
Connecticut College
Digital Commons @ Connecticut College

Computer Science Honors Papers Computer Science Department

1-1-2013

Real-time Control of a Robot Arm Using an
Inexpensive System for Electroencephalography
Aided by Artificial Intelligence
James O'Connor
Connecticut College, joconno2@conncoll.edu

Follow this and additional works at: http://digitalcommons.conncoll.edu/comscihp

This Honors Paper is brought to you for free and open access by the Computer Science Department at Digital Commons @ Connecticut College. It has
been accepted for inclusion in Computer Science Honors Papers by an authorized administrator of Digital Commons @ Connecticut College. For
more information, please contact bpancier@conncoll.edu.
The views expressed in this paper are solely those of the author.

Recommended Citation
O'Connor, James, "Real-time Control of a Robot Arm Using an Inexpensive System for Electroencephalography Aided by Artificial
Intelligence" (2013). Computer Science Honors Papers. Paper 3.
http://digitalcommons.conncoll.edu/comscihp/3

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DigitalCommons@Connecticut College

https://core.ac.uk/display/46704152?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.conncoll.edu?utm_source=digitalcommons.conncoll.edu%2Fcomscihp%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscihp?utm_source=digitalcommons.conncoll.edu%2Fcomscihp%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/mathcomsci?utm_source=digitalcommons.conncoll.edu%2Fcomscihp%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscihp?utm_source=digitalcommons.conncoll.edu%2Fcomscihp%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscihp/3?utm_source=digitalcommons.conncoll.edu%2Fcomscihp%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bpancier@conncoll.edu

Real-time Control of a Robot Arm
Using an Inexpensive System for
Electroencephalography Aided
by Artificial Intelligence

Jim O'Connor
Computer Science

 O'Connor 2

Table of Contents

Acknowledgements

Introduction

Background

 EEG technology

 Brain Computer Interfaces

 Emotiv EPOC EEG

 Support Vector Machines

Methodology

 Using the Emotiv EPOC

 Emotiv TestBench

 Linear SVM for dataset classification

 Matlab to SSC-32 Communication

 Inverse Kinematics of Robot Arm

Results

Conclusion and Future Work

Appendix A: Code

 MATLAB Data Collection script

Appendix B: Table of Figures

 O'Connor 3

Introduction

 The purpose of this work is to explore the methodology and uses of an

inexpensive and non-invasive brain-computer interface for the control of robotic systems,

and specifically a three degree of freedom robotic arm. Traditionally, brain computer

interfaces have been explored in the control of various electrical and mechanical

devices, but the brain-computer interfaces that have been studied in the past are very

rarely non-invasive. The only non-invasive option for interfacing a brain with a computer

is the electroencephalogram, or EEG, which is usually bulky, and expensive.

Additionally EEGs are difficult to find outside of research institutions and require a

trained technician to operate. For these reasons, this work explores the use of the

Emotiv EPOC Electroencephalogram, which is a non-invasive brain-computer interface

that is also inexpensive and commercially available. Shortcomings in the resolution of

this system are made up for through a novel system of Artificial Intelligence, employing

Linear Support Vector Machines to classify the data from the Emotiv EPOC into a set of

outputs for a three degree of freedom robotic arm.

 Brain-computer interfaces have been explored for years with the intent of using

human thoughts to control mechanical systems. When one is not considering the

accessibility of the electroencephalographic system, many technological feats in this

area are already possible.

 Electroencephalographic classification for the control of computers has been

studied for control of software on computers as far back as 1991, by Wolpaw,

McFarland, Neat, and Forneris [1]. Wolpaw et al. successfully created a system that

allowed a user to control a cursor using electroencephalographic signals. Wolpaw

would go on to explore the area in a series of papers describing the state of the art

throughout the early 2000s [2],[3]. This work was built upon by Iáñez et al. [4], who used

a large, high resolution electroencephalogram to control a robotic arm. These studies all

worked towards showing the power of electroencephalography, but unfortunately did not

 O'Connor 4

address the issues of prohibitive cost and difficulty of use for the end-user. The Emotiv

EPOC is a device that has been explored for exactly this reason.

 The Emotiv EPOC has been used in a variety of applications, due to its

accessibility for consumers and researchers. The device was explored by Lievesley,

Wozencroft, and Ewins, out of the UK, who found it to be useful for the control of

computers by patients with no voluntary muscle control [5]. These patients were able to

access computer based assistive technology and navigate a virtual space using two

discrete thought patterns, all with a greater than random chance of success. Poor et al.

from Bowling Green State University, in Ohio, also found the Emotiv EPOC to be an

effective method for computer control, having the subjects of their experiments perform

a 3D rotation task in virtual space [6].

 The use of the Emotiv EPOC has also been explored in the area of controlling

robotic systems through non-invasive BCI. In 2010, Wang and Fuhlbrigge published a

review of the state of the art in brain-computer interface technology as applied to

industrial robotics. They found the field to be growing quickly with the introduction of

Figure 1. The Nao humanoid robot, by Aldebaran Robotics. Kadam and Sheng [8] used this robot for

electroencephalographic teleoperation.

 O'Connor 5

systems such as the Emotiv EPOC, and exhibited high hopes for the future [7]. Also in

2010, Kadam and Sheng used the Emotiv EPOC to teleoperate a remote humanoid

robot, showing yet another facet of robotics where non-invasive BCI can be successfully

applied. Kadam and Sheng's system allowed for the remote control of an Aldebaran

Robotics Nao humanoid robot (Figure 1), which the user was able to direct with

electroencephalographic commands [8] to move forward, turn left, and turn right. Kadam

and Sheng found that their system was effective to navigate a small course. In 2011

Vourvopoulos and Liarokapis published yet another example of teleoperation in mobile

robotics through the use of the Emotiv EPOC to control a Lego NXT robot [9]. In order

to control the Lego NXT robot, Vourvopolous and Liarokapis used the Emotiv Emokey

software (Figure 2) to send key commands to a java program. The Emokey software is

provided by Emotiv, and allows a user to select different keystrokes to virtually actuate

based on electroencephalographic data, with up to four outputs being trained [10]. In

Figure 2. A screenshot of the Emotiv EmoKey software, which Vourvopolous and

Liarokapis used to control a Lego NXT robot.

 O'Connor 6

addition to the wide breadth of study that has been undergone in the area of non-

invasive brain-computer interfaces for the remote con trol of mobile robots, Ranky and

Adamovich in 2010 explored the use of the Emotiv EPOC for the control of robotic arms,

and determined that the EPOC could be an effective system for control through

electroencephalography [11].

In the work reported in this paper, we are looking to improve the effectiveness of

each of these previous methods of control by increasing the number of possible outputs

gathered from the electroencephalographic data. While the software provided with the

Emotiv EPOC allows a user to train a maximum of four outputs, the consistency and

effectiveness of those outputs are questionable. While prior work with this device has

shown that effective control with as many as three and sometimes four outputs can be

consistent [5,6,8,9], none of these systems use more than four outputs. In this work, we

look to classify the electroencephalographic data of the user to six outputs, greatly

increasing the complexity of any mechanisms being controlled by the user.

 When one is working to classify a set of data as complex as that recorded by an

electroencephalogram, machine learning holds many of the most effective solutions. In

this work, we use support vector machines (SVMs), which are the standard method of

classifying electroencephalographic data. Support vector machines have been used for

a variety of complex classification tasks, ranging from the classification of EEG data

(Leuthardt et al. 2004) [12], to the classification of vision-based obstacle detection

(Ubbens 2009) [13]. We show that the use of SVMs can increase the effective degrees

of freedom that can be controlled using an Emotiv EEG system.

 O'Connor 7

Background

 EEG Technology

 The Electroencephalogram (EEG) is a device used to measure a patient’s

neuronal activity through the measurement of electrical currents along the surface of the

scalp (Figure 3). The EEG was developed in the early 20th century by the Neurologist

Hans Berger, when Berger was trying to find connections between extra sensory

perception in humans and electrical activity in the brain [14]. Berger published the first

use of his electroencephalogram on the human brain in 1929, and his discoveries were

confirmed and furthered by British scientists Edgar Douglas Adrian and B. H. C.

Matthews in 1934 [14]. The Modern EEG is not far different from that developed by

these foundational scientists.

Figure 3. A man at Brandeis University wearing a modern EEG. He is wearing a 128-channel high spatial
density, high-impedance system, which gives more accurate electroencephalographic data, but is even more

bulky then other similar systems.

 O'Connor 8

Modern EEGs function by measuring voltage fluctuations along the surface of the scalp

caused by ionic current flows within the neurons of the brain. A neuron is a cell found in

the brain that transmits nerve impulses from the body. Neurons can receive different

kinds of signals from the body, either through a chemical change, such as a response

from olfactory receptors, or from a physical change such as a touch receptor in the skin

or a light receptor in the retina. The signals that the neuron receives cause Sodium and

Potassium ions to move across the neuron's plasma membrane, which in turn causes

an electrical current flow. This current flow can be used to evaluate the activity of the

brain, and is therefore read directly by the EEG. The current flow is measured by

electrodes on the scalp, which operate under a standard sensitivity of 7 µvolts/mm. The

readings gathered by these electrodes are then reported by the EEG as a measure of

frequency, along a number of different consistent electrode placements. Decisions for

Electrode placement are based on a number of standards, but the most common

system is the International 10-20 system, developed in 1958 by a committee of the

International Federation of Societies for Electroencephalography and Clinical

Neurophysiology, and published by Jasper [15]. The International 10-20 system uses

anatomic landmarks on the scalp to give a consistency of electrode placement among

varying individuals.

 O'Connor 9

Figure 4. The standard electrode placement of an EEG, recommended by the American EEG Society for use
in the International 10-20 system.

The anatomical landmarks used by this system (shown in Figure 4) are the nasion and

the ision. The nasion is the depressed area of the skull just behind the eyes, and the

ision is the bump on the back of a patients head, which is the lowest part of the skull.

This system has shown to be effective over time, but requires a prohibitive number of

electrodes.

 Brain Computer Interfaces

 A Brain-Computer Interface, or BCI, is a device that allows a user to interact with

a computer using electrical signals from their brain. Most BCIs can be divided into three

categories; invasive, partially-invasive, and non-invasive. Invasive BCIs are installed

directly in the grey matter of the brain. These devices can receive the most clear and

effective signals from the brain, and have been used effectively in both animal and

 O'Connor 10

human tests for various applications, including the treatment of congenital blindness.

Unfortunately, invasive BCIs are prone to a buildup of scar tissue around the implant,

due to the body recognizing the implant as a foreign body. Invasive BCIs can also be

dangerous to implant, due to the surgery involved, as well as extremely costly. For

these reasons, invasive BCIs are becoming less common as alternative approaches are

being found.

 Partially invasive BCIs are another method of interacting with a computer through

the activity of the human brain. A partially invasive BCI involves installing a device

between the brain and the inside of the skull, which can then read brain waves without

the interference of the human skull. These devices are nearly as effective as an

invasive BCI, but involve significantly less complicated, dangerous, and expensive brain

surgery to install. These devices are also not affected by scar tissue buildup, like the

invasive BCIs. However, a partially invasive BCI still must be installed in the skull

through a surgical procedure, which makes the device expensive and inaccessible to

the majority of patients.

 The third and most accessible method is the non-invasive BCI. A non-invasive

BCI sits on the surface of the scalp, and can be removed or worn at the patient's

discretion. There is no surgery involved, and most non-invasive BCIs can still interact

with computers in a completely effective manner. Research has been done on using

non-invasive BCIs, such as EEGs, to control many different computers, machines, and

user interfaces, as well as to gather data about a patients mental health. Unfortunately

the majority of BCIs are very expensive, awkward machines that are inaccessible to the

average person. However, there are some smaller, lower-resolution consumer grade

EEGs that can provide the safety and effectiveness of a non-invasive BCI with a low

cost.

 O'Connor 11

 The Emotiv EPOC EEG

 The Emotiv EPOC EEG is a revolutionary new electroencephalogram that is

already being explored for BCI research. The EPOC uses fourteen sensors and two

reference points to track fourteen different channels of electroencephalographic activity.

The Emotiv Epoc gathers data from the standard channels named AF3, AF4, F3, F4, F7,

F8, FC5, FC6, P3 (CMS), P4 (DRL), P7, P8, T7, T8, O1, and O2 (Figure 5). It uses

sequential sampling, has a 0.2 - 45Hz bandwidth and 16 bit resolution. This leads to a

lower resolution dataset than a standard EEG using the International 10-20 system, but

the EPOC has many benefits to make up for this shortcoming. The Emotiv EPOC is

available for personal or commercial use, and is extremely inexpensive compared to a

standard EEG.

 Figure 5. The location of the fourteen channels read by the Emotiv EPOC.

 O'Connor 12

It can be worn and used without a trained technician or operator, and can feed data into

a standard computer. The headset is also wireless, allowing a much greater range of

experiments to be performed compared to that of a standard EEG. Effectively, if the

fairly significant problem of a lower resolution device was to be overcome in the

package and price of the Emotiv EPOC, great strides could be taken in the accessibility

and availability of BCI technology to the average consumer. This technology could

contribute not only to the improvement of handicap devices and scientific inquiry, but

also to entertainment on a broader scale.

 Support Vector Machines

 In order to use the data from the Emotiv EPOC EEG, which is lower resolution

and therefore provides data with less characteristics from which to draw conclusions,

the data has to be classified into discrete outputs. Classification is a common task in

Machine Learning, and has been studied in depth. Some of the most common tools

used to classify data are Support Vector Machines. A Support Vector Machine, or SVM,

is a supervised learning model that takes in a set of data, and predicts , for any given

input, which of two classifications the input belongs to Cortes and Vapnik, 1995) [16]. In

order to classify these inputs, the SVM must first find an optimal hyperplane that

separates a small amount of training data (the support vectors). If the training vectors

are separated without errors by an optimal hyperplane, we can assign a value to the

expectation of the probability of committing an error in a test example. This value is

bounded by the ratio of the expectation value of the number of support vectors and the

number of training vectors, and gives an idea of the effectiveness of the SVM.

 O'Connor 13

Due to this ratio, if the optimal hyperplane can be constructed from a small number of

support vectors relative to the training set, then the generalization ability of the SVM will

be very good, even in a high-dimensional space. This ability is part of what makes

SVMs such an effective method of classification, even in complex real-world problems.

 In order to construct an optimal hyperplane to separate a set of training data, we

use an algorithm devised by Vladimir Vapnik in his 1982 work on the subject. According

to the introductory paper on Support Vector Machines, by Cortes and Vapnik in 1995

[16], the set of labeled training patterns

is said to be linearly separable if there exists a vector w and a scalar b such that the

inequalities

are valid for all elements of the training set described by the set of labeled training

patterns above. Cortes and Vapnik rewrite the inequalities in the form

The optimal hyperplane described as

is the unique hyperplane that determines the direction

 where the distance between

the projections of the training vectors of two different classes is maximized, and and

 O'Connor 14

 are the arguments that maximize that distance. This maximized distance value refers

to the optimality of the constructed hyperplane. The distance is given by the

equation

The term Support Vector in Support Vector Machine refers to the training vectors used

to classify input data to the machine. Support vectors are described as vectors for

which

The vector that determines the optimal hyperplane can also be written as a linear

combination of training vectors:

where
 , and is a vector of Lagrangian multipliers with a length of [16]. This

equation holds because is only greater than 0 for support vectors. If the training data

cannot be separated without error one must work to separate the training set with the

least number of errors possible. To express this idea formally, Cortes and Vapnik

introduce a new set of non-negative variables These variables allow

us to describe the training errors as

for small , subject to the constraints

 O'Connor 15

Minimizing the summation above allows one to find the minimal subset of training errors.

This subset can then be omitted from the training data to allow linear separation of the

remaining training data. This idea can be expressed formally as minimizing the function

subject to the aforementioned constraints, where is a monotonic convex function

and C is a constant. Using the described Support Vector Machines, one can separate a

large set of data, whether or not it is linear classifiable, into two distinct groups. This

classifying ability makes them useful for a variety of tasks, including classifying EEG

data into discrete outputs.

 O'Connor 16

Methodology

 Using the Emotiv EPOC

 Many of the benefits of the Emotiv EPOC EEG lie in its usability. In order to

extract electroencephalographic data, the EEG must be prepared briefly before each

use. On a normal EEG, a saline paste or gel must be applied to each of the many

electrodes on the device, to maintain proper signal between the electrode and the scalp.

The EPOC is simpler in that each felt electrode needs only to be wetted with a

commercially available saline solution. After the EEG is prepared, the test subject sets it

on their head (Figure 6), and begins checking the calibration through the feedback from

the included graphical user interface. All communication between the device and the

computer occurs through a standard USB dongle, transmitting on a proprietary wireless

band at 2.4Ghz.

 O'Connor 17

Once in use, the EPOC sends the electroencephalographic signal data from the scalp to

the computer. This data travels in the form of encrypted packets, which are decrypted in

the Emotiv TestBench software provided by the Emotiv Research edition SDK.

 Using Emotiv TestBench

 When the Emotiv TestBench software picks up the signals from the EPOC, each

point of data is automatically displayed on the graphical user interface. The EPOC

samples the data sequentially over fourteen electroencephalographic locations: AF3,

AF4, F3, F4, F7, F8, FC5, FC6, P3 (CMS), P4 (DRL), P7, P8, T7, T8, O1, and O2. Each

of the locations corresponds to a portion of the international 10-20 system, and were

selected for an even distribution over specific areas of the scalp. The EPOC samples

the data at a rate of 128HZ, with a 14 bit effective resolution. This resolution causes the

data from the headset to be much more noisy than a traditional EEG but is still viable for

use after classification.

Figure 6. The Emotiv EPOC EEG in use

 O'Connor 18

As shown in Figure 7, the Emotiv TestBench software displays the

electroencephalographic data in real time along the fourteen monitored channels. Each

of these channels will vary when the user thinks different thoughts, and will also pick up

and electromyographical data, such as blinking and facial expressions. For that reason

it is most effective to maintain a neutral expression both when training and testing the

device. In addition to the data visualization aspect of the software, the Emotiv

TestBench software also allows for the collection of data over a given period of time into

the EDF physiological signal recording format. For our purposes this data is then

converted to comma separated value (CSV) format (Figure 8), where it can then be

read effectively into MATLAB for further processing. In order to effectively train the SVM

in this experiment, a dataset was created for each of six different classes; passive, up,

down, left, right, forward. Each dataset was recorded through a minute of concentration

Figure 7. The Emotiv TestBench software in use. The data shown on the screen corresponds to
the 14 channels being picked up by the EEG.

 O'Connor 19

on each movement, followed by a minute resting period. The corresponding data was

then saved and converted to CSV format, where it existed as six files, each containing a

header, seven thousand rows of data points, and thirty six columns of data. The first

fourteen columns of data were gathered from electroencephalographic data, with the

other twenty two being gathered from electromyographical signals and preprocessed

data. Seven thousand rows of data represent approximately one minute of continuous

electroencephalographic signals, with fourteen columns representing fourteen features.

Figure 8. An example of the data recorded by the EEG, in comma separated value format. Only the first four
columns are shown here, because the full dataset is thirty-six columns wide. The first column of data is a
sequential numbering of the samples recorded by the EEG. The second column is for spacing out the data set,
while the rest of the columns consist of data collected by the EEG. Each row is another sample, recorded

sequentially.

 O'Connor 20

For our research only the first fourteen columns were used. The header of each data file

was also removed, to leave a seven-thousand row, fourteen column matrix. This

process was repeated five times for each of the six classes for a total of thirty data sets.

 Linear SVM for Dataset Classification

 After the thirty datasets are compiled, they are read into MATLAB and stored as

matrices. Each of these matrices is made up of 7000 rows, and 14 columns. Each of the

14 columns in the matrix corresponds to a feature of the data; in this case, one of the 14

outputs from the EEG. The 7000 rows of the matrix come from the data read by the

EEG, corresponding to one sample of data per row, for a total of about one minute of

data per matrix. The 5 matrices for each classes are then concatenated vertically, to

give 35,000 rows of data, or 35,000 samples for each of the 14 features, as shown in

Figure 9. Each 35,000 value column is split into 50 subsets vertically (about 6 seconds

of data per subset), giving each of the 14 columns 50 separate data sets. The data is

After being split into 25
training sets and 25 test sets

After Fast Fourier Transform:
50 sets of 140

After division into 50 subsets

Data for one class 35,000 Data
Points

700

140

140 Training

700

140

140 Training

700

140

140 Training

... 700

140

140 Test

Figure 9. The data formatting prior to training of the SVM.

 O'Connor 21

then formatted appropriately and fed into a Fast Fourier Transform with ten bins. The

Fast Fourier Transform function computes the discrete Fourier Transform and its

inverse, for each of the subsets of data in each of the fourteen classes. The resulting

subsets of data are then 140 data points long each, giving the data a feature space of

140.

 After the data is formatted properly and partitioned into the correct subsets, it is

ready to be fed into the support vector machine. For the purpose of this work we used a

linear support vector machine capable of multi-label classification. We classified the

data that we gathered using the Emotiv EPOC across six labels; Passive, Up, Down,

Left, Right, and Forwards. Each label corresponded to a class, which in turn contained

25 sets of data for training and 25 for testing. The training data was concatenated

horizontally into an array, and then fed into the SVM, alongside a parallel vector of label

training data. The linear SVM returns a struct describing the hyperplane that was

constructed for classification in the format

where is the weight vector of the hyperplane, is the bias, and x is the input data to

be classified. The effectiveness of the given hyperplane to this classification problem

can be evaluated by using the trained SVM to classify a set of test labels, which can

then be compared to the training labels, and measured for effectiveness.

 O'Connor 22

After the SVM is trained, it can classify any new data into one of the six trained

labels. Each of the seven labels that were trained corresponded to one of the seven

outputs mechanically for a robotic arm. For this experiment, we used the AL5D 4 degree

of freedom robotic arm by Lynxmotion Robotics (Figure 10), with the revolute wrist joint

disabled. The AL5D is an anthropomorphic arm in an R⊥R├ R configuration. This

configuration involves three resolute joints, connected by one perpendicular axis and

one orthogonal axis (Figure 11). This configuration is relevant both in its obvious

anthropomorphic considerations as well as its use in industry, as R⊥R├ R arms make

up almost 25% of industrial robots. The end effector of the arm was disabled for the

purposes of this work, because movement through the robotic arm's reachable

workspace was the method of evaluation. The arm is controlled through the use of an

SSC-32 servo controller, which is communicated with through an open serial port. For

evaluation purposes, Lynxmotion's HyperTerminal software was used to send

commands to the arm. The SSC-32 servo controller received the commands along the

serial port as ASCII strings formatted for the device. Figure 12 shows an example ASCII

Figure 10. The Lynxmotion AL5D Robot Arm. After disabling the end effector and

revolute wrist joint, it is a 3DOF elbow, or anthropomorphic, manipulator.

 O'Connor 23

string that controls the arm. This string consists of six commands. The first command

shown, #2, refers to the number of the servo motor being addressed. Any number of

servo motors can be addressed by the system, with the number corresponding to the

output pin on the SSC-32 servo controller that the servo motor is connected to. After the

output string addresses a specific servo, it gives a pulse width to the servo. In this

example, the pulse width is given by P1500. This value indicates that a pulse width of

1500, in microseconds, is sent to the servo motor to control it. A pulse width of 1500

should move a servo motor as far as it can go in one direction, depending on the servo

and its orientation. This pattern of commands is repeated for a second servo, and

followed by the command T2000. This command indicates that all of the servos should

reach their final destination at the conclusion of 2000 milliseconds of time elapsed from

the moment at which the SSC-32 receives this command. Finally, the line is terminated

by <cr>, which is the carriage return, and indicates that the SSC-32 should run the

given line.

Figure 11. A bare-bones diagram of a PUMA industrial robot arm, which is

another example of a 3DOF elbow manipulator.

 O'Connor 24

Figure 12. An example command sent via serial communication to the SSC-32 servo controller. The top box
is the command in full. The second row of boxes breaks the command down into each token that the SSC-32
servo controller is accepting. The third row of boxes is an explanation of each specific token.

 The movement task that we hoped to solve using the Emotiv EPOC EEG was to

navigate the arm through its workspace and touch each of a set of five targets (Figure

13). Each of these targets is spaced out in a way such that the user must take

advantage of 6 separate movements: forward, up, left, down, and passive. In this task,

the passive class will direct the arm to move back to a neutral position, allowing the user

to navigate towards a new target. This task is similar to a general setting in which a user

may be trying to control an arm through teleoperation.

#3 P1500 #2 P1250 T3000 <cr>

#3

The number of
the servo being

addressed

P1500

The position the
servo is moving

towards

#2

The number of
the second servo

in the group
being addressed
simultaneously

P1250

A different
position, for

servo #2

T3000

All servos will
spend a total of

3 seconds
moving to their

final location

<cr>

The carriage
return,

indicating that
the line should

be executed

 O'Connor 25

Results

 As a baseline for the evaluation of our system, we analyzed the success of the

Emotiv Control Panel classification software, which was provided with the EEG. The

Emotiv Control Panel allows a user to control a virtual object with their minds, allowing

for the training of several distinct outputs, which are translated to the screen. The

Emotiv system requires an 8 second training time for each action, and can only be

trained for a maximum of 4 inputs. We set up the system to train for the maximum of 4

inputs, and tested a user to observe the successful classification rate of the Emotiv

System. The user being tested was unable to see the screen, and did not know whether

they were testing the Emotiv system or our system. We found that after 80 trials, the

Emotiv system correctly classified the user input 16 times, or 20.00% of the time. This

classification rate is actually slightly below random chance, which would classify the

user input correctly approximately

 of the time, or 25.00% for 4 inputs (Figure 14). This

Figure 13. The movement task to be solved. The user must control the robotic arm
to touch the green end effector to each of the 5 red targets. The five targets
represent extremes in the robots frontal workspace.

 O'Connor 26

result leads us to believe that the Emotiv system is ineffective for classifying a user’s

electroencephalographic data to four classes.

 To compare our system of classification with the default system provided by

Emotiv, we first tested our system on four classes, which is what is available with the

Emotiv software. Using the trained linear support vector machine, we classify the test

data that we prepared prior to the training phase. The test data consists of half of the

data set, which was organized into a set of 150 outputs. Each of these outputs was

classified to one of the four output labels by the hyperplane constructed by the linear

support vector machine. After the data is classified, it is put into a vector that

corresponds to the label training vector, which contains the proper classification of the

test data. The label training vector was created by ordering the labels in the same way

that they correspond to the feature training data, to create a sort of answer key to both

train and test the SVM. Once the data was classified, we compared the two vectors and

calculated the percentage of correct classifications. Given that the SVM is classifying

the user’s electroencephalographic data into four possible outputs, a system that used

random chance would achieve success 25% of the time. The baseline Emotiv system

achieved success 20% of the time, making it effectively random and ineffective for

classification. Our system, when classifying four outputs, was successful 37% of the

time, which is a 12% increase over random chance (Figure 15). This success showed

promise towards the classification of electroencephalographic data into larger numbers

of classes.

Robot arm movement success rate (Emotiv Control Panel)

Random chance

•25.00%

Observed rate with Emotiv System

•20.00%

Figure 14. The Emotiv Control Panel was ineffective in classifying data to 4
outputs, with a success rate of 5% below random chance.

 O'Connor 27

After classifying the EEG data into four classes more successfully than the

Emotiv system, we looked to increase the number of classes to six. Having six separate

classes of a data would provide the range of movements needed for our robot arm to

successfully complete the given movement task. Using the same system described

above for the four output system, we classified the electroencephalographic data into

six classes. If the SVM were to classify the data according to random chance, it would

classify one of every six outputs correctly since there are six labels (six possible

outputs). Therefore the SVM would have a

, or 16.66% chance of correctly classifying

the input of the user. In reality this classification chance would mean that the robot arm

that the user is controlling would move in the intended direction 16.66% of the time.

When comparing our data to the label test data, we found that our system was able to

classify the input of the user correctly 26.00% of the time, based on 150 test inputs. This

indicates a nearly 10% increase in effectiveness over random chance (Figure 16).

Robot arm movement success rate (SVM with four classes)

Random chance

•25.00%

Observed rate with Emotiv System

•37.00%

Figure 15. Our system showed a significant increase over random chance in
classifying data to four outputs, with a success rate 12% above random. This
success rate shows that our system is much more effective than the Emotiv
system at classifying data to four outputs.

 O'Connor 28

Conclusions and Future Work

 In conclusion, the system that we developed for controlling the AL5D Lynxmotion

robotic arm through electroencephalographic data shows promise. We were

successfully able to classify electroencephalographic data more accurately than the

system included with the Emotiv EPOC EEG, and more importantly, we were able to

classify user data to 6 outputs instead of the 4 outputs given by the Emotiv system.

Unfortunately, we were unable to control the arm with the accuracy necessary to

complete our movement task. In order to complete the given task, we will need to either

reduce the complexity of the task and therefore decrease the number of outputs needed

to a more manageable number, or improve the effectiveness of our classification system.

Our system could be further improved through gathering more data and using different

optimization techniques to increase the classification rate of our support vector machine.

A longer training time for the user would allow the support vector machine to more

successfully construct a separating hyperplane. Additionally, different machine learning

techniques and methods of optimization for support vector machines would allow one to

increase the classification rate of the system. If the classification rate of the system

could be increased to anything greater than 50%, then we believe the robot arm could

be successfully controlled in a real world situation. For future work, we would like to

explore these techniques to increase the classification rate over 50% so that we could

start running trials on the effectiveness of this control system. We could also then

evaluate the use of the system on different people, and in different experimental

environments.

Robot arm movement success rate (SVM with six classes)

Random chance

•16.66%

Observed rate with SVM

•26.00%

Figure 16. Our system showed a 9.33% increase in effectiveness over random
chance when classifying data to six outputs.

 O'Connor 29

Works Cited

[1] Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T.

 M. (2002). Brain-computer interfaces for communication and control. Clinical

 neurophysiology, 113(6), 767-791.

[2] Wolpaw, J. R., McFarland, D. J., Neat, G. W., & Forneris, C. A. (1991). An EEG-

 based brain-computer interface for cursor control. Electroencephalography and

 clinical neurophysiology, 78(3), 252-259.

[3] Wolpaw, J. R., McFarland, D. J., & Vaughan, T. M. (2000). Brain-computer

 interface research at the Wadsworth Center. Rehabilitation Engineering, IEEE

 Transactions on, 8(2), 222-226.

[4] Iáñez, E., Furió, M. C., Azorín, J. M., Huizzi, J. A., & Fernández, E. (2009). Brain-

 robot interface for controlling a remote robot arm. In Bioinspired Applications in

 Artificial and Natural Computation (pp. 353-361). Springer Berlin Heidelberg.

[5] Lievesley, R., Wozencroft, M., & Ewins, D. (2011). The Emotiv EPOC

 neuroheadset: an inexpensive method of controlling assistive technologies using

 facial expressions and thoughts?. Journal of Assistive Technologies, 5(2), 67-82.

[6] Poor, G. M., Leventhal, L. M., Kelley, S., Ringenberg, J., and Jaffee, S. D.

 Thought cubes: exploring the use of an inexpensive brain-computer interface on

 a mental rotation task. The proceedings of the 13th international ACM

 O'Connor 30

 SIGACCESS conference on Computers and accessibility (ASSETS ‘11). pp. 291-

 292.

[7] Zhang, B., Wang, J., & Fuhlbrigge, T. (2010, August). A review of the commercial

 brain-computer interface technology from perspective of industrial robotics.

 Automation and Logistics (ICAL), 2010 IEEE International Conference on (pp.

 379-384). IEEE.

[8] Thobbi, A., Kadam, R., & Sheng, W. (2010). Achieving Remote Presence using a

 Humanoid Robot Controlled by a Non-Invasive BCI Device. International Journal

 on Artificial Intelligence and Machine Learning, 10, 41-45.

[9] Vourvopoulos, A., & Liarokapis, F. (2011, May). Brain-controlled NXT Robot:

 Tele-operating a robot through brain electrical activity. Games and Virtual Worlds

 for Serious Applications (VS-GAMES), 2011 Third International Conference on

 (pp. 140-143). IEEE.

[10] Emotiv, Emotiv Software Development Kit User Manual Release 1.0.0.3

[11] Ranky, G. N., & Adamovich, S. (2010, March). Analysis of a commercial EEG

 device for the control of a robot arm. Bioengineering Conference, Proceedings of

 the 2010 IEEE 36th Annual Northeast (pp. 1-2). IEEE.

[12] Leuthardt, E. C., Schalk, G., Wolpaw, J. R., Ojemann, J. G., & Moran, D. W. (

 2004). A brain–computer interface using electrocorticographic signals in humans.

 Journal of neural engineering, 1(2), 63.

[13] Ubbens, T.W.; Schuurman, D.C., "Vision-based obstacle detection using a

 support vector machine," Electrical and Computer Engineering, 2009. CCECE

 '09. Canadian Conference on , vol., no., pp.459,462, 3-6 May 2009

 O'Connor 31

[14] Collura, TF. (1993) History and Evolution of Electroencephalographic

 Instruments and Techniques. Journal of Clinical Neurophysiology (476-504).

 Raven Press

[15] Jasper, H. H. (1958). The ten-twenty electrode placement system of the

 International Federation. Electroencephalography and Clinical

 Neurophysiology, 10, 371-375

[16] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning,

 20(3), 273-297.

[17] Vapnik, V. N. (1999). An overview of statistical learning theory. Neural Networks,

 IEEE Transactions on, 10(5), 988-999.

[18] Vapnik, V. (1999). The Nature of Statistical Learning Theory. Springer.

[19] van Vliet, M., Robben, A., Chumerin, N., Manyakov, N. V., Combaz, A., & Van

 Hulle, M. M. (2012, January). Designing a Brain-Computer Interface controlled

 video-game using consumer grade EEG hardware. Biosignals and Biorobotics

 Conference (BRC), 2012 ISSNIP (pp. 1-6). IEEE.

[20] Cauwenberghs, G., & Poggio, T. (2001). Incremental and decremental support

 vector machine learning. Advances in neural information processing systems,

 409-415.

[21] Domingos, P., & Pazzani, M. (1997). On the optimality of the simple Bayesian

 classifier under zero-one loss. Machine learning, 29(2-3), 103-130.

[22] John, G. H., & Langley, P. (1995, August). Estimating continuous distributions in

 Bayesian classifiers. Proceedings of the Eleventh conference on Uncertainty in

 O'Connor 32

 artificial intelligence (pp. 338-345). Morgan Kaufmann Publishers Inc.

[23] Nouretdinov, I., Costafreda, S. G., Gammerman, A., Chervonenkis, A., Vovk, V.,

 Vapnik, V., & Fu, C. H. (2011). Machine learning classification with confidence:

 application of transductive conformal predictors to MRI-based diagnostic and

 prognostic markers in depression. Neuroimage, 56(2), 809-813.

[24] Schölkopf, В., Simard, P., Vapnik, V., & Smola, A. J. (1997). Improving the

 accuracy and speed of support vector machines. In Advances in Neural

 Information Processing Systems 9: Proceedings of the 1996 Conference [on

 Neural Information... Held in Denver... 1996] (Vol. 9, p. 375). The MIT Press.

[25] Suykens, J. A., & Vandewalle, J. (1999). Least squares support vector machine

 classifiers. Neural processing letters, 9(3), 293-300.

[26] Wang, L. (Ed.). (2005). Support Vector Machines: theory and applications (Vol.

 177). Springer Verlag.

[27] Blankertz, B., Curio, G., & Muller, K. R. (2002). Classifying single trial EEG:

 Towards brain computer interfacing. Advances in neural information processing

 systems, 1, 157-164.

[28] Gomez-Gil, Jaime; San-Jose-Gonzalez, Israel; Nicolas-Alonso, Luis Fernando;

 Alonso-Garcia, Sergio. 2011. "Steering a Tractor by Means of an EMG-Based

 Human-Machine Interface." Sensors 11, no. 7: 7110-7126.

[29] Iturrate, I., Antelis, J. M., Kubler, A., & Minguez, J. (2009). A noninvasive brain-

 actuated wheelchair based on a P300 neurophysiological protocol and

 automated navigation. Robotics, IEEE Transactions on, 25(3), 614-627.

 O'Connor 33

[30] Millan, J. R., Renkens, F., Mouriño, J., & Gerstner, W. (2004). Noninvasive brain-

 actuated control of a mobile robot by human EEG. Biomedical Engineering, IEEE

 Transactions on, 51(6), 1026-1033.

 O'Connor 34

Acknowledgements

Thanks to Professor Parker and Bo Xiong '13,

without whom this work would not have been possible.

We additionally thank Shaun Chung ’15,

 for his contributions towards the success of this system

 O'Connor 35

Appendix A

SixClassDataCollection.m

%Jim O'Connor

%EEG data analysis and formatting (6 classes)

%

%This script takes data returned fromo the Emotiv EPOC EEG

%TestBench software, which is stored as a series of comma

%separated value files, and performs a series of operations on

%the data. First, a Fast Fourier Transform is applied to the

%data, to get rid of the time domain and prepare the data for

%use by the Support Vector Machine. The absolute value function

%is then applied to the data, and the data is reshaped into an

%appropriate feature space. Next, the feature is split into two

%sections, one section composed of five samples for training,

%and the other five sample section for testing. These features

%are then ready to be used by the Support Vector Machine.

addpath('lsvm');

addpath('helpfun');

addpath('svm');

global bins

bins = 22; %0.26 at 22

%Initialize the variables used in the looping and formatting

processes

initial_index=0;

training_index=0;

test_index=0;

 O'Connor 36

%Read in the comma separated value data to matlab. The 2nd

parameter of the

%csvread function allows the function to skip the header of the

CSV file,

%which is not part of the data being analyzed.

csv_data = vertcat(csvread('Shaun-Passive One-

28.04.13.20.00.16.CSV',1,0),...

 csvread('Shaun-Passive Two-28.04.13.20.12.01.CSV',1,0),...

 csvread('Shaun-Passive Three-28.04.13.20.20.49.CSV',1,0),...

 csvread('Shaun-Passive Four-28.04.13.20.32.12.CSV',1,0),...

 csvread('Shaun-Passive Five-28.04.13.20.42.21.CSV',1,0));

%The initial loop runs 50 times, allowing it to split the 7000

line data

%into 10 equal samples of 700 data points each, for 14 features.

A Fast

%Fourier Transform is then applied to the CSV data, followed by

an absolute

%value function. The resulting data is reshaped into 50 vectors

of length

%140, which is the feature space.

for n = 1:50

 initial_index = initial_index+1;

 fft_signal{initial_index} =

abs(fft(csv_data(((initial_index*700)-

699):initial_index*700,1:14),bins));

 new_fea{initial_index} =

reshape(fft_signal{initial_index},numel(fft_signal{initial_index

}),1);

end

 O'Connor 37

%The resulting dataset is then split in half through the use of

two loops,

%each of which runs for half of the 50 vector long array, saving

the two

%halves in new matrices. Each of these matrices is named

according to its

%label and its use in either the training set or the test set

for the

%Support Vector Machine.

for i = 1:25

 training_index = training_index+1;

 Passive_Training_Set{training_index} =

new_fea{training_index};

end

for i = 1:25

 test_index = test_index+1;

 Passive_Test_Set{test_index} = new_fea{test_index+25};

end

%The index variables are re-initialized each time a new data set

is looped

%through and formatted.

initial_index=0;

training_index=0;

test_index=0;

csv_data = vertcat(csvread('Shaun-Up One-

28.04.13.20.03.19.CSV',1,0),...

 csvread('Shaun-Up Two-28.04.13.20.13.21.CSV',1,0),...

 csvread('Shaun-Up Three-28.04.13.20.22.18.CSV',1,0),...

 O'Connor 38

 csvread('Shaun-Up Four-28.04.13.20.34.24.CSV',1,0),...

 csvread('Shaun-Up Five-28.04.13.20.44.01.CSV',1,0));

for n = 1:50

 initial_index = initial_index+1;

 fft_signal{initial_index} =

abs(fft(csv_data(((initial_index*700)-

699):initial_index*700,1:14),bins));

 new_fea{initial_index} =

reshape(fft_signal{initial_index},prod(size(fft_signal{initial_i

ndex})),1);

end

for i = 1:25

 training_index = training_index+1;

 Up_Training_Set{training_index} = new_fea{training_index};

end

for i = 1:25

 test_index = test_index+1;

 Up_Test_Set{test_index} = new_fea{test_index+25};

end

%Each new set of loops handles a new set of data, each

corresponding to a

%new class. There are six classes total.

initial_index=0;

training_index=0;

test_index=0;

csv_data = vertcat(csvread('Shaun-Down One-

28.04.13.20.05.55.CSV',1,0),...

 csvread('Shaun-Down Two-28.04.13.20.14.48.CSV',1,0),...

 O'Connor 39

 csvread('Shaun-Down Three-28.04.13.20.24.12.CSV',1,0),...

 csvread('Shaun-Down Four-28.04.13.20.36.13.CSV',1,0),...

 csvread('Shaun-Down Five-28.04.13.20.45.49.CSV',1,0));

for n = 1:50

 initial_index = initial_index+1;

 fft_signal{initial_index} =

abs(fft(csv_data(((initial_index*700)-

699):initial_index*700,1:14),bins));

 new_fea{initial_index} =

reshape(fft_signal{initial_index},prod(size(fft_signal{initial_i

ndex})),1);

end

for i = 1:25

 training_index = training_index+1;

 Down_Training_Set{training_index} = new_fea{training_index};

end

for i = 1:25

 test_index = test_index+1;

 Down_Test_Set{test_index} = new_fea{test_index+25};

end

initial_index=0;

training_index=0;

test_index=0;

csv_data = vertcat(csvread('Shaun-Left One-

28.04.13.20.07.45.CSV',1,0),...

 csvread('Shaun-Left Two-28.04.13.20.16.18.CSV',1,0),...

 csvread('Shaun-Left Three-28.04.13.20.25.33.CSV',1,0),...

 csvread('Shaun-Left Four-28.04.13.20.37.42.CSV',1,0),...

 O'Connor 40

 csvread('Shaun-left Five-28.04.13.20.47.22.CSV',1,0));

for n = 1:50

 initial_index = initial_index+1;

 fft_signal{initial_index} =

abs(fft(csv_data(((initial_index*700)-

699):initial_index*700,1:14),bins));

 new_fea{initial_index} =

reshape(fft_signal{initial_index},prod(size(fft_signal{initial_i

ndex})),1);

end

for i = 1:25

 training_index = training_index+1;

 Left_Training_Set{training_index} = new_fea{training_index};

end

for i = 1:25

 test_index = test_index+1;

 Left_Test_Set{test_index} = new_fea{test_index+25};

end

initial_index=0;

training_index=0;

test_index=0;

csv_data = vertcat(csvread('Shaun-Right One-

28.04.13.20.09.14.CSV',1,0),...

 csvread('Shaun-Right Two-28.04.13.20.17.37.CSV',1,0),...

 csvread('Shaun-Right Three-28.04.13.20.28.11.CSV',1,0),...

 csvread('Shaun-Right Four-28.04.13.20.39.11.CSV' ,1,0),...

 csvread('Shaun-Right Five-28.04.13.20.48.56.CSV',1,0));

 O'Connor 41

for n = 1:50

 initial_index = initial_index+1;

 fft_signal{initial_index} =

abs(fft(csv_data(((initial_index*700)-

699):initial_index*700,1:14),bins));

 new_fea{initial_index} =

reshape(fft_signal{initial_index},prod(size(fft_signal{initial_i

ndex})),1);

end

for i = 1:25

 training_index = training_index+1;

 Right_Training_Set{training_index} =

new_fea{training_index};

end

for i = 1:25

 test_index = test_index+1;

 Right_Test_Set{test_index} = new_fea{test_index+25};

end

initial_index=0;

training_index=0;

test_index=0;

csv_data = vertcat(csvread('Shaun-Forward One-

28.04.13.20.10.41.CSV',1,0),...

 csvread('Shaun-Forward Two-28.04.13.20.19.26.CSV',1,0),...

 csvread('Shaun-Forward Three-28.04.13.20.29.56.CSV',1,0),...

 csvread('Shaun-Forward Four-28.04.13.20.40.45.CSV',1,0),...

 csvread('Shaun-Forward Five-28.04.13.20.50.32.CSV',1,0));

for n = 1:50

 initial_index = initial_index+1;

 O'Connor 42

 fft_signal{initial_index} =

abs(fft(csv_data(((initial_index*700)-

699):initial_index*700,1:14),bins));

 new_fea{initial_index} =

reshape(fft_signal{initial_index},prod(size(fft_signal{initial_i

ndex})),1);

end

for i = 1:25

 training_index = training_index+1;

 Forward_Training_Set{training_index} =

new_fea{training_index};

end

for i = 1:25

 test_index = test_index+1;

 Forward_Test_Set{test_index} = new_fea{test_index+25};

end

%The Label Training Data consists of 150 values, each

corresponding

%to one of six different labels. These values are ordered in the

same

%way as the Feauture Training Data, so that each set of 25 test

samples

%in each feature corresponds to the correct label.

Label_Training_Data = [];

for n=0:5

 for i=1:25

 Label_Training_Data=(horzcat(Label_Training_Data,n));

 end

end

 O'Connor 43

%A cell matrix is filled up with the different sets of training

data so

%that it can be distributed into the Training Array.

Feature_Training_Data{1} = Passive_Training_Set';

Feature_Training_Data{2} = Up_Training_Set';

Feature_Training_Data{3} = Down_Training_Set';

Feature_Training_Data{4} = Left_Training_Set';

Feature_Training_Data{5} = Right_Training_Set';

Feature_Training_Data{6} = Forward_Training_Set';

%The Training Array is initialized

Feature_Training_Array = [];

%The feature training data is formatted and moved from the cell

matrix to

%the training array. It is horizontally concatenated onto the

array so that

%each column of data corresponds to a feature, while each row is

a data

%point. There are 150 features that belong to 6 classes.

for i=1:6

 for n=1:25

 Feature_Training_Array =

horzcat(Feature_Training_Array,Feature_Training_Data{i}{n});

 end

end

%The test data is handled and formatted in the same way as the

training

%data.

Feature_Test_Data{1} = Passive_Test_Set';

 O'Connor 44

Feature_Test_Data{2} = Up_Test_Set';

Feature_Test_Data{3} = Down_Test_Set';

Feature_Test_Data{4} = Left_Test_Set';

Feature_Test_Data{5} = Right_Test_Set';

Feature_Test_Data{6} = Forward_Test_Set';

Feature_Test_Array = [];

for i=1:6

 for n=1:25

 Feature_Test_Array =

horzcat(Feature_Test_Array,Feature_Test_Data{i}{n});

 end

end

%The SVM is trained using the feature training array and the

label training

%data with a lambda value of 2. The resulting SVM struct, which

contains

%the paramaters of the optimal hyperplane for classification, is

saved as

%model.

model = lsvm_train(Feature_Training_Array', Label_Training_Data',

2); %0.26 at 2 / 0.1,0.2

%The effectiveness of the SVM is tested through the lsvm_predict

function,

%which builds a label prediction array based on the

classification of a

%Feature set without labels.

predictlabel= lsvm_predict(Feature_Test_Array', model);

 O'Connor 45

%The newly classified array, predictlabel, is compared to the

correct

%classification, or Label_Training_Data, which then returns a

percentage of

%accuracy.

sum(predictlabel == Label_Training_Data')/(length(predictlabel))

 O'Connor 46

FourClassDataCollection.m

%Jim O'Connor

%EEG data analysis and formatting (4 classes)

%

%This particular version of the code uses four classes, in order

%to compare our system to the benchmark of the Emotiv system.

addpath('lsvm');

addpath('helpfun');

addpath('svm');

global bins

bins = 23; %0.37 at 23

%Initialize the variables used in the looping and formatting

processes

initial_index=0;

training_index=0;

test_index=0;

%Read in the comma separated value data to matlab. The 2nd

parameter of the

%csvread function allows the function to skip the header of the

CSV file,

%which is not part of the data being analyzed.

csv_data = vertcat(csvread('Shaun-Passive One-

28.04.13.20.00.16.CSV',1,0),...

 csvread('Shaun-Passive Two-28.04.13.20.12.01.CSV',1,0),...

 csvread('Shaun-Passive Three-28.04.13.20.20.49.CSV',1,0),...

 O'Connor 47

 csvread('Shaun-Passive Four-28.04.13.20.32.12.CSV',1,0),...

 csvread('Shaun-Passive Five-28.04.13.20.42.21.CSV',1,0));

%The initial loop runs 50 times, allowing it to split the 7000

line data

%into 50 equal samples of 700 data points each, for 14 features.

A Fast

%Fourier Transform is then applied to the CSV data, followed by

an absolute

%value function. The resulting data is reshaped into 50 vectors

of length

%140, which is the feature space.

for n = 1:50

 initial_index = initial_index+1;

 fft_signal{initial_index} =

abs(fft(csv_data(((initial_index*700)-

699):initial_index*700,1:14),bins));

 new_fea{initial_index} =

reshape(fft_signal{initial_index},prod(size(fft_signal{initial_i

ndex})),1);

end

%The resulting dataset is then split in half through the use of

two loops,

%each of which runs for half of the 50 vector long array, saving

the two

%halves in new matrices. Each of these matrices is named

according to its

%label and its use in either the training set or the test set

for the

%Support Vector Machine.

for i = 1:25

 O'Connor 48

 training_index = training_index+1;

 Passive_Training_Set{training_index} =

new_fea{training_index};

end

for i = 1:25

 test_index = test_index+1;

 Passive_Test_Set{test_index} = new_fea{test_index+25};

end

%The index variables are re-initialized each time a new data set

is looped

%through and formatted.

initial_index=0;

training_index=0;

test_index=0;

csv_data = vertcat(csvread('Shaun-Up One-

28.04.13.20.03.19.CSV',1,0),...

 csvread('Shaun-Up Two-28.04.13.20.13.21.CSV',1,0),...

 csvread('Shaun-Up Three-28.04.13.20.22.18.CSV',1,0),...

 csvread('Shaun-Up Four-28.04.13.20.34.24.CSV',1,0),...

 csvread('Shaun-Up Five-28.04.13.20.44.01.CSV',1,0));

for n = 1:50

 initial_index = initial_index+1;

 fft_signal{initial_index} =

abs(fft(csv_data(((initial_index*700)-

699):initial_index*700,1:14),bins));

 new_fea{initial_index} =

reshape(fft_signal{initial_index},prod(size(fft_signal{initial_i

ndex})),1);

 O'Connor 49

end

for i = 1:25

 training_index = training_index+1;

 Up_Training_Set{training_index} = new_fea{training_index};

end

for i = 1:25

 test_index = test_index+1;

 Up_Test_Set{test_index} = new_fea{test_index+25};

end

%Each new set of loops handles a new set of data, each

corresponding to a

%new class. There are seven classes total.

initial_index=0;

training_index=0;

test_index=0;

csv_data = vertcat(csvread('Shaun-Down One-

28.04.13.20.05.55.CSV',1,0),...

 csvread('Shaun-Down Two-28.04.13.20.14.48.CSV',1,0),...

 csvread('Shaun-Down Three-28.04.13.20.24.12.CSV',1,0),...

 csvread('Shaun-Down Four-28.04.13.20.36.13.CSV',1,0),...

 csvread('Shaun-Down Five-28.04.13.20.45.49.CSV',1,0));

for n = 1:50

 initial_index = initial_index+1;

 fft_signal{initial_index} =

abs(fft(csv_data(((initial_index*700)-

699):initial_index*700,1:14),bins));

 O'Connor 50

 new_fea{initial_index} =

reshape(fft_signal{initial_index},prod(size(fft_signal{initial_i

ndex})),1);

end

for i = 1:25

 training_index = training_index+1;

 Down_Training_Set{training_index} = new_fea{training_index};

end

for i = 1:25

 test_index = test_index+1;

 Down_Test_Set{test_index} = new_fea{test_index+25};

end

initial_index=0;

training_index=0;

test_index=0;

csv_data = vertcat(csvread('Shaun-Left One-

28.04.13.20.07.45.CSV',1,0),...

 csvread('Shaun-Left Two-28.04.13.20.16.18.CSV',1,0),...

 csvread('Shaun-Left Three-28.04.13.20.25.33.CSV',1,0),...

 csvread('Shaun-Left Four-28.04.13.20.37.42.CSV',1,0),...

 csvread('Shaun-left Five-28.04.13.20.47.22.CSV',1,0));

for n = 1:50

 initial_index = initial_index+1;

 fft_signal{initial_index} =

abs(fft(csv_data(((initial_index*700)-

699):initial_index*700,1:14),bins));

 O'Connor 51

 new_fea{initial_index} =

reshape(fft_signal{initial_index},numel(fft_signal{initial_index

}),1);

end

for i = 1:25

 training_index = training_index+1;

 Left_Training_Set{training_index} = new_fea{training_index};

end

for i = 1:25

 test_index = test_index+1;

 Left_Test_Set{test_index} = new_fea{test_index+25};

end

%The Label Training Data consists of 100 values, each

corresponding

%to one of 4 different labels. These values are ordered in the

same

%way as the Feauture Training Data, so that each set of 25 test

samples

%in each feature corresponds to the correct label.

Label_Training_Data = [];

for n=0:3

 for i=1:25

 Label_Training_Data=(horzcat(Label_Training_Data,n));

 end

end

%A cell matrix is filled up with the different sets of training

data so

%that it can be distributed into the Training Array.

Feature_Training_Data{1} = Passive_Training_Set';

 O'Connor 52

Feature_Training_Data{2} = Up_Training_Set';

Feature_Training_Data{3} = Down_Training_Set';

Feature_Training_Data{4} = Left_Training_Set';

%The Training Array is initialized

Feature_Training_Array = [];

%The feature training data is formatted and moved from the cell

matrix to

%the training array. It is horizontally concatenated onto the

array so that

%each column of data corresponds to a feature, while each row is

a data

%point. There are 100 features that belong to 4 classes.

for i=1:4

 for n=1:25

 Feature_Training_Array =

horzcat(Feature_Training_Array,Feature_Training_Data{i}{n});

 end

end

%The test data is handled and formatted in the same way as the

training

%data.

Feature_Test_Data{1} = Passive_Test_Set';

Feature_Test_Data{2} = Up_Test_Set';

Feature_Test_Data{3} = Down_Test_Set';

Feature_Test_Data{4} = Left_Test_Set';

Feature_Test_Array = [];

for i=1:4

 O'Connor 53

 for n=1:25

 Feature_Test_Array =

horzcat(Feature_Test_Array,Feature_Test_Data{i}{n});

 end

end

%The SVM is trained using the feature training array and the

label training

%data with a lambda value of 2. The resulting SVM struct, which

contains

%the paramaters of the optimal hyperplane for classification, is

saved as

%model.

model = lsvm_train(Feature_Training_Array', Label_Training_Data',

2); %0.37 at 2/0.1/etc

%The effectiveness of the SVM is tested through the lsvm_predict

function,

%which builds a label prediction array based on the

classification of a

%Feature set without labels.

predictlabel= lsvm_predict(Feature_Test_Array', model);

%The newly classified array, predictlabel, is compared to the

correct

%classification, or Label_Training_Data, which then returns a

percentage of

%accuracy.

sum(predictlabel == Label_Training_Data')/(length(predictlabel))

 O'Connor 54

Appendix B

Table of Figures

Figure 1. The Nao humanoid robot, by Aldebaran Robotics. Kadam and Sheng [8] used

this robot for electroencephalographic teleoperation. .. 4

http://research.vuse.vanderbilt.edu/rasl/

Figure 2. A screenshot of the Emotiv EmoKey software, which Vourvopolous and

Liarokapis used to control a Lego NXT robot. ... 5

Emotiv SDK Manual

Figure 3. A man at Brandeis University wearing a modern EEG. He is wearing a 128-

channel high spatial density, high-impedance system, which gives more accurate

electroencephalographic data, but is even more bulky then other similar systems. 7

http://people.brandeis.edu/~sekuler/eegERP.html

Figure 4. The standard electrode placement of an EEG, recommended by the American

EEG Society for use in the International 10-20 system. .. 9

http://en.wikipedia.org/wiki/File:21_electrodes_of_International_10-

20_system_for_EEG.svg

Figure 5. The location of the fourteen channels read by the Emotiv EPOC. 11

http://sousa.net23.net/pages/signal_processing.html

Figure 6. The Emotiv EPOC EEG in use ... 12

http://www.youtube.com/watch?v=5FBCWmtLTCc

Figure 7. The Emotiv TestBench software in use. The data shown on the screen

corresponds to the 14 channels being picked up by the EEG. 12

file:///C:/Users/cs-student/Downloads/JimOConnorThesis.docx%23_Toc355360527
file:///C:/Users/cs-student/Downloads/JimOConnorThesis.docx%23_Toc355360527
http://research.vuse.vanderbilt.edu/rasl/
file:///C:/Users/cs-student/Downloads/JimOConnorThesis.docx%23_Toc355360528
file:///C:/Users/cs-student/Downloads/JimOConnorThesis.docx%23_Toc355360528
http://people.brandeis.edu/~sekuler/eegERP.html
http://en.wikipedia.org/wiki/File:21_electrodes_of_International_10-20_system_for_EEG.svg
http://en.wikipedia.org/wiki/File:21_electrodes_of_International_10-20_system_for_EEG.svg
http://sousa.net23.net/pages/signal_processing.html
file:///C:/Users/cs-student/Downloads/JimOConnorThesis.docx%23_Toc355360532
http://www.youtube.com/watch?v=5FBCWmtLTCc
file:///C:/Users/cs-student/Downloads/JimOConnorThesis.docx%23_Toc355360533
file:///C:/Users/cs-student/Downloads/JimOConnorThesis.docx%23_Toc355360533

 O'Connor 55

http://www.smartdevicecentral.com/slide/The+Emotiv+EPOC+Meeting+the+Future+Hea

d+On/248749_248750_16_0.aspx

Figure 8. An example of the data recorded by the EEG, in comma separated value

format. Only the first four columns are shown here, because the full dataset is thirty-six

columns wide. The first column of data is a sequential numbering of the samples

recorded by the EEG. The second column is for spacing out the data set, while the rest

of the columns consist of data collected by the EEG. Each row is another sample,

recorded sequentially. ……………………………………………………………………..…19

Figure 9. The data formatting prior to training of the SVM………………………..…........20

Figure 10. The Lynxmotion AL5D Robot Arm. After disabling the end effector and

revolute wrist joint, it is a 3DOF elbow, or anthropomorphic, manipulator……………....22

http://www.lynxmotion.com

Figure 11. A bare-bones diagram of a PUMA industrial robot arm, which is another

example of a 3DOF elbow manipulator………………………………………………….….23

http://www.springer.com/materials/mechanics/book/978-1-4419-1749-2

Figure 12. An example command sent via serial communication to the SSC-32 servo

controller……………………………………………………………………………………….24

Figure 13. The movement task to be solved. The user must control the robotic arm to

touch the green end effector to each of the 5 red targets. The five targets represent

extremes in the robots frontal workspace...........….25

Figure 14. The Emotiv Control Panel was ineffective in classifying data to 4 outputs,

with a success rate of 5% below random chance………………………………………….26

http://www.smartdevicecentral.com/slide/The+Emotiv+EPOC+Meeting+the+Future+Head+On/248749_248750_16_0.aspx
http://www.smartdevicecentral.com/slide/The+Emotiv+EPOC+Meeting+the+Future+Head+On/248749_248750_16_0.aspx
http://www.springer.com/materials/mechanics/book/978-1-4419-1749-2

 O'Connor 56

Figure 15. Our system showed a significant increase over random chance in classifying

data to four outputs, with a success rate 12% above random. This success rate shows

that our system is much more effective than the Emotiv system at classifying data to

four outputs……………………………………………………………………………………..27

Figure 16. Our system showed a 9.33% increase in effectiveness over random chance

when classifying data to six outputs……………………………………………………….27

	Connecticut College
	Digital Commons @ Connecticut College
	1-1-2013

	Real-time Control of a Robot Arm Using an Inexpensive System for Electroencephalography Aided by Artificial Intelligence
	James O'Connor
	Recommended Citation

