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COMPOSITION OPERATORS WITH MAXIMAL NORM
ON WEIGHTED BERGMAN SPACES

BRENT J. CARSWELL AND CHRISTOPHER HAMMOND

(Communicated by Joseph A. Ball)

Abstract. We prove that any composition operator with maximal norm on
one of the weighted Bergman spaces A2

α (in particular, on the space A2 = A2
0)

is induced by a disk automorphism or a map that fixes the origin. This result
demonstrates a major difference between the weighted Bergman spaces and the
Hardy space H2, where every inner function induces a composition operator
with maximal norm.

1. Introduction

Let D denote the open unit disk in the complex plane, with dA signifying nor-
malized area measure on D. Recall that the Hardy space H2 is the set of all analytic
functions f on D such that

‖f‖2
H2 := sup

0<r<1

1
2π

∫ 2π

0

∣∣f(
reiθ

)∣∣2 dθ < ∞.

For α > −1, the weighted Bergman space A2
α consists of all analytic f on D for

which

‖f‖2
α : =

∫
D

|f(z)|2 (α + 1)(1 − |z|2)αdA(z)

=
α + 1

π

∫ 1

0

r(1 − r2)α

(∫ 2π

0

∣∣f(
reiθ

)∣∣2 dθ

)
dr

is finite. The space A2
0, usually denoted A2, is called the (unweighted) Bergman

space. The Hardy space H2 and the weighted Bergman spaces A2
α are all Hilbert

spaces, each under the obvious inner product. The properties of these spaces are
discussed further in [5], [6], and [9].

Let ϕ be an analytic self-map of D. If H is a Hilbert space of analytic functions
on D, we define the composition operator Cϕ on H by the rule Cϕ(f) = f ◦ϕ. It is
well known that any ϕ induces a bounded composition operator on H2, with

(1)
1

1 − |ϕ(0)|2 ≤
∥∥Cϕ : H2 → H2

∥∥2 ≤ 1 + |ϕ(0)|
1 − |ϕ(0)| .
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(See [4, Corollary 3.7].) Likewise, every composition operator is bounded on each
of the weighted Bergman spaces A2

α, with

(2)
(

1
1 − |ϕ(0)|2

)α+2

≤
∥∥Cϕ : A2

α → A2
α

∥∥2 ≤
(

1 + |ϕ(0)|
1 − |ϕ(0)|

)α+2

.

(The proof of (2) is similar to that of (1); see, for example, [16, Lemma 2.3].) When
ϕ(0) = 0, it is easy to see that the norm of the corresponding composition operator,
acting on either the Hardy space or one of weighted Bergman spaces, is equal to 1.
When ϕ(0) �= 0, on the other hand, it is quite difficult to determine the norm of Cϕ

exactly. (See [1], [2], [7], [8], [10], and [13] for explicit norm calculations; related
results appear in [3], [15], [16], [17], [19], [22], and [23].)

One problem that has attracted significant attention is the question of which
composition operators have maximal norm on a particular Hilbert space. In other
words, for the Hardy space H2, one would like to identify the maps ϕ : D → D for
which

(3)
∥∥Cϕ : H2 → H2

∥∥2
=

1 + |ϕ(0)|
1 − |ϕ(0)| .

Similarly, for a weighted Bergman space A2
α, one would like to determine when

(4)
∥∥Cϕ : A2

α → A2
α

∥∥2
=

(
1 + |ϕ(0)|
1 − |ϕ(0)|

)α+2

.

This question has already been answered in the context of the Hardy space. In
one of the earliest papers on composition operators, Nordgren [13] showed that
Cϕ : H2 → H2 has maximal norm whenever ϕ is an inner function; that is, when-
ever limr↑1

∣∣ϕ(
reiθ

)∣∣ = 1 for almost all θ in [0, 2π). More recently, Joel Shapiro [19]
demonstrated that, when ϕ(0) �= 0, these are the only composition operators with
maximal norm on H2. (See [12] for an alternate approach to this result.) Until now,
this problem has remained open in the setting of the weighted Bergman spaces, even
for the space A2 = A2

0. It is already known that any disk automorphism induces
a composition operator with maximal norm on A2

α (see, for example, the proof of
[16, Lemma 2.3]). The purpose of this paper is to prove that, when ϕ(0) �= 0, there
are no other composition operators that have maximal norm on A2

α. This result is
the substance of Theorem 3.3.

We remark that the complementary question—which composition operators have
minimal norm—can be answered without much difficulty. In fact, when ϕ(0) �= 0,
the only composition operators with minimal norm, either on the Hardy space or
one of the weighted Bergman spaces, are those with constant symbol (see [7, Lemma
4.1], [8, Lemma 2.1], [15, Theorem 4], and [22, Theorem 3]).

2. Essential norms

Let H be a Hilbert space. Recall that the essential norm ‖T‖e of an operator
T : H → H is defined as follows:

‖T‖e = inf
K

‖T − K‖,

the infimum being taken over the set of all compact operators K : H → H. In other
words, the essential norm represents the distance between T and the set of compact
operators. It is often helpful to consider the relationship between the norm of an
operator and its essential norm. Since the trivial operator is compact, we see that
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‖T‖e ≤ ‖T‖ for any T : H → H. Furthermore, if ‖T‖e < ‖T‖, we know that the
operator T is norm-attaining (see [7, Proposition 2.2]); that is, there is some unit
vector h in H such that ‖T (h)‖ = ‖T‖. We will make use of this fact in the proof
of Proposition 3.1.

Now consider a composition operator Cϕ, acting on either H2 or A2
α. It makes

sense to say that Cϕ has maximal essential norm whenever line (3) or line (4), as
appropriate, holds with the norm of Cϕ replaced by the essential norm. As it turns
out, our investigation of composition operators with maximal norm will also allow
us to characterize the composition operators that have maximal essential norm on
A2

α. We note that this condition is not equivalent to saying that ‖Cϕ‖e = ‖Cϕ‖,
a property often called extremal noncompactness. When ϕ(z) = (1/2) z + 1/2, for
example, one can show that Cϕ : A2

α → A2
α is extremally noncompact, but that it

does not have maximal essential norm.
As it happens, more information is known about the essential norm of a compo-

sition operator than about the norm itself. In particular, we have explicit formulas
for the essential norm of Cϕ acting on a variety of spaces. The prototypical re-
sult, a formula for the essential norm of a composition operator on the Hardy
space, was established by Joel Shapiro [18]. His technique was later adapted to
the weighted Bergman spaces by Poggi-Corradini [14], who obtained a formula for∥∥Cϕ : A2

α → A2
α

∥∥
e

when α = 0 or α = 1. Poggi-Corradini’s proof relies on the
use of contractive zero-divisors for the spaces A2 and A2

1. Results due to Shimorin
[20, 21], pertaining to contractive divisors, show that Poggi-Corradini’s formula is
actually valid whenever −1 < α ≤ 1.

In the course of proving his essential norm formula, Poggi-Corradini demon-
strated the following result, which holds for all α > −1:

∥∥Cϕ : A2
α → A2

α

∥∥2

e
≤ lim sup

|a|→1

∑
zj∈ϕ−1(a) W (|zj |)

W (|a|) ,

where

W (r) =
(1 − r2)α+2

α + 2
.

This fact is a major ingredient in the proof of [14, Claim 3.1]. Cowen and MacCluer,
as part of the proof of [4, Corollary 3.21], showed that

lim sup
|a|→1

∑
zj∈ϕ−1(a) H(|zj |)

H(|a|) ≤ 1 + |ϕ(0)|
1 − |ϕ(0)|

(
1

β(ϕ)

)α+1

,

where H(r) = | log(r2)|α+2 and β(ϕ) = lim inf |z|→1(1 − |ϕ(z)|)/(1 − |z|). It is not
difficult to see that

lim sup
|a|→1

∑
zj∈ϕ−1(a) W (|zj |)

W (|a|) = lim sup
|a|→1

∑
zj∈ϕ−1(a) H(|zj |)

H(|a|) .

Consequently
∥∥Cϕ : A2

α → A2
α

∥∥2

e
≤ 1 + |ϕ(0)|

1 − |ϕ(0)|

(
1

β(ϕ)

)α+1

for any analytic ϕ : D → D. Suppose then that ϕ(0) = 0; in this case, Lemma 7.33
in [4] dictates that β(ϕ) > 1 whenever ϕ is not a rotation. In other words, we have
established the following proposition.
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Proposition 2.1. Let ϕ be an analytic self-map of D with ϕ(0) = 0. If ϕ is not a
rotation, then

∥∥Cϕ : A2
α → A2

α

∥∥
e

< 1.

This observation will allow us to obtain the major results of Section 3.
We conclude this section by mentioning a class of subspaces that have proved

particularly useful to the study of essential norms. For any natural number m, let
zmA2

α denote the subspace consisting of all functions in A2
α with a zero of order at

least m at the origin (with zA2
α = z1A2

α). When ϕ(0) = 0, each of these subspaces is
invariant under the operator Cϕ. In this situation, we write ‖Cϕ‖(m) to denote the
norm of Cϕ : zmA2

α → zmA2
α. It is well known that the values ‖Cϕ‖(m) form a non-

increasing sequence, with ‖Cϕ‖e = limm→∞ ‖Cϕ‖(m) (see [18, Proposition 5.1]).
One consequence of this fact is that the essential norm of Cϕ : zmA2

α → zmA2
α, for

any m, is equal to the essential norm of Cϕ : A2
α → A2

α. As we shall see, much
of our investigation will take place in the setting where ϕ(0) = 0. Our results will
depend on the relationship between the quantities ‖Cϕ‖, ‖Cϕ‖(1), and ‖Cϕ‖e.

3. The main theorem

We begin with the following proposition, which can be seen as an analogue of
Theorem 5.1 in [19].

Proposition 3.1. Let ϕ be an analytic self-map of D with ϕ(0) = 0. If ϕ is not a
rotation, then ‖Cϕ‖(1) < 1.

Proof. Suppose that ϕ is not a rotation. Proposition 2.1 dictates that ‖Cϕ‖e < 1.
If ‖Cϕ‖(1) = ‖Cϕ‖e, then our claim follows automatically. Suppose then that
‖Cϕ‖(1) > ‖Cϕ‖e. In this case, the operator Cϕ : zA2

α → zA2
α is norm-attaining;

that is, there is a unit vector f in zA2
α with ‖Cϕ‖(1) = ‖Cϕ(f)‖α. Examining the

proof of the Littlewood Subordination Theorem (see [4, p. 30]), we observe that∫ 2π

0

∣∣f(
ϕ
(
reiθ

))∣∣2 dθ <

∫ 2π

0

∣∣f(
reiθ

)∣∣2 dθ

for any 0 < r < 1, unless either f is constant or ϕ is a rotation. (See also [4,
Exercise 2.2.1].) We have assumed that ϕ is not a rotation; since f belongs to zA2

α,
it cannot be constant. Therefore ‖Cϕ‖(1) = ‖Cϕ(f)‖α < ‖f‖α = 1, as we had
hoped to show. �

One consequence of this argument is that Cϕ : A2
α → A2

α is an isometry if and
only if ϕ is a rotation; this fact differs somewhat from the analogous results that
are known for other Hilbert spaces. For example, Cϕ acts isometrically on H2 if
and only if ϕ is an inner function that fixes the origin (see [13] and [19]). There is
yet a different characterization (recently obtained by Mart́ın and Vukotić [11]) for
the isometric composition operators on the Dirichlet space.

For any point w in D, consider the map

ψw(z) =
w − z

1 − wz
,

the involutive automorphism that interchanges the points 0 and w. If ϕ is a self-
map of D, we define the Frostman transform ϕw to be the composition ψw ◦ ϕ. If
w = ϕ(0), then the map ϕw fixes the origin. Our next result can be obtained by
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making the obvious modifications to the proof of [19, Theorem 5.2], which provides
an analogous inequality for composition operators acting on H2.

Proposition 3.2. Let ϕ be an analytic self-map of D with ϕ(0) = w. Then

∥∥Cϕ : A2
α → A2

α

∥∥2 ≤
(

ν +
1 − ν

(1 + |w|)2α+4

) (
1 + |w|
1 − |w|

)α+2

,

where ν = ‖Cϕw
‖2
(1).

Proof. For the sake of completeness, we reproduce Shapiro’s argument. Let f be a
unit vector in A2

α. Since ϕ = ψw ◦ ϕw, we see that

Cϕ(f) = Cϕw
(f ◦ ψw) = Cϕw

(g) + f(w),

where g = f ◦ ψw − f(w). Note that Cϕw
(g) vanishes at the origin, and hence is

orthogonal to the constant f(w); therefore

‖Cϕ(f)‖2
α = ‖Cϕw

(g)‖2
α + |f(w)|2 .

Since g belongs to zA2
α, we see that

‖Cϕw
(g)‖2

α ≤ ‖Cϕw
‖2
(1) ‖g‖

2
α = ν ‖g‖2

α .

Furthermore,

‖g‖2
α = ‖f ◦ ψw − f(w)‖2

α = ‖f ◦ ψw‖2
α − 2 Re f(w) 〈f ◦ ψw, 1〉 + |f(w)|2

= ‖f ◦ ψw‖2
α − 2 Re f(w)f(w) + |f(w)|2 = ‖Cψw

(f)‖2
α − |f(w)|2 .

Since ψw is an automorphism of D, we know that

‖Cψw
‖2 =

(
1 + |w|
1 − |w|

)α+2

.

A well-known estimate (see [9, Lemma 3.2]) dictates that |f(w)|2≤1/
(
1−|w|2

)α+2.
Consequently

‖Cϕ(f)‖2
α ≤ ν ‖g‖2

α + |f(w)|2 = ν
(
‖Cψw

(f)‖2
α − |f(w)|2

)
+ |f(w)|2

= ν ‖Cψw
(f)‖2

α + (1 − ν) |f(w)|2

≤ ν

(
1 + |w|
1 − |w|

)α+2

+
1 − ν

(1 − |w|2)α+2

=
(

ν +
1 − ν

(1 + |w|)2α+4

) (
1 + |w|
1 − |w|

)α+2

,

as we had hoped to show. �

In particular, if w = ϕ(0) �= 0 and ‖Cϕw
‖(1) < 1, we see that ‖Cϕ‖ is not

maximal. In other words, we have established our main result.

Theorem 3.3. Consider the weighted Bergman space A2
α, with α > −1. Let ϕ be

an analytic self-map of D. If ϕ(0) �= 0, the following conditions are equivalent:

(1) The operator Cϕ : A2
α → A2

α has maximal norm.
(2) The operator Cϕ : A2

α → A2
α has maximal essential norm.

(3) The map ϕ : D → D is an automorphism.
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Proof. (3)⇒(2) Suppose that ϕ is an automorphism; it follows from [4, Proposition
3.13] that

‖Cϕ‖2
e ≥ lim sup

|a|→1

(
1 − |a|2

1 − |ϕ(a)|2

)α+2

=
(

1 + |ϕ(0)|
1 − |ϕ(0)|

)α+2

.

In other words, the operator Cϕ has maximal essential norm.
(2)⇒(1) Since ‖Cϕ‖e ≤ ‖Cϕ‖, any composition operator with maximal essential

norm also has maximal norm.
(1)⇒(3) Let w = ϕ(0). If ϕ is not an automorphism, then the map ϕw = ψw ◦ϕ

is not a rotation. Thus Proposition 3.1 shows that ‖Cϕw
‖(1) < 1, so it follows from

Proposition 3.2 that Cϕ : A2
α → A2

α does not have maximal norm. �

4. Norms on different spaces

It is an interesting exercise to compare the norm of a composition operator
acting on the unweighted Bergman space A2 to its norm on the Hardy space H2.
Considering lines (1) and (2), one might be tempted to speculate that

(5) ‖Cϕ : A2 → A2‖ =
∥∥Cϕ : H2 → H2

∥∥2
.

In fact, this equality does hold in most of the cases where we know how to calculate
both quantities explicitly. Nonetheless, it is possible to find examples of ϕ : D → D

for which equation (5) is false. In particular, let

ϕ(z) =
(r + s)z + (1 − s)

r(1 − s)z + (1 + sr)

for 0 < s < 1 and −1/7 ≤ r < 0. In this case, Richman [16, Theorem 4.1]
demonstrated that the operator Cϕ : A2 → A2 has subnormal adjoint; hence its
norm is equal to its spectral radius, which is 1/ϕ′(1) = 1/s. On the other hand,
Bourdon et al. [1, Theorem 3.7] showed that the norm of Cϕ : H2 → H2 is strictly
greater than

√
1/s. Likewise, let ϕ be a nonunivalent inner function with ϕ(0) �=

0. Then, as we have already stated, the corresponding composition operator has
maximal norm on H2. Theorem 3.3, which we have just proved, shows that Cϕ

does not have the same property on A2.
Both examples from the preceding paragraph demonstrate that it is possible

for ‖Cϕ : A2 → A2‖ to be strictly less than
∥∥Cϕ : H2 → H2

∥∥2. In light of this
observation, it would be interesting to determine whether the inequality

‖Cϕ : A2 → A2‖ ≤
∥∥Cϕ : H2 → H2

∥∥2

holds for every analytic ϕ : D → D. This is an open question that we commend to
the reader’s attention. We remark that the analogous inequality does indeed hold
for essential norms, a fact that can be deduced simply by comparing the relevant
formulas ([14, Theorem 1.1] and [18, Theorem 2.3]).
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