-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Archive Electronique - Institut Jean Nicod

archives-ouvertes

Three approaches to congruence
Sacha Bourgeois-Gironde, Paul-André Mellies

» To cite this version:

Sacha Bourgeois-Gironde, Paul-André Mellies. Three approaches to congruence. Gehrardt
Schurz. Proceedings of the International Wittgenstein Colloquium, Aug 1997, Kirchberg am
Wechsel, pp.623-629, 1997. <ijn_00000496>

HAL Id: ijn_ 00000496
http://jeannicod.ccsd.cnrs.fr/ijn 00000496
Submitted on 2 May 2004

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/46683618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
http://jeannicod.ccsd.cnrs.fr/ijn_00000496

Three approaches to congruence

Paul-André Mellies Sacha Bourgeois
University of Edinburgh Université de Nantes

The extension by Frege of reference from names to sentences is guided by an argument
of substitutivity explicited in [1]:

If we now replace one word of the sentence by another having the same ref-
erence, but a different sense, this can have no bearing upon the reference of
the sentence.

The argument can be formalised as follows. Take a language L consisting of names
a,b, e, ... and sentences p, q,.... It is always possible to remove a name a from a sentence
p where it occurs, so that a sentence with a hole C[—] is obtained. Filling C[—] with the
name a certainly constructs p again, and we write p = Cfa], but filling C[—] with another
name b constructs another sentence C[b]. Frege’s argument asks that the sentences C[a]
and C[b] have the same reference whenever the names a and b have the same reference.
More formally, if ~p is the binary relation relating all names and sentences having the
same reference, then &g should verify the property that:

a~pb= Cla] ~r C[0] (1)

In Frege’s mind, this property of ~g is a sufficient justification that truth value is the
reference of direct sentences, see again [1]:

What else but the truth value could be found, that belongs quite generally
to every sentence if the reference of its component is relevant, and remains
unchanged by substitutions of the kind in question.

Frege’s fruitful approach to reference, names and sentences can be abstracted one step
further to the mathematical setting of a couple (L, O) equipped with an equivalence
relation &~ on L, where:

1. L is a set of objects,
2. O is a set of functions from L to L,

We recall that an equivalence relation on L is a binary relation a~ which is reflexive:
[Va € L,a &~ a], symmetric: [V(a,b) € L*,a &~ b = b & a], and transitive: [V(a,b,c) €
L% (a =~ band b~ c) = a = c]. An equivalence relation ~ on L is called a congruence
on (L,0) when & is an equivalence relation and, for every a,bin L and ¢ in O:

a b= ¢la) ~ H(b) 2)

The relation & should be considered in that case as a possible notion of synonymy on
the language L with the constructors ¢ € O. In Frege’s construction, L is the set of
names and sentences, O is the set of sentences with a hole, and & is the binary relation

~ R between names and sentences with the same reference. Observe that every sentence
with a hole C[—] is interpreted in O as the function from L to L which to the name a
associates the sentence C'[a] '

As advocated by Frege, the reference relation &g is a congruence on (L,O) since
having the same reference is -1- an equivalence relation on L and -2- verifies a ~p b =
¢(a) =pr ¢(b), at least if we limit O to the set of direct sentences, as explained in [1].
Frege also considers sense (of names) and thoughts (of sentences) to be substitutive: The
relation ~g which relates names and sentences with the same sense (thoughts) is also a
congruence on (L, O).

What appeals to us in Frege’s approach to the problem of reference (and sense) is
that he applies a formal argument: the congruency criterion on ~p (and =xg), to solve
his specific philosophical problem: How can I extract a notion of reference (and sense)
on the language L itself from the knowledge of reference ~p (and sense ~g) on names
only.

This paper is therefore concerned with three particular methodologies to construct
a congruence in a language (L, 0), among which Frege’s specific solution stands. The
first construction is derived from Leibniz principle that indiscernible objects should be
identified. The second construction is apparented to Frege’s solution by its use of a
referential model. The third construction is our own contribution to this problem in the
framework of rewriting systems, see [2] for further references.

1 The Leibniz principle

The simplest methodology to build a congruence on a language (L, Q) is a variation on
Leibnitz principle: Fadem sunt, quae sibt mutuo substitui possunt, salva veritate.

In that prospect, the relation & is defined as the least binary relation on I such that
a =~ b when [for every ¢ in O, ¢(a) = ¢(b)]. In fact, every ¢ in O can be considered
as an observation on elements of L, and thence a ~ b means that the two elements a
and b are indiscernible by the observations ¢. To prove that ~ is a congruence proceeds
in two steps: First, show that &~ is an equivalence relation because equality = itself is
an equivalence relation on L ; Then, observe that a ~ b implies ¢(a) = ¢(b) whenever
a,b € L and ¢ € O and therefore ¢(a) ~ ¢(b) (because = is reflexive).

The same methodology applies if an equivalence relation ~ replaces =. The relation
~ is then defined as the least relation such that a &~ b whenever ¢(a) ~ ¢(b) for every
¢ in O, and & is shown to be a congruence. This construction is called the Morris style
construction in the A-calculus and Process Algebra community.

Observe that in many languages (L, O) the object ¢(a) is of higher complexity than a.
For instance, in Frege’s system, ¢(a) is a sentence when a is a name. From that complexity
prospect, the Leibnitz principle derives the meaning of simple objects a (how & relates
them) from the meaning of complex objects ¢(a) (how ~ relates them). Consequently,

"For simplicity, we prefer to neglect types in the definition of (L, @) and replace them by adapted
conventions. In Frege’s case, we enforce that every sentence with a hole C[—] associates to any sentence
p the (conventional) sentence “this construction is not valid”. Hence, every function in O is total.

Frege will apply another methodology to induce the reference /g on sentences (complex
objects) from the reference ~g on names (simple objects).

2 Frege’s referential methodology

A model (W, W) for a language (L,O) is a set W and a function ¥ from L to W. So,
every object a in L is associated to a reference W(a) in the model W. In that prospect,
the referential choice for = is to relate objects a and b with the same reference, hence:

V(a,b) € L2, ambe Ua)=V(b)

However, it is not always true that & is a congruence. It depends on O. In fact, suppose
that there is a function ¢ in O such that two objects a and b with same reference,
U(a) = U(b), have images ¢(a) and ¢(b) with different references: U(¢p(a)) # W(H(b)).
In that case, the operator ¢ can distinguish two objects @ and b with the same reference:
a = b, so that ~ is not a congruence. Congruence of & is a consequence of the following
property:
V(a,b) € L*,V$ € O, W(a)=U(b) = U(4(a)) = U(4(b)) (3)
In other words, the constructors in O should always respect the reference function W :
L—W.
Let us turn back to Frege and explain how he attributes a reference to sentences.
At the first construction step, only names are assigned a reference: if NV is the subset of
names in L and W is a (big enough) set consisting of world objects, the reference function
¥ goes from N to W. Because it is limited to names, ¥ is only a partial function from
L to W. To improve the situation, Frege decides to extend his ontology W to a set W*
consisting of W and the truth values true and false. Then, the function ¥ : N — W
can be extended to a total function ¥* : L — W™* in such a way that (W*, U*) is a model
of (L,0). It is remarkable that Frege uses equation (3) to justify his choice of true and
false as sentence references. We repeat the quotation here:

What else but the truth value could be found, that belongs quite generally
to every sentence if the reference of its component is relevant, and remains
unchanged by substitutions of the kind in question.

In fact, as is explained hereabove, the equation (3) implies that reference, or ~pg, is a
congruence on (L, O).

3 The pragmatist approach

Natural languages are so interwoven with concepts that it is often wiser to experiment
an idea on a specified and well-bracketed region of the language and subsequently, if
everything works properly there, to extend the experimentation to wider and less un-
derstood fragments of the language. This methodology is recommended if we want to
understand the relationship between meaning on one hand and use on the other hand.

For this reason, we reorient our investigations and consider a particular formal lan-
guage called the Calculus of Communicating System (CCS) and introduced by Milner in
1980 to describe parallel computations (processes) interacting in a distributed network.
We choose this language for simplicity but the methodology we develop is generic and
applies on many other languages — see for instance the treatment of multiplicative linear
logic [5] operated by the first author in [2].

CCS (statics). We suppose a set A of tokens a,b,c, ... and a,b,¢,... among which the
token 7 plays the special role of a silent action. A process P in CCS is recursively defined
as either -1- the empty process nil, -2- the sequential composition a.P or a.P or 7.P of a
token and a process, -3- the composition P|@Q of two processes, -4- the summation P + @
of two processes. The process a.P can be interpreted informally as “emit @ and perform
P7, a.P as “receive a and perform P”, P|Q as “perform P and @ in parallel”, and P+ @
as “perform one process between P and ()”.

CCS (dynamics). A process P evolves in time by emitting a token: P = @, receiving
a token: P % @, or performing an internal transition: P = Q. The formal definition
of % for * = a, x = a or x = 7 is by structural induction (induction on the structure
of the processes): First of all -1- z.P % P indistinctly for * = @, 2 = @ and = = 7, -2-
it P% Pand Q % Q' then PIQ 5 P'|Q', -3-if P % P’ then P+ Q % P'. The
transition P % @ is called external when z is not the silent token 7.

We clarify the definitions with four examples. The process P; = a.nil emits a and then
stops:

P, 5 nil

The process P, = (b.nil + c.nil) either receives b or emits ¢, and then stops:
P2 —B> nil
or
P2 —C> nil
The process P3 = a.(b.nil + c.nil) emits a, then either receives b or emits ¢, then stops:
P3 i} P2 —B> nil
or
P3 i> P2 _c> nil
If @ = b.nil, then @ interacts with P3 during the following computation:
(P5]Q) = (P,]Q) = nil|nil
where () emits and P, receives simultaneously the token b.

Bisimulation. One fundamental motivation of Milner is to define the meaning of a
process P from the way it interacts with its environment. Milner delivers his basic
intuition in [4]:

“The meaning of a program [= process| should express its history of access
to resources which are not local to it”

By access to non local resources, Milner means the external transitions P % Q or P %
because these transitions make a process P interact with independent processes. Mil-
ner’s genius is to introduce an elegant treatment of history of access with the notion of
bisimulation we define now. Let us write P =) when P performs a sequence of internal
transitions to Q, P = --- 5 @, and P = @ when P = P’ % Q' = (@ for some processes
P"and Q'.

A bisimulation B is a binary relation on processes such that for every token x:

e whenever P = P’ and PBQ, there exists a process @’ such that Q = Q' and
P'BQ’,

o whenever Q = Q' and PB(Q, there exists a process P’ such that P = P’ and
P'BQ’.

Two processes P and () are said bisimilar when there exists a bisimulation B such that
PBQ. We write P ~p Q.

The relation ~pg formalises Milner’s intuition on meanings. Several important equal-
ities are verified for every processes P, (), R, in particular

and

(P+Q)+ R~ P+ (Q+R)

and

P—|—nll%BP%BP—|—P

But ~p also establishes subtle distinctions between processes, for instance that the equi-
valence a.(P + Q) ~p (a.P + a.QQ) does not hold when P = b.nil and () = c.nil. Let us
explain why. Formally, a.(P+Q) = P+Q whereas (a.P+a.Q) = P or (a.P+a.Q) = Q.
If there were a bisimulation B to relate a.(P + @) and a.P + a.Q, this bisimulation B
would also relate P + @ to P or to @ (by definition of a bisimulation B). But this is
impossible because no bisimulation B relates b.nil + ¢.nil to b.nil, or relates b.nil 4 ¢.nil
to c.nil (easy to check). We conclude that a.(P + @) and a.P + a.Q) are not bisimilar:
a.(P+ Q) %5 a.P + a.QQ. Semantically, the distinction is justified because the process
a.(P+ Q) retains the ability to choose between P and @) after the emission of a, whereas
a.P + a.() makes the choice when it emits a.

Non-congruence. One drawback of Milner’s approach is that, surprisingly, ~g is not
a congruence. We explain why. Take P = a.nil and) = b.nil. The two processes P and
7.P are bisimilar ? but not P + @ and (7.P) + Q. In fact, it is possible that (7.P) + Q
transits internally to P: (1.P) + Q = P without any corresponding internal transition

from P + @ to a process bisimilar to P. Thus, P ~p 7.P but P + Q #5 (7.P) + Q.

2Because P = P and 7.P = P.

Milner’s bisimulation &g seems a perfectly correct notion of meaning, but it is not. So,
where is the defect?

Canonical language. We need to be more precise when we say that ~p is not a
congruence. Here, we give the canonical language (L, O) of CCS we consider:

1. L is the set of processes of CCS,

2. to every process P in L is associated a function ¢p : L — L (resp. ¢p) which to
every process () associates the process P|Q (resp. P + @),

3. O is the set of all ¢p’s and 1p’s for processes P in L.

The equivalence relation ~p is not congruent on (L, O) because P ~p 7.P holds but not

Po(P) ~p go(r.P) when P = a.nil and) = b.nil.

Strong bisimulation. Milner’s &g interprets P and 7.P as synonyms because the
two processes have the same history of accesses to non local resources (see Milner’s
quotation). However, P and 7.P should be distinguished if we think of their symbolic
behaviour inside a sentence: the sign 7 in the sentence ¢g(7.P) interacts with the sign
+ so that ¥g(7.P) transits (internally) to P: ¢g(7.P) = P, but this specific interaction
is impossible from tg(P). Thus, Milner violates CCS computations when he interprets
the token 7 as silent. The token 7 cannot be silent and innocent as soon as it combines
and interacts with other signs, for instance (7.P) +Q = P.

The simplest way to repair ~p and obtain a congruence is to trace the 7’s in the
semantics. A strong bisimulation C is a relation such that for every token x:

e whenever P 5 P’ and PCQ, there exists a process Q' such that Q@ = Q' and
P'CQ’,

e whenever Q 5 Q' and PCQ, there exists a process P’ such that P % P’ and
P'CQ'".

Two processes P and @) are said strongly bisimilar, P ~¢ (), when there exists a bisim-

ulation C such that PCQ).

The pragmatist placard. As could be anticipated from our development, ~¢ is a
congruence * in (L, 0). Weaponed by this positive result, [2] sharpens Milner’s principle
into the following placard:

“The meaning of a program [= process| should express the history of its
symbolic interactions within the sentence, in particular with the constructors

of O”

This definition of meanings is radical in that it does not project any extraneous (human)
interpretation into the raw mechanic life of symbolic computation. Whenever the formal

3In fact, Milner himself introduces the strong bisimulation in [4] and proves the congruence result on
~¢c. However, his motivations are quite different.

language is based on symbolic terms [= processes in CCS| and rewriting transformations
[= transitions], meaning becomes a consequence of Rewriting itself, and the synonymy
relation ”2¢ which describes the symbolic interactions is always a congruence, see [2] for
formal details.

This purely symbolic approach to meanings is so convincing that we could hardly
be the first to discover it. Indeed, we find some anteriority in Peirce’s description of
meanings of thoughts as the habits these thoughts produce, see [5].

“To develop its meaning, we have, therefore, simply to determine what habits
it [= the thought] produces, for what a thing means is simply what habits it
involves.”

As a matter of fact, what else but a term is a symbolic thought? and what else but the
interaction is the habit this symbolic term involves?

4 Conclusion

The article classifies three kinds of congruence constructions on a language (L, O). Other
constructions exist in the litterature, and this taxonomy should be carried on. In partic-
ular, we see our third construction as a radical interpretation of Peirce’s description of
meanings — an interpretation which we hope will revitalise this fascinating approach to
language and meaning.

References

[1] Gottlob Frege, On sense and reference, in Translalions from the Philosophical
Writings of Gottlob Frege, ed. Peter Geach and Max Black, Oxford Blackwell, 1952.

[2] Paul-André Mellies, A double category for multiplicative linear logic, presented
at the conference on Logic and Models of Computation in Marseille, September 1996.
Submitted to publication. Available at http://www.dcs.ed.ac.uk/home/paulm/

[3] John Morris, Lambda-calculus models of programming languages, Ph.D
Thesis, MIT, Cambridge, 1968.

[4] Robin Milner, A Calculus of Communicating Systems, Lecture Notes in Com-
puter Science 92, Springer Verlag, 1980.

[5] Jean-Yves Girard, Linear logic, in Theoretical Computer Science 50, 1987.

[4] Robin Milner, Processes: a mathematical model of computing agents, In
Logic Colloguium 73, pages 157-173. North Holland, 1975.

[5] Charles Sanders Peirce, How to make our ideas clear, in Collected Papers, Cam-
bridge, Mass., Harvard University Press.

