
Connecticut College
Digital Commons @ Connecticut College

Computer Science Faculty Publications Computer Science Department

1-1-2008

The Online Transportation Problem: On the
Exponential Boost of One Extra Server
Christine Chung
Connecticut College, cchung@conncoll.edu

Patchrawat Uthaisombut

Kirk Pruhs

Follow this and additional works at: http://digitalcommons.conncoll.edu/comscifacpub
Part of the Computer Sciences Commons

This Conference Proceeding is brought to you for free and open access by the Computer Science Department at Digital Commons @ Connecticut
College. It has been accepted for inclusion in Computer Science Faculty Publications by an authorized administrator of Digital Commons @
Connecticut College. For more information, please contact bpancier@conncoll.edu.
The views expressed in this paper are solely those of the author.

Recommended Citation
Chung, Christine; Uthaisombut, Patchrawat; and Pruhs, Kirk, "The Online Transportation Problem: On the Exponential Boost of
One Extra Server" (2008). Computer Science Faculty Publications. Paper 2.
http://digitalcommons.conncoll.edu/comscifacpub/2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@Connecticut College

https://core.ac.uk/display/46704046?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.conncoll.edu?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/mathcomsci?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub/2?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bpancier@conncoll.edu


The Online Transportation Problem: On the Exponential Boost of One
Extra Server

Keywords
online transportation

Comments
Presented at LATIN 2008 (Latin American Symposium on Theoretical Informatics).

This conference proceeding is available at Digital Commons @ Connecticut College: http://digitalcommons.conncoll.edu/
comscifacpub/2

http://digitalcommons.conncoll.edu/comscifacpub/2?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub/2?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages


The Online Transportation Problem: On the Exponential Boost of One Extra

Server ∗

Christine Chung Kirk Pruhs Patchrawat Uthaisombut

Abstract

We present a poly-log-competitive deterministic online algorithm for the online transportation prob-
lem on hierarchically separated trees when the online algorithm has one extra server per site. Using
metric embedding results in the literature, one can then obtain a poly-log-competitive randomized online
algorithm for the online transportation on an arbitrary metric space when the online algorithm has one
extra server per site.

1 Introduction

The setting for the online transportation problem is a collection ofk server sites located in some metric space.
Points in the metric space, which represent requests for service, arrive online over time. Server sitej has a
fixed capacityBj specifying the number of requests that can be handled by sitej. After each request arrives,
the online algorithm must irrevocably match that request toa single server site that has not yet reached its
capacity. Conceptually it is convenient to think ofBj as the number of servers at sitej, and one of these
servers traveling to a request that is assigned to sitej. The objective is to minimize the total (or equivalently
average) distance between the requests and their assigned server sites.

If the locations of the requests are known a priori, then thisis the standard offline transportation problem
[9, 11]. Many of the applications of the transportation problem are naturally online problems. We give two
examples here. In the first example, the server sites could befire stations, the capacity of a fire station could
be the number of fire trucks stationed there, and the requestscould be the location of a fire. The objective
would then be to minimize the average distance that fire trucks travel. In the second example, the server sites
could be schools, the capacity of a school could be the numberof students that the school can handle, and
the requests could be the locations of new students that moveto the school district. The objective would then
be to minimize the average distance between students and their assigned schools.

1.1 Previous Results

The online weighted matching problem is a special case of theonline transportation problem in which each
server site has unit capacity. The competitive ratio of every deterministic algorithm for online matching, and
hence for online transportation, is at least2k − 1 [6, 10]. The metric space in the lower bound instances
that establish this bound is a star. In a star there is a uniqueroot point that is a unit distance from all other
points, and all pairs of non-center points, called leaves, are distance two from each other. [6, 10] give a
(2k − 1)-competitive algorithm, called Permutation in [6], for online matching. However, the competitive
ratio of Permutation for the more general online transportation problem isΘ(B), whereB =

∑k
i=1

Bi is
the aggregate capacities of the server sites [7]. In contrast, [6] shows that the competitive ratio of the natural

∗Computer Science Department. University of Pittsburgh.{chung,kirk,utp}@cs.pitt.edu. Supported in part by NSF grants
CNS-0325353, CCF-0448196, CCF-0514058 and IIS-0534531.



greedy algorithm, that always matches each request to an arbitrary nearest server site with residual capacity,
is 2k − 1 for online transportation.

The fact that the optimal deterministic competitive ratiosare so high prompted [8] to consider resource
augmentation analysis for online transportation. Resource augmentation analysis compares the performance
of an online algorithm to the optimal solution with less resources. In the context of online transportation,
the resource is the number of servers per site. So ans-serverc-competitive algorithmA guarantees that
if A hass · Bj servers at each sitej then the cost ofA’s assignment is at mostc times the cost of the
optimal assignment assumingBj servers at each sitej. [6] show that the greedy algorithm is2-server
Θ(min(k, logB))-competitive for online transportation. [8] then considers a slightly modified greedy al-
gorithm, that in the cases of approximate ties for the nearest server site, picks a server site that has been
assigned the least requests so far. [8] show that this modified greedy algorithm is2-serverO(1)-competitive
for online transportation. One can also see from the analyses in [8] that the greedy algorithm is3-server
O(1)-competitive for online transportation.

[3, 12] consider randomized algorithms for the online matching problem against an oblivious adversary
that must specify the input a priori. In particular, [3, 12] consider the simple randomized greedy algorithm
that services each request with an unused server site pickeduniformly at random from the closest server sites.
It is easy to see that the randomized greedy algorithm isO(log k)-competitive for online matching in a star.
[3, 12] extend this analysis to show that randomized greedy isO(log k)-competitive in(log k)-Hierarchically
Separated Trees (log k-HST’s). [1, 4] show that for every metric space, there exists a probability distribution
over log k-HST’s, for which the expected distance between any pair of points in a randomly drawnlog k-
HST is at mostO(log2 k) times the distance between this pair of points in the metric space. Combining these
two results gives anO(log3 k)-competitive randomized algorithm (note that this algorithm is not randomized
greedy) against an oblivious adversary for online matchingon an arbitrary metric space.

For a summary of results for online matching problems, and related online network optimization prob-
lems, see [7].

1.2 Our Results

One motivation for considering resource augmentation analysis is that it allows one to show that an algorithm
is competitive, without additional resources, for instances where the optimal solution is not so sensitive to
changes in the number of available servers per site. More precisely, ans-serverc-competitive algorithm
would bec · d-competitive on instances where a factor ofs change in the number of servers per site does
not change the optimal cost by more than a factor ofd. The smallest resource augmentation considered in
[8] was doubling the number of servers per site. Our main aim here is consider the effect of more modest
resource augmentation. More precisely, we consider the effect of adding just one additional server per site.
We will say that an online algorithmA is+1-serverc-competitive ifA guarantees that ifA hasBj +1 servers
at each sitej then the cost ofA’s assignment is at mostc times the cost of the optimal assignment assuming
Bj servers at each sitej. Then a+1-serverc-competitive algorithm would bec · d-competitive on instances
where adding one server per site does not change the optimal cost by more than a factor ofd.

In this paper we consider a natural deterministic online algorithm that we call Balancing of Displaced
Servers (BODS). Intuitively, BODS prefers using server sites that have serviced less requests (of positive
cost), as did the modified greedy algorithm in [8], but for BODS this preference is only relevant in the case
of exact ties.

BODS Description: BODS always assigns the request to a nearest server with residual capacity. BODS
breaks ties among closest servers by assigning the request to a server site that has been to date assigned the
least number of requests with positive cost.1 If a tie remains, BODS uses the first server site with residual
capacity in some arbitrary ordering of the server sites.

1Note that this is not the same as assigning the request to the site that has serviced the least requests so far, since a request on site
j costs nothing if assigned to sitej.

2



From what is known to date about online transportation and matching, the hardest metric space for the
online algorithm is always the star. The results in [3, 12] can be viewed as a reduction from a general metric
space to the star via HST’s. So we begin by first considering the star metric space. We show BODS is
+1-serverO(log k)-competitive for online transportation in a star. We found it surprising that such modest
resource augmentation drops the competitive ratio so dramatically, from linear ink to logarithmic ink. We
then show that BODS is essentially optimally competitive. That is, we show that there is no+1-server
o(logk)-competitive deterministic online algorithm for online transportation on a star. We then generalize
our analysis to show that BODS is+1-serverO(log k)-competitive for online transportation on alog k-HST.
Our proof proceeds by induction on the height of the HST, following the same general structure as the proof
in [12]. However the introduction of resource augmentationadds some technical difficulties. For example,
when the analysis in [12] considers the subinstances on the subtrees of the root, we now have to be concerned
about the possibility that in some of these subinstances there are more requests than servers available to the
adversary, and thus there is no feasible optimal solution without resource augmentation. Using the results in
[1, 4], we obtain a+1-serverO(log3 k)-competitive randomized algorithm for online transportation for an
arbitrary metric space against an oblivious adversary.

Our results extend those in [3, 12] in two ways: (1) For arbitrary metric spaces, our analysis holds for
the more general online transportation, not just for the special case of online matching, and (2) for stars and
HST’s, we obtain a deterministic bound on the competitive ratio instead of a randomized bound against an
oblivious adversary. Of course these extensions come at thecost of requiring modest resource augmentation.
Admittedly these extensions will not generally be viewed asgreat contributions because (1) for general
metric spaces, it is quite plausible the analysis in [3, 12] could extend (with some more involved analysis) to
online transportation, and (2) HST’s are rather specialized metric spaces. It is common that the most lasting
contribution of many papers is the interesting questions that naturally arise from the paper, instead of the
actual results in the paper. In our humble opinion, we believe that this is likely the case for this paper. The
interesting question that naturally arises here is:

Is there a +1-server poly-log-competitive deterministic algorithm for online transportation on
an arbitrary metric space?

Intuitively the star is the hardest metric space, and the deterministic+1-serverO(log k)-competitiveness
result for a star should extend to an arbitrary metric space.But current metric embedding techniques do
not seem sufficient to address this question. One can obtain apoly-log-competitive deterministic offline
algorithm by deterministically generating a collection ofHST’s, and then using the tree that gives the best
results [2]. But it is not clear how an online algorithm should learn or construct the right metric embedding
online as it sees requests. So it seems like the above question could well be a vehicle to extend the current
understanding of metric embeddings.2 Alternatively, if it somehow turned out that there is no+1-server
poly-log-competitive deterministic algorithm for onlinetransportation on an arbitrary metric space, then this
would be interesting because it would be the first example of an online matching/transportation problem
where the hardest metric space was not a star.

2 Online Transportation on a Star

In this section, we assume that thek server sites are at the leaves of a star. We show that BODS is+1-server
O(logk)-competitive on a star, and that this is essentially the bestpossible result that one can obtain. We
start with the lower bound.

2We are aware of the result in [5] that gives a deterministic online algorithm that uses a collection of HST’s and is poly-log-
competitive. In the algorithm in [5],log k different HST’s are generated a priori, and then the online algorithm always uses an HST
that is gauranteed to approximate the distance between points that arrive online. This does not work for online matchingand online
transportation because it essentially simulates the greedy algorithm, which is not competitive in a general metric space.

3



When a request arrives at a leaf, and a server from the leaf site is assigned to the request, we refer to it
as alocal service or local assignment. If a request arrives at a leaf site and a server from a different leaf site
is assigned to the request, we call it aremote service or remote assignment. Thus, all root requests cost 1
to service, a leaf request servicedlocally costs 0, and a leaf request servicedremotely costs 2. A request is
called anexcess request if it arrives at a server sites afterBs requests have already arrived at sites. Hence,
the only requests that optimal will pay for are those that arrive at the root and those that are excess requests.
We defineCA(I) to be the cost of algorithmA on inputI .

2.1 The General Lower Bound

Theorem 1 There is no deterministic +1-server o(log k)-competitive for online transportation on a uniform
star with k leaves.

Proof: Consider the input instance where for all sitesj, for 1 ≤ j ≤ k, we haveBj = b. Assume that the
online algorithm hase extra servers per site (so we will eventually usee = 1 to prove the statement of the
theorem). Letx be an integer value to be set later. First,xb requests arrive at the root node, then continue to
arriveb at a time at the next leaf with the fewest remaining availableservers until a total ofB = bk requests
have been made. Call each set ofb requests made from a leaf node ahit.

First note that the cost of the optimal offline solutionCOPT is alwaysxb since it knows the request
sequence in advance and for the requests from each hit it willreserve local servers from that site. So it
services thexb root requests using the remaining servers that are not already reserved. Then it will be able
to service requests from each hit locally. The adversary’s strategy finds a value forx that maximizes the
competitive ratio.

Sincexb requests are initially made from the root node, and there arebk total requests, there arek − x
total hits. Letf(i) for all 1 ≤ i ≤ k − x be the maximum (over all un-hit server sites) after hiti of the
number of servers that have been used at any site by the onlinealgorithm. Definef(0) to be the maximum
number of servers used at any site by the online algorithm forthe initialxb root requests. Definec(i) as the
number of requests in hiti that are serviced remotely (at a cost of 2) by the online algorithm. By definition
of f(i) and the adversarial strategy outlined above, we know thatc(i) = f(i − 1) − e for 1 ≤ i ≤ k − x,
where we subtracte from f(i − 1) because there areb + e servers at each of the server sites allowing us to
servicee extra requests locally.

After hit i, for 1 ≤ i ≤ k−x, xb + ib total requests have been made, whereas at mosti(b+ e) have been
used at thei sites that have been hit so far. That leaves at least(x + i)b − i(b + e) servers missing at the
remainingk − i unhit sites. So, by the pigeon-hole principle, for1 ≤ i ≤ k − x,

f(i) ≥
(x + i)b − i(b + e)

k − i
=

xb − ie

k − i
.

By the definition ofc(i), the total costCON of the solution returned by any online algorithmON is
therefore:

CON = xb + 2

k−x
∑

i=1

c(i) = xb + 2

k−x
∑

i=1

(f(i− 1) − e)

≥ xb + 2

k−x−1
∑

i=0

(

xb − ie

k − i
− e

)

= xb + 2(xb − ek)(Hk − Hx).

Thus,
CON

COPT
≥

xb + 2(xb − ek)(Hk − Hx)

xb
≥ 1 + 2

(

1 −
ek

xb

)(

ln
k + 1

x
− 1

)

.

By choosingx = max
{

1, 2ek
b

}

, we get the following two cases.

4



Case 1:b > 2ek. Thenx = 1 and
CON

COPT
≥ 1 + 2

(

1 −
ek

b

)

(ln(k + 1) − 1) ≥ ln k.

Case 2:b ≤ 2ek. Thenx =
2ek

b
and

CON

COPT

≥ 1 + 2

(

1−
1

2

)(

ln
(k + 1)b

2ek
− 1

)

≥ ln
b

2e
.

Putting both cases together:
CON

COPT
≥ min

(

lnk, ln
b

2e

)

.

2.2 BODS on the Star

A live site is a site with at least one server still unassigned. Adead site is a site whose servers have all been
assigned, so there are no more available at that site to service any future requests. A server is calleddisplaced
if it has been assigned to a remote request. We define arestricted instance to be one where: (A) no more than
Bj requests arrive at server sitej, (B) no request is serviced locally by BODS, and (C)B requests arrive. We
now show, without loss of generality, that we may restrict our analysis of BODS to restricted instances.

Lemma 2 If there is an instance I for which the +1-server competitive ratio of BODS is at least c, then
there is a restricted instance I ′ for which the +1-server competitive ratio of BODS is at least c.

Proof: We consider the restrictions in order. First consider restriction (A). Consider request numberBj + i
to sitej. If i > 1 then this request inI ′ will appear at the root instead of atj. This modification will not
change how BODS services requests. This will lower the cost of BODS and optimal by 1 each, which will not
decrease the competitive ratio. Ifi = 1 andBj > 0 then we decrement the value ofBj in I ′ by 1, and there
is no corresponding request inI ′. This modification will not change how BODS services other requests, and
does not change the cost to BODS. To see that the cost of the optimal solution does not increase, letk 6= j

be a site that was assigned one of theBj + 1 requests atBj , andr be the request serviced by the deleted
server at sitej, in the optimal solution. The requestr can now be assigned to sitek with no increase in cost.
If i = 1 andBj = 0 then remove this server site and the request inI ′. This changes neither the assignments
of BODS to the other requests, nor the cost to BODS. Further, the optimal cost does not go up.

We now consider restriction (B). Letq be a leaf request inI that arrives at a sitej and is serviced locally
by BODS. We createI ′ by removingq from I , and decrementingBj by 1. This does not change how BODS
services the requests, nor the cost to BODS. This also doesn’t change the cost in the optimal solution because
we know that there are are at mostBj requests at sitej in the input, and thus the optimal solution servicesq
locally on inputI .

We consider restriction (C). For any instance with fewer than B requests, the optimal solution must have
servers left unassigned. For each unassigned server in the optimal solution, another request can arrive at its
site. This does not change the cost of the optimal solution, and will not decrease the cost to BODS.

Theorem 3 BODS is +1-server O(logk)-competitive for online transportation on a star with k leaves.

Proof: By Lemma 2, we need only consider restricted inputs. For notational convenience, we relabel the
sites based on the number of servers at each site as well as tie-breaking order. In particular, we label the sites
so thatB1 ≤ B2 ≤ ... ≤ Bk. Furthermore, we label them such that ifBj = Bj+1, then sitej comes earlier
than sitej + 1 in the tie-breaking order. Letei be the number of servers that sitei is augmented by in our
online setting for BODS. Eventually we will set eachei to one, but we believe that it is instructive to leave

5



theei’s as variables in the proof. The only property that we need oftheei’s is that they are non-decreasing,
that is,ei ≤ ei+1.

We claim that the server sites die in order of increasing sitenumber. To see why, remember that each
request in a restricted input is remotely serviced by BODS. Thus the first requests must be root requests, and
BODS will choose to assign servers from server sites in a round robin fashion. Root requests will continue
until site 1 is dead. We know that site 1 will be the first to die since we have numbered the sites in non-
decreasing order of the number of servers at each site, and inthe case of sites with the same number of
servers, we have taken care to assign lower numbers to sites that are earlier in BODS’s tie-breaking order.
After site 1 is dead, again since BODS services all requests remotely, all successive requests must arrive at
either site 1 or the root until site 2 is dead, and so on.

Defineround 0 to be the sequence of requests from the first request up untilsite 1 is dead. Fori ≥ 1,
define roundi to be the sequence of requests after roundi− 1 up until sitei + 1 is dead, or until a total ofB
requests have been made, whichever comes first. Fori ≥ 0, let ri be the number of requests in roundi. Note
that round 0 consists only of root requests, whereas fori ≥ 1, roundi may consist of both root requests and
leaf requests at dead sites.

Let m be the round in which theBth request appears. Note that1 ≤ m ≤ k − 1 since sitem + 1 dies in
roundm and there are onlyk server sites. Forj = 1 . . .m, let xj be the number of root requests in roundj.
Note thatx0 = r0 and0 ≤ xi ≤ ri for 1 ≤ i ≤ m. Recall that until the end of roundi, requests are made
only at the root and the firsti dead sites. The number of root requests through roundi is

∑i
j=1

xj. Since the
input is restricted, there are at mostBj requests on sitej. Thus, the number of leaf requests through roundi

is at most
∑i

j=1
Bj . So for1 ≤ i ≤ m,

i
∑

j=1

rj ≤
i

∑

j=1

(Bj + xj). (2.1)

Note thatr0 +
∑m

j=1
xj is the number of total root requests in a restricted input. Ina restricted input the

optimal solution only pays for root requests. Hence,

COPT (I) = r0 +

m
∑

j=1

xj .

Since BODS pays at most 2 to service a request, then

CBODS(I) ≤ 2B ≤ 2



r0 +

m
∑

j=1

xj +

m
∑

j=1

Bj



 .

We now formulate the number of requests in each round. Letα1 be the position of site 1 in BODS’s
tie-breaking order on the sites1 throughk. Since no site has fewer thanB1 +e1 servers, and there arek sites,
there must be

r0 = e1k + (B1 − 1)k + α1

requests before site 1 is dead. To see this, note that a total of e1 servers at each site are assigned after the first
e1k requests, andB1 − 1 more servers are assigned from each site after the next(B1 − 1)k requests, and the
B1 + e1th server of site 1 is assigned after anotherα1 requests.

Similarly, since at the beginning of roundi, onlyk − i sites are alive, letαi+1 ≤ k − i be the position of
sitei + 1 in BODS’s tie-breaking order on the remaining sitesi + 1 throughk. The number of requests that
are in roundi is then

ri = (k − i + 1 − αi) + (Bi+1 + ei+1 − (Bi + ei) − 1)(k − i) + αi+1,

6



for 1 ≤ i ≤ m. To see why, consider two cases.
Case 1 (Bi+1 > Bi). We needk − i + 1 − αi requests to finish clearing theBi + eith server at each of the
remainingk − i + 1 − αi sites. We then need another(Bi+1 + ei+1 − (Bi + ei)− 1)(k − i) requests to use
up all but one server at the site(s) withBi+1 + ei+1 servers. Finally, we needαi+1 more requests to reach the
Bi+1 + ei+1th server of sitei + 1 in the tie-breaking order.
Case 2 (Bi+1 = Bi). Thek − i + 1−αi requests will finish clearing off theBi + ei = Bi+1 + ei+1th server
at the remainingk− i + 1−αi sites. Then revertingk− i requests brings us to the point where only the first
Bi + ei = Bi+1 + ei+1th server at any site was used (this site may or may not be site 1). So we needαi+1

more requests which, by definition ofαi+1, bring us to the point where theBi+1 + ei+1th server of sitei + 1

is used.
Thus, for1 ≤ i ≤ m,

i
∑

j=1

rj =

i
∑

j=1

((k − j + 1 − αj) + (Bj+1 + ej+1 − (Bj + ej) − 1)(k − j) + αj+1)

= k − α1 + (Bi+1 + ei+1)(k − i)− (B1 + e1)k +
i

∑

j=1

(Bj + ej) − (k − i) + αi+1.

Substituting into 2.1 then solving forBi+1 gives us that for alli where1 ≤ i ≤ m,

Bi+1 ≤
B1k +

∑i
j=1

xj + α1 − αi+1 − i

k − i
+

e1k −
∑i

j=1
ej − ei+1(k − i)

k − i

≤
B1k +

∑i
j=1

xj

k − i
+ 1 +

e1k −
∑i

j=1
ej − ei+1(k − i)

k − i
becauseα1 ≤ k andαi+1 ≥ 1

≤
B1k +

∑i
j=1

xj

k − i
+ 1 + e1 − ei+1 becausee1 ≤ e2 ≤ ... ≤ ek

≤
B1k +

∑i
j=1

xj

k − i
+ 1. (2.2)

Recall that

CBODS(I) ≤ 2



r0 +

m
∑

j=1

xj +

m−1
∑

j=0

Bj+1



 ,

≤ 2



r0 +

m
∑

j=1

xj +

m−1
∑

j=0

B1k +
∑j

i=1
xi

k − j
+

m−1
∑

j=0

1



 by (2.2)

≤ 2



r0 +
m

∑

j=1

xj +



B1k +
m−1
∑

j=1

xj





m−1
∑

j=0

1

k − j
+ m





≤ 2

(

COPT (I) + COPT (I) ln
k

k − m
+ COPT (I)

)

≤ (2 lnk + 4)COPT (I) sincem ≤ k − 1.

Hence the result follows.
The following lemma will be useful in our analysis of BODS on HST’s. The proof mimics the proof of

Theorem 3.

Lemma 4 In a star, the number of requests serviced remotely by BODS is at most 2 lnk+4 times the number
of requests serviced remotely by any optimal assignment with Bj servers per site.

7



3 Generalization to HSTs

We now generalize this result to one on hierarchically separated trees. The theorem and proof presented in
this section are based on that of section 3 in [12].

Definition 5 An α-hierarchically separated tree (α-HST) is a rooted tree T = (V, E) with a distance func-
tion on the edges such that

1. If two nodes are siblings in the tree, they are both the same distance from their parent.

2. The distance from a node to its parent is α times the distance of the node to its child.

3. All leaves are at the same level of the tree.

To enable us to analyze BODS when the metric space is an HST, wedefine a variation of our original
problem. The results we obtain on this variation will translate back to the original problem. Let our original
transportation problem be referred to as TRN. Recall that inTRN the input request sequence was made up
of at mostB requests, one request for each server that OPT has. We now define the problem TRN2 to be the
same as our original problem except for the following modifications. The input request sequence may now
have up toB + k requests (the number of servers available to BODS). At any time, to service a request, an
algorithm may choose to pay aservice fee instead of assigning a server to the request. The cost of the service
fee is defined to be the length of the path from the request, to the root of the tree, to a leaf of the tree. For
example, if a request appears at the root of the tree, the service fee is equal to the root to leaf distance in the
HST. As another example, if a request appears at a leaf of the tree, the service fee is equal to twice the root
to leaf distance in the HST.

We must now describe the algorithm BODS for this new problem.BODS will always assign a server
to a request, never choosing to pay the service fee. To choosea server, BODS behaves exactly as described
above.

Note that the service fee is always an upper bound on the cost of servicing a request using a server. The
service fee is set intentionally high so as to deter the optimal offline algorithm from choosing to pay a service
fee over choosing to assign a server to the request. Thus, we may assume that the optimal offline algorithm
chooses to pay the service fee for a request only when it runs out of servers.

Lemma 6 If BODS is +1-server c-competitive for TRN2, then BODS is +1-server c-competitive for TRN.

Lemma 7 There exists a worst-case input instance I in TRN2 against BODS in which OPT does not pay any
service fees.

Theorem 8 BODS is +1-server (8 lnk + 10)-competitive for TRN2 when the metric space is an α-HST T
where α ≥ 4 lnk + 9, the server sites are at the leaves of T , and the requests arrive at the leaves or at the
root of T .

Proof: By lemma 7, we need only consider input instances inITRN2 where OPT does not pay any service
fees, or in other words, where there are at mostB requests.

The proof is by induction on the number of levels inT . The base case is the uniform star metric, which
we already proved in Theorem 3. For the inductive step, we show that if the theorem is true for each subtree
Si of T that is rooted at childi of the root ofT , 1 ≤ i ≤ z, then it must be true forT itself.

To be more precise, letH be the height ofT , let S be anyα-HST of heighth ≤ H − 1 with server sites
at the leaves, and letCALG(S) be the cost of running the algorithm ALG on any input sequenceof requests
at the leaves or root ofS. We assume thatCBODS(S)/COPT (S) ≤ 8 lnk + 10 holds for anyS, and show
that this assumption implies that for anyα-HST T of heighth + 1, CBODS(T )/COPT (T ) ≤ 8 lnk + 10.

8



Let δ be the distance fromr, the root ofT , to each of its children. Letβ =
∑H−1

i=1
1/αi, whereH is

the number of levels inT . Note that,(β + 1)δ is the distance fromr to a leaf ofT andβδ is the distance
from one ofr’s children to one of the leaves ofT descendant from that child. Letm∗

i andmi be the number
of times that OPT and BODS (respectively) assigned servers in subtreeSi to requests that arenot in Si.
Let m∗ =

∑z
i=1

m∗

i andm =
∑z

i=1
mi. Som∗ andm are the number of servers that OPT and BODS,

respectively, assign to requests outside their subtrees. Let S+

i be the instance on subtreeSi defined by the
servers ofT in Si, and a subsequence of the requests of the input sequence inT that consists of requests that
are serviced by BODS using servers inSi, where requests outside ofSi are replaced by requests at the root of
Si. Note that there aremi replacements. Note thatSi is anα-HST with depthH − 1. LetSB

i be the instance
on subtreeSi obtained fromS+

i by removing themi requests at the root ofSi.
It is the case that

CBODS(T ) ≤

z
∑

i=1

CBODS(S+

i ) +

z
∑

i=1

((β + 1)δ + δ)mi. (3.3)

To justify this, first note that the second term of the right hand side reflects (for each subtree)mi times the
distance from the requests outsideSi (at the leaves ofT ) to the rootr of T , then down to the root ofSi. Also,
remember that by definition of BODS there are no requests for which BODS pays a service fee. Thus, any
requestx is assigned by BODS to a servery. If servery is in subtreeSi, thenx belongs toS+

i . If x appears
in Si, the cost of servicingx is accounted for in thei’th summand in the first summation. Ifx appears in
another subtree or at the root ofT , then the cost of servicingx is accounted for in thei’th summand in both
the first and the second summations.

Let R = 8 lnk + 10. By the inductive hypothesis, we know that for all1 ≤ i ≤ z,

CBODS(S+

i ) ≤ R ·COPT (S+

i ). (3.4)

It is the case that

COPT (S+

i ) = COPT (SB
i ) + βδmi. (3.5)

To see why, recall that the requests inS+

i are (by definition ofSB
i ) the same as the requests inSB

i with mi

requests added at the root.βδ is the distance from the root ofSi to a leaf inSi. Note thatOPT ’s cost for
any root request inS+

i that it chooses to pay a service fee for is alsoβδ. Thus, whetherOPT services a root
request by assigning a server to it or paying a service fee, the cost is at mostβδ. And OPT ’s cost on all leaf
requests inS+

i will be the same as its cost (including any service fees) onSB
i .

By (3.3), (3.4), (3.5), and the definition ofm,

CBODS(T ) ≤ R
z

∑

i=1

COPT (SB
i ) + (Rβδ + 2δ + βδ)m. (3.6)

Now all we have left to show is that the right hand side of (3.6)is less than or equal toR ·COPT (T ).
We start by observing that

COPT (T ) ≥

z
∑

i=1

COPT (SB
i ) + δm∗. (3.7)

This inequality holds by the following reasoning. All requests serviced locally by OPT onSB
i will be serviced

locally by OPT onT in the same manner. The requests that OPT must pay a fee for inSB
i must cost OPT on

T a price of2(β + 1)δ (the distance from a leaf up to the root and back down to a leaf), while only costing
OPT onSB

i a price of2βδ sinceSi is one level shorter thanT . This leaves at least an extra2δ that OPT

9



has to pay for each of these requests onT . We also know thatOPT (T ) pays(β + 1)δ for each of the root
requests that get counted intom∗. Both of these costs exceedδ and these are all the requests that comprise
m∗.

Let Rm = 2 lnk + 4. By our assumption thatα ≥ 2Rm + 1, we have

β =

h−1
∑

i=1

1/αi ≤
1

1 − 1/α
− 1 =

1

α − 1
≤ 1/(2Rm). (3.8)

Note thatR = 4Rm + 2. Using this fact along with 3.8, we have

R =
1

2
R + 2Rm + 1 ≥

1

2
R(2Rmβ) + 2Rm + 2Rmβ = Rm(Rβ + 2 + 2β) ≥ Rm(Rβ + 2 + β). (3.9)

We now need to relate the valuesm andm∗. Recall that BODS always services requests as locally as
possible. If we think of a request that is matched to a server within its own subtree as alocal assignment,
we can reduce this input instance onT to one on the uniform star, where the subtrees ofT are the leaves of
the star. Since all inputs under consideration have at mostB servers, this reduction will be an instance of the
problem from section 2. Therefore by Lemma 4, we know that

m ≤ Rm ·m∗. (3.10)

Finally, by combining 3.6, 3.7, 3.9, and 3.10, we haveCBODS(T ) ≤ R ·COPT (T ).
Combining Theorem 8 with Lemma 6 immediately gives us the following result.

Theorem 9 BODS is +1-server (8 lnk + 10)-competitive for TRN when the metric space is an α-HST T
where α ≥ 4 lnk + 9, the server sites are at the leaves of the tree, and the requests arrive at the leaves of T .

4 Generalization to any metric space

We are now ready to extend our results to any metric space thathask server sites and plus one server per
site for the online algorithm. In the general metric, the requests are no longer restricted to arriving only at
existing server sites. Requests can now arrive at any point in the metric space.

We now present GBODS, an algorithm for the online transportation problem in any given metric space.
The new algorithm is as follows: first use the procedure givenin [4] to generate a random(9 + 4 lnk)-
HST, call it T , from the metric induced on thek server sites. Then, whenever a requestq arrives in the
original metric space, we find its nearest server site, and create a new request there, calling itq′. Let Q =

{q1, q2, . . . , qB} be the sequence of requests that arrive, and letQ′ = {q′2, q
′

3, . . . , q
′

B} be the corresponding
set of requests created at the server sites nearest to the requests inQ. LetT (Q′) be the input instance on HST
T with request sequenceQ′. We use BODS onT (Q′) to find an available servers′i for eachq′i in Q′. We
then assign each servers′i to each original requestqi in Q.

Fakcharoenphol et al [4] showed that any metric space ofn points can be approximated by a randomly
generatedα-HST where the points in the metric will be at the leaves of thetree, and the expected distance
between points in the tree will be no more thanα logn times their original distance. Applying this fact along
with our Theorem 9, and losing a constant factor due to applications of the triangle inequality when mapping
the solution of inputT (Q′) back to the points ofQ in the original metric space, we have the following
theorem.

Theorem 10 In expectation, the algorithm GBODS is +1-server O(log3 k)-competitive for the online trans-
portation problem.

Acknowledgments: We thank Anupam Gupta for helpful discussions about online matching and metric
embedding techniques.

10



References

[1] Yair Bartal. On approximating arbitrary metrics by treemetrics. InACM Symposium on Theory of
Computing, pages 161–168, 1998.

[2] Moses Charikar, Chandra Chekuri, Ashish Goel, Sudipto Guha, and Serge Plotkin. Approximating a
finite metric by a small number of tree metrics. InSymposium on Foundations of Computer Science,
page 379, 1998.

[3] Béla Csaba and András Pluhar. A randomized algorithm for the on-line weighted bipartite matching
problem. Submitted for publication.

[4] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbitrary metrics
by tree metrics. InACM Symposium on Theory of Computing, pages 448–455, 2003.

[5] Anupam Gupta, Mohammad T. Hajiaghayi, and Harald Räcke. Oblivious network design. InACM-
SIAM Symposium on Discrete algorithm, pages 970–979, 2006.

[6] Bala Kalyanasundaram and Kirk Pruhs. Online weighted matching.Journal of Algorithms, 14(3):478–
488, 1993.

[7] Bala Kalyanasundaram and Kirk Pruhs. On-line network optimization problems. InDevelopments from
a June 1996 seminar on Online algorithms, pages 268–280. Springer-Verlag, 1998.

[8] Bala Kalyanasundaram and Kirk R. Pruhs. The online transportationproblem.SIAM Journal of Discrete
Mathematics, 13(3):370–383, 2000.

[9] Jeff L. Kennington and Richard V. Helgason.Algorithms for Network Programming. John Wiley &
Sons, Inc., New York, NY, USA, 1980.

[10] Samir Khuller, Stephen G. Mitchell, and Vijay V. Vazirani. On-line algorithms for weighted bipartite
matching and stable marriages.Theoretical Computer Science, 127(2):255–267, 1994.

[11] Eugene Lawler.Combinatorial Optimization: Networks and Matroids. Holt, Rinehart & Winston, New
York, 1976.

[12] Adam Meyerson, Akash Nanavati, and Laura Poplawski. Randomized online algorithms for minimum
metric bipartite matching. InACM-SIAM Symposium on Discrete algorithms, pages 954–959, 2006.

11


	Connecticut College
	Digital Commons @ Connecticut College
	1-1-2008

	The Online Transportation Problem: On the Exponential Boost of One Extra Server
	Christine Chung
	Patchrawat Uthaisombut
	Kirk Pruhs
	Recommended Citation

	The Online Transportation Problem: On the Exponential Boost of One Extra Server
	Keywords
	Comments



