(((initial_index*700)-

699):initial_index*700,1:14),bins)); 

    new_fea{initial_index} = 

reshape(fft_signal{initial_index},prod(size(fft_signal{initial_i

ndex})),1); 

end 

  

%The resulting dataset is then split in half through the use of 

two loops, 

%each of which runs for half of the 50 vector long array, saving 

the two 

%halves in new matrices. Each of these matrices is named 

according to its 

%label and its use in either the training set or the test set 

for the 

%Support Vector Machine. 

for i = 1:25 
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    training_index = training_index+1; 

    Passive_Training_Set{training_index} = 

new_fea{training_index}; 

end 

for i = 1:25 

    test_index = test_index+1; 

    Passive_Test_Set{test_index} = new_fea{test_index+25}; 

end 

  

  

%The index variables are re-initialized each time a new data set 

is looped 

%through and formatted. 

initial_index=0; 

training_index=0; 

test_index=0; 

  

csv_data = vertcat(csvread('Shaun-Up One-

28.04.13.20.03.19.CSV',1,0),... 

    csvread('Shaun-Up Two-28.04.13.20.13.21.CSV',1,0),... 

    csvread('Shaun-Up Three-28.04.13.20.22.18.CSV',1,0),... 

    csvread('Shaun-Up Four-28.04.13.20.34.24.CSV',1,0),... 

    csvread('Shaun-Up Five-28.04.13.20.44.01.CSV',1,0)); 

  

for n = 1:50 

    initial_index = initial_index+1; 

    fft_signal{initial_index} = 

abs(fft(csv_data(((initial_index*700)-

699):initial_index*700,1:14),bins)); 

    new_fea{initial_index} = 

reshape(fft_signal{initial_index},prod(size(fft_signal{initial_i

ndex})),1); 
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end 

for i = 1:25 

    training_index = training_index+1; 

    Up_Training_Set{training_index} = new_fea{training_index}; 

end 

for i = 1:25 

    test_index = test_index+1; 

    Up_Test_Set{test_index} = new_fea{test_index+25}; 

end 

  

%Each new set of loops handles a new set of data, each 

corresponding to a 

%new class. There are seven classes total. 

  

initial_index=0; 

training_index=0; 

test_index=0; 

  

csv_data = vertcat(csvread('Shaun-Down One-

28.04.13.20.05.55.CSV',1,0),... 

    csvread('Shaun-Down Two-28.04.13.20.14.48.CSV',1,0),... 

    csvread('Shaun-Down Three-28.04.13.20.24.12.CSV',1,0),... 

    csvread('Shaun-Down Four-28.04.13.20.36.13.CSV',1,0),... 

    csvread('Shaun-Down Five-28.04.13.20.45.49.CSV',1,0)); 

  

for n = 1:50 

    initial_index = initial_index+1; 

    fft_signal{initial_index} = 

abs(fft(csv_data(((initial_index*700)-

699):initial_index*700,1:14),bins)); 
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    new_fea{initial_index} = 

reshape(fft_signal{initial_index},prod(size(fft_signal{initial_i

ndex})),1); 

end 

for i = 1:25 

    training_index = training_index+1; 

    Down_Training_Set{training_index} = new_fea{training_index}; 

end 

for i = 1:25 

    test_index = test_index+1; 

    Down_Test_Set{test_index} = new_fea{test_index+25}; 

end 

  

  

initial_index=0; 

training_index=0; 

test_index=0; 

  

csv_data = vertcat(csvread('Shaun-Left One-

28.04.13.20.07.45.CSV',1,0),... 

    csvread('Shaun-Left Two-28.04.13.20.16.18.CSV',1,0),... 

    csvread('Shaun-Left Three-28.04.13.20.25.33.CSV',1,0),... 

    csvread('Shaun-Left Four-28.04.13.20.37.42.CSV',1,0),... 

    csvread('Shaun-left Five-28.04.13.20.47.22.CSV',1,0)); 

  

for n = 1:50 

    initial_index = initial_index+1; 

    fft_signal{initial_index} = 

abs(fft(csv_data(((initial_index*700)-

699):initial_index*700,1:14),bins)); 
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    new_fea{initial_index} = 

reshape(fft_signal{initial_index},numel(fft_signal{initial_index

}),1); 

end 

for i = 1:25 

    training_index = training_index+1; 

    Left_Training_Set{training_index} = new_fea{training_index}; 

end 

for i = 1:25 

    test_index = test_index+1; 

    Left_Test_Set{test_index} = new_fea{test_index+25}; 

end 

  

  

%The Label Training Data consists of 100 values, each 

corresponding 

%to one of 4 different labels. These values are ordered in the 

same 

%way as the Feauture Training Data, so that each set of 25 test 

samples 

%in each feature corresponds to the correct label. 

Label_Training_Data = []; 

for n=0:3 

    for i=1:25 

        Label_Training_Data=(horzcat(Label_Training_Data,n)); 

    end 

end 

  

%A cell matrix is filled up with the different sets of training 

data so 

%that it can be distributed into the Training Array. 

Feature_Training_Data{1} = Passive_Training_Set'; 
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Feature_Training_Data{2} = Up_Training_Set'; 

Feature_Training_Data{3} = Down_Training_Set'; 

Feature_Training_Data{4} = Left_Training_Set'; 

%The Training Array is initialized 

Feature_Training_Array = []; 

  

%The feature training data is formatted and moved from the cell 

matrix to 

%the training array. It is horizontally concatenated onto the 

array so that 

%each column of data corresponds to a feature, while each row is 

a data 

%point. There are 100 features that belong to 4 classes. 

for i=1:4 

    for n=1:25 

        Feature_Training_Array = 

horzcat(Feature_Training_Array,Feature_Training_Data{i}{n}); 

    end 

end 

  

  

%The test data is handled and formatted in the same way as the 

training 

%data.  

Feature_Test_Data{1} = Passive_Test_Set'; 

Feature_Test_Data{2} = Up_Test_Set'; 

Feature_Test_Data{3} = Down_Test_Set'; 

Feature_Test_Data{4} = Left_Test_Set'; 

  

Feature_Test_Array = []; 

  

for i=1:4 
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    for n=1:25 

        Feature_Test_Array = 

horzcat(Feature_Test_Array,Feature_Test_Data{i}{n}); 

    end 

end 

  

  

%The SVM is trained using the feature training array and the 

label training 

%data with a lambda value of 2. The resulting SVM struct, which 

contains 

%the paramaters of the optimal hyperplane for classification, is 

saved as 

%model. 

model = lsvm_train(Feature_Training_Array', Label_Training_Data', 

2); %0.37 at 2/0.1/etc 

  

%The effectiveness of the SVM is tested through the lsvm_predict 

function, 

%which builds a label prediction array based on the 

classification of a 

%Feature set without labels. 

predictlabel= lsvm_predict(Feature_Test_Array', model); 

  

%The newly classified array, predictlabel, is compared to the 

correct 

%classification, or Label_Training_Data, which then returns a 

percentage of 

%accuracy. 

sum(predictlabel == Label_Training_Data')/(length(predictlabel)) 
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