
ISOLATION AND COMPONENT STRUCTURE
IN SPACES OF COMPOSITION OPERATORS

CHRISTOPHER HAMMOND AND BARBARA D. MACCLUER

Abstract. We establish a condition that guarantees isolation in the space of
composition operators acting between Hp(BN ) and Hq(BN ), for 0 < p ≤ ∞,
0 < q < ∞, and N ≥ 1. This result will allow us, in certain cases where
0 < q < p ≤ ∞, completely to characterize the component structure of this
space of operators.

1. Preliminaries

For any natural number N , we write BN to denote the open unit ball in CN ,
with D serving as alternate notation for the disk B1. Throughout this paper, unless
otherwise stated, we take N to be an arbitrary positive integer. Having fixed a value
of N , we write σ to denote normalized Lebesgue measure on the unit sphere ∂BN .
For any 0 < p < ∞, the Hardy space Hp(BN ) is defined to be the set of all analytic
functions f : BN → C such that

‖f‖p :=
(

sup
0<r<1

∫

∂BN

|fr|p dσ

)1/p

< ∞,

where fr denotes the dilation fr(z) = f(rz). The space H∞(BN ) is simply the set
of bounded analytic functions on BN , with

‖f‖∞ := sup
w∈BN

|f(w)|.

Observe that Hp(BN ) is contained in Hq(BN ) whenever 0 < q ≤ p ≤ ∞, with
‖f‖q ≤ ‖f‖p for all f . If f belongs to any space Hp(BN ), then the radial limit

f∗(ζ) := lim
r↑1

f(rζ)

exists for σ–almost all ζ on ∂BN ; moreover

(1.1) ‖f‖p =
(∫

∂BN

|f∗|p dσ

)1/p

for all finite values of p (see Section 5.6 of [12]).
The Hardy space Hp(BN ), under the norm ‖ · ‖p, is a Hilbert space when p = 2

and a Banach space whenever 1 ≤ p ≤ ∞. For 0 < p < 1, the “p–norm” is not
actually a true norm, since the triangle inequality does not hold. It can be shown,
however, that the distance function

d(f, g) := ‖f − g‖p
p
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defines a complete, translation-invariant metric on Hp(BN ) for 0 < p < 1. In other
words, while they are not Banach spaces, the corresponding Hp(BN ) are examples
of a particular type of topological vector space known as an F–space. As such,
many familiar results from the theory of Banach spaces still hold in this context,
in particular the principle of uniform boundedness and the closed graph theorem;
the Hahn–Banach theorem, however, is no longer valid, since the spaces in question
are not locally convex (see Section 2.3 of [10]). Nevertheless, there are still enough
bounded linear functionals on each Hp(BN ) to separate points in the space. For
any w in BN , the point-evaluation functional taking f to f(w) is bounded on every
space Hp(BN ); this fact is evident when p = ∞ and follows from Theorem 7.2.5 in
[12] for 0 < p < ∞.

It would be helpful at this point to make a brief comment about operator norms.
Even though, for 0 < p < 1, the standard metric on Hp(BN ) is expressed in terms
of ‖ · ‖p

p, we still define the norm of an operator with respect to ‖ · ‖p. In particular,
for any T taking Hp(BN ) into Hq(BN ), we set

‖T : Hp(BN ) → Hq(BN )‖ := sup
f∈Hp(BN )\{0}

‖T (f)‖q

‖f‖p

,

regardless of the values of p and q. (Often, for the sake of convenience, we simply
write ‖T‖ in place of ‖T : Hp(BN ) → Hq(BN )‖.)

Let ϕ be an analytic map from BN into BN . The composition operator Cϕ,
acting on a space Hp(BN ), is defined by the rule

Cϕ(f) = f ◦ ϕ.

We often describe such an operator as being induced by the map ϕ. If Cϕ takes
Hp(BN ) into some space Hq(BN ), then it follows from the closed graph theorem
that the operator Cϕ : Hp(BN ) → Hq(BN ) is bounded. One can easily see that
every composition operator takes H∞(BN ) into itself. Likewise, for 0 < p < ∞, the
Littlewood subordination theorem shows that any analytic ϕ : D→ D gives rise to
a bounded operator Cϕ : Hp(D) → Hp(D) (see Corollary 3.7 in [4]). Consequently,
whenever N = 1 or p = ∞, every analytic ϕ : BN → BN induces a bounded
composition operator from Hp(BN ) into Hq(BN ) for all q ≤ p. The situation is
more complicated, though, when N ≥ 2; for instance, one can find examples of
ϕ : BN → BN such that Cϕ does not take Hp(BN ) into Hq(BN ) for any finite
values of p and q. On the other hand, a necessary and sufficient condition is known
for Cϕ to take Hp(BN ) into itself (see Theorem 3.35 in [4]). While this condition
is difficult to check in practice, it does show that any self-map of BN induces a
bounded composition operator from Hp(BN ) into Hp(BN ) for some 0 < p < ∞ if
and only if it induces a bounded operator for all such p.

Since the late 1960’s, the study of composition operators has developed into an
active area of research; Cowen and MacCluer’s book [4] provides a compendium
of much of the work that has been done. One topic of continuing interest is the
component structure of various spaces of composition operators. For example, let
C(Hp(BN ),Hq(BN )

)
denote the set of composition operators taking Hp(BN ) into

Hq(BN ), endowed with the topology induced by the operator norm; we generally
write C(Hp(BN )

)
to denote the space C(Hp(BN ), Hp(BN )

)
. One of the most

natural problems to consider is the question of when a particular operator is isolated
in some space C(Hp(BN ), Hq(BN )

)
. Many (but by no means all) of the results

along these lines are stated in terms of the extreme set of ϕ, that is, the set of
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all ζ on ∂BN such that ϕ∗(ζ) := limr↑1 ϕ(rζ) has norm 1. The general principle
underlying these results is that Cϕ is isolated in the appropriate space of operators
whenever the extreme set of ϕ has positive σ–measure. The prototypical isolation
theorem, due to Berkson [1], pertains to the spaces C(Hp(D)

)
for 1 ≤ p < ∞. He

demonstrated that, for any pair of distinct analytic maps ϕ : D→ D and ψ : D→ D,
the corresponding composition operators have the property that

‖(Cϕ − Cψ) : Hp(D) → Hp(D)‖ ≥ [σ(E)/2]1/p ,

where E denotes the extreme set of ϕ. (Thus Cϕ is indeed isolated in C(Hp(D)
)

whenever σ(E) > 0.) Shapiro and Sundberg [14] later improved this result some-
what for operators in C(H2(D)

)
; they showed that

‖(Cϕ − Cψ) : H2(D) → H2(D)‖ ≥ [σ(E) + σ(F )]1/2 ,

where E denotes the extreme set of ϕ and F the extreme set of ψ. Shapiro and
Sundberg’s result, in turn, was extended by Heidler [7] to the spaces C(H2(BN )

)
for N ≥ 2.

It would be reasonable to expect a similar result to hold in a more general
setting (see Conjecture 12 in [5]). Unfortunately, the arguments used to prove the
aforementioned theorems are not particularly helpful in this regard. Berkson’s [1]
proof is quite specific to the case where Cϕ takes Hp(D) into itself; the techniques
employed by Shapiro and Sundberg [14] and Heidler [7] are heavily dependent on the
Hilbert space structure of H2(BN ). The primary goal of this paper is to establish
an isolation theorem, stated in terms of the extreme set of ϕ : BN → BN , which is
valid in C(Hp(BN ),Hq(BN )

)
for any integer N ≥ 1 and any values 0 < p ≤ ∞ and

0 < q < ∞ (Theorem 4.4 and Corollary 4.5). As it turns out, this result will allow
us, in certain cases where 0 < q < p ≤ ∞, completely to characterize the component
structure of the corresponding space of composition operators (Theorem 5.3 and
Corollary 5.4).

We conclude this section with a remark about radial limit functions. As a con-
sequence of line (1.1), our alternate representation for ‖ · ‖p, we shall often have
cause to consider the radial limit (f ◦ ϕ)∗, where f belongs to some Hp(BN ) and ϕ
is an analytic self-map of BN . In particular, we would like to relate (f ◦ ϕ)∗ to the
composition f∗ ◦ϕ∗. If N = 1, then these two functions agree σ–almost everywhere
on ∂BN (see Proposition 2.25 in [4]); the same is true whenever the operator Cϕ

takes Hp(BN ) into itself for some (and hence all) 0 < p < ∞ (see Lemma 1.6
in [9]). Nonetheless, when N ≥ 2, there are still examples of f in Hp(BN ) and
ϕ : BN → BN such that (f ◦ ϕ)∗ 6= f∗ ◦ ϕ∗ on a set of positive σ–measure. We
will generally manage to circumvent this difficulty, though, by taking f to be an
element of the ball algebra A(BN ), that is, the set of all analytic functions on BN

which are also continuous on the closed ball BN .

2. Essential Norms

Our own isolation theorem, although similar in spirit to Berkson’s [1] result, will
be stated in somewhat stronger terms. While Berkson considered ‖Cϕ − Cψ‖, we
shall concern ourselves with ‖Cϕ − Cψ‖e, where ‖ · ‖e denotes the essential norm
of an operator. For any T : Hp(BN ) → Hq(BN ), recall that

‖T : Hp(BN ) → Hq(BN )‖e := inf
K∈K

‖(T −K) : Hp(BN ) → Hq(BN )‖,
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where K = K(
Hp(BN ),Hq(BN )

)
signifies the set of compact operators acting from

Hp(BN ) into Hq(BN ). There is ample justification for working with the essential
norm when considering questions of isolation. First of all, since the norm of an
operator is never less than its essential norm, an isolation theorem stated in terms of
the essential norm implies a similar result in terms of the operator norm. Secondly,
‖T‖e = 0 if and only if T is compact, so our isolation theorem will give us a necessary
condition for the operators Cϕ and Cψ to have compact difference. Finally, just
as the operator norm induces the standard topology on C(Hp(BN ),Hq(BN )

)
, the

essential norm gives rise to the topology on the quotient space

Q(
Hp(BN ),Hq(BN )

)
:= C(Hp(BN ),Hq(BN )

)
/K(

Hp(BN ),Hq(BN )
)
.

Hence our theorem will actually provide us with information about when the equiv-
alence class containing a particular Cϕ is isolated in Q(

Hp(BN ),Hq(BN )
)
.

The next two results will serve as our principal tools for estimating the essential
norm of an operator.
Proposition 2.1. Take p and q to be finite indices. Let T be a bounded operator
from Hp(BN ) into Hq(BN ); then

‖T : Hp(BN ) → Hq(BN )‖e ≥ lim sup
n→∞

‖T (gn)‖q ,

where g is any nonconstant element of H∞(BN ) with ‖g‖∞ ≤ 1.

Proof. Observe that ‖gn‖p ≤ 1 for all n, for every 0 < p < ∞, and that the sequence
{gn} converges pointwise to 0 in BN . We claim that this sequence converges weakly
to 0 in every space Hp(BN ). For 1 < p < ∞, since the corresponding Hp(BN ) is
a reflexive Banach space, this fact follows from Corollary 1.3 in [4]. Now consider
0 < p ≤ 1. Take λ to be a bounded functional on Hp(BN ) and let ι denote
the inclusion map from H2(BN ) into Hp(BN ). Observe that λ ◦ ι is a bounded
functional on H2(BN ); since {gn} converges weakly to 0 in H2(BN ), the sequence
{λ(ι(gn))} = {λ(gn)} goes to 0. In other words, {gn} converges to 0 weakly in
Hp(BN ).

Let K : Hp(BN ) → Hq(BN ) be a compact operator. Since the functions gn have
norm no greater than 1 in Hp(BN ), we see that

‖T −K‖ ≥ lim sup
n→∞

‖(T −K)(gn)‖q ≥ lim sup
n→∞

(
‖T (gn)‖q − ‖K(gn)‖q

)

for 1 ≤ q < ∞. Similarly, for 0 < q < 1, we have that

‖T −K‖q ≥ lim sup
n→∞

‖(T −K)(gn)‖q
q ≥ lim sup

n→∞

(
‖T (gn)‖q

q − ‖K(gn)‖q
q

)
.

We claim that the compact operator K takes the sequence {gn} to 0 in the norm
of Hq(BN ). If Hp(BN ) and Hq(BN ) both happen to be Banach spaces, then this
fact follows from a standard result in functional analysis (see Proposition VI.3.3
in [3]), whose proof can be readily adapted to suit general values of p and q. To
that end, observe that the functions gn belong to the unit ball of Hp(BN ); hence
the set {K(gn)} has compact closure in Hq(BN ). Let {gnk} be any subsequence
of {gn} such that {K(gnk)} converges in the norm of Hq(BN ), to an element we
shall call h. Let λ be a bounded functional on Hq(BN ); since λ ◦K is a bounded
functional on Hp(BN ), the sequence {K(gnk)} converges weakly to 0 in Hq(BN ).
Consequently, since every point-evaluation functional is bounded on Hq(BN ), the
function h must be identically 0 on BN . In other words, the vector 0 is the unique
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limit point of {K(gn)}, from which we deduce that limn→∞ ‖K(gn)‖q = 0. Thus,
regardless of the values of p and q, we conclude that

‖T −K‖ ≥ lim sup
n→∞

‖T (gn)‖q .

Taking the infimum over the set of compact operators, we obtain the desired result.
¤

Unfortunately, the preceding proposition cannot be extended to include the case
where p = ∞; the sequence {gn} does not, in general, converge weakly to 0 in
H∞(BN ). We do, however, have the following result, inspired by the proof of
Theorem 3 in [6].
Proposition 2.2. Take q to be a finite index. Let T be a finite linear combination
of composition operators; then

‖T : H∞(BN ) → Hq(BN )‖e ≥
1
2

lim sup
n→∞

‖T (gn)‖q ,

where g is any nonconstant element of H∞(BN ) with ‖g‖∞ ≤ 1.

Proof. Write T =
∑J

j=1 αj Cϕj and take K to be a compact operator from Hp(BN )
into Hq(BN ). Let {gnk} be a subsequence of {gn} such that

lim
k→∞

‖T (gnk)‖q = lim sup
n→∞

‖T (gn)‖q .

Since the functions gnk belong to the unit ball of H∞(BN ), there exists a sub-
subsequence (which, to avoid notational difficulty, we also write {gnk}) such that
{K(gnk)} converges in the norm of Hq(BN ). Hence, for any ε > 0, there is a nat-
ural number M such that ‖K(gnk)−K(gnm)‖q < ε whenever k and m are greater
than or equal to M . Fix an integer k ≥ M . Consider the function T (gnk); by
Theorem 5.6.6 in [12], there is some number 0 < r < 1 for which the dilation
(T (gnk))r(z) = (T (gnk))(rz) has the property that

‖T (gnk)− (T (gnk))r‖q
< ε.

At this point, we temporarily restrict our attention to the case where 1 ≤ q < ∞.
Since ‖(gnk − gnm)/2‖∞ ≤ 1, we see that

‖T −K‖ ≥ ‖(T −K)((gnk − gnm)/2)‖q

≥ (1/2) ‖T (gnk)− T (gnm)‖q − (1/2) ‖K(gnk)−K(gnm)‖q

> (1/2) ‖T (gnk)− T (gnm)‖q − ε/2

≥ (1/2) ‖(T (gnk))r − (T (gnm))r‖q
− ε/2

> (1/2)
(
‖T (gnk)‖q − ‖(T (gnm))r‖q

)
− ε

whenever m ≥ M . Observe that

(T (gnm))r(z) =
J∑

j=1

αj (g(ϕj(rz)))nm

converges to 0 uniformly on BN as m tends to ∞. Consequently

‖T −K‖ ≥ (1/2) ‖T (gnk)‖q − ε
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for all k ≥ M ; it follows that

‖T −K‖ ≥ (1/2) lim
k→∞

‖T (gnk)‖q − ε = (1/2) lim sup
n→∞

‖T (gn)‖q − ε,

a fact which holds for all ε > 0. Likewise, when we consider 0 < q < 1, an analogous
sequence of estimates shows that

‖T −K‖q ≥ (1/2)q lim sup
n→∞

‖T (gn)‖q
q − (1/2)q−1

εq.

In either case, letting ε go to 0 and taking the infimum over K(
Hp(BN ),Hq(BN )

)
,

we see that our assertion holds. ¤

3. Approximate Inner Functions

In [13], Rudin demonstrates that the existence of a particularly helpful class of
functions. Given a positive measure µ on ∂BN and a number δ > 0, we write Yδ(µ)
to denote the set of all nonconstant functions g in A(BN ) such that

(i) |g(ζ)| ≤ 1 for all ζ on ∂BN , and
(ii) µ({|g(ζ)| = 1}) ≥ µ(∂BN )− δ.

For any µ and any δ, the set Yδ(µ) is nonempty. Moreover, if µ is a positive Borel
measure on ∂BN , every set Yδ(µ) is dense in the unit ball of H∞(BN ) relative
to the compact-open topology (that is, the topology where convergence is given
by uniform convergence on compact subsets of BN ). In light of these defining
characteristics, it seems reasonable to describe the elements of a particular set Yδ(µ)
as being approximate inner functions. The obvious advantage of these functions
over the standard inner functions of BN is that they belong to the ball algebra
A(BN ), rather than just H∞(BN ). In particular, for any such g and any analytic
ϕ : BN → BN , we have that (g ◦ ϕ)∗(ζ) = g(ϕ∗(ζ)) for σ–almost all ζ on ∂BN .

We shall make repeated use of approximate inner functions defined with respect
to one particular measure. Let ϕ : BN → BN be an analytic map with extreme set
E; consider the restriction ϕ∗ : E → ∂BN . The pullback measure σϕ∗−1 on ∂BN

is defined by setting σϕ∗−1(A) = σ
(
ϕ∗−1(A)

)
for any σ–measurable subset A of

∂BN . It is a well-known fact from measure theory that
∫

E

f ◦ ϕ∗ dσ =
∫

∂BN

f d
(
σϕ∗−1

)

for all f in L1(σ). Observe that σϕ∗−1(∂BN ) = σ(E); in particular, σϕ∗−1 is a
positive measure on ∂BN if and only if σ(E) > 0.

The first result that we obtain with the aid of approximate inner functions relates
to the essential norm of a composition operator acting between Hardy spaces.
Proposition 3.1. Let ϕ be an analytic self-map of BN that induces a bounded
composition operator from Hp(BN ) into Hq(BN ), where p and q are finite indices;
then

‖Cϕ : Hp(BN ) → Hq(BN )‖e ≥ [σ(E)]1/q ,

where E denotes the extreme set of ϕ. Similarly,

‖Cϕ : H∞(BN ) → Hq(BN )‖e ≥
1
2

[σ(E)]1/q

for any 0 < q < ∞.
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Proof. If σ(E) = 0, then there is nothing to prove. Suppose then that σ(E) > 0;
that is, σϕ∗−1 is a positive measure on ∂BN , with σϕ∗−1(∂BN ) = σ(E). Fix a
δ > 0 and take g to be an element of Yδ

(
σϕ∗−1

)
. Let V = {ζ ∈ ∂BN : |g(ζ)| = 1},

so that σϕ∗−1(V ) ≥ σ(E)− δ. For any natural number n, we see that

‖Cϕ(gn)‖q
q =

∫

∂BN

∣∣(gn ◦ ϕ)∗
∣∣q dσ ≥

∫

E

|g|nq ◦ ϕ∗ dσ

=
∫

∂BN

|g|nq
d
(
σϕ∗−1

) ≥
∫

V

d
(
σϕ∗−1

)

= σϕ∗−1(V ) ≥ σ(E)− δ.

We arrive at the desired conclusions by applying Proposition 2.1 (for 0 < p < ∞)
and Proposition 2.2 (for p = ∞), then letting δ tend to 0. ¤

Remark. The p = ∞ statement in Proposition 3.1 constitutes a slight improvement
to Theorem 3 in [6], in that we have eliminated the hypothesis that Cϕ be bounded
from Hp(BN ) to Hp(BN ) for some (and hence all) 0 < p < ∞. In fact, with a bit
more work, we can obtain an even better result in the case where p = ∞ and q = 2.
If we modify the argument used to establish the lower estimate for Theorem 1 in
[6], replacing the inner function g with the appropriate approximate inner function,
we see that ∥∥Cϕ : H∞(BN ) → H2(BN )

∥∥
e
≥ [σ(E)]1/2 .

As is the case for Proposition 3.1, this last result requires no additional assumptions
regarding the boundedness of Cϕ.

4. Isolation of Composition Operators

The estimates required to obtain our isolation theorem demand a certain degree
of meticulousness. The following lemma is necessary to our argument.
Lemma 4.1. Let ϕ and ψ be analytic self-maps of BN . Let g be an element
of H∞(BN ) with ‖g‖∞ ≤ 1. Suppose that there is some point w in BN such that
g(ϕ(w)) 6= g(ψ(w)); then, for any δ > 0, there is a subset Tδ of ∂BN and a constant
Mδ > 0 such that σ(Tδ) ≥ 1− δ and

∣∣1− (g ◦ ϕ)∗(ζ) (g ◦ ψ)∗(ζ)
∣∣ ≥ Mδ for all ζ in

Tδ.

Proof. For any M > 0, define the set

SM =
{

ζ ∈ ∂BN :
∣∣1− (g ◦ ϕ)∗(ζ) (g ◦ ψ)∗(ζ)

∣∣ < M
}

.

Since SM1 ⊆ SM2 whenever M1 < M2, a basic result from measure theory shows
that

lim
M↓0

σ(SM ) = σ

( ⋂

M>0

SM

)

= σ
({

ζ ∈ ∂BN : (g ◦ ϕ)∗(ζ) (g ◦ ψ)∗(ζ) = 1
})

.(4.1)

The functions g ◦ ϕ and g ◦ ψ both belong to H∞(BN ), with ‖g ◦ ϕ‖∞ ≤ 1 and
‖g ◦ ψ‖∞ ≤ 1; if (g ◦ ϕ)∗(ζ) (g ◦ ψ)∗(ζ) = 1, then (g ◦ ϕ)∗(ζ) and (g ◦ ψ)∗(ζ) must
both have modulus 1, which means that (g ◦ ϕ)∗(ζ) = (g ◦ ψ)∗(ζ). Since g ◦ ϕ and
g ◦ ψ are not identically equal on BN , Theorem 5.6.4 in [12] dictates that (g ◦ ϕ)∗

and (g ◦ ψ)∗ cannot agree on a subset of ∂BN that has positive σ–measure; in other
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words, the quantities in (4.1) must all equal 0. Thus, for any δ > 0, there is some
number Mδ such that σ

(
SMδ

)
< δ. Define the set Tδ = ∂BN \ SMδ

. Observe that
σ(Tδ) ≥ 1− δ and that

∣∣1− (g ◦ ϕ)∗(ζ) (g ◦ ψ)∗(ζ)
∣∣ ≥ Mδ for all ζ in Tδ. ¤

At this point we establish our most important norm estimate.
Proposition 4.2. Let ϕ and ψ be distinct analytic self-maps of BN . For any ε > 0,
there is a nonconstant unit vector g in H∞(BN ) such that

lim sup
n→∞

‖Cϕ(gn)− Cψ(gn)‖22 ≥ σ(E)− ε,

where E denotes the extreme set of ϕ.

Proof. We only need to deal with the situation where σ(E) > 0. Set δ = ε/2. Since
ϕ and ψ are distinct maps, there must be a point w in BN with ϕ(w) 6= ψ(w);
because Yδ

(
σϕ∗−1

)
is dense in H∞(BN ), we can find some g in Yδ

(
σϕ∗−1

)
with

g(ϕ(w)) 6= g(ψ(w)). As it turns out, this function will serve our purposes. Let
V = {ζ ∈ ∂BN : |g(ζ)| = 1}, so that σϕ∗−1(V ) ≥ σ(E)− δ.

Consider the set Tδ, as defined in Lemma 4.1. Note that∫

Tδ

∣∣(Cϕ(gn)− Cψ(gn))∗
∣∣2 dσ =

∫

Tδ

∣∣(gn ◦ ϕ)∗ − (gn ◦ ψ)∗
∣∣2 dσ

=
∫

Tδ

∣∣(gn ◦ ϕ)∗
∣∣2 dσ − 2Re

∫

Tδ

(gn ◦ ϕ)∗ (gn ◦ ψ)∗ dσ +
∫

Tδ

∣∣(gn ◦ ψ)∗
∣∣2 dσ

≥
∫

Tδ

∣∣(gn ◦ ϕ)∗
∣∣2 dσ − 2Re

∫

Tδ

(gn ◦ ϕ)∗ (gn ◦ ψ)∗ dσ(4.2)

for any natural number n. We begin by estimating the first term in (4.2). Define
the measure σδ on ∂BN by setting σδ(A) = σ(A ∩ Tδ); observe that

∫

Tδ

∣∣(gn ◦ ϕ)∗
∣∣2 dσ =

∫

∂BN

∣∣(gn ◦ ϕ)∗
∣∣2 dσδ

≥
∫

E

|g|2n ◦ ϕ∗ dσδ =
∫

∂BN

|g|2n
d
(
σδϕ

∗−1
)

≥
∫

V

d
(
σδϕ

∗−1
)

= σ
(
ϕ∗−1(V ) ∩ Tδ

)

≥ σϕ∗−1(V )− δ ≥ σ(E)− 2δ.

Now we turn our attention to the terms

In := 2Re
∫

Tδ

(gn ◦ ϕ)∗ (gn ◦ ψ)∗ dσ.

There are two situations to consider. Suppose, first of all, that infinitely many of
the In are negative. In this case, we can find an increasing sequence of natural
numbers nk such that each term Ink

is negative; in particular,

lim sup
n→∞

∫

Tδ

∣∣(Cϕ(gn)− Cψ(gn))∗
∣∣2 dσ

≥ lim sup
k→∞

[∫

Tδ

∣∣(gnk ◦ ϕ)∗
∣∣2 dσ − Ink

]

≥ lim sup
k→∞

∫

Tδ

∣∣(gnk ◦ ϕ)∗
∣∣2 dσ ≥ σ(E)− 2δ.
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Now suppose that there are only finitely many negative In; in other words, there
is a natural number M such that In ≥ 0 for all n ≥ M . In this case, we shall
show that the In are summable, and hence converge to 0. For any integer K ≥ M ,
consider the partial sum

K∑

n=M

In =
K∑

n=M

2Re
∫

Tδ

[
(g ◦ ϕ)∗ (g ◦ ψ)∗

]n

dσ.

Since (g ◦ ϕ)∗ (g ◦ ψ)∗ 6= 1 on Tδ, we see that
K∑

n=M

2Re
∫

Tδ

[
(g ◦ ϕ)∗ (g ◦ ψ)∗

]n

dσ

= 2 Re
∫

Tδ

(
K∑

n=M

[
(g ◦ ϕ)∗ (g ◦ ψ)∗

]n
)

dσ

= 2 Re
∫

Tδ




[
(g ◦ ϕ)∗ (g ◦ ψ)∗

]M

−
[
(g ◦ ϕ)∗ (g ◦ ψ)∗

]K+1

1− (g ◦ ϕ)∗ (g ◦ ψ)∗


 dσ

≤ 2
∫

Tδ

2∣∣1− (g ◦ ϕ)∗ (g ◦ ψ)∗
∣∣ dσ,

which, in view of Lemma 4.1, is bounded by 4/Mδ. Thus the partial sums converge
to a finite value, which means that the In tend to 0. Therefore

lim sup
n→∞

∫

Tδ

∣∣(Cϕ(gn)− Cψ(gn))∗
∣∣2 dσ

≥ lim sup
n→∞

[∫

Tδ

∣∣(gn ◦ ϕ)∗
∣∣2 dσ − In

]

= lim sup
n→∞

∫

Tδ

∣∣(gn ◦ ϕ)∗
∣∣2 dσ ≥ σ(E)− 2δ.

In other words, no matter which situation occurs, we have that

lim sup
n→∞

‖Cϕ(gn)− Cψ(gn)‖22 = lim sup
n→∞

∫

∂BN

∣∣(Cϕ(gn)− Cψ(gn))∗
∣∣2 dσ

≥ lim sup
n→∞

∫

Tδ

∣∣(Cϕ(gn)− Cψ(gn))∗
∣∣2 dσ

≥ σ(E)− 2δ = σ(E)− ε,

as we had hoped to show. ¤
The next result serves as a generalization of Proposition 4.2.

Proposition 4.3. Take q to be a finite index. Let ϕ and ψ be distinct analytic
self-maps of BN . Suppose that σ(E) > 0, where E denotes the extreme set of ϕ;
then, for any ε with 0 < ε < σ(E), there is a nonconstant unit vector g in H∞(BN )
such that

lim sup
n→∞

‖Cϕ(gn)− Cψ(gn)‖q
q ≥ b(q) [σ(E)− ε]c(q) ,

where

b(q) =
{

1/2, q < 2
1, q ≥ 2
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and

c(q) =
{

1, q ≤ 2
q/2, q > 2 .

Proof. Consider the function g given by Proposition 4.2. For 2 ≤ q < ∞, our
assertion follows from the fact that

‖Cϕ(gn)− Cψ(gn)‖2 ≤ ‖Cϕ(gn)− Cψ(gn)‖q

for any natural number n. Now take 0 < q < 2. For any 2 < s < ∞, Hölder’s
inequality shows that∫

∂BN

∣∣(Cϕ(gn)− Cψ(gn))∗
∣∣2 dσ

≤
(∫

∂BN

∣∣(Cϕ(gn)− Cψ(gn))∗
∣∣q dσ

)θ (∫

∂BN

∣∣(Cϕ(gn)− Cψ(gn))∗
∣∣s dσ

)1−θ

,

where θ = (s− 2)/(s− q). Let us consider q to be fixed and s to be variable. Since∣∣(Cϕ(gn)− Cψ(gn))∗
∣∣ ≤ 2, we see that

∫

∂BN

∣∣(Cϕ(gn)− Cψ(gn))∗
∣∣2 dσ ≤ 2s(1−θ)

(∫

∂BN

∣∣(Cϕ(gn)− Cψ(gn))∗
∣∣q dσ

)θ

.

As s goes to infinity, the quantities θ and s(1− θ) both tend to 1. Consequently∫

∂BN

∣∣(Cϕ(gn)− Cψ(gn))∗
∣∣2 dσ ≤ 2

∫

∂BN

∣∣(Cϕ(gn)− Cψ(gn))∗
∣∣q dσ

for any n; thus our claim again follows directly from Proposition 4.2. ¤
We are now in the position to obtain an isolation theorem for composition

operators acting between Hp(BN ) and Hq(BN ), akin to Berkson’s [1] result for
C(Hp(D)

)
.

Theorem 4.4. Take p and q to be finite indices. Let ϕ and ψ be distinct an-
alytic self-maps of BN that induce bounded composition operators from Hp(BN )
into Hq(BN ); then

‖(Cϕ − Cψ) : Hp(BN ) → Hq(BN )‖e ≥
(
b(q) [σ(E)]c(q)

)1/q

,

where E denotes the extreme set of ϕ, with b(q) and c(q) defined as in the statement
of Proposition 4.3. Similarly,

‖(Cϕ − Cψ) : H∞(BN ) → Hq(BN )‖e ≥
1
2

(
b(q) [σ(E)]c(q)

)1/q

for any 0 < q < ∞.

Proof. We need only consider the case where σ(E) > 0. In light of Proposition 4.3,
simply apply Proposition 2.1 (for 0 < p < ∞) and Proposition 2.2 (for p = ∞),
then let ε tend to 0. ¤

We could, of course, merely concern ourselves with norms rather than essential
norms. In this context, since each gn is a unit vector in H∞(BN ), we can modify
the statement for p = ∞ to say that

‖(Cϕ − Cψ) : H∞(BN ) → Hq(BN )‖ ≥
(
b(q) [σ(E)]c(q)

)1/q

for any 0 < q < ∞.
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The next three corollaries, which follow directly from Theorem 4.4, provide a
slightly less quantitative interpretation of the results in this section.
Corollary 4.5. Take 0 < p ≤ ∞ and 0 < q < ∞. Let ϕ be an analytic self-map
of BN that induces a bounded composition operator from Hp(BN ) into Hq(BN ).
If the extreme set of ϕ has positive σ–measure, then Cϕ is an isolated element of
C(Hp(BN ),Hq(BN )

)
.

Corollary 4.6. Take 0 < p ≤ ∞ and 0 < q < ∞. Let ϕ and ψ be distinct
analytic self-maps of BN that induce bounded composition operators from Hp(BN )
into Hq(BN ). If the operator (Cϕ − Cψ) : Hp(BN ) → Hq(BN ) is compact, then
the extreme sets of ϕ and ψ must both have σ–measure 0.
Corollary 4.7. Take 0 < p ≤ ∞ and 0 < q < ∞. Let ϕ be an analytic self-map
of BN that induces a bounded composition operator from Hp(BN ) into Hq(BN ). If
the extreme set of ϕ has positive σ–measure, then the equivalence class containing
Cϕ is an isolated element of the quotient space Q(

Hp(BN ),Hq(BN )
)
.

Remark. Throughout this section, our numerical results have been given solely
in terms of E, the extreme set of ϕ; we have not attempted to make use of the
properties of ϕ and ψ simultaneously. In certain situations, however, we can obtain
an isolation theorem stated in terms of both σ(E) and σ(F ), where F denotes the
extreme set of ψ. Suppose, for example, that both ϕ and ψ are nondegenerate, in
the sense that neither ϕ∗ : E → ∂BN nor ψ∗ : F → ∂BN takes a set of positive
σ–measure to a set with σ–measure 0; equivalently, the measures σϕ∗−1 and σψ∗−1

are absolutely continuous with respect to σ. (This situation occurs, for instance,
whenever Cϕ and Cψ are bounded from Hp(BN ) to Hp(BN ) for 0 < p < ∞; thus
every ϕ : D→ D and ψ : D→ D satisfy this condition.) In this case, we can modify
Proposition 4.2, replacing g in Yδ

(
σϕ∗−1

)
with g in Yδ(σ) for an appropriate δ, to

see that
lim sup

n→∞
‖Cϕ(gn)− Cψ(gn)‖22 ≥ σ(E) + σ(F )− ε.

The remaining results in the section can then be altered accordingly. In particular,
we can obtain a generalization of the isolation theorems of Shapiro and Sundberg
[14] and Heidler [7].

5. Compactness and Component Structure

Proposition 3.1 provides us with a necessary condition for a bounded operator
Cϕ : Hp(BN ) → Hq(BN ) to be compact; namely, the extreme set of ϕ must
have σ–measure 0. This condition, though, is generally insufficient to guarantee
compactness. The situation when p = q, for example, is quite complicated. When
p > q, however, it is often the case that having an extreme set with σ–measure
0 actually does imply compactness. The following proposition combines several
previously known results along these lines.
Proposition 5.1. Take 0 < q < p ≤ ∞. Let ϕ be an analytic self-map of BN that
induces a bounded composition operator from Hp(BN ) into Hq(BN ). Suppose that
σ(E) = 0, where E denotes the extreme set of ϕ; then Cϕ : Hp(BN ) → Hq(BN ) is
compact as long as at least one of the following three conditions holds:

(i) N = 1,
(ii) p = ∞,

(iii) q = 1.
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Proof. Jarchow [8] and Goebeler [5] independently established this result when
N = 1. The p = ∞ case follows from Theorem 2 of Gorkin and MacCluer [6]. The
case where 1 = q < p < ∞ can be deduced from an argument similar to that used
to prove Theorem 1 in [5]. ¤

Remark. Gorkin and MacCluer, working in the setting where N ≥ 1, obtained a re-
lated result that holds for finite values of p (see Corollary 2 in [6]). Their argument,
however, requires a moderately stronger assumption regarding the boundedness of
Cϕ. In particular, taking 1 < q < p < ∞, one can modify their proof to show that
Cϕ : Hp(BN ) → Hq(BN ) is compact as long as both σ(E) = 0 and Cϕ is bounded
from Hp to Hq+ε for some ε > 0.

The compact composition operators play an important part in our analysis of the
component structure of C(Hp(BN ),Hq(BN )

)
. The next proposition is an extension

of a well-known result, originally stated (as Proposition 2.2 in [14]) for the space
C(H2(D)

)
.

Proposition 5.2. Take 0 < p ≤ ∞ and 0 < q < ∞. The compact composition
operators form a path-connected set in C(Hp(BN ),Hq(BN )

)
.

Proof. We appeal to the standard argument used to establish this type of result, as
it appears in the proof of Proposition 9.9 in [4], making the necessary adjustments
to suit our situation. Only one detail warrants specific attention. Let I denote the
identity map on BN and take 0 ≤ t < 1. Observe that

‖CtI(f)‖q
q = sup

0<r<1

∫

∂BN

|f(r(tζ))|q dσ(ζ) ≤ sup
0<r<1

∫

∂BN

|f(rζ)|q dσ(ζ) = ‖f‖q
q

for all f in Hq(BN ). Hence the operator CtI is a contraction on Hq(BN ); moreover,
if Cϕ is compact from Hp(BN ) to Hq(BN ), so too is the operator Cϕt = CtICϕ. ¤

In general, it is unknown whether a noncompact composition operator can belong
to the component (or path component) of C(Hp(BN ),Hq(BN )

)
which contains

the compact operators. Furthermore, it is often difficult to determine when two
particular noncompact operators belong to a common component. These questions
cease to be problematic, however, if we restrict our attention to the cases described
in the statement of Proposition 5.1.
Theorem 5.3. Take 0 < q < p ≤ ∞ and suppose that either N = 1, p = ∞,
or q = 1. Let ϕ and ψ be distinct analytic self-maps of BN that induce bounded
composition operators from Hp(BN ) into Hq(BN ); then the following six conditions
are equivalent:

(1) Both ϕ and ψ have extreme sets with σ–measure 0.
(2) Both of the operators Cϕ : Hp(BN ) → Hq(BN ) and

Cψ : Hp(BN ) → Hq(BN ) are compact.
(3) The operators Cϕ and Cψ belong to the same path component of

C(Hp(BN ),Hq(BN )
)
.

(4) The operators Cϕ and Cψ belong to the same component of
C(Hp(BN ),Hq(BN )

)
.

(5) The operator (Cϕ − Cψ) : Hp(BN ) → Hq(BN ) is compact.
(6) The equivalence classes containing Cϕ and Cψ belong to the same

component of the quotient space Q(
Hp(BN ), Hq(BN )

)
.
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Proof. Propositions 3.1 and 5.1 show that conditions (1) and (2) are equivalent.
Proposition 5.2 dictates that (2) implies (3). Condition (3) always implies (4). If
(4) holds, then neither Cϕ nor Cψ can be isolated in C(Hp(BN ),Hq(BN )

)
; it follows

from Corollary 4.5 that (4) implies (1). Since any linear combination of compact
operators is also compact, condition (2) implies condition (5). If Cϕ−Cψ is compact,
then Cϕ and Cψ belong to the same equivalence class in Q(

Hp(BN ),Hq(BN )
)
, so

(5) automatically implies (6). Corollary 4.7 shows that (6) implies (1). ¤

Stated more succinctly, Theorem 5.3 provides a complete characterization of the
component structure of C(Hp(BN ),Hq(BN )

)
, and of the quotient space

Q(
Hp(BN ), Hq(BN )

)
, in the relevant cases:

Corollary 5.4. Take 0 < q < p ≤ ∞ and suppose that either N = 1, p = ∞, or q =
1. The set of compact operators forms a single component in C(Hp(BN ), Hq(BN )

)
;

every noncompact operator constitutes its own component.
Corollary 5.5. Take 0 < q < p ≤ ∞ and suppose that either N = 1, p = ∞, or
q = 1. The quotient space Q(

Hp(BN ),Hq(BN )
)

is totally disconnected.
Remark. While it is evident that the results of Theorem 5.3 do not hold for general
values of p and q, the question of when conditions (4) and (5) are equivalent has
been a point of interest for some time. Shapiro and Sundberg [14] originally stated
a “question/conjecture” along these lines for the space C(H2(D)

)
, suggesting that

the two conditions might indeed be equivalent in this context. As it turns out,
though, Bourdon [2] and Moorhouse and Toews [11] were able to produce examples
of ϕ : D → D and ψ : D → D such that (Cϕ − Cψ) : H2(D) → H2(D) is not com-
pact, yet the operators Cϕ and Cψ belong to the same component of C(H2(D)

)
.

The fact that the conditions are equivalent under the hypotheses of Theorem 5.3
bears witness to the much simpler component structure of the corresponding spaces
C(Hp(BN ),Hq(BN )

)
, which in turn can be attributed to the remarkably straight-

forward characterization of the compactness of Cϕ.
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