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The most frequently used device for exchanging data between computers is the floppy
disc. This is especially true for portable machines and laptops. Keeping the data on the
portable device and on the base desktop machine up to date – to synchronize them – is
tiresome, to say the least. You insert the floppy into the laptop, copy the data, floppy
out, floppy into the desktop, copy, floppy out and into the laptop again, endlessly. Of
course, this works only if there is no data error, and the files are not too large. Using a
cable this can be done much easier. There are hundreds of excellent utilities which use
a serial cable to perform the data exchange. Unfortunately, the new machines have no
old-fashioned serial ports anymore, thus these programs cannot be used either. Nev-
ertheless, they still have the parallel-port connection which usually used for printing.
Can this facility be used for communication between two machines? If yes, will it be
reliable? What the communication speed will be? We have made a trial connection ca-
ble, and wrote the communication programs. Designing the communication protocol
was the most interesting part of the whole project. We hope that this short account will
be useful for those who are interested in how protocols are designed.

1 Connection cable

The cable connects the parallel ports of two machines. Originally the port was de-
signed for one-way communication: by assumption the computer sends data to a printer
through this port. During data transmission eight bits are sent simultaneously; this fea-
ture gave the name, as data is transmitted parallelly, as opposed to serial transmission,
when bits are sent one by one. The receiving device provides a feedback through a few
pins. The connectors have 25 pins. Out of them 12 pins hold output signals: eight for
data, and four for control. Input, or feedback signals use 5 pins, the rest of the pins is
grounded. For the connection we used a cable of 5 wires. One out of the five was used
as ground, two for communication in one direction, and two wires for communication
in the other direction. The cable is symmetric, we put 25-pin connectors at both end,
and had a small box full of resistors at the middle of the cable. The general layout is
sketched on figure 1. Resistors RA are there for safety reasons only; the electronics
inside the machines should be safe even in case of a short-cut. Resistors RB are there
to make sure that the pins are not “floating” even if there is no connection.
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Figure 1: The cable

Parallel ports are handled by writing and reading data from three consecutive port
addresses. These addresses will be denoted by b

�
0, b

�
1 and b

�
2, respectively.

The standard value for b is 378h in hex, or 888 in decimal; sometimes the value 4BDh
(or 956 in decimal) is used as well. Bits written to the port b

�
0 appear on pins 2–9.

Values of pins 13 and 12 can be recovered by reading from port b
�

1; the fifth and
sixth bit (corresponding to 16 and 32) gives them. Thus our cable is used as follows:
sending out 00, 01, 10, or 11, one must write 0, 1, 128, or 129, respectively to port
address b

�
0. Reading from port b

�
1 and masking the value by � 16

�
32 � , these

values appear as 0, 16, 32, and 48. Consequently the cable can transmit two bits in
both directions simultaneously.

Thus we had the cable, and wanted to use it to transfer data. We have faced two
problems:

� How the machines will recognize that they are connected and can start transmit-
ting data, even if we don’t know which machine will start earlier; and

� How to send the data? How the sender and receiver should work together? How
to make the transfer fast enough, but still allow for error detection?

Our attempts to solve these problems are described in the subsequent sections.

2 Establishing connection

Before starting data transmission, both machines must check that the corresponding
communication program is also running on the other side. This, however, is not
enough: the programs must agree that the communication can be started, and have
a consensus on who starts the dialog. We designed our protocol in a way that it should
work under the following conditions:

� the communication program can be started first on any of the machines;
� when starting the program, the input bits on the cable can be anything;
� do not make any assumption on the speed of the machines.

2



2.1 First attempt

Our first protocol is symmetric, which means that both parties do the same thing. The
protocol has the drawback that the program must know the initial state of the two output
bits it has command of. This information might be recovered by reading from the port
b
�

0, but this not always works. At the description of the protocol the participants are
Alice and Bob, as usual.

1. read in both the input and the output bits;
2. change the output bits as follows: if it was 01 then change it to 10,

otherwise change it to 01;
3. wait until the input bits change from the ones read at step 1;
4. write out 00;
5. wait until the input bits become 00.

Protocol 1: Symmetric handshaking

Suppose both machines are running protocol 1. After starting, both of them are
waiting in step 3 for the other to change the bits on the input pins. As the protocol is
symmetric, we may assume that Alice starts sooner. She sets her output either to 01 or
to 10, and in waits in step 3 for her input to change. Meanwhile Bob starts the protocol,
too. He also reads his input, where he finds either the value what Alice set in step 2, or
the value which was there before that; after that he changes his output. Alice notices
this change and she writes out 00 in step 4. Bob waits for his input to change. Now it
changes, so Bob also advances in the protocol, and writes out 00. Alice is waiting for
00 in step 5, it arrives, thus Alice finishes the protocol. Bob in step 5 checks his input,
which is also 00, and Bob finishes the protocol, too. At this point both participants
know that the connections has been established, and the communication may start.

The protocol works fine even if Alice and Bob starts exactly at the same moment,
or if one of them is much slower than the other. Both of them advances from step 3
only when the other party executed either the second or the fourth step – thus know that
the other works as well. Alice and Bob completes the protocol almost simultaneously:
the difference is the time necessary to read the input and check it.

2.2 How to improve it?

During our first protocol 1 both participants were waiting for the other to change his
(or her) output. This can be done only if they know what their output was. We would
like to improve the protocol so that they should not know this information. The idea
is that Alice relates the input what she sees and the output what she controls in a
certain way, and Bob does the same. We choose two relations so that they cannot hold
simultaneously, thus one of them should change the output, which will be recognized
by the other. The improved protocol 2 is symmetric, too. Both parties use the value 00
to signal that the connection has been established.

Both parties set their output to a value different from 00 in step 2, and it is set to 00
(in step 4 or 6) only after the input changed. That is, when they are convinced that they
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1. read the input; let us denote it by xx;
2. depending on xx determine the output bits as follows:

xx: 00 01 10 11
output: 01 10 11 01

3. wait until the input changes compared to xx

4. let the new input be yy. If yy=00, then write out 00, and continue the
protocol at step 7. If yy differs from this, then, depending on yy and on
the the previous output, determine the next output as follows:

Previous output: 01 10 11

01 10 01 01
yy: 10 10 11 10

11 11 11 01

5. wait again until the input changes compared to the one read in step 3;
6. write out 00;
7. wait until the input becomes 00.

Protocol 2: Improved handshaking

can communicate with the other party. Thus if the protocol stops, both participant is
prepared, and they know this fact about their partner, too. Thus we need to check only
that the protocol will eventually stop.

It cannot happen that both Alice and Bob are waiting at step 3. Indeed, if Alice
is waiting here, then she set her output bits at step two, thus those must be 01, 10,
or 11. Similarly, Bob also set his output sometimes earlier to one of 01, 10, or 11.
Consequently Alice read one of these values in step 1, as her input bits did not change
since then. What Alice sees determines what she set in step two, this is put in the left
hand side of this table.

Alice sees: 01 10 11 Bob sees: 10 11 01
Alice sets: 10 11 01 Bob sets: 11 01 10

The same is true for Bob, which is shown on the right hand side. But this situation is
impossible, as Alice sees what Bob set, and Bob sees what Alice set. If, for example,
Alice sees 01, then she set 10, and then Bob sees this, and responds by 11– and not by
01. Thus it cannot happen that both of them are waiting in step 3, one of them will go
further, say it is Alice.

The value what Alice reads in in step 3 must be the value what Bob wrote on step
2 – as we assumed that Bob is not over step 3 yet. Nevertheless Bob has started the
protocol, and in the first step he read either the original value on the wire, or the value
what Alice wrote in the second step. In the fourth step Alice chooses a value which
makes Bob’s input change in both cases. Thus Bob – sooner or later – will recognize
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that his input changed, and continues at step 4. The value yy what he has read is either
the value Alice wrote just right now, or it could also be Alice’s output from step 2.
Nevertheless, Bob changes his output. Alice waits for this in step 5, and writes 00 –
changing Bob’s input once again. Bob recognizes the change, writes 00, and then the
protocol ends.

Our analysis shows that in step 4 the input cannot be 00, thus we do not need
to handle this case. Also, Alice and Bob finishes the protocol about the same time,
similarly to the previous protocol 1.

Step 5 can be executed first by either Alice or Bob, and who is the latter one sees
00 as his (or her) input, does not wait at step 7, and finishes the protocol. But who will
it be depends on several random factors, such as starting time, speed of machines, how
the steps of the two executions overlap. Nevertheless we do need that the one who sets
first the output to zero is always Alice, and then Bob responds by setting his output to
zero as well. To achieve this we have to break the symmetry of the protocol as follows.

1–5. same as in protocol 2;
6. let the new input be zz. If zz is not zero, then go to step 11, otherwise

continue at step 7;
7. output 00;
8. wait until the input becomes 11;
9. output 11;

10. wait until the input becomes 01;
11. output 00;
12. wait until the input becomes 00.

Alice’s steps

1–5. same as in protocol 2;
6. let the new input be zz. If zz=00, then go to step 13, otherwise continue

at step 7;
7. output 00;
8. wait until the input becomes 00;
9. output 11;

10. wait until the input becomes 11;
11. output 01;
12. wait until the input becomes 00;
13. output 00.

Bob’s steps

Protocol 3: Improved handshaking

If Alice’s input at step 5 is not 00, then she set her output to 00 first, and then the
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protocol can be finished in a straightforward way. If she reads 00 then Bob is ahead of
her, and in step 8 he waits for Alice to write out 00. She does it in step 7, for which
Bob responds by 11. This is followed by Alice’s 11, then Bob’s 01. Now Alice outputs
00, and Bob answer this in step 13 by writing 00. We plot the events on a time-scale
what happens when Bob reads a value different from 00 in step 6:

step: 4. 5. 6. 7. 8. 9. 10. 11. 12.
Alice: zz .. .. 00 .. 11 .. 00 ..

Bob: .. .. 00 .. 11 .. 01 .. 00

step: 5. 6. 7 8. 9. 10. 11. 12. 13.

3 Data transmission

Sending data can be started as soon as the connection has been established. In protocol
design, we aimed one-way transmission only. In all cases the sender sends a complete
file, and after the connection will be disconnected. We do not have any special proce-
dure for breaking the connection, simply quit the communication program. As always
Alice wants to send data to Bob, we should not handle the case when both parties start
the sending protocol simultaneously, or within a very short time frame.

3.1 Sending a bit

When the connection has been established, in both directions the wire contains 00.
When Alice wants to send something, she changes her value. Bob recognizes the
change, and using his wires, tells Alice that the data has arrived. Now Alice reset
her data to 00 and waits until Bob does the same. During such a cycle Alice can send
three different values depending on how she changes her output. The time flow is de-
picted on figure 4. Here xx is one of 01, 10, or 11; Bob signals receiving data by
writing 11 to the output. Using this protocol we can send bits – for example 01 means

Alice: 00 .. xx .. 00 ..

Bob: .. 00 .. 11 .. 00

Protocol 4: Sending a bit

0, while 10 means 1. The complete file should be rearranged from the received bits by
Bob.

3.2 A full byte at once

Protocols sending a full byte at a single round are better suited for file transmission.
We can design one by modifying the previous bit sending protocol. When the protocol
starts, both wires contain 00. There are eight bits in a byte, a bit is encoded by either
01 or 10. Alice writes the value corresponding to the first bit, then waits for Bob to say
‘I’ve received it’. Alice responds by writing 11 which tells Bob she is willing to send
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the next bit. Bob responds by changing his output for ‘I am ready for it’. They do it
for the eight bits of the byte to be transmitted. After that Alice sends a parity check bit,
namely a value which tells Bob whether the byte contains an even or odd number of
1’s. After receiving the parity check bit, Bob says either ‘everything is OK’, or ‘there
were errors’. Finally both Alice and Bob reset the wire to 00, and they can restart the
cycle with the next byte.

1. bit 2. bit 8. bit parity	 	 	 	
Alice: 00 .. bb .. 11 .. bb .. 11 .. 
�
�
 bb .. 11 .. bb .. 00 ..

Bob: 00 .. .. 01 .. 10 .. 01 .. 10 
�
�
 .. 01 .. 10 .. xx .. 00
OK/wrong

Protocol 5: Sending a byte

When we programmed this protocol, we made the mistake to encode Bob’s OK
message by 00. We though this trick shortens the total time of a cycle. Indeed, the final
00 is there automatically, and should not be sent separately. We spent hours on figuring
out what went wrong. Let’s see what happens between two cycles:

parity 1. bit from next byte	 	
Alice: 11 .. bb .. 00 .. bb

Bob: .. 10 .. 00 .. .. ..
OK

Alice set the parity bit, and Bob signalled by 00 that the parity is fine. Alice reset the
line to 00, and started sending the next byte. First, she checked whether her input is 00
(it was), thus she wrote to the line the value of the first bit of the next byte. Meanwhile
Bob was in the process of completing the previous cycle, namely he was waiting for 00
to arrive from Alice. As this 00 was present only for a very short time, Bob missed it.
Thus Bob was still waiting for 00, and Alice was waiting for Bob’s response 01 saying
that he received the first bit. When we printed tracing information, everything went
smoothly, as this time Bob has had enough time to receive Alice’s signal.

This phenomenon explains why the handshaking protocol should conclude by set-
ting the line to 00 by Alice first, while Bob’s 00 is the answer to it. Only this way can
we ensure that the Bob won’t mistake the first bit of the first byte for an element of the
handshaking protocol.

3.3 Doing it faster

Protocol 5 worked perfectly, however it was quite slow. Can it be done faster? The
protocol transmits bits as 01 and 10, and uses 11 as separator between the bits. Why
do we need this separator? As the other party observes only the change on the line, the
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output must change in each step. But no matter what is on the line, it can change in
more than one way. Can we use this multitude of possibilities to transmit a bit at each
step? It seems so, this is exactly what we were coming up with.

First Alice sends the first bit of the byte in the usual way, encoding as 01 or 10.
If, say, the bit was encoded as 01, then the next value can be either 10 or 11; if it was
10, then Alice can choose between 11 and 01. This way Alice can tell Bob what the
second bit is. When Alice sends 11, then the next bit is encoded again by 01 or 10. The
complete protocol looks like this:

Alice: 00 .. b1 .. b2 .. b3 .. b4 .. b5 .. b6 .. b7 .. b8 .. b9 .. 00 ..

Bob: .. 00 .. 10 .. 01 .. 10 .. 01 .. 10 .. 01 .. 10 .. 01 .. 1p .. 00

Protocol 6: Sending a byte faster

Alice determines the values b1 though b9 as follows. The first value is either 01 or 10
depending on whether the first bit of the byte is 0 or 1. Subsequent values are computed
from the bit to be sent, and the value on the wire using the following table:

value on the line: 01 01 10 10 11 11
next bit: 0 1 0 1 0 1
next value to send: 10 11 11 01 01 10

Alice can easily compute the value to be put on the wire: she adds the next bit the value
present on the wire, takes the remainder when divided by 3, and adds one. To recover
the bit, Bob can use the table above, or perform the following computation: subtract
the previous value from 2, add the present value, and take the remainder when divided
by 3.

The ninth bit b9 is the parity check bit, and Bob’s answer is 10 if the parity bit was
fine, and he sends 11 otherwise. In this latter case Alice resends the last byte.

If Alice receives an erroneous value, she can abort the cycle by setting her output
to 00. Bob recognizes this, he also writes 00 to his wire, and the cycle can be restarted.
In the case Bob receives a wrong value, if this value is 00, he also writes 00, and then
waits for the byte again. If the wrong value is something else, then his next output will
be 11, to which Alice must respond by 00. Bob sets his line to 00, and the cycle is
started over again.

3.4 The fastest version

The last version is the fastest among our protocols. This version relies more on the
correctness of the cable; in return it is almost twice as fast as the protocol 6. This
version differs from it in two significant details. First, in each step Alice uses all three
possibilities, not just two; second, we let Bob to send the parity check bit as he can do
it without an extra step.

During two steps Alice can send nine different configurations. We use eight of
them to code three bits, and use the ninth to signal that the previous parity bit sent by
Bob was wrong. Alice can send three bits in two steps, and 24 bits in sixteen steps.
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After sixteen steps Alice and Bob takes a short break, before that Bob sends back Alice
the parity check bit. The break and the parity check ensures that Alice and Bob are still
together, they do not lost synchronization.

Before starting the cycle of sixteen steps, Alice’s output is either 00 or 11, and
Bob’s output is 00. The values on the lines are changing as follows:

Alice: xx .. d1 .. d2 .. d3 .. d4 .. 
�
�
 .. d15 .. d16 .. yy ..

Bob: .. 00 .. 01 .. 10 .. 01 .. 10 
�
�
 10 .. 01 .. 1p .. 00

Protocol 7: Sending without error

As we have remarked above, xx is either 00 or 11. When Alice wants to send the next
0, 1, or 2 value, she computes her output di as follows: she adds one to her previous
output, then adds the value to be transmitted, finally takes the remainder when divided
by 4. Or she may look up the value in this table:

previous output: 00 00 00 01 01 01 10 10 10 11 11 11
value to transmit: 0 1 2 0 1 2 0 1 2 0 1 2
new output: 01 10 11 10 11 00 11 00 01 00 01 10

Alice chooses the closing yy to be 00 whenever possible, that is when d16 is not 00;
otherwise it will be 11. Bob computes the parity bit and sends it back to Alice: if the
parity bit is zero, he sends 10, if it is one, then he sends 11.

Whenever Alice discovers some problem, namely if the parity bit is in error, or
receives an input from Bob which is impossible by the protocol, she transmits value
2 until Bob sets his line to 00. Sending two consecutive 2’s is invalid, as it codes
2 � 3 �

2 � 8, which is not a 3-bit binary number. When Bob receives two consecutive
2’s, he considers it as the message from Alice that cycle should be aborted. As the error
might occur in the previous transmission of 24 bits, not the actual transmission should
be restarted, but the previous one.

If Bob sees some problem with the execution, he sets his output to 11. Alice must
respond by sending either 00 or 11. Then Bob writes 00, by which he instructs Alice
to restart sending the previous 24 bits.

Alice: xx .. d1 .. d2 .. yy ..

Bob: .. 00 .. 01 .. 11 .. 00
Bob discovers and error here

Using protocol 7 in a cycle Alice changes her output 17 times, and she transmits three
bytes. Protocol 6 requires 30 changes in Alice’s output for transmitting three bytes,
thus the increase in speed is almost twofold.

4 Putting ideas into practice

We manufactured the cable, and wrote the communication programs. The communica-
tion was excellent between machines of different type and speed. Between a Pentium
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I and a Pentium II machine protocol 6 transmitted 7 kilobytes in each second. Using
protocol 7, according to our expectations, the transfer rate raised to 13 kbyte/second.
We did not experience any error during transmission of several megabytes. Programs
were first implementated in BASIC, the final ones were written in C. We tried them
under DOS and Windows operating systems; the programs run under Linux as well.

Our protocols share the special feature that they do not contain any timing. Thus we
did not need to deal with the case when one of the programs is suspended. (This hap-
pened indeed, when during a longer transmission the screen saver come up. Touching
the mouse, the communication continued with no problem at all.) The lack of timing
made our protocols simpler, and more transparent, too.

At the end of the project, we were surprised by the difficulty and the beauty of
the solution of the simple task we set forth before ourselves: design a protocol which
transmits files in one direction using only two bits in both directions. Even relatively
simple ideas turned out to be quite efficient as the initial transmission rate of 60 bytes
per second went up to 13 kbyte per second. The stability and reliability of our protocols
are also noteworthy.
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