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1 Introduction

Let D = {z ∈ C : |z| < 1} and let dA denote normalized area measure on D.

The Dirichlet space D is the set of all analytic functions f on D for which

‖f‖2
D := |f(0)|2 +

∫

D
|f ′(z)|2 dA(z)

is finite. The Dirichlet space is a Hilbert space under the obvious inner product.

Moreover, D is a reproducing kernel Hilbert space; that is, for any point w

in D, there is a corresponding Kw in D such that 〈f, Kw〉D = f(w) for all

f in D. In the case of the Dirichlet space, these functions have the form

Kw(z) = 1 + log(1/(1− wz)). Note that

‖Kw‖2
D = 〈Kw, Kw〉D = Kw(w) = 1 + log

(
1/

(
1− |w|2

))
.

Given an analytic map ϕ : D→ D, we define the composition operator Cϕ on

D by the rule

Cϕ(f) = f ◦ ϕ.

It is certainly not obvious that every Cϕ should take D into itself, and there

are actually many examples for which it does not (see Proposition 3.12 in

[9]). Nevertheless, any univalent ϕ (or even any ϕ with bounded valence) is

guaranteed to induce a bounded composition operator on D. This paper is

only concerned with univalent ϕ, so the problem of unbounded composition

operators will not arise. There are, of course, many other Hilbert spaces on

which one can consider the action of a composition operator. We will make

reference to several results pertaining to the Hardy space H2 and the weighted

Bergman spaces A2
α. Cowen and MacCluer’s book [4] serves as a standard

reference for such topics.
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One of the major impediments to the study of (bounded) composition oper-

ators is the lack of a reasonable representation for the adjoint C∗
ϕ. It is well

known, and is easy to prove, that C∗
ϕ(Kw) = Kϕ(w) for any reproducing kernel

function Kw. Beyond this fact, not much is known about the adjoints of com-

position operators. Working on the Hardy space H2, Cowen [3] obtained an

explicit representation for C∗
ϕ in the case where ϕ is a linear fractional map;

his result was later extended to the weighted Bergman spaces A2
α by Hurst

[8]. Their arguments rely heavily on the particular form of the reproducing

kernel functions for those spaces, and hence cannot be adapted to the Dirichlet

space. Gallardo-Gutiérrez and Montes-Rodŕıguez [5], however, have recently

discovered a representation for C∗
ϕ : D → D when ϕ is linear fractional. Their

adjoint formula (which appears in Section 3 below) provides the foundation

for the results of this paper.

One of Cowen’s original applications for his adjoint formula was to determine

the norm of an operator Cϕ : H2 → H2 when ϕ has the form ϕ(z) = az + b.

Similarly, Hurst was able to calculate the norms of the analogous operators on

A2
α. (See also [12] and [13].) Now that we have an adjoint formula that is valid

for the Dirichlet space, it seems reasonable to consider the same problem in

this context. The actual result we obtain (Theorem 4.2) has a rather different

appearance from its counterparts in the Hardy and weighted Bergman spaces.

The question of actually calculating the norm of a composition operator is not

a trivial one. Aside from the aforementioned results of Cowen [3] and Hurst

[8], there are not many instances for which we know the exact value of the

norm. Even the case where ϕ is linear fractional has proved quite difficult.

Bourdon, Fry, Spofford, and the author [1] (and the author individually [6])

have considered this question in the context of the Hardy space. Gallardo-
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Gutiérrez and Montes-Rodŕıguez [5], as a consequence of their work with ad-

joints, were able to determine the norm of such an operator acting on the

subspace D0 = {f ∈ D : f(0) = 0}. As we stated in the last paragraph,

our goal here is much more modest: simply to obtain a representation for the

norm of Cϕ : D → D when ϕ has the form ϕ(z) = az + b. As it turns out,

the techniques we employ will be similar to those used to deal with the linear

fractional case on the Hardy space.

In spite of the difficulties associated with computing the norm exactly, it is

often possible to find sharp estimates for ‖Cϕ‖ in terms of the value |ϕ(0)|.
Such results are well known for operators acting on the Hardy and weighted

Bergman spaces (see Section 3.1 of [4]). Mart́ın and Vukotić [10] recently

obtained an upper bound for the norm of Cϕ : D → D when ϕ is univalent.

We will discuss this result, and its relationship to our norm representation, in

Section 5.

2 Preliminaries

Let T be a bounded operator on a Hilbert space H, with T ∗ denoting its

adjoint operator. Since the spectral radius of T ∗T equals ‖T ∗T‖ = ‖T‖2, it

seems reasonable to study the spectrum of T ∗T when trying to determine

‖T‖. This point of view has served as the basis for much of the recent work

relating to the norms of composition operators (e.g. [1] and [6]). Even the

results of Cowen [3] and Hurst [8], when viewed in a particular manner, can

be seen as statements pertaining to the spectrum of C∗
ϕCϕ (see Chapter 4 of

[7]). The following proposition, which can be proved with a straightforward

Hilbert space argument (see Proposition 1.2 in [7]), further emphasizes the

4



connection between ‖T‖ and the spectrum of T ∗T .

Proposition 2.1 Let h be an element of H; then ‖T (h)‖ = ‖T‖ ‖h‖ if and

only if (T ∗T )(h) = ‖T‖2 h.

Whenever there is a nonzero h such that ‖T (h)‖ = ‖T‖ ‖h‖, we say that the

operator T is norm-attaining. Proposition 2.1 tells us that an operator T has

this property if and only if ‖T‖2 is an eigenvalue for T ∗T . The next result,

whose proof appears in [6], provides further insight into this situation. Recall

that the essential norm ‖T‖e of an operator T : H → H is simply the norm

of its equivalence class in the Calkin algebra; that is,

‖T‖e := inf
K
‖T −K‖,

the infimum being taken over all compact operators K : H → H.

Proposition 2.2 If ‖T‖e < ‖T‖, then the operator T is norm-attaining.

The object of this section is to show that the composition operators we are cur-

rently studying have the property that ‖Cϕ‖e < ‖Cϕ‖, from which it will follow

that they are norm-attaining. We begin with the following (widely known) re-

sult.

Proposition 2.3 Let ϕ : D → D be an analytic map that induces a bounded

composition operator on D; then ‖Cϕ‖ ≥
√

1 + log
(
1/

(
1− |ϕ(0)|2

))
.

PROOF. Observe that the kernel function K0(z) = 1 is a unit vector and

that
∥∥∥C∗

ϕ(K0)
∥∥∥
2

D =
∥∥∥Kϕ(0)

∥∥∥
2

D = 1 + log
(
1/

(
1− |ϕ(0)|2

))
.

Our claim follows immediately, since ‖Cϕ‖ = ‖C∗
ϕ‖. 2
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Our next step is to obtain an estimate for the essential norm of Cϕ.

Proposition 2.4 Let ϕ : D→ D be a univalent map; then the essential norm

of the operator Cϕ : D → D is no greater than 1.

PROOF. Let P denote the orthogonal projection from D onto the subspace

D0; that is, (Pf)(z) = f(z) − f(0). Let Q = I − P , where I denotes the

identity map on D. Since Q is a compact operator, it follows that

‖Cϕ‖e = ‖PCϕ + QCϕ‖e = ‖PCϕ‖e ≤ ‖PCϕ‖.

It is not difficult to see that the operator PCϕ is a contraction on D. Because

ϕ is univalent, the standard change-of-variables formula simply reduces to

w = ϕ(z) and dA(w) = |ϕ′(z)|2 dA(z); therefore

‖(PCϕ)(f)‖2
D =

∫

D
|f ′(ϕ(z))|2 |ϕ′(z)|2 dA(z) =

∫

ϕ(D)
|f ′(w)|2 dA(w) ≤ ‖f‖2

D

for all f in D. Consequently ‖Cϕ‖e ≤ 1, as we had hoped to show. 2

Whenever ϕ : D→ D is a univalent map with ϕ(0) 6= 0, Propositions 2.3 and

2.4 combine to show us that ‖Cϕ‖e < ‖Cϕ‖. Therefore Proposition 2.2 dictates

that such an operator Cϕ : D → D is norm-attaining, a fact which will prove

useful in Section 4.

3 Operators with linear fractional symbol

Our immediate goal is to obtain a functional equation that relates an eigen-

value of C∗
ϕCϕ to the values of its eigenfunctions at particular points in the
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disk. We will perform our preliminary work in the more general setting where

ϕ is a linear fractional map. To that end, let

ϕ(z) =
az + b

cz + d
(1)

be a nonconstant linear fractional self-map of D. As in the case of the Hardy

and weighted Bergman spaces, the adjoint C∗
ϕ : D → D can be written in

terms of

σ(z) =
az − c

−bz + d
. (2)

The map σ takes D into itself whenever ϕ has the same property (see Lemma

9.1 in [4]). Gallardo-Gutiérrez and Montes-Rodŕıguez [5] showed that the ad-

joint C∗
ϕ on D can be written

(
C∗

ϕf
)

(z) = f(σ(z)) + f(0)Kϕ(0)(z)− f(σ(0))

for any f in D. Following the convention established in [1] and [6], we write τ

to denote the map

τ(z) = (ϕ ◦ σ)(z) =

(
|a|2 − |b|2

)
z + bd− ac

(
ac− bd

)
z + |d|2 − |c|2

. (3)

(Gallardo-Gutiérrez and Montes-Rodŕıguez use φ to signify the same map.) It

follows that the operator C∗
ϕCϕ : D → D can be written

(
C∗

ϕCϕf
)

(z) = f(τ(z)) + f(ϕ(0))Kϕ(0)(z)− f(τ(0))

for all z in D, for any f in D. In particular, if g is an eigenfunction for C∗
ϕCϕ

corresponding to an eigenvalue λ, then

λg(z) = g(τ(z)) + g(ϕ(0))Kϕ(0)(z)− g(τ(0)). (4)

We would like to exploit equation (4) to obtain information about the possible

values of λ, and hence about the norm of Cϕ. Our strategy is based largely on
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the methods developed in [1] and [6].

Throughout this paper, we write τj to denote the jth iterate of τ ; that is, τ0

is the identity map on D and τj+1 = τ ◦ τj. Our next result is analogous to

Proposition 5.1 in [6].

Proposition 3.1 Let g be an eigenfunction for C∗
ϕCϕ corresponding to an

eigenvalue λ. For any natural number n, the equation

λng(z) = g(τn(z)) +
n∑

j=1

λn−j[g(ϕ(0))Kϕ(0)(τj−1(z))− g(τ(0))]

holds for all z in D.

PROOF. This proposition follows from an elementary induction argument,

the base case and the induction step both coming as consequences of equa-

tion (4). 2

Since ‖Cϕ‖2 > 1 whenever ϕ(0) 6= 0, it seems fair to restrict our attention to

the eigenvalues of C∗
ϕCϕ which are larger than 1. For such values of λ, we are

able to obtain an “n = ∞” version of Proposition 3.1.

Proposition 3.2 Let g be an eigenfunction for C∗
ϕCϕ corresponding to an

eigenvalue λ > 1; then

g(z) =
∞∑

j=1

(
1

λ

)j

[g(ϕ(0))Kϕ(0)(τj−1(z))− g(τ(0))] (5)

for all z in D.

PROOF. Our result will follow directly from Proposition 3.1, if only we can
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show that

lim
n→∞

g(τn(z))

λn
= 0

for any z in D. There are several cases to consider. First of all, if ϕ happens to

be an automorphism, then one can easily see that σ = ϕ−1; hence τ is simply

the identity map on D, from which our claim follows. If the Denjoy–Wolff

point w0 of τ lies inside D, then the terms g(τn(z)) are converging pointwise

to g(w0), in which case our claim also holds. Suppose then that ϕ is not an

automorphism and that w0 lies on the unit circle ∂D. In this case, the map

τ must be of parabolic type; that is τ ′(w0) = 1. This fact can be deduced

directly from Lemma 5.1 in [2] (or rather the remark immediately following

its proof), or as a consequence of Theorem 4.1 in [5]. Hence we can appeal to

the argument used to prove Lemma 3.3 in [1] to see that, for every z in D,

there is a constant C such that (1− |τn(z)|)−1 ≤ Cn. Thus it follows that

|g(τn(z))| ≤ ‖g‖D
∥∥∥Kτn(z)

∥∥∥D
= ‖g‖D

√
1 + log

(
1/

(
1− |τn(z)|2

))

≤ ‖g‖D
√

1 + log(Cn),

from which we obtain the desired result. 2

Unfortunately, Proposition 3.2 (which is based on the proof of Theorem 3.5

in [1]) does not allow us readily to determine ‖Cϕ‖. The fact that expression

(5) involves both g(ϕ(0)) and g(τ(0)) prevents us from obtaining an equation

solely in terms of λ. The maps in which we are most interested, though, are

precisely those for which ϕ(0) = τ(0). In that case, as we shall see in the next

section, Proposition 3.2 will allow us to find a series representation for ‖Cϕ‖2.
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4 Operators with linear symbol

For the remainder of our discussion, we will restrict our attention to the setting

where ϕ has the form ϕ(z) = az+b, with a and b both nonzero and |a|+|b| ≤ 1.

(Note that b = 0 implies ‖Cϕ‖ = 1.) We can, of course, view ϕ as being a linear

fractional map, as in (1), with c = 0 and d = 1. Define the maps σ and τ as in

(2) and (3). In this case, we see that σ(0) = 0, which means that τ(0) = ϕ(0).

Hence Proposition 3.2 becomes a more manageable result; equation (5) can

be rewritten

g(z) = g(τ(0))
∞∑

j=1

(
1

λ

)j

[Kτ(0)(τj−1(z))− 1]

= g(τ(0))
∞∑

j=1

(
1

λ

)j

log
(
1/

(
1− bτj−1(z)

))
.

(6)

If g(τ(0)) = 0, then equation (6) would dictate that the function g(z) is iden-

tically 0. Thus any eigenfunction g must have the property that g(τ(0)) 6= 0.

Therefore, taking z = τ(0), we see that any eigenvalue λ of C∗
ϕCϕ (with λ > 1)

must satisfy the condition

1 =
∞∑

j=1

(
1

λ

)j

log

(
1

1− bτj(0)

)
. (7)

Our main result will be stated in terms of this equation.

At this point, we will briefly discuss the possible solutions to equation (7).

The following lemma will greatly simplify the situation.

Lemma 4.1 For any j ≥ 1, the point bτj(0) is a positive real number; more-

over, bτj(0) < bw0, where w0 denotes the Denjoy–Wolff point of τ .
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PROOF. In the case we are considering, the map τ has the form

τ(z) =

(
|a|2 − |b|2

)
z + b

−bz + 1
.

A simple calculation shows that

w0 =
1− |a|2 + |b|2 −

√(
1− |a|2 + |b|2

)2 − 4 |b|2

2b
.

The numerator of this expression is a real number greater than 2 |b|2, which

means that bw0 is a positive real number, and also that |w0| > |b|. Thus

our claim is equivalent to saying that every point τj(0) belongs to the set

S =
{
tb : 0 < t < bw0/ |b|2

}
, the line segment connecting the points 0 and w0.

Consider the image of S under the linear fractional map τ . The image must be

an open-ended line segment inside D. (The image cannot be an arc, since the

point τ−1(∞) = b/ |b|2 lies on the line containing S.) Since τ(w0) = w0, one

endpoint of the image segment must be w0; the other endpoint is τ(0) = b.

Since b itself belongs to S, we conclude that the image of S under τ must

actually be a subsegment of S. Thus, by induction, we see that each point

τj(0) does indeed lie on the segment S. 2

Consider the analytic function

F (z) =
∞∑

j=1

log

(
1

1− bτj(0)

)
zj. (8)

Lemma 4.1 guarantees that each of the coefficients log
(
1/

(
1 − bτj(0)

))
is a

positive real number. Therefore, since the points τj(0) converge to w0, we make

the following elementary observations:

• The power series that defines F (z) has radius of convergence 1.

• F (x) is a non-negative real number for all x in the interval [0, 1).
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• F (0) = 0 and the series F (1) diverges to infinity.

• F ′(x) > 0 for all x in the interval (0, 1).

Based on this information, we conclude that there is exactly one ξ in the

interval (0, 1) such that F (ξ) = 1. In other words, there is exactly one number

λ > 1 that satisfies equation (7).

Combining the results of the last three sections, we obtain the following char-

acterization of ‖Cϕ‖.

Theorem 4.2 Let ϕ(z) = az+b, where a and b are both nonzero and |a|+|b| ≤
1, and consider the operator Cϕ : D → D. Then λ = ‖Cϕ‖2 is the unique

positive real solution to the equation

1 =
∞∑

j=1

(
1

λ

)j

log

(
1

1− bτj(0)

)
,

where τj denotes the jth iterate of the map

τ(z) =

(
|a|2 − |b|2

)
z + b

−bz + 1
.

PROOF. The arguments set forth in Section 2 show that ‖Cϕ‖2 is an eigen-

value for C∗
ϕCϕ, with ‖Cϕ‖2 > 1. Hence λ = ‖Cϕ‖2 is a positive real solution

to equation (7). We have just observed that only one such solution exists. 2

Remark. In certain instances, our norm representation takes on a somewhat

more tractable form. In particular, consider the maps ϕ(z) = az + b with

0 < |b| < 1 and |a|+ |b| = 1. For such ϕ, an induction argument shows that

τj(z) =
(1− (j + 1) |b|) z + jb

−jbz + 1 + (j − 1) |b|
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for all j ≥ 1. Hence equation (7) can be rewritten

1 =
∞∑

j=1

(
1

λ

)j

log

(
1 + (j − 1) |b|

(1− |b|) (1 + j |b|)

)
. (9)

For example, take ϕ(z) = (1/2) z + 1/2; in this case, equation (9) simply

becomes

1 =
∞∑

j=1

(
1

λ

)j

log

(
2j + 2

j + 2

)
.

Using numerical methods, we see that ‖Cϕ‖ =
√

λ ≈ 1.195830076.

5 Operators with maximal norm

As we mentioned in the introduction, Mart́ın and Vukotić [10] recently ob-

tained an upper bound for the norm of Cϕ : D → D when ϕ is univalent; in

particular,

‖Cϕ‖ ≤

√√√√2 + L +
√

L(4 + L)

2
, (10)

where L = log
(
1/

(
1− |ϕ(0)|2

))
. Moreover, they showed that equality occurs

whenever ϕ is a full map, that is, the area of D \ ϕ(D) equals 0. Whenever

there is equality in (10) for some univalent ϕ, we say that the operator Cϕ

has maximal norm on D. In light of the work done by Joel Shapiro [11] on

the Hardy space, it seems reasonable to try to determine which composi-

tion operators possess this property. We have already noted that any uni-

valent full map induces a composition operator with maximal norm. It also

follows from the work of Mart́ın and Vukotić (in particular, Theorem 2 in [10])

that, whenever ϕ(0) 6= 0, the operator Cϕ cannot have maximal norm unless

‖ϕ‖∞ = sup{|ϕ(z)| : z ∈ D} = 1. We can actually use our own norm represen-

tation to contribute a small piece of information to this line of inquiry: namely

that no map of the form ϕ(z) = az + b, with b 6= 0, induces a composition
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operator with maximal norm on D. The substance of this assertion lies in the

following estimate. (The reader will notice a certain symmetry between this

result and Proposition 2.3.)

Proposition 5.1 Suppose that ϕ(z) = az + b, where a and b are both nonzero

and |a|+ |b| ≤ 1; then

‖Cϕ‖ ≤
√√√√1 + log

(
1

1− bw0

)
, (11)

where w0 denotes the Denjoy–Wolff point of τ .

PROOF. Consider the analytic function F (z), as defined in line (8). Bearing

in mind the result of Lemma 4.1, we see that

log

(
1

1− bτj(0)

)
≤ log

(
1

1− bw0

)

for all j ≥ 1. Hence, for any x in the interval [0, 1), it follows that

F (x) ≤
∞∑

j=1

log

(
1

1− bw0

)
xj =

x

1− x
log

(
1

1− bw0

)
. (12)

We have already noted that there is a unique ξ in (0, 1) such that F (ξ) = 1;

furthermore, we know that F ′(x) > 0 on (0, 1). Hence (12) shows that ξ is

greater than or equal to any x satisfying the equation

x

1− x
log

(
1

1− bw0

)
= 1.

In other words,

ξ ≥
(

1 + log

(
1

1− bw0

))−1

.

Our claim follows from Theorem 4.2, which dictates that ‖Cϕ‖ =
√

1/ξ. 2

In the case where |a|+ |b| < 1, Proposition 5.1 has an interesting geometrical

interpretation. Appealing to Lemma 4 in [12], we see that line (11) can be
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rewritten

‖Cϕ‖ ≤
√

1 + log
(

r

R

)
,

where R denotes the Euclidean radius of the disk ϕ(D) and r its pseudohy-

perbolic radius. When |a| + |b| = 1, on the other hand, our estimate simply

becomes

‖Cϕ‖ ≤
√√√√1 + log

(
1

1− |b|

)
.

This last statement will allow us to obtain our final result.

Theorem 5.2 Let ϕ(z) = az+b, where a and b are both nonzero and |a|+|b| ≤
1. The operator Cϕ : D → D does not have maximal norm.

PROOF. If |a|+|b| < 1, then ‖ϕ‖∞ < 1. As we have already mentioned, The-

orem 2 in [10] guarantees that no such map induces a composition operator

with maximal norm. Suppose then that |a| + |b| = 1. In view of Proposi-

tion 5.1, we simply need to show that, for any b = ϕ(0) 6= 0, the quantity
√

1 + log(1/(1− |b|)) is strictly less than the term on right-hand side of (10).

After some manipulation, this claim reduces to the easily verifiable inequality

log(1− |b|) + log(1 + |b|) < log(1− |b|) log(1 + |b|).

Therefore the upper bound stated in Proposition 5.1 is strictly less than the

bound obtained by Mart́ın and Vukotić [10]. In other words, none of the maps

we are considering induces a composition operator with maximal norm. 2
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