
Connecticut College
Digital Commons @ Connecticut College

Computer Science Faculty Publications Computer Science Department

1-1-2010

SRPT Is 1.86-competitive for Completion Time
Scheduling
Christine Chung
Connecticut College, cchung@conncoll.edu

Tim Nonner
Albert Ludwigs University

Alexander Souza
Humboldt University of Berlin

Follow this and additional works at: http://digitalcommons.conncoll.edu/comscifacpub
Part of the Computer Sciences Commons

This Conference Proceeding is brought to you for free and open access by the Computer Science Department at Digital Commons @ Connecticut
College. It has been accepted for inclusion in Computer Science Faculty Publications by an authorized administrator of Digital Commons @
Connecticut College. For more information, please contact bpancier@conncoll.edu.
The views expressed in this paper are solely those of the author.

Recommended Citation
Chung, Christine; Nonner, Tim; and Souza, Alexander, "SRPT Is 1.86-competitive for Completion Time Scheduling" (2010).
Computer Science Faculty Publications. Paper 7.
http://digitalcommons.conncoll.edu/comscifacpub/7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@Connecticut College

https://core.ac.uk/display/46703928?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.conncoll.edu?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/mathcomsci?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub/7?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bpancier@conncoll.edu

SRPT Is 1.86-competitive for Completion Time Scheduling

Keywords
discrete algorithms

Comments
Presented at SODA 2010 (ACM-SIAM Symposium on Discrete Algorithms).

This conference proceeding is available at Digital Commons @ Connecticut College: http://digitalcommons.conncoll.edu/
comscifacpub/7

http://digitalcommons.conncoll.edu/comscifacpub/7?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub/7?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages

SRPT is 1.86-Competitive for Completion Time Scheduling

Christine Chung∗ Tim Nonner† Alexander Souza‡

Abstract

We consider the classical problem of scheduling preemptible

jobs, that arrive over time, on identical parallel machines.

The goal is to minimize the total completion time of the jobs.

In standard scheduling notation of Graham et al. [5], this

problem is denoted P | rj , pmtn |
P

j
cj . A popular algorithm

called SRPT, which always schedules the unfinished jobs

with shortest remaining processing time, is known to be 2-

competitive, see Phillips et al. [13, 14]. This is also the best

known competitive ratio for any online algorithm. However,

it is conjectured that the competitive ratio of SRPT is

significantly less than 2. Even breaking the barrier of 2

is considered a significant step towards the final answer of

this classical online problem. We improve on this open

problem by showing that SRPT is 1.86-competitive. This

result is obtained using the following method, which might

be of general interest: We define two dependent random

variables that sum up to the difference between the cost of

an SRPT schedule and the cost of an optimal schedule. Then

we bound the sum of the expected values of these random

variables with respect to the cost of the optimal schedule,

yielding the claimed competitiveness. Furthermore, we

show a lower bound of 21/19 for SRPT, improving on the

previously best known 12/11 due to Lu et al. [11].

1 Introduction

In this paper, we study the classical problem of online
scheduling preemptible jobs, arriving over time, on
identical machines. The goal is to minimize the total
completion time of the jobs. Our performance measure
is the competitive ratio, i.e., the worst-case ratio of
the objective value achieved by an online algorithm
and the offline optimum. Specifically, we are given
m identical machines and jobs J = {1, . . . , n}, which
arrive over time, where each job j becomes known at
its release time rj ≥ 0. At time rj we also learn
the processing time pj > 0 of job j. Preemption is

∗Department of Computer Science, University of Pittsburgh,
USA, chung@cs.pitt.edu

†Department of Computer Science, Albert Ludwigs Univer-
sity of Freiburg, Germany, nonner@informatik.uni-freiburg.de
(corresponding author), Supported by DFG research program No
1103 Embedded Microsystems

‡Department of Computer Science, Humboldt University of
Berlin, Germany, souza@informatik.hu-berlin.de

allowed, i.e., at any time we may interrupt any job that
is currently running and resume it later, possibly on
a different machine. A schedule σ assigns (pieces of)
jobs to time-intervals on machines, and the time when
job j completes is denoted cj . We seek to minimize the
total completion time

∑

j cj . In the standard scheduling
notation due to Graham et al. [5], this problem is
denoted P | rj , pmtn |

∑

j cj .
For roughly 15 years, the best known competitive

ratio for this fundamental scheduling problem was due
to Phillips, Stein, and Wein [13, 14]. They proved
that the algorithm SRPT, which always schedules the
unfinished jobs with shortest remaining processing time,
is 2-competitive. To achieve this, they showed that, at
any time 2t, SRPT has completed as many jobs as any
other schedule could complete by time t. It was an open
problem to prove that the competitive ratio of SRPT is
bounded by a constant strictly smaller than 2 for any
number of processors m, as conjectured by Stein [20]
and Lu, Sitters, and Stougie [11].

Contributions. We show in Section 3 that SRPT
is 1.86-competitive, which also improves upon the best
known competitive ratio for P | rj , pmtn |

∑

j cj . As the
makespan argument of [13, 14] is tight, we need another
approach. We make use of the following general method.

Consider an arbitrary optimization problem, and
let OPT be the cost of an optimal solution for a fixed
but arbitrary instance. Moreover, let ALG also denote
the cost of the solution returned by some deterministic
algorithm ALG for the same instance. Hence, to obtain
an approximation guarantee for ALG, we need to bound
ALG/OPT. Let now X and Y be two dependent
random variables with X + Y = ALG − OPT. In
fact, they need to be dependent, since they sum up
to a constant value depending on the given instance.
Assume now that we have the bounds E [X] ≤ αOPT
and E [Y] ≤ βOPT for two positive constants α, β. In
this case, by linearity of expectation, we obtain that

ALG−OPT = E [ALG−OPT] = E [X] + E [Y]

≤ (α + β)OPT,

and hence ALG/OPT ≤ 1 + α + β. In our case
ALG = SRPT, and we obtain the two random variables
X and Y by randomly transforming some schedules.

To the best of our knowledge, the approach de-
scribed in the last paragraph is novel in the area of
scheduling and may be of independent interest. In fact,
the authors are not aware of the use of such a tech-
nique in the analysis of any algorithm, since the usual
approach is to either analyze a deterministic algorithm
in a deterministic way, or to analyze a randomized algo-
rithm using the randomness provided by the algorithm.
We can also think of this as applying the probabilistic
method : This is a non-constructive method pioneered by
Paul Erdős for proving the existence of a prescribed kind
of mathematical object. If one can show that choosing
objects from a specified class at random yields strictly
positive probability that the result is of the prescribed
kind, then the prescribed object exists. Hence, although
the proof is probabilistic, the final conclusion is deter-
mined for certain. In our case, we are interested in
algorithms that transform an optimal schedule into an
SRPT-schedule. By concatenating the transformations
used to obtain the random variables X and Y , we ob-
tain such a random transformation yielding an increase
in objective value by a factor of at most 1.86 in expec-
tation. Thus, by the probabilistic method, such a trans-
formation always exists and shows the competitiveness
of at most 1.86 of SRPT.

We conjecture that 1.86 is not the final answer, but
as with many other problems, e.g., Vertex Cover, giving
an approximation guarantee of 2 is relatively easy, but
improving on this is far more involved.

In terms of negative results we improve the previ-
ously best known lower bound for SRPT due to Lu,
Sitters, and Stougie [11] from 12/11 to 21/19 in Sec-
tion 2. We believe that 21/19 is the right answer for
SRPT.

Related work. We restrict this review to the fol-
lowing variants of completion time scheduling with re-
lease times: preemptive or non-preemptive, unweighted
or weighted, and single machine or identical parallel ma-
chines.

The single machine problem 1 | rj, pmtn |
∑

j cj is
the only variant that is known to be solvable in poly-
nomial time. Indeed, Schrage [17] proved that SRPT
is optimal for this problem. For all other variants con-
sidered here, the offline versions are already NP-hard,
see [8, 9, 4], but they all admit a PTAS [1].

For the weighted and preemptive case,
1 | rj , pmtn |

∑

j wjcj , i.e., each job j has a non-
negative weight wj , and we seek to minimize

∑

j wjcj ,
Goemans, Williamson, and Wein observed in unpub-
lished work that preemptively scheduling in order of
non-decreasing pj/wj values is 2-competitive. A proof
was provided by Schulz and Skutella [18], where also a
4/3-competitive randomized algorithm was given. Fi-

nally, Sitters [19] gave a deterministic 1.56-competitive
algorithm. On the other hand, for the weighted and
non-preemptive case, 1 | rj |

∑

j wjcj , Anderson and
Potts [2] extended an algorithm of Hoogeveen and
Vestjens [7] and proved that it is 2-competitive. This
is best-possible, since no deterministic online algorithm
can be better than 2-competitive for this variant [7].

For identical parallel machines and even for the
weighted and preemptive case, P | rj , pmtn |

∑

j wjcj,
Megow and Schulz [12] gave a 2-competitive algorithm.
The best known bound for the weighted and non-
preemptive case, P | rj |

∑

j wjcj , is due to Correa and
Wagner [3], who gave a 2.62-competitive algorithm.
They also found a randomized algorithm with com-
petitive ratio strictly smaller than 2, but approaching
2 as m grows. Furthermore, Liu and Lu [10] gave a
2-competitive algorithm for the unweighted and non-
preemptive case, P | rj |

∑

j cj .
To the best of our knowledge, the following table

summarizes the currently best known upper bounds of
deterministic algorithms for the preemptive case. The
unreferenced bound is due to this work.

Machines
∑

j cj

∑

j wjcj

Single 1 [17] 1.56 [19]
Identical 1.86 2 [12]

On the negative side, no deterministic algorithm can be
better than 22/21-competitive for P | rj , pmtn |

∑

j cj,
which was shown by Vestjens [21]. Without preemption,
1.309 is the best known lower bound. A comprehensive
survey on further online scheduling models is given by
Pruhs, Torng, and Sgall [15].

2 Notation and lower bound

An instance consists of a set of jobs J = {1, . . . , n},
where each job j is characterized by its release time rj ≥
0 and processing time pj > 0. We assume w.l.o.g. that
the processing and release times are integral. Therefore,
we may also assume that time is divided into time slots
1, 2, 3, . . . of unit length one. A schedule σ assigns each
job j to a set of distinct time slots denoted σj , and
σ(t) := {j | t ∈ σj} are hence the jobs scheduled at
some time slot t, such that the following three feasibility
properties are satisfied:

(1) each job j is scheduled only at time slots not earlier
than rj , i.e., for all t ∈ σj , t ≥ rj ,

(2) at most m jobs are scheduled at each time slot t,
i.e., |σ(t)| ≤ m,

(3) each job j is scheduled at no more than pj time
slots, i.e., |σj | ≤ pj .

Note that σj is a set, and consequently, only one unit
of the processing time pj of j may be scheduled at each
time slot t, which corresponds to the requirement that a
job is never scheduled in parallel on different machines.
If the inequality in feasibility property (3) is tight for
each job j, then we say that σ is complete. However,
we will also use incomplete schedules in what follows,
and we refer to pj(σ) := |σj | as the processing time
of job j in σ. Feasibility property (1) implies that,
in our notation, the release time of a job is the first
time slot when it may be scheduled. Finally, feasibility
property (2) corresponds to the requirement that we
have m identical machines.

Let cj(σ) := max σj denote the last time slot when
a job j is scheduled by σ, to which we refer as its
completion time. Furthermore, let fjt(σ) := min{s ≥
t | s ∈ σj} ≤ cj(σ) denote the first time slot at which
j is scheduled by σ after time slot t. Note that we
include time slot t whenever we say after time slot t.
If there is no time slot s ≥ t with s ∈ σj , then define
fjt(σ) := 0. Let pjt(σ) := |{s ∈ σj | s ≥ t}| be the
remaining processing time of a job j after time slot
t, and let nt(σ) := |{j | pjt(σ) > 0}| be the number
of unfinished jobs at time slot t. We say that two
schedules σ and σ′ define the same instance after time
slot t if pjt(σ) = pjt(σ

′), for each job j. Finally, let
T (σ) := max{t | σ(t) 6= ∅} be the last time slot when σ
schedules a job.

We say that a schedule σ is SRPT-scheduled after
time slot t if, for each time slot s ≥ t, the jobs σ(s)
are the (up to) m unfinished jobs j with minimum
remaining processing time pjs(σ) > 0, where ties are
broken arbitrarily. Therefore, a schedule produced by
the SRPT algorithm is complete and SRPT-scheduled
after time slot 1.

We consider the problem of finding a complete
schedule σ that minimizes the objective function

cost(σ) :=

n
∑

j=1

cj(σ).

Note that we can write this objective function as

(2.1) cost(σ) =

∞
∑

t=1

nt(σ).

We will use this representation of the objective function
in the sections to follow. Finally, the following theorem
gives the lower bound for the competitiveness of SRPT.

Theorem 2.1. If SRPT is c-competitive, then c ≥
21/19.

Proof. Consider the following instance, which is based
closely on the lower-bound instance of [11]. We have

3 31

2

4

5

6

7

(a) schedule σ
′

3 3

1 2 4

5

6

7

(b) schedule σ
∗

Figure 1: An SRPT schedule σ′ and an optimal schedule
σ∗. Each column represents a time slot, and such a
column contains a box labeled with j if job j is scheduled
at the corresponding time slot. Since m = 2, each
column contains room for two boxes, and we depict eight
time slots in total, although not all of them are used.

m = 2 and n = 7, with the release time and processing
time of each job as listed in the following table.

j 1 2 3 4 5 6 7
pj 1 1 2 1 1 1 1
rj 1 1 1 3 3 3 3

An SRPT schedule σ′ gives total completion time
cost(σ′) =

∑7
j=1 cj(σ

′) = 1 + 1 + 3 + 3 + 4 + 4 + 5 =
21. On the other hand, an optimal schedule σ∗ gives
cost(σ∗) =

∑7
j=1 cj(σ

∗) = 1+2+2+3+3+4+4 = 19.
Two such schedules are depicted in Figure 1. Our in-
tuition behind this lower bound instance is given in the
following paragraph.

It may happen that, at some time slot t, some SRPT
schedule σ′ has not finished a certain job j which an
optimal schedule σ∗ has already completed. This will
be problematic if at least m jobs with processing time
smaller than the remaining processing time of j arrive
at time t. Then, the completion of j will be further
delayed. However, as the arriving jobs also contribute
to cost(σ∗), their effect on the competitive ratio is
bounded. This suggests that we seek for an instance
where m > 1 is minimal, i.e., m = 2, and as many small
jobs arrive at time t that cause the competitive ratio to
grow. In the lower bound instance given above, we use
j = 3 and t = 3. �

3 Competitive analysis of SRPT

Consider an optimal schedule σ∗ with cost(σ∗) = OPT
and an SRPT schedule σ′ with cost(σ′) = SRPT.

j j′ j j j′

(a) before

jj′ jj′ j

(b) after

Figure 2: Schedule σ before and after scheduling job j′

before j at time slots W . We do not know anything
about the shaded boxes, but the unshaded boxes corre-
spond exactly to the time slots W . Hence, we have here
that pj′ = 2 and pj = 3. The sum of completion times
cost(σ) does clearly decrease.

Moreover, abbreviate T = T (σ∗) and nt = nt(σ
∗), for

each time slot t.
We want to upper bound SRPT/OPT, and we know

that SRPT/OPT = 1 for m = 1 [17]. This can be easily
shown by iteratively transforming σ∗ into σ′ without
increasing cost(σ∗). However, this transformation works
as well for any schedule σ. We illustrate this for the
first time slot 1, whereas we assume that σ and σ′

both schedule some job at this time slot: Let j and
j′ be the jobs scheduled by σ and σ′ at time slot 1,
respectively. If j = j′, then σ and σ′ are identical at
time slot 1, i.e., σ(1) = σ′(1). Therefore, assume that
j 6= j′. Since m = 1, we have that W ∩W ′ = ∅, where
W := σj and W ′ := σj′ . Moreover, since σ′ is SRPT-
scheduled, we find that pj′ ≤ pj . By combining these
facts, we conclude that, without increasing cost(σ), we
can transform σ at time slots W := W∪W ′ such that job
j′ is scheduled at these time slots before job j, i.e., such
that i′ ≤ i, for each pair i′ ∈ σj′∩W and i ∈ σj∩W . We
illustrate this with an example in Figure 2. This gives
that σ′ and σ are afterwards identical at time slot 1.
This scheme can then be iterated for all following time
slots 2, 3, . . . , T (σ) such that finally σ = σ′. However,
observe that this transformation does not work if m > 1,
since it is then possible that W ′ ⊆ W , and hence,
we cannot transform σ as described above. This is in
particular the case for the job pair j = 3 and j′ = 2 in
the optimal schedule σ∗ in Figure 1.

Since iteratively transforming σ∗ into σ′ as de-
scribed in the last paragraph does not work if m > 1,
we show in Subsection 3.2 how to merge σ∗ and σ′ to
form an incomplete schedule κ with cost(κ) ≤ cost(σ∗)
and cost(κ) ≤ cost(σ′). Note that cost(κ) < cost(σ∗)
is possible, since κ is incomplete, and hence, the pro-
cessing times of some jobs j might be smaller in κ than

in σ∗, i.e., pj(κ) < pj(σ
∗) = pj . More specifically, we

define an algorithm, called MRG, that simultaneously
constructs two schedules κ and κ′ from σ∗ and σ′, re-
spectively, and then we show that κ = κ′. To this end,
motivated by the transformation described in the last
paragraph, algorithm MRG also iterates over the time
slots 1, 2, . . . , T . Let

∆∼ := cost(σ∗)− cost(κ)

and
∆− := cost(σ′)− cost(κ′)

be the corresponding cost differences. Since conse-
quently

(3.2) SRPT−OPT = ∆− −∆∼,

it suffices to bound ∆−−∆∼ with respect OPT in order
to bound SRPT/OPT. We do so in Subsection 3.2,
but this only gives that SRPT is 2-competitive, which
matches the result of Philipps, Stein, and Wein [13].

To break the barrier of 2, we use randomization.
Specifically, in Subsection 3.3, we construct a schedule σ
from σ∗ with cost(σ) ≥ cost(σ∗) by randomly inserting
some empty time slots B. Let

∆+ := cost(σ) − cost(σ∗)

be the cost difference between σ and σ∗, which is a
random variable. We can think of the time slots B
as additional buffer slots. These buffer slots are then
used in Subsection 3.4 to merge σ and σ′ to form
an incomplete schedule κ with cost(κ) ≤ cost(σ) and
cost(κ) ≤ cost(σ∗) such that we can better control
the cost decreases during this merging process than in
Section 3.2. Specifically, we extend algorithm MRG to
a new algorithm, called MRG’, which simultaneously
construct two random schedules κ and κ′ from σ and
σ′, respectively, and then we show that κ = κ′. For
simplicity, as in the last paragraph, we also denote these
schedules κ and κ′. Moreover, we define ∆− as in the
last paragraph, but we define now

∆∼ := cost(σ)− cost(κ).

Note that, in contrast to the last paragraph, ∆∼ and
∆− are now random variables. Using these definitions,
we obtain that

(3.3) SRPT−OPT = ∆+ + ∆− −∆∼.

As explained in Section 1, we separately upper bound
E [∆+] and E [∆− −∆∼] with respect to OPT, where
∆+ and ∆− −∆∼ correspond to the random variables
X and Y , respectively. By Equation (3.3), this gives us
then an improved upper bound for SRPT/OPT.

≈ 0.857

10

0.125

Figure 3: The function a 7→ E [X]+Ba [X] for a random
variable X with density function x 7→ 7(1 − x)6 with
support (0, 1]. Hence, we have that 1 + E [X] + B [X] <
1.86.

We first introduce some basic operations on a given
schedule in Subsection 3.1, and we will mostly modify
schedules with these operations in the sections to follow.
For a random variable X with 0 < X ≤ 1 and some
0 < a ≤ 1, define

Ba [X] :=
1

1 + a

(

Pr [0 < X ≤ a]

+Pr [a < X ≤ 1] E [X | a < X ≤ 1]

)

and
B [X] := max

0<a≤1
Ba [X] .

Using the strategy explained above, we prove the fol-
lowing theorem in Section 3.5.

Theorem 3.1. For any random variable X with 0 <
X ≤ 1, SRPT is (1 + E [X] + B [X])-competitive for
completion time scheduling.

Corollary 3.1. SRPT is 1.86-competitive for comple-
tion time scheduling.

Proof. Consider a random variable X with the density
function x 7→ 7(1− x)6 with support (0, 1]. It can then
be easily computed that 1+E [X]+B [X] < 1.86, which,
with Theorem 3.1, proves the claim. We schematically
depict the function a 7→ E [X] + Ba [X] in Figure 3. �

3.1 Basic operations. In this subsection, we intro-
duce some basic operations on a given schedule σ. We

additionally explain for each operation which prereq-
uisites are needed such that the three feasibility prop-
erties given in Section 2 are conserved. Moreover, we
sometimes add a prerequisite simply for the sake of ex-
position. Whenever we apply such an operation, it will
always be clear from the context that all prerequisites
are satisfied. Finally, we give bounds on the respective
change of cost(σ).

We can move some job j from time slot t′ to time
slot t by scheduling this job at time slot t instead of
time slot t′. Clearly, to apply this operation, we need
the prerequisites t′ ∈ σj and t 6∈ σj . Moreover, to ensure
that feasibility properties (1) and (2) are conserved,
we need the prerequisites rj ≤ t and |σ(t)| < m,
respectively. If cj(σ) > max{t, t′}, then cost(σ) does
not change. On the other hand, cost(σ) decreases by at
least 1 if t′ = cj(σ) > t. Finally, if t′ = fjt(σ) > t, then
cost(σ) decreases by at least 1 if and only if pjt(σ) = 1.
We abbreviate this operation as move(σ, j, t′, t).

Consider the scenario that we have a pair of jobs j, j′

with pjt(σ) = pj′t(σ) and the additional property that
t ∈ σj . In this case, if the prerequisite rj′ ≤ t is satisfied,
then we can simply swap the time slots when these jobs
are scheduled after time slot t without modifying cost(σ)
such that job j′ is scheduled at time slot t afterwards.
We abbreviate this operation as swap(σ, j, j′, t). We
also allow j = j′, but in this case, σ is not modified at
all.

As explained in Section 2, we also allow incomplete
schedules. To obtain such a schedule, we can remove
some job j from some time slot t, which decreases pjt(σ)
by 1. Of course, this requires the prerequisite t ∈ σj . We
abbreviate this operation as remove(σ, j, t). Note that
if pjt(σ) decreases by 1, then so does pj(σ). Consider
now an extended scenario where, for some job j and
time slot t, we want to decrease pjt(σ) by 1 without
modifying σ at the earlier time slots 1, 2, . . . , t − 1 as
well. Moreover, assume that σ is SRPT-scheduled after
time slot t, and we also want to conserve this property.
In such a scenario, we can first decrease pjt(σ) by 1,
and then simply reschedule σ after time slot t with the
SRPT-policy, whereas the remaining processing times
of all other jobs remain the same. This operation is
abbreviated as trickle(σ, j, t). We add the prerequisite
pjt(σ) > 1, and hence, job j is still scheduled after
time slot t afterwards, i.e., pjt(σ) > 0. Moreover, for
technical reasons, we add the prerequisite rj ≤ t. In
the remainder of this subsection, we prove the following
lemma, which upper bounds the decrease of cost(σ) due
to operation trickle.

Lemma 3.1. Operation trickle(σ, j, t) decreases
cost(σ) by at most nt(σ)/m + 1.

We prove Lemma 3.1 by explicitly defining operation
trickle. Note that, due to the fact that ties are broken
arbitrarily when selecting jobs, there might be several
ways to reschedule σ after time slot t with the SRPT-
policy. However, we only need to show that the explicit
definition of operation trickle results in one such way.
Recall that we require the prerequisites rj ≤ t and
pjt(σ) > 1, and moreover that σ is SRPT-scheduled
after time slot t.

trickle(σ, j, t)

1. Set s← t− 1.

2. Loop over the following steps at least once for job
j from the input, and after this first iteration,
repeat this while there is a job j with rj ≤ s and
fjs(σ) ≥ s + 1:

(a) If this is not the first iteration, set j to the
job with minimal pjs+1(σ) subject to rj ≤ s
and fjs(σ) ≥ s + 1, where ties are broken
arbitrarily.

(b) Set j′ to the job with minimal fj′s+1(σ)
subject to pj′s+1(σ) = pjs+1(σ), where ties
are broken arbitrarily. Set s′ ← fj′s+1(σ), and
then swap(σ, j′, j, s′).

(c) If this is the first iteration, then
remove(σ, j, s′), and otherwise,
move(σ, j, s′, s). Finally, set s← s′.

Observe that the remaining processing time pjt(σ)
is decreased by 1. This is done by removing job j from
time slot s′ with operation remove in Step 2c of the
first iteration. Because of the prerequisite pjt(σ) > 1,
we still have then that job j is scheduled after time slot
t. However, we obtain some free scheduling capacity at
time slot s′, which we use to schedule some other job
there. We do this by moving some job to time slot s′

with operation move in Step 2c of the next iteration if
possible. This results again in some free scheduling ca-
pacity at a later time slot, and so on. More specifically,
let r be the number of iterations of the loop in Step 2
including the last iteration when the stopping condition
applies. Hence, we can label these iterations 1, 2, . . . , r,
and let remove(σ, j1, s2), move(σ, j2, s3, s2),
move(σ, j3, s4, s3), . . ., move(σ, jr , sr, sr−1) be
an ordering of the used remove- and move-operations
in this loop with s1 := t−1 < s2 < . . . < sr. Recall here
that we use the remove-operation only in iteration
1 and no such operation in iteration r. Therefore,
just before each iteration 1 < i < r, we have that
j = ji, s = si, and s′ = si+1. Moreover, just before

.j2 j3

s2 s3 s4

j1

Figure 4: This figure schematically depicts the execu-
tion of algorithm trickle. First, we use the remove-
operation to remove job j1 from time slot s2 in itera-
tion 1, and afterwards, in each iteration 1 < i < r, we
move job ji from time slot si+1 to time slot si with the
move-operation.

iteration 1, we have that j = j1 and s′ = s2, and just
before iteration r, we have that s = sr. Using these
definitions, we illustrate operation trickle in Figure 4.
On the other hand, Step 2b is necessary to preserve
the SRPT-property during this process. Before proving
Lemma 3.1, we need the following preliminary lemma,
which shows that the explicit definition of operation
trickle given above is indeed correct.

Lemma 3.2. After applying operation trickle(σ, j, t),
schedule σ is still SRPT-scheduled after time slot t

Proof. To show that σ is finally SRPT-scheduled after
time slot t, we have to show that, for each time slot
t′ ≥ t, the jobs σ(t′) are the (up to) m unfinished jobs
j with minimum remaining processing time pjt′(σ) > 0.
We say that σ is SRPT-scheduled at some time slot t′,
if this property holds only for t′. Hence, σ is finally
SRPT-scheduled after time slot t if and only if σ is
SRPT-scheduled at each time slot t′ ≥ t. To prove
the claim, we will show via induction on the iterations
that the following two properties hold just before each
iteration i:

(1) schedule σ is SRPT-scheduled at each time slot
t′ ≥ t with t′ 6= si,

(2) if i > 1, then |σ(si)| ≤ m − 1, and σ(si) are the
jobs with minimum remaining processing time at
time slot si, where ties are broken arbitrarily, i.e.,
for each job j ∈ σ(si) and each job j′ 6∈ σ(si)
with rj′ ≤ si and pj′si

(σ) > 0, we have that
pjsi

(σ) ≤ pj′si
(σ). Moreover, if even |σ(si)| <

m− 1, then there is at most one job j with rj ≤ si

and fjsi
(σ) ≥ si + 1.

Hence, these properties hold as well just before iteration
r, which is the iteration when the stopping condition of
the loop applies. By combining these facts, we obtain
that σ is finally SRPT-scheduled after time slot t, which
proves the claim of the lemma.

Induction start. Property (1) holds just before
iteration 1, since σ is initially SRPT-scheduled after
time slot t = s1 + 1. Property (2) trivially holds then
as well, since we only consider here the case i > 1.

Induction step. Assume as induction hypothesis
that properties (1) and (2) hold just before iteration i.
We will separately show that these properties then hold
just before iteration i + 1 as well.

Property (2): Since si+1 > si, we know from
property (1) of the induction hypothesis that σ
is SRPT-scheduled at time slot si+1 just before
iteration i. Consider the job j′ selected in Step 2b
of iteration i with fj′si+1(σ) = si+1. We change
the set of jobs σ(si+1) scheduled at time slot
si+1 by scheduling job ji instead of job j′ at
this time slot using operation swap(σ, j′, ji, si+1).
However, Since pjsi+1

(σ) = pj′si+1
(σ), we have that

σ is then still SRPT-scheduled at time slot si+1.
Consequently, since we remove job ji from time
slot si+1 with operation move(σ, ji, si+1, si) (or
operation remove(σ, ji, si+1) if i = 1) in Step 2c,
we immediately obtain that property (2) holds just
before iteration i + 1.

Property (1): Consider a fixed t′ ≥ t with
t′ 6= si+1, and distinguish four cases:

Case t′ < si: If i = 1, then t′ < t, and
hence, this case is not possible. On the other
hand, if i > 1, then, for any job j, we do
modify the remaining processing time pjt′ (σ)
at time slot t′ during iteration i, which gives
with property (1) of the induction hypothesis
that σ is still SRPT-scheduled at time slot t′

just before iteration i + 1.

Case t′ = si: As in the previous case, if i = 1,
then t′ < t, and hence this case is not possible.
On the other hand, if i > 1, then property
(2) of the induction hypothesis allows us to
distinguish two subcases:

Case |σ(si)| = m− 1: Because of the se-
lection of ji in Step 2a of iteration i, we
have that σ is SRPT-scheduled at time
slot t′ after operation move(σ, ji, si+1, si)
in Step 2c, and therefore just before iter-
ation i + 1.

Case |σ(si)| < m − 1: There is at most
one job j with rj ≤ si and fjsi

(σ) ≥ si+1.
If there is no such job, then the stopping
condition of the loop implies that i =
r, and hence, iteration i + 1 does not
exist. Otherwise, it follows that ji = j,

and hence, by using the same arguments
as in the last case, we obtain that σ is
SRPT-scheduled at time slot t′ just before
iteration i + 1.

Case si < t′ < si+1: Assume for contradic-
tion that σ is not SRPT-scheduled at time slot
t′ just before iteration i + 1. By the fact that
ji is the only job whose remaining processing
time pjit′(σ) at time slot t′ decreases during it-
eration i due to operation move(σ, ji, si+1, si)
(or operation remove(σ, ji, si+1) if i = 1)
in Step 2c, we must have that, just before
iteration i + 1, there is a job j ∈ σ(t′)
such that pjt′(σ) > pjit′(σ) > 0. If even
pjt′ (σ) > pjit′(σ) + 1, then, since we only de-
crease pjit′(σ) by 1, it already holds just be-
fore iteration i that pjt′(σ) > pjit′(σ). But be-
cause also rji

≤ si ≤ t′, this gives that σ was
not SRPT-scheduled at time slot t′ just before
iteration i, since we would have scheduled ji

there instead of j, which contradicts to prop-
erty (1) of the induction hypothesis. There-
fore, it must hold that pjt′(σ) = pjit′(σ) + 1
after Step 2c of iteration i, and hence

(3.4) pjt′ (σ) = pjit′(σ)

just before iteration i. On the other hand,
we know from property (1) of the induction
hypothesis that σ is SRPT-scheduled after
time slot si + 1 just before iteration i. By
combining this with Equation (3.4) and the
facts that fjsi+1(σ) ≤ t′ < si+1 ≤ fjisi+1(σ)
and rji

≤ si, it is easy to see that fjsi+1(σ) =
t′. Thus, we find that even pjsi+1(σ) =
pjisi+1(σ) just before iteration i. This gives
a contradiction, since t′ < si+1, and hence, we
would have applied operation swap(σ, j, ji, t

′)
in Step 2b of iteration i.

Case t′ > si+1: By property (1) of the
induction hypothesis, we have that σ is SRPT-
scheduled at time slot t′ just before iteration
i. Note that it might happen in iteration i
that σ is modified after time slot t′ with the
single swap-operation in Step 2b. However,
this clearly does not affect the property that σ
is SRPT-scheduled at time slot t′, and hence,
σ is still SRPT-scheduled at time slot t′ just
before iteration i + 1.

�

Proof. [Lemma 3.1] We know from Lemma 3.2 that the
explicit definition of operation trickle given above is
indeed correct.

Consider now operation trickle without the
remove- and move-operation in Step 2c. We refer to
this modified operation as trickle’. Note that trickle’
does not affect the SRPT-property or cost(σ), but sim-
ply swaps jobs with the same remaining processing time
after some time slot. For simplicity, assume that opera-
tion trickle’ has already been applied before operation
trickle with the same input parameters, and that, in-
stead of breaking ties arbitrarily, we always select the
same job j in Step 2a in both operations. As a conse-
quence, we still obtain the same final schedule σ even
if we omit Step 2b in operation trickle, which helps us
to simplify the arguments to follow. We can also think
of this as dividing the original operation trickle in two
operations.

The only step in operation trickle that might de-
crease cost(σ) in each iteration is Step 2c. However,
since initially pjt(σ) > 1, we have that the remove-
operation in the first iteration 1 does not modify
cost(σ). Therefore, we only have to consider the move-
operations in the following iterations 2, 3, . . . , r − 1.
We use chunk to refer to a maximal subinterval C =
{a, . . . , b} of interval {2, 3 . . . , r − 1} with the property
that all elements in this subinterval index the same job,
i.e., ji is the same job for each a ≤ i ≤ b, and, if a > 2,
then ja−1 6= ja, and, if b < r − 1, then jb+1 6= jb.
Note that, for each such chunk C = {a, . . . , b}, only
the last move-operation, namely move(σ, jb, sb+1, sb),
can decrease cost(σ), and this happens if and only if
pjbsb+1(σ) = 1. Specifically, the decrease is then ex-
actly

∆C := sb+1 − sb.

Let C be the chunks that decrease cost(σ) in this way.
Using this, we obtain that the decrease of cost(σ) during
operation trickle(σ, j, t), say ∆, satisfies

(3.5) ∆ =
∑

C∈C

∆C .

Moreover, we refer to the chunk C with 2 ∈ C as the
first chunk. In what follows, we will define some pairwise
disjoint job sets JC , C ∈ C, with JC ⊆ {j | pjt(σ) > 1}
and

(3.6) |JC | ≥

{

m(∆C − 1) C is the first chunk,

m∆C otherwise.

By using these properties and Equation (3.5), we find
that

∆ ≤

∑

C∈C |JC |

m
+ 1 =

| ∪C∈C JC |

m
+ 1 ≤

nt(σ)

m
+ 1,

which proves the claim of the lemma. For each chunk
C ∈ C, we add jobs to JC in two steps, first some large

jobs, and then some small jobs. Recall that we consider
here the state of σ before applying operation trickle,
but after the application of operation trickle’.

Adding large jobs. Consider a fixed chunk C =
{a, . . . , b} ∈ C, and assume that C is not the first chunk.
In this case, it must hold that |σ(sa)| = m. Otherwise,
since σ is SRPT-scheduled after time slot t ≤ sa, we
have that ja would have already been scheduled at time
slot sa before applying operation trickle. Note that ja

was not scheduled there because of the selection of ja in
Step 2a and the maximality-property in the definition of
a chunk. Add then the jobs (σ(sa)\{ja−1})∪{ja} to JC .
We refer to these jobs as the large jobs. Then, because σ
is SRPT-scheduled after time slot t ≤ sa and rja

≤ sa,
we have for each job j ∈ JC that pjsa

(σ) ≤ pjasa
(σ),

and hence pjsa+1(σ) < pjasa+1(σ), since j ∈ σ(sa).
Therefore, again since σ is SRPT-scheduled after time
slot t ≤ sa, it holds that cj(σ) ≤ sb < sb+1. To see
this, simply note that whenever ja is scheduled at some
time slot after sa, then j is either already completed,
or scheduled as well. We conclude that if we use this
construction, then JC ∩ JC′ = ∅, for each C′ ∈ C with
C′ 6= C. Moreover, we have so far that |JC | = m, and
this suffices to obtain Inequalities (3.6) if ∆C = 1.

Adding small jobs. If ∆C = sb+1 − sb > 1,
then the large jobs already added to JC above are not
sufficient to guarantee Inequalities (3.6). However, the
definition of C gives that pjbsb+1(σ) = 1. Therefore,
because σ is SRPT-scheduled after time slot t, we
have that pjsb+1(σ) = 1, for each time slot t′ with
sb < t′ < sb+1 and each job j ∈ σ(t′), i.e., each
such job is scheduled at exactly one of the time slots
sb + 1, sb + 2, . . . , sb+1 − 1 and also completed there.
That is why we refer to these job as the small jobs, and
consequently, there are exactly m(sb+1 − sb − 1) many
such small jobs, which we also add to JC . Together
with the already added large jobs, we hence have that
|JC | = m(sb+1 − sb), which satisfies Inequalities (3.6).
As already mentioned above, each large job is completed
before time slot sb, and hence a large job is never also a
small job. Clearly, it still holds then that JC ∩ JC′ = ∅,
for each C′ ∈ C with C′ 6= C. Finally, if C is the first
chunk, then we can only add the small jobs to JC , and
hence only |JC | ≥ m(∆C−1). This completes the proof
that Inequalities (3.6) are satisfied. We give an example
for the adding of large and small jobs in Figure 5. �

3.2 Merging σ∗ and σ′ to form κ. In this subsec-
tion, we use the operations from Section 3.1 to give a
simple proof that SRPT is 2-competitive. To this end,
we construct two schedules κ and κ′ from σ∗ and σ′

with the following algorithm, respectively. Recall that
T = T (σ∗).

ja

3

4

5

6

7

8

9

10

.

ja−1 ja ja

sa sbsb−1 sb+1

Figure 5: This figure depicts an example for the adding
of large and small jobs, wherein we consider a chunk
C = {a, . . . , b} ∈ C with |C| = 3. The two jobs 3 and 4
are the large jobs, and the jobs 5, 6 . . . , 10 are the small
jobs in JC . We do not know anything about the shaded
boxes. Note that since ja = jb−1 = jb, we only use ja

to label the job corresponding to chunk C.

MRG(σ∗, σ′)

1. Set κ← σ∗ and κ′ ← σ′.

2. For t = 1, . . . , T :

(a) Set p ← maxj∈κ′(t) pjt(κ
′) to the maximal

remaining processing time of a job scheduled
by κ′ at time slot t. While there are jobs j ∈
κ(t)\κ′(t) and j′ ∈ κ′(t)\κ(t) with pjt(κ) =
pj′t(κ) = p, swap(κ, j, j′, t).

(b) Set K ← κ(t)\κ′(t) and K ′ ← κ′(t)\κ(t), and
associate each job j ∈ K with a job j′ ∈ K ′

with pj′t(κ) < pjt(κ) such that no two jobs in
K are associated with the same job.

(c) For each job j′ ∈ K ′ which was not associated
with a job j ∈ K, move(κ, j′, cj′ (κ), t).

(d) For each job j ∈ K, remove(κ, j, t),
move(κ, j′, t′, t), and trickle(κ′, j, t + 1),
whereas j′ ∈ K ′ is the job associated with
j and t′ ← cj′(κ).

3. Return κ and κ′.

We refer to an iteration of the loop in Step 2 simply
as an iteration, and we use the terms iteration and
time slot interchangeably. The main idea of algorithm
MRG is to transform κ and κ′ in each iteration t such
that ultimately κ(t) = κ′(t), whereas we iteratively
adapt κ(t) to κ′(t). More specifically, in Step 2a, we
swap jobs as often as possible to achieve this. On
the other hand, Step 2c is only important if initially
|κ′(t)| > |κ(t)|, since we can then simply adapt κ(t) to
κ′(t) by moving jobs to time slot t. Finally, in Step 2d,
we apply a more involved sequence of operations which
also decreases some remaining processing times with the
remove- and trickle-operations. The only problematic

step with respect to the correctness of algorithm MRG
is Step 2b, since we need to ensure that we can associate
the jobs K in the described way. Recall that ∆− =
cost(σ′) − cost(κ′) and ∆∼ = cost(σ∗) − cost(κ), and
that nt = nt(σ

∗), for each time slot t.
Example. Consider the SRPT schedule σ′ and the

optimal schedule σ∗ from Figure 1. Moreover, consider
the first iteration t = 1 when applying algorithm MRG
to these two schedules. We have in this iteration that
initially κ(t) = {1, 3} and κ′(t) = {1, 2}, and hence
K = {3} and K ′ = {2}. Since p3,1(κ) = 2 > p2,1(κ) =
1, no jobs are swapped with the swap-operation in
Step 2a, but we associate job j = 3 with job j′ = 2
in Step 2b. Consequently, in Step 2d, the remaining
processing times p3,1(κ) and p3,1(κ

′) are decreased by 1
with operations remove and trickle, respectively, and
we ultimately have due to the move-operation that job
j′ is scheduled by both schedules κ and κ′ at time slot
1. We obtain that κ and κ′ are now identical, and hence
all following iterations do not modify these schedules.

Lemma 3.3. If, just before some iteration t, (1) κ and
κ′ define the same instance after time slot t, and (2) κ′

is SRPT-scheduled after time slot t, then iteration t can
be executed in the described way.

Proof. We only need to show that we can associate the
jobs K in the way described in Step 2b, since all other
steps can then clearly be executed. By prerequisite (1),
we can abbreviate pjt = pjt(κ) = pjt(κ

′), for each job
j. On the other hand, by prerequisite (2), we have that
κ′ schedules as many jobs as possible at time slot t, and
hence |κ′(t)| ≥ |κ(t)|. Let now p be as defined in Step 2a.
Therefore, by prerequisite (2), we initially have before
Step 2a that {j ∈ κ(t) | pjt < p} ⊆ {j ∈ κ′(t) | pjt < p}.
Moreover, we have after Step 2a that one of the two
sets {j ∈ κ(t) | pjt = p} and {j ∈ κ′(t) | pjt = p}
is contained in the other one. Consequently, by the
setting of K and K ′ in Step 2b, we find that pj′t < pjt,
for each pair of jobs j′ ∈ K ′ and j ∈ K. On the other
hand, since initially |κ(t′)| ≥ |κ(t)|, we still have that
|K ′| ≥ |K|. By combining these facts, we obtain that
we can associate the jobs K with some jobs in K ′ in the
way described in Step 2b. �

Lemma 3.4. Algorithm MRG terminates correctly,
and, just before each iteration t, (1) κ and κ′ are identi-
cal at each time slot s < t, (2) κ and κ′ define the same
instance after time slot t, and (3) κ′ is SRPT-scheduled
after time slot t.

Proof. We show via induction on the iterations that the
three parts of the claim hold just before each iteration
t. Using Lemma 3.3 during this induction also gives the
correctness of algorithm MRG.

Induction start. The three parts hold just before
iteration t = 1, since κ′ is initially SRPT-scheduled and
pj1(κ) = pj1(κ

′) = pj , for each job j.
Induction step. Consider a fixed iteration t, and

assume as induction hypothesis that the three parts hold
just before iteration t. We will show that they then still
hold just before iteration t + 1. To this end, recall that
the purpose of the sequence of operations in Step 2d is
to ensure that job j′ ∈ K ′ is scheduled by κ at time
slot t instead of job j ∈ K, which, in combination
with Steps 2a and 2c, implies that κ(t) = κ′(t) after
iteration t. This shows that part (1) still holds just
before iteration t + 1. However, to do so, we need
to decrease pjt(κ) with the remove-operation, since
this gives us some extra scheduling capacity at time
slot t, which we use to schedule job j′ with the move-
operation there. Likewise, we use the trickle-operation
to also decrease pjt(κ

′). This ensures that still pjt(κ) =
pjt(κ

′) afterwards, and hence, since κ(t) = κ′(t), also
pjt+1(κ) = pjt+1(κ

′). Consequently, also part (2) still
holds just before iteration t + 1. Moreover, by the
definition of operation trickle, we have that κ′ is still
SRPT-scheduled after time slot t + 1, which finally
implies that part (3) still holds just before iteration t+1.
Combining all this proves the induction step. However,
it is not clear that all prerequisites of the trickle-
operation are satisfied. The prerequisite rj ≤ t + 1
is clearly satisfied, and we moreover know from the
induction hypothesis that κ′ is SRPT-scheduled after
time slot t + 1. Consequently, we only need to show in
the next paragraph that pjt+1(κ

′) > 1.
Note that fjt(κ

′) ≥ t + 1, since otherwise j ∈ κ′(t),
and in this case, we have that j 6∈ K because of the
setting of K in Step 2b. Assume now for contradiction
that pjt+1(κ

′) = 1. Since fjt(κ
′) ≥ t + 1, it holds

that pjt(κ
′) = pjt+1(κ

′), and consequently, because
of part (2) of the induction hypothesis, we have that
pjt(κ) = pjt(κ

′) = 1 as well. On the other hand, since
fjt(κ

′) ≥ t + 1, rj ≤ t, and pjt(κ
′) = 1, part (3) of the

induction hypothesis implies that all jobs scheduled by
κ′ at time slot t must be completed at this time slot, and
therefore p = 1. Consequently, because of Step 2a and
the setting of K in Step 2b, we have that j 6∈ K, which
gives a contradiction. We conclude that pjt+1(κ

′) > 1.
�

Lemma 3.5. Just before each iteration t, we have that
nt+1(κ

′) ≤ nt+1.

Proof. By part (2) of Lemma 3.4, we have that nt(κ) =
nt(κ

′). Consequently, by part (3), it follows that
nt+1(κ) ≥ nt+1(κ

′). On the other hand, since initially
nt+1(κ) = nt+1, and we clearly never increase nt+1(κ)
with any of the invoked operations during algorithm

MRG, we have that nt+1(κ) ≤ nt+1. Combining these
facts completes the proof of the claim. �

Lemma 3.6. ∆− −∆∼ ≤ OPT

Proof. Recall that ∆− and ∆∼ increase exactly as
cost(κ′) and cost(κ) decrease, respectively. First, since
cj′(κ) > t, note that the move-operation in Step 2c
cannot increase cost(κ), which holds for the remove-
operation in Step 2d as well. Consequently, since we
want to upper bound ∆−−∆∼, we only need to consider
the trickle- and move-operation in Step 2d. Consider
now a fixed iteration t and a fixed job j ∈ K in
this iteration. By Lemma 3.1, we have that cost(κ′)
decreases by at most nt+1(κ

′)/m+1 due to the trickle-
operation in Step 2d. On the other hand, since t <
t′ = cj′(κ), we also have that cost(κ) decreases then
by at least 1 due to the move-operation in the same
step. Consequently, since clearly nt+1 ≤ nt, Lemma 3.5
implies that ∆− − ∆∼ increases by at most nt/m for
job j. Thus, because |K| ≤ m in each iteration, by
summing this up for all iterations and all jobs j ∈ K
in the respective iterations, we obtain that ∆− −∆∼ ≤
∑∞

t=1 nt, which proves the claim in combination with
the alternative definition of the objective function (2.1).
�

Theorem 3.2. SRPT is 2-competitive for completion
time scheduling.

Proof. It follows from parts (2) and (3) of Lemma 3.4
that ultimately κ = κ′, and hence, Equation (3.2)
indeed holds. Therefore, the claim of the theorem
follows from Lemma 3.6. �

3.3 Construction of σ from σ∗. In this subsection,
using a random variable X with 0 < X ≤ 1, we
randomly construct a schedule σ from σ∗, wherein
we also construct two functions A : {1, . . . , T} →
{1, . . . , 2T } and B : {1, . . . , T} → {1, . . . , 2T }. Recall
that T = T (σ∗) and ns = ns(σ

∗), for each time
slot s. Given a sequence of i.i.d random variables
X1, X2, . . . , XT which are distributed as X , we first
construct a function π : {1, . . . , T} → {2, . . . , T + 1}
as follows: For each 1 ≤ s < T , let π(s) := i + 1, where
s + 1 ≤ i ≤ T is such that

ni+1

ns+1
< Xs ≤

ni

ns+1
.

Moreover, define π(T) := T+1. We illustrate the setting
of π(s) in Figure 6.

Let then A and B be the two injective functions
with A({1, . . . , T}) ∪ B({1, . . . , T}) = {1, . . . , 2T } and
B(s) > A(s), for each 1 ≤ s ≤ T , that, for each pair
1 ≤ s < s′ ≤ T , satisfy the following three properties:

ns+1

ns+1
= 1

nT−1

ns+1

nT

ns+1

nT+1

ns+1
= 0 . . .

7

Figure 6: Assume that the random variable X has the
density function x 7→ 7(1−x)6, whose graph is depicted
in this figure. Then, for each s + 1 ≤ i ≤ T , the area
below this curve between ni+1/ns+1 and ni/ns+1 is the
probability that π(s) = i + 1.

(1) A(s) < A(s′),

(2) B(s) < B(s′)⇐⇒ π(s) < π(s′),

(3) B(s) < A(s′)⇐⇒ π(s) ≤ s′.

Combining all these properties clearly defines A and B.
Let A and B also denote the images A({1, . . . , T}) and
B({1, . . . , T}) of the functions A and B, respectively.
Let now σ such that, for each 1 ≤ s ≤ T , σ(A(s)) =
σ∗(s) and σ(B(s)) = ∅, and, for each t > 2T , σ(t) = ∅.
Observe that nA(s)(σ) = ns and nB(s)(σ) = nπ(s).
Finally, define the function C : A → B as C(t) :=
B(A−1(t)). We also refer to C(t) as the buffer slot of
time slot t. Recall that ∆+ = cost(σ) − cost(σ∗). This
construction is best illustrated with an example.

Example. Assume that σ∗ is the optimal schedule
from Figure 1. In this case, we have that T = 4, n1 = 7,
n2 = 6, n3 = 4, n4 = 2, and n5 = 0. Moreover, assume
that X1 = 1/2 and X2 = 2/3. In this case, we have
that π(1) = π(2) = 4. Note that, independent of the
outcome of X3 and X4, we have that π(3) = π(4) = 5.
We illustrate the resulting functions A, B, and C in
Figure 7, where we also illustrate the resulting schedule
σ. We have that A = {1, 2, 3, 6} and B = {4, 5, 7, 8}.

Note that ∆+ = cost(σ)− cost(σ∗) =
∑4

s=1 nB(s)(σ) =
2 + 2 + 0 + 0 = 4.

Lemma 3.7. E [∆+] ≤ E [X]OPT

To prove Lemma 3.7, we apply the following lemma,
which we also need in Section 3.5.

3 3

1 2 4 6

5 7

C(1)C(2) C(6) C(3)

A(1) A(2) A(3) B(2) B(1) A(4) B(4) B(3)

Figure 7: The schedule σ from σ∗ for X1 = 1/2 and
X2 = 2/3. The bended arcs represent the function C.

Lemma 3.8. For each pair 1 ≤ s < s′ ≤ T + 1,

E
[

nπ(s)

∣

∣ π(s) ≤ s′
]

< ns+1E

[

Xs |
ns′

ns+1
< Xs ≤ 1

]

.

Proof. Observe that the claim of the lemma does not
make sense for s′ = s + 1, since it is then impossible
that π(s) ≤ s′. However, this case is never needed in
what follows, and hence, we use this notation for the
sake of simplicity.

First, note that, for each i with s + 1 ≤ i ≤ T ,

E

[

nπ(s)

∣

∣

ni+1

ns+1
< Xs ≤

ni

ns+1

]

= ni+1(3.7)

< ns+1E

[

Xs |
ni+1

ns+1
< Xs ≤

ni

ns+1

]

.

Using this, we obtain that

E
[

nπ(s)

∣

∣ π(s) ≤ s′
]

= E

[

nπ(s)

∣

∣

ns′

ns+1
< Xs ≤ 1

]

=

s′−1
∑

i=s+1

[

Pr

[

ni+1

ns+1
< Xs ≤

ni

ns+1

∣

∣

∣

∣

ns′

ns+1
< Xs ≤ 1

]

·E

[

nπ(s)

∣

∣

ni+1

ns+1
< Xs ≤

ni

ns+1

]]

< ns+1E

[

Xs |
ns′

ns+1
< Xs ≤ 1

]

,

which proves the claim. The first line is due to
the definition of π. Finally, the third line is due to
Inequality (3.7). �

Proof. [Lemma 3.7] We have that

E
[

∆+
]

= E

[

T
∑

s=1

nB(s)(σ)

]

=

T
∑

s=1

E
[

nπ(s)

]

<

T
∑

s=1

ns+1E [X]

≤ E [X]OPT,

which proves the claim. The first line is due to the
alternative definition of the objective function (2.1)
and the fact that ∆+ results from the insertion of the
additional buffer slots B. The second line is due to
the fact that nB(s)(σ) = nπ(s), for each 1 ≤ s ≤ T ,
and linearity of expectation. The third line is due to
Lemma 3.8 for s′ = T + 1, since then ns′/ns+1 = 0,
and finally, the fourth line is due to the simple fact that
ns+1 ≤ ns and the alternative definition of the objective
function (2.1). �

3.4 Merging σ and σ′ to form κ. In this subsec-
tion, we extend algorithm MRG from Section 3.2 in
order to merge σ and σ′. Specifically, we replace σ∗ by
σ in the input, loop in Step 2 over the range 1, . . . , 2T
instead of 1, . . . , T , and finally, we replace the sequence
of three operations in Step 2d by the following case dis-
tinction, where additional inputs include the sets of time
slots A and B, and the function C : A → B defined in
Subsection 3.3.

Case (Bad) t ∈ B or C(t) > t′:

remove(κ, j, t), move(κ, j′, t′, t), and
trickle(κ′, j, t + 1).

Case (Good) t ∈ A and C(t) < t′:

First, move(κ, j′, t′, C(t)). Afterwards, set W ←
{i ∈ κj | i ≥ t} and W ′ ← {i ∈ κj′ | i ≥ t}
to the time slots when jobs j and j′ are scheduled
by κ after time slot t, respectively, and set W ←
(W ∪W ′)\(W ∩W ′) to the time slots among these
time slots when exactly one of them is scheduled.
Modify κ at time slots W such that j′ is scheduled
at these time slots before j, i.e., such that i′ ≤ i,
for each pair i′ ∈ κj′ ∩W and i ∈ κj ∩W . (Observe
that this transformation is closely related to the
transformation of σ∗ for m = 1 given in the very
beginning of this section.)

Let MRG’ denote the resulting algorithm. We still
refer to an iteration of the loop in Step 2 simply as

an iteration. As in algorithm MRG, the main idea
of algorithm MRG’ is to transform κ and κ′ in each
iteration t such that ultimately κ(t) = κ′(t). Note that
if we are in the Bad Case, then we proceed exactly as
in algorithm MRG. On the other hand, if we are in
the Good Case, then we do not decrease any processing
time of a job in κ or κ′, but simply use the initially
empty buffer slot C(t) to modify κ. Observe that κ′ is
not modified at all in the Good Case, and that, since
pj′t(κ) < pjt(κ), cost(κ) can only decrease. Moreover,
note that due to the fact that j′ ∈ K ′, we have that
t ∈ W , which implies that job j′ is finally scheduled at
time slot t by κ instead of job j. On the other hand,
due to the initial move-operation, we also have that
C(t) ∈ W . Finally, observe that one less and one more
job is scheduled at time slots t′ and C(t), respectively.
Analogously to Lemma 3.4, the following lemma holds.

Lemma 3.9. Algorithm MRG’ terminates correctly,
and ultimately κ = κ′. Moreover, just before each it-
eration t, we have that nt+1(κ

′) ≤ nt+1(σ).

Proof. The claim can be proven by using the same
arguments as in the proofs of Lemmas 3.3, 3.4, and 3.5.
We only need to argue that they extend to the additional
Good Case.

First, Lemma 3.3 extends to the Good Case since
it follows from the definition of algorithm MRG’ that
the buffer slot C(t) is empty just before iteration t, and
hence, we never have that C(t) = t′. Consequently, the
case distinction in Step 2d is correct, and therefore, it-
eration t can be executed in the described way. Second,
since Lemma 3.3 extends to the Good Case, Lemma 3.4
extends to the Good Case as well. To see this, observe
that we can simply extend the induction step to the
Good Case. Specifically, recall that whenever we run
into the Good Case, then we ultimately have that job
j′ is scheduled at time slot t instead of job j, which is
exactly what we need to ensure that finally κ(t) = κ′(t).
Moreover, we have that pjt(κ) does not change and κ′

is not modified at all. Finally, since Lemma 3.4 extends
to the Good Case, also Lemma 3.5 extends to the Good
Case, since we also clearly never increase nt+1(κ) with
any of the invoked operations during algorithm MRG’.
This completes the proof of the lemma. �

For each iteration t, let Rt be the multiset of
all considered time slots t′, i.e., t′ = cj′(κ) for the
considered job j ∈ K in Step 2d. Recall that a multiset
may contain elements more than once. Observe that
|Rt| ≤ m, since |K| ≤ m. Let then the multiset R′

t be
the time slots t′ ∈ Rt for which we run into the Bad

Case. Finally, for each t ∈ A ∪B, let

∆t := |R′
t|

nt+1(σ)

m
, and define ∆ :=

∑

t∈A∪B

∆t.

In the remainder of this subsection, we prove the
following lemma, which states that it suffices to bound
E [∆] in order to bound E [∆− −∆∼].

Lemma 3.10. E [∆− −∆∼] ≤ E [∆]

To prove Lemma 3.10, we need one preliminary lemma.

Lemma 3.11. ∆∼ ≥
∑

t∈A∪B |R
′
t|

Proof. We show that ∆∼ increases by at least |R′
t|

in each iteration t, which is equivalent to the claim
that cost(κ) decreases by at least |R′

t|. Recall that
we proceed as in algorithm MRG whenever we run
into the Bad Case, and we do this |R′

t| times in each
iteration t. Hence, by the arguments in the proof of
Lemma 3.6, we find that cost(κ) decreases by at least
|R′

t| during all Bad Cases. Therefore, we only need to
show that cost(κ) does not increase whenever we run
into the Good Case. However, since C(t) < t′, we have
that the initial move-operation in the Good Case does
not increase cost(κ). Moreover, since pj′t(κ) < pjt(κ),
we have that the modification of κ at time slots W even
decreases cost(κ), which completes the proof. �

Proof. [Lemma 3.10] Let ∆−
t be the change of ∆− in

iteration t. Hence,

(3.8) ∆− =
∑

t∈A∪B

∆−
t .

Now consider a fixed iteration t ∈ A ∪ B and the state
of κ′ just before this iteration. We then have that

∆−
t ≤ |R′

t|

(

nt+1(κ
′)

m
+ 1

)

(3.9)

≤ ∆t + |R′
t|.

The first line is due to Lemma 3.1 and the fact that
we apply the trickle-operation exactly |R′

t| times in
iteration t, one time for every time we run into the Bad
Case. Moreover, the second line is due to Lemma 3.9
and the definition of ∆t. Therefore, we even have that

∆− −∆∼ ≤
∑

t∈A∪B

[

∆−
t − |R

′
t|
]

≤ ∆,

which implies the claim of the lemma. The first line is
due to Equation (3.8) and Lemma 3.11, and the second
line is due to Inequality (3.9) and the definition of ∆.
�

3.5 Analysis of ∆ via two potentials. For each
pair t, i ∈ A ∪ B, define κt(i) := |κ(i)|, where we
consider here the state of κ just before iteration t. Using
this, we define two positive potentials, called A- and
B-potential, where the values of these potentials just
before iteration t ∈ A ∪B are

At :=
∑

i∈A:i≥t

κt(i)
ni(σ)

m
and Bt :=

∑

i∈B:i≥t

κt(i)
ni(σ)

m
,

respectively. Recall that σ is not modified during algo-
rithm MRG’. Analogously, define A2T+1 = B2T+1 := 0
to be the final value of these potentials after the last it-
eration 2T , respectively. Note that, for each iteration
t ∈ A ∪B,

(3.10) At −At+1 ≥ at and Bt −Bt+1 ≥ bt − ct,

where

at := χ[t ∈ A]|Rt|
nt(σ)

m
+

∑

t′∈Rt:t′∈A

nt′(σ)

m
,

bt := χ[t ∈ B]|Rt|
nt(σ)

m
+

∑

t′∈Rt:t′∈B

nt′(σ)

m
,

and

ct := |Rt\R
′
t|

nC(t)(σ)

m
.

The used function χ is the indicator function, i.e.,
χ[E] := 1 if some event E is true, and χ[E] := 0 if
E is false. Hence, at and bt − ct are lower bounds for
the change of the A- and B-potentials in iteration t,
respectively. Note that at, bt, ct ≥ 0, for each t ∈ A∪B,
and that ct = 0, for each t ∈ B, since then R′

t = Rt.
More specifically, the first parts of at and bt deal with
the potential changes due to the fact that we sum in
both potentials with i ≥ t, and hence the current t will
not be an index of this sum in the next iteration. The
second part deals with the change due to transforming
κ. Specifically, for each t′ ∈ Rt, one less job is scheduled
by κ at time slot t′. But on the other hand, if t′ ∈ Rt\R′

t,
then one more job is scheduled by κ at time slot C(t) ∈
B, which motivates the definition of ct. Note that it is
possible that Inequalities (3.10) are not tight in some
iteration t. This happens exactly if |K| < m.

Assume that all decisions in algorithm MRG’
are implemented in a deterministic way. Specifically,
assume that whenever ties are broken arbitrarily when
selecting a job, we select the smallest labeled job.
Therefore, the states of the schedules κ and κ′ during
algorithm MRG’ only depend on the i.i.d random
variables X1, X2, . . . , XT . Observe that this holds as
well for the random variables at, bt, ∆t, and ct, t ∈

A∪B. We need two preliminary lemmas to upper bound
E [∆] with respect to OPT. The first preliminary lemma
characterizes the initial values of the two potentials, and
the second preliminary lemma describes their expected
change ’over time’.

Lemma 3.12. We have that A1 ≤ OPT and B1 = 0.

Proof. The first part follows from the alternative defi-
nition of the objective function (2.1) and the fact that
κ1(t) ≤ m, for each time slot t ∈ A. The second part
follows from the fact that κ1(t) = 0, for each time slot
t ∈ B. �

Lemma 3.13. For each 1 ≤ s ≤ T ,

E
[

∆A(s) + cA(s)

]

≤ B [X] E
[

aA(s) + bA(s)

]

and
E

[

∆B(s)

]

≤ E
[

bB(s)

]

.

Proof. Note that R′
B(s) = RB(s), for each 1 ≤ s ≤ T .

Consequently, the second part of the claim follows from
the simple fact that nB(s)+1(σ) ≤ nB(s)(σ). Therefore,
it only remains to prove the first part.

Consider a fixed 1 ≤ s ≤ T , and let t := A(s).
Observe that the random variables π(1), π(2), . . . , π(s−
1) define the outcome of the random multiset

Qs := {A−1(t′) | t′ ∈ Rt∩A}∪{π(B−1(t′)) | t′ ∈ Rt∩B},

since these are the variables that define the rel-
ative positions of the previously used buffer slots
C(1), C(2), . . . , C(s − 1). However, Qs is independent
of the random variables π(s), π(s + 1), . . . , π(T), since
the buffer slots C(s), C(s + 1), . . . , C(T) > t have not
been used so far, but they might only ’stretch’ σ at the
time slots t+1, t+2, . . . , 2T . Specifically, we could also
remove these slots again without affecting Qs.

Consider now a fixed outcome of Qs, say Q, and a
fixed s′ ∈ Q. Let t′ be the element in Rt corresponding
to s′ due to the definition of Qs, and define the random
variable Ys′ as

Ys′ := χ[t′ ∈ R′
t]

nt+1(σ)

m
+ χ[t′ ∈ Rt\R

′
t]

nC(t)(σ)

m
,

where χ is the indicator function. Recall that t′ ∈ R′
t

if and only if we run into the Bad Case for t′. Since
t ∈ A, this is equivalent to C(t) > t′, and hence to
π(s) > s′. Moreover, recall that ns+1 = nt+1(σ) and
nπ(s) = nC(s)(σ). By combining these facts, we can
rewrite Ys′ as

Ys′ = χ[π(s) > s′]
ns+1

m
+ χ[π(s) ≤ s′]

nπ(s)

m
.

Using this and the fact that the random variable π(s)
and hence Xs is independent of s′, we find that

(3.11)

E [Ys′] = Pr [π(s) > s′]
ns+1

m

+Pr [π(s) ≤ s′] E
[nπ(s)

m

∣

∣

∣ π(s) ≤ s′
]

<
ns+1

m

(

Pr

[

0 < Xs ≤
ns′

ns+1

]

+Pr

[

ns′

ns+1
< Xs ≤ 1

]

E

[

Xs |
ns′

ns+1
< Xs ≤ 1

])

≤
B [X]ns+1

m

(

1 +
ns′

ns+1

)

≤ B [X]
(ns

m
+

ns′

m

)

.

The second line is due to Lemma 3.8 and the definition
of the function π. Moreover, the third line due to the
definition of B [X], and the fourth line is due to the
simple fact that ns+1 ≤ ns. Using this, we obtain that

E [∆t + ct | Qs = Q] =(3.12)

E

∑

s′∈Qs

Ys′

∣

∣

∣

∣

∣

∣

Qs = Q

=
∑

s′∈Q

E [Ys′]

≤ B [X]

|Q|
ns

m
+

∑

s′∈Q

ns′

m

= B [X] E [at + bt | Qs = Q] .

The first line is due to the definition of Ys′ , and the
second line is due to linearity of expectation and the
fact that π(s) is independent of Qs. Moreover, the third
line is due to Inequality (3.11). Finally, the fourth line
is due to the definitions of at and bt in combination
with the fact that the outcome of the sum of these two
random variables is completely defined by Qs. Using
Inequality (3.12), we conclude that

E [∆t + ct] = E [E [∆t + ct | Qs]] ≤ B [X]E [at + bt] ,

which completes the proof of the lemma. �

Lemma 3.14. E [∆] ≤ B [X]OPT

Proof. We have that

E [∆] =
T

∑

s=1

E
[

∆A(s)

]

+
T

∑

s=1

E
[

∆B(s)

]

≤
T

∑

s=1

B [X]E
[

aA(s) + bA(s)

]

−
T

∑

s=1

E
[

cA(s)

]

+

T
∑

s=1

E
[

bB(s)

]

≤ B [X]E

[

2T
∑

t=1

at

]

+ E

[

2T
∑

t=1

[bt − ct]

]

≤ B [X]E [A1 −A2T+1] + E [B1 −B2T+1]

≤ B [X]OPT,

which proves the claim. The first line is due to linearity
of expectation, and the second line is due to Lemma 3.13
and linearity of expectation. Moreover, the third line is
due to a simple reordering using linearity of expectation,
the facts that B [X] ≤ 1, and moreover cB(s) = 0, and
aB(s) ≥ 0, for each 1 ≤ s ≤ T . The forth line is due
to Inequalities (3.10), which characterize the change of
the potentials over time. Finally, the fifth line is due to
Lemma 3.12. �

Proof. [Theorem 3.1] We have that

SRPT−OPT = E [SRPT−OPT]

= E
[

∆+ + ∆− −∆∼
]

≤ E
[

∆+ + ∆
]

≤ (E [X] + B [X])OPT.

In the first line, we simply take the expected value
of a constant value, which we can interpret as a ran-
dom variable with constant outcome. We know from
Lemma 3.9 that ultimately κ = κ′, and hence, Equa-
tion (3.3) indeed holds. The second line follows from
this fact. The third line is due to Lemma 3.10. More-
over, the fourth line is due to linearity of expectation
and Lemmas 3.7 and 3.14. Using this, we obtain that
SRPT/OPT ≤ 1+E [X]+B [X], which proves the claim.
�

4 Conclusions

In this paper, we gave the first proof that the compet-
itive ratio of SRPT for completion time scheduling is
bounded by a constant smaller than 2 for any number
of processors. Specifically, we gave the bound 1.86. The
main idea was to randomly insert buffer slots. This idea
can be extended such that in addition to inserting one
buffer slot for each original time slot, we also insert a
buffer slot for each buffer slot in the same way, and so

on. If we do so, then the standard transformation of

the geometric series gives E [∆+] ≤ E[X]
1−E[X]OPT instead

of E [∆+] ≤ E [X]OPT. However, we conjecture that
this could help to significantly improve the bound on
the competitive ratio of SRPT, but might be challeng-
ing technically. Another way to improve this result is to
find a better random variable X , or even one that min-
imizes B [X]. The used random variable, whose density
function is illustrated in Figure 6, was found by heuristic
search.

5 Acknowledgment

The authors would like to thank anonymous referees
for their helpful comments, which significantly improved
the exposition of this paper.

References

[1] Afrati, F. N., Bampis, E., Chekuri, C., Karger,

D. R., Kenyon, C., Khanna, S., Milis, I.,

Queyranne, M., Skutella, M., Stein, C., and

Sviridenko, M. Approximation schemes for mini-
mizing average weighted completion time with release
dates. In Proceedings of the 40th Annual Symposium on
Foundations of Computer Science (FOCS’99) (1999),
pp. 32–44.

[2] Anderson, E. J., and Potts, C. N. On-line schedul-
ing of a single machine to minimize total weighted com-
pletion time. Proceedings of the 13th ACM-SIAM Sym-
posium on Discrete Algorithms (SODA ’02) (2002), 548
– 557.

[3] Correa, J., and Wagner, M. R. Lp-based online
scheduling: From single to parallel machines. Proceed-
ings of the 11th Conference on Integer Programming
and Combinatorial Optimization (IPCO ’05) (2005),
196 – 206.

[4] Du, J., Leung, J. Y.-I., and Young, G. H. Min-
imizing mean flow time with release time constraint.
Theoretical Computer Science 75, 3 (1990), 347–355.

[5] Graham, R. L., Lawler, E. L., Lenstra, J. K.,

and Rinnooy Kan, A. H. G. Optimization and ap-
proximation in deterministic sequencing and schedul-
ing theory: a survey. Annals of Discrete Mathematics
5 (1979), 287 – 326.

[6] Hall, L. A., Schulz, A. S., Shmoys, D. B., and

Wein, J. Scheduling to minimize average completion
time: Off-line and on-line approximation algorithms.
Mathematics of Operations Research 22 (1997), 513 –
544.

[7] Hoogeeveen, J. A., and Vestjens, A. P. A. Op-
timal on-line algorithms for single-machine schedul-
ing. Proceedings of the 5th Conference on Integer
Programming and Combinatorial Optimization (IPCO
’96) (1996), 404 – 414.

[8] Labetoulle, J., Lawler, E. L., Lenstra, J. K.,

and Rinnooy Kan, A. H. G. Preemptive schedul-

ing of uniform machines subject to release dates. In
Progress in Combinatorial Optimization (1986), Aca-
demic Press, Inc., pp. 245 – 261.

[9] Lenstra, J. K., Rinnooy Kan, A. H. G., and

Brucker, P. Complexity of machine scheduling
problems. Annals of Discrete Mathematics, 1 (1977),
343 – 362.

[10] Liu, P., and Lu, X. On-line scheduling of parallel ma-
chines to minimize total completion times. Computers
and Operations Research 36, 9 (2009), 2647 – 2652.

[11] Lu, X., Sitters, R., and Stougie, L. A class of on-
line scheduling algorithms to minimize total completion
time. Operations Research Letters 31, 3 (2003), 232–
236.

[12] Megow, N., and Schulz, A. S. On-line scheduling
to minimize average completion time revisited. Opera-
tions Research Letters, 32 (2004), 485 – 490.

[13] Phillips, C., Stein, C., and Wein, J. Scheduling
Jobs That Arrive Over Time. In Proceedings of the 4th
Workshop on Algorithms and Data Structures (WADS
’95) (1995), vol. 955 of Lecture Notes in Computer
Science, Springer Verlag, pp. 86 – 97.

[14] Phillips, C. A., Stein, C., and Wein, J. Minimizing
average completion time in the presence of release
dates. Mathematical Programming 82 (1998), 199 –
223.

[15] Pruhs, K., Torng, E., and Sgall, J. Handbook
of Scheduling: Algorithms, Models, and Performance
Analysis, ed. Joseph Y.-T. Leung. CRC Press, 2004,
ch. Online scheduling, pp. 15–1 – 15–41.

[16] Queyranne, M. Structure of a simple scheduling
polyhedron. Mathematical Programming 58 (1993),
263 – 285.

[17] Schrage, L. A proof of the optimality of the short-
est remaining processing time discipline. Operations
Research, 16 (1968), 199 – 223.

[18] Schulz, A. S., and Skutella, M. The power of α-
points in preemptive machine scheduling. Journal of
Scheduling, 5 (2002), 121 – 133.

[19] Sitters, R. Complexity and approximation in routing
and scheduling. PhD thesis, Eindhoven University of
Technology, 2004.

[20] Stein, C., 2008. personal communication.
[21] Vestjens, A. P. A. On-line machine scheduling. PhD

thesis, Eindhoven University of Technology, Nether-
lands, 1997.

	Connecticut College
	Digital Commons @ Connecticut College
	1-1-2010

	SRPT Is 1.86-competitive for Completion Time Scheduling
	Christine Chung
	Tim Nonner
	Alexander Souza
	Recommended Citation

	SRPT Is 1.86-competitive for Completion Time Scheduling
	Keywords
	Comments

