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Abstract  

Within the academic and industrial communities there has been an increasing desire to better 

understand the sustainability of producing vehicles that contain embedded electrochemical 

energy storage. Underpinning a number of studies that evaluate different circular economy 

strategies for the electric vehicle (EV) or Hybrid electric vehicle (HEV) battery system are implicit 

assumptions about the retained capacity or State of Health (SOH) of the battery. International 

standards and best-practice guides exist that address the performance evaluation of both EV and 

HEV battery systems. However, a common theme is that the test duration can be excessive and 

last for a number of hours. The aim of this research is to assess whether energy capacity 

measurements of Li-ion cells can be accelerated; reducing the test duration to a value that may 

facilitate further EOL options. Experimental results are presented that highlight it is possible to 

significantly reduce the duration of the battery characterisation test by 70% - 90% while still 

retaining levels of measurement accuracy for retained energy capacity in the order of 1% for cell 

temperatures equal to 250C. Even at elevated temperatures of 400C, the peak measurement error 

was found to be only 3%. Based on these experimental results, a simple cost-function is 

formulated to highlight the flexibility of the proposed test framework. This approach would allow 

different organizations to prioritize the relative importance of test accuracy verses experimental 

test time when grading used Li-ion cells for different end-of-life (EOL) applications.  
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ADC Analogue-to-digital converter 

BEV Battery Electric Vehicles 

BMS Battery management software 

CC Constant current 
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DOE Department of Energy 

EERE Energy Efficiency and Renewable Energy 

EOL End-of-Life 

ESS Energy storage system 

EV Electric Vehicle 

HEV Hybrid electric vehicle 

HVM High Value Manufacturing 

ICE Internal combustion engine 
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  INL Idaho National Laboratory 

LCA Life-Cycle Assessment 

NEDC New European Drive Cycle 

PHEV Plug-in Hybrid Electric Vehicles 

SOC State of charge 

SOH State of Health 

USABC US Advanced Battery Consortium 
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1 Introduction 

There has been considerable research published into the different designs and technology options 

that underpin the energy storage system (ESS) employed within new electric vehicle (EV) or hybrid 

electric vehicle (HEV) concepts. This includes the use of different battery chemistries [1], the 

design of the energy management control software [2–4] and the mechanical integration of the 

battery system within the vehicle [5]. The primary motivation is often to overcome the systems 

engineering challenge and to design an ESS with an energy density and power density that will 

enable the design of new vehicles with a driving range and dynamic performance commensurate 

with consumer expectations. In addition to improving on-vehicle metrics of energy density, power 

density and component cost, there has been an increasing desire to better understand the 

sustainability of producing vehicles that contain embedded electrochemical energy storage. Much 

of this research has been guided by circular economy principles. The term circular economy has 

come to embody any framework that advocates an alternative to the traditional linear economic 

model (make, use, dispose); retaining key resources within the supply chain for longer, extracting 

the maximum value from them whilst in use before embarking on a process of regenerating 

products and materials at the end of their service life [6]. 

 

Underpinning a number of studies that critically evaluate different circular economy strategies for 

the vehicle’s ESS are implicit assumptions about the State of Health (SOH) of the battery [7–9] . 

The metric SOH is often used to quantify the residual energy capacity of the cell at a time (t = n), 

relative to when the battery was new (t = 0): 

 

                                                                     
    

    
                                                                                      (1) 
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End-of-Life (EOL) for the vehicle’s ESS has been defined as the battery having a SOH of 80% [7,10–

13]. However, a number of studies highlight the apparent arbitrary nature of this threshold value. 

It is often argued that even at 80% SOH, there is still inherent value embedded within the ESS [13–

15].  

 

Research by [2,16] argues that a measure of battery SOH should be calculated by the battery 

management software (BMS) and made available to all stakeholders within the supply chain via 

standard diagnostic interfaces and vehicle communication networks. To maximize the efficiency of 

the EOL strategy and to facilitate the repair, remanufacture or reuse of the battery system, SOH 

measurements should be made available for each battery module that comprises the battery pack 

(Section 2.2 discusses, in greater detail, the architecture of a typical vehicle battery system and 

the methods employed to aggregate cells into modules and finally into complete packs).  

However, from a review of commercially available EVs and HEVs, it is clear that this is not always 

the case, for example: the BMS within the Tesla vehicle does not provide information on battery 

SOH that can be viewed by a third-party, independent from the manufacturer. Assessing the 

battery installation for degradation, requires the battery pack to be removed from the vehicle, 

physically opened (that in turn damages the mechanical structure of the pack) and individual 

modules tested for retained capacity and impedance to quantify their SOH. This challenge is 

compounded, since it is likely that vehicle batteries will be presented to the supply-chain with 

unknown provenience and with varying levels of functionality [17]. A challenge therefore exists for 

those stakeholders wishing to sort or grade used vehicle battery systems to ascertain the most 

appropriate circular economy strategy for the battery that may comprise of: battery repair, reuse, 

remanufacturing or materials recycling in order to maximise the capture of the battery’s inherent 

value.  
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International standards and best-practice guides exist that address the performance evaluation 

requirements for the both EV and HEV battery systems. Each standard addresses different domain 

requirements for performance, robustness and safety and how testing should be undertaken at 

either a cell (i.e. IEC-62660 and ISO-12405) or system level (i.e. United States Council for 

Automotive Research (USABC) Electric Vehicle Battery Test Procedures Manual). Within the 

context of this research and in line with the need to better understand residual energy capacity to 

assess battery SOH, particular consideration is given to the recommended procedures for cell-level 

capacity measurement. Irrespective of the test standard followed, a common theme throughout is 

that the test duration, taking into account the time required for the cell to equilibrate after a 

change in ambient temperature or state of charge (SOC) can be excessive and last for a number of 

hours.  For this reason, the authors argue that these test strategies are potentially prohibitive for a 

number of vehicle manufacturers and specialist energy storage suppliers wishing to sort or grade 

used vehicle battery systems to ascertain the most appropriate circular economy strategy for the 

battery.  

 

The aim of this research is to assess whether energy capacity measurements of Li-ion cells can be 

accelerated, reducing the test duration to a value that may facilitate further EOL options for used 

EV and HEV battery systems. In addition, the research aims to quantify the trade-off between test 

accuracy and test time, potentially allowing stakeholders to optimise the evaluation strategy they 

employ within the context of their respective commercial sectors.  

 

This paper is structured as follows; Section 2 provides an overview of the automotive market and 

ESS technology solutions currently employed.  Section 3 discusses, in greater detail, different EOL 

strategies for automotive battery systems. Section 4 introduces the different international 

standards and best-practice guides that are often employed as the basis for battery 
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characterization. Section 5 discusses the experimental method derived to compress the time 

required to assess the retained energy capacity within the cell.  Results, Discussions and 

Conclusions from this research are presented in Sections 6, 7 and 8 respectively.  

2 Market and Technology Overview 

2.1 Market Overview for Electrified Vehicles 

A recent 2015 report by KPMG [18] highlights the potential for electrified vehicles to be between 

11-15% of new vehicle sales within the EU and China by 2025. Within the US, the market may 

comprise 16-20% of vehicles over the next 10 years. These predictions are comparable to those 

cited in [15]. The article collates a number of studies and concludes that, by 2025, there will be in 

excess of 11 million EV sales worldwide, with approximately 6 million in North America (20% of 

new vehicle sales). While a number of sources predict rapid sales growth, there are variations in 

the predicted technology-mix that will underpin this. In particular, the relative sales of HEVs that 

typically employ a smaller battery system (e.g. Toyota Prius Plug-in Hybrid Electric Vehicles (PHEV), 

with a 4.4 kWh battery), compared to an EV (e.g. the Nissan Leaf or the BMW i3), which require 

larger batteries in the order of 24 kWh and 22 kWh respectively. Research presented in [12] 

predicts that in 2035 the number of available EOL batteries will range from 1.4 million in their 

pessimistic forecast to 6.8 million in the optimistic forecast with a middle forecast of 3.8 million. 

Their analysis concludes that this volume is sufficient to justify the capital investment required to 

enable remanufacturing, repurposing and recycling. Further, their study highlights that the 

number of available EOL batteries will be between 55% and 60% of the number of batteries 

needed for new EV and PHEV production. 
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2.2 Vehicle Energy Storage Systems 

A consensus does not exist as to the optimal design of battery cell, in terms of both chemistry and 

form-factor, for use within automotive applications. There is significant research characterizing 

the different chemistries, including: Lithium Cobalt Oxide (LiCoO2), Lithium Iron Phosphate 

(LiFeP04), Lithium Nickel Cobalt Manganese (NCM - LiNixCoyMnxOZ) and Lithium Titanate Oxide 

(LTO - LI4Ti5O12). The integration challenge associated with designing a complete ESS using either 

pouch cells or cylindrical 18650 cells is reported within [2,3,19]. In [2] and [19] the authors 

highlight how cell-to-cell variations and non-uniformity within the cell further complicates ESS 

integration. Whereas within [3] the authors discuss the instrumentation and on-line monitoring 

requirements that underpin the battery control software.  

It is beyond the scope of this paper to discuss, in detail, the engineering challenges associated with 

the ESS; further information can be found within [3,20]. To illustrate the complexity within a real-

world system, Table 1 presents an overview of the contents of the battery pack within the 

commercially available Nissan Leaf EV. The Nissan Leaf has a reported range of 109 miles over the 

New European Drive Cycle (NEDC). The complete battery assembly weighs 293 kg and contains 48 

battery modules, each containing 4 Li-ion pouch cells. An active cooling system is not included 

within the battery, but it does contain an electrical heating element to warm the Li-ion cells. The 

48 modules within the battery are grouped together into 3 primary sub-assembles called module 

stacks, each containing a number of electrical interfaces and mechanical fasteners. The module 

stacks are accessible once the pack lid has been removed, potentially making it easier to identify 

and replace faulty components during a repair or remanufacturing activity. The battery pack is 

held together and attached to the vehicle chassis using 20 mechanical bolts. Within the battery, at 

the module stack and module levels, a variety of different joining methods are employed, 

including mechanical screws and bolts, totaling 376 fasteners. It is noteworthy that adhesives or 

mechanical welds are not employed within the assembly which, as discussed within [10,21,22], 
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can significantly inhibit a number of EOL options for the ESS. The challenges associated with 

module disassembly due to battery tab welding are explored within [10], whereas the authors 

within [22] extend the discussion and highlight the importance of considering methods of cell-to-

cell fastening and joining at the battery system design stage of the development process. 

3 The Need for End of Life Strategies for Vehicle Battery Systems 

A common view reported within the literature is that the sustainability of integrating resource 

intensive battery packs into vehicles is not clear. Embedding circular economy principles of reuse, 

remanufacturing and recycling is seen as one method to minimize production cost and 

environmental impact. Two of the primary concerns regarding the sustainability of electrified 

vehicles are the financial cost of the ESS and the associated environmental impact of the device 

during production, usage and recycling. The financial cost of the battery system is often cited as 

the primary barrier to EV production [14,15]. Within [14], the authors survey a number of business 

models for battery cost reduction, underpinned by greater sales volumes, towards 2020-2025. 

Conversely [15]  highlights the importance of embedding circular activities for the battery as one 

means of amortizing battery costs over more than the first vehicle life. Research by [12] states that 

a 50% reduction in battery cost is required to equalize the economics of owning a PHEV as 

compared to a conventionally-fueled vehicle. Conversely, [15] show that the EV powertrain cost 

must reduce from circa: $600-700 kWh-1 to $200 kWh-1 to achieve parity with comparable internal 

combustion engine (ICE) technology. Different mitigation strategies for lowering life-cycle cost 

through recycling and remanufacturing have been discussed. The financial incentives associated 

with recycling different lithium-ion (Li-ion) battery chemistries is, however, not clear and is highly 

dependent on the chemistry employed [12,15]. The Life-Cycle Assessment (LCA) of electrified 

vehicles has been widely reported [14,15,23–25]. In [14] the authors highlight the positive impact 

that the re-use of 2nd life vehicle battery systems may have on a future grid storage market. 
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Research presented within [15] and [23] argues that life-extension for the battery is essential if the 

higher emissions, associated with initial battery manufacture, are to be mitigated. This is further 

explored within [23] that discusses the potential impact on the environment of battery recycling 

and the capabilities that existing within different geographical territories.  A case-study that aims 

to draw together the different options for LCA for a typical PHEV is derived and presented within 

[25] and is subsequently employed as the basis for a number of different scenarios exploring the 

potential advantages of battery reuse, recycling and remanufacture. Common scenarios include 

the use of vehicle-to-grid (V2G) or the use of the vehicle’s battery in 2nd-life applications in which 

different EOL batteries are aggregated together to form larger grid-storage solutions for meeting 

peak-power demand. One of the primary outputs from the LCA is a better understanding of the 

CO2 emissions associated with ESS production as compared to in-vehicle use. For example, a 

conceptual 10kWh battery is discussed in [25] for use within a PHEV over 3000 charge-discharge 

cycles or 200,000 km of driving. For this scenario, approximately 45% of the equivalent carbon 

emissions (CO2eq) are related to battery production with the balance coming from vehicle use. The 

ratio of CO2eq between the production and usage phases can vary from between 30% - 70% if the 

vehicle is employed within different geographical regions that employ different technologies for 

electricity generation (e.g. China vs. Scandinavia). This is supported by a similar study [10] that 

reports the emitted CO2eq for the production of an EV battery system is approximately twice that 

of an ICE vehicle and represents 35% of the combined emissions for both production and vehicle 

use. 

 

The extraction of raw materials through recycling and the use of the battery in 2nd - life 

applications is widely documented. In contrast, there has been relatively little research published 

that investigates the requirements for remanufacturing the vehicle’s battery system as an 

alternative EOL strategy. A number of possible definitions for remanufacturing exist within the 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 12 

literature [26–28]. A common view is that a remanufactured product should be of the same 

quality as the remanufactured article [29]. In recent years, independent commercial organizations 

have arisen that claim to offer a battery remanufacturing service for the Nissan Leaf and the 

Toyota Prius. However, in all cases, the organizations only offer a limited warranty (circa: 12 

months) and do not claim the vehicle will have a comparable performance to a newly purchased 

vehicle. It follows therefore that the services offered by independent commercial organizations 

are unlikely to be able to provide the as new capabilities required by the definition of 

remanufacturing. The potential volume of EVs that exists within the market is a key measure when 

considering different EOL strategies. This is discussed with [10,12], within the context of the 

installed energy capacity for new V2G applications and 2nd-life grid storage solutions. Within the 

context of remanufacturing, the potential volume of electrified vehicles underpins the security of 

supply for the core. As discussed further in [1,22,30], the concept of the remanufacturing core 

relates to the fundamental component or subsystem that undergoes the remanufacturing process. 

As discussed previously, a clear understanding of battery SOH underpins all EOL strategies. For 

example, within [7] a decision making model is formulated for different scenarios based on battery 

SOH. The model defines the optimum EOL strategy as remanufacturing for a cell with retained 

capacity between 100-80%; followed by reuse within a grid storage application for a SOH between 

80-45%. Below this threshold the economics of the production process precludes further ESS 

repurposing and greatest economic benefit is recovered from material recycling. 

4 Energy Capacity Measurement 

4.1 Review of Academic Literature  

A number of publications discuss the need to quantify the energy capacity within a battery cell 

[31–34] as a fundamental stage of assessing the appropriate EOL strategy for the battery, as 

discussed within the previous section, or for defining the battery SOC or SOH as part of the on-line 
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management of the battery system within an automotive [35] or grid storage application [36]. the 

challenge of measuring capacity retention is discussed within the context of cells subject to cyclic 

electrical loading [32] and those that experience capacity fade due to extended periods of storage 

[31]. Within [37] the authors highlight the different terms often employed for describing battery 

capacity, they include: nominal capacity, initial capacity or actual capacity. Nominal capacity is 

typically that cited by the manufacturer and relates to the discharge energy capacity of the cell 

under strict environmental conditions (e.g. 1C current, at a temperature of 250C). Initial capacity is 

defined as the energy capacity of the cell, when the cell is new and discharged from a fully 

charged state, to the defined cut-off voltage [37]. Actual capacity defines the energy that may be 

extracted from the cell (from a fully charged state) when the battery is aged or when the battery is 

being discharged under conditions that are different from those defined as nominal by the 

manufacturer. The influence of C-rate at a cell level and pack level  and the impact of temperature 

on cell capacity measurement is widely reported [33,38,39]. Within [40], the authors describe an 

increase in measured capacity for cell temperatures in excess of 400C compared to when the 

battery is operated at lower temperatures. Similarly, within [41], the authors highlight the 

dependency between energy capacity and C-rate. At high C-rates, the lower voltage limit on the 

cell is reached sooner due to a combination of diffusion limitations within the electrode [42] and 

an increase ohmic related voltage drop [35]. A number of publications have cited the need to take 

into account hysteresis when quantifying cell capacity under combined charge-discharge 

conditions [40].  Within [36, 37] the authors discuss the need to take into account the voltage 

dynamics of the cell when quantify the open circuit voltage (OCV) as part of the capacity 

measurement procedure. Publications highlight the need to charge and discharge the battery at 

low C-rates (circa: C/3 or C/10) if an accurate representation of the OCV-SOC relationship is to be 

obtained. The need to quantify energy capacity is not constrained to a cell-level assessment. 

Within [45], the authors discuss the challenge of quantifying energy capacity for a complete 
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module assembly or battery pack, taking into account cell-to-cell variations [46] and the 

unmeasurable current flows that may occur within the battery module when cells are connected 

electrically in parallel [47]. A comprehensive review of different capacity (and thus SOC) 

estimation methods for inclusion within the BMS is presented within [3,48]. This survey of 

methods will not be repeated here. In part, because a number of these studies are focussed on 

quantifying the partial charge state of the battery, as opposed to defining the full capacity of the 

cell and are therefore not in scope. However, for completeness a short summary is provided. 

Methods for battery SOC estimation are broadly categorised into three groups. The first relates to 

simple column-counting [49] in which the charge throughput of the cell is numerically integrated 

with respect to time. Because of the errors associated with integrating current over an extended 

period, studies advocate combining column counting with voltage correction. Voltage correction 

methods, typically use the OCV-SOC characteristic, either measured off-line or estimated using a 

real-time model of the battery to more accurately define the partial charge state of the battery 

relative to the nominal or actual capacity. As discussed within [50,51] methods of estimation often 

employ different variants of the Kalman Filter technique. Finally, a data-driven approach may also 

be employed that uses behavioural or ageing models of the battery to estimate the capacity of the 

cell after a period of storage (e.g. calendar ageing) or electrical loading. Research, cited in [52], 

provides examples of complimentary studies that use artificial neural networks, fuzzy logic or 

statistical methods for estimating the value of cell energy capacity.  

4.2 International Standards  

Table 2 provides a detailed overview of both legislative and best-practice standards that address 

the performance evaluation requirements for both EV and HEV battery systems. Figure 1 presents 

the test duration (in hours) that is required to complete cell level energy capacity measurements 

from five key international standards. As it can be seen, the time requirements vary considerably 
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from circa: 11 hours for the International Standards Organization (ISO) 12405-1 Hi-Power 

applications standard, to 75 hours for the North American USABC standard. The primary reason 

for this divergence, is that the latter has repeated discharge rates at three different low C-rates 

during a charge optimization stage. Within all the standards, the test time includes that defined 

for thermal and electrochemical equilibrium to occur at each stage of the test process (e.g. during 

pre-conditioning, testing and post-conditioning). While the use of wait times is widely employed 

when a change of cell temperature or SOC is required, the standards presented in Table 2 rarely 

provide any rationale or justification for the values employed. For example, within the USABC 

tests, a wait-time is 1 hour is defined, conversely within QC/T 743-2006 (the characterization 

standard defined by the Chinese authority’s for EV batteries sold in China) a time of 2 hours is 

defined after a change in cell SOC.  

 

The authors acknowledge that within the context of laboratory or academic research, the need for 

such refinement and accuracy within the test methodology is fully justified. However, the authors 

argue that these test durations would be prohibitive for a number of vehicle manufacturers and 

specialist energy storage suppliers wishing to sort or grade used vehicle battery systems to 

ascertain the most appropriate circular economy strategy for the battery. This challenge is 

compounded when considering the potential volumes of vehicle batteries that may be on the 

market (discussed in Section 2.1), and the need to test vehicle batteries potentially at different 

levels of completeness (e.g. pack, module or cell level) and functionality. There are two primary 

means to accelerate the measurement of stored energy within a Li-ion cell, these are (a) to cycle 

the cell at higher C-rates and (b) to reduce the time allowed for the cell voltage to stabilise after 

each change in SOC.  Section 5 discusses, in greater detail, the experimental test programme 

derived to quantify the trade-off between the accuracy of the energy capacity measurement and 

the ability to reduce the duration of the test. 
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5 Experimental Method 

5.1 Cell Selection 

Two cell types were selected for evaluation as part of this research; a commercially available 

pouch cell, designated as a power cell by the manufacturer for use within HEV applications and an 

18650 energy cell for use within a BEV. Table 2 presents the pertinent electrical performance data 

for each cell. The chemistry of the 18650 cell was Lithium nickel cobalt aluminum oxide 

(LiNiCoAlO2 or NCA) with a LiC6 (graphite) anode. Conversely, the pouch cell was Lithium Nickel 

Manganese Cobalt Oxide (LiNiMnCoO2 or NMC). These cells were selected because both cell 

formats are under investigation by a number of automotive OEMs researching the integration of 

energy storage within future EVs and HEVs. For example, commercially available EVs: Nissan Leaf 

and BMW i3 employ pouch cells, whereas Tesla favor the cylindrical 18650 option. Similarly, the 

battery chemistries under investigation are also being commercialized by vehicle OEMs and 

system integrators. For example, NCA is employed by Tesla and NMC by Nissan within the Leaf. 

The use of commercially available cell formats and chemistries underpins the relevance of the 

research undertaken and its potential impact within the broader industrial sector.  

 

5.2 Experimental Facilities and Test Set-up 

Figures 2(a) and 2(b) present a schematic representation of the experimental set-up and a 

photograph of the actual laboratory equipment employed. As it can be seen, it comprises of a host 

personal computer (PC), a Bitrode cell cycler and an Espec thermal chamber. From the 

manufacturer’s literature, the resolution of the output current from the battery cycler is 5 mA. The 

terminal voltage of the cells was measured at a sample rate of 100 ms and at an accuracy of 50 

mV/bit using the on-board 10-bit analogue-to-digital converter (ADC). The ambient temperature 

for the cells was controlled to the target temperature (defined in section 5.3) to an accuracy of +/- 
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1°C. Figure 2 (c) presents the mounting fixture employed to electrically connect the twelve cells 

under test to the Bitrode cycler. Given the electrical rating of the cell cycler (100 A at 5 V per 

channel), in order to meet the desired electrical loading (defined in section 5.3) each cell was 

driven from two output channels connected in parallel providing an effective capacity of 200 A at 

5 V. Figure 3 defines the locations on the surface of both the pouch and the 18650 cells where 

thermal measurements were made during the accelerated capacity tests. T-type thermocouples 

were connected to the surface of the cells in the locations shown. Cell temperature was recorded 

at a sample rate of 1 Hz with an accuracy of 0.5% of the measured value.  

 

5.3 Experimental Procedure   

Figure 4 presents an overview of the experimental procedure followed. In order to assess the 

feasibility of reducing the test time associated with energy capacity measurements, three test 

vectors were employed for: cell temperature, the charge and discharge rate employed to cycle the 

battery and finally three different values of relaxation time allowed between successive charge 

and discharge events: 

 Cell temperature = [00C, 250C, 400C]; 

 C-rate = [1C, 
     

 
, max- C] 

 Wait time = [60 minutes, 30 minutes, 0]. 

 

These measures were selected for investigation because they represent key parameters within 

many International Standards (e.g. ISO 12405:2014 and IEC EN62660:2010) that dictate the time 

duration of the test. The three test vectors allow for the definition of a Reference Measurement to 

be made (see Section 5.3.1) and then a series of sensitivity studies to be undertaken in which each 

of the three terms (cell temperature, C-rate and wait time) are perturbed from the nominal value. 

The range of values selected encapsulates the expected operating envelope of the battery 

technology within an automotive usage context. In total, 27 separate energy capacity 
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measurements on each of the 12 cells were made. Figure 5 presents the experimental test 

matrices employed and a subset of the test profile programmed within the battery cycler.  

 

5.3.1 Reference Energy Capacity Measurement  

Before the accelerated capacity measurements commence a reference capacity measurement for 

each cell was made using the recognized method defined in [44]. The temperature of each cell was 

set to 250 C and allowed to stabilize for 720 minutes. The cells were fully charged using a constant 

current (CC) of C/3 to the upper voltage defined by manufacturer followed by a constant voltage 

(CV) phase until the current reduced to C/65. The cells were allowed to rest for 180 minutes prior 

to being fully discharged at 1C to their respective lower voltage threshold. The energy extracted 

from the cells during the discharge was recorded as a measure of their 1C capacity.  

 

5.3.2 Accelerated Energy Capacity Measurements 

Using the thermal chamber, the temperature of each cell was set to the target value. Each cell was 

then electrically cycled from its minimum to the upper voltage value (e.g. 100% SOC) three times. 

For each charge-discharge cycle the rest time allowed for the cell voltage to equilibrate was 

successively reduced from 60 minutes, 30 minutes and then finally zero. After electrically loading 

the cell for a given C-rate (derived using the maximum C-rate of the cell defined in Table 3), the 

reference test (defined in Section 5.3.1) was completed again for each cell. By continually 

performing the reference test throughout the text matrix, it becomes possible to check for and to 

quantify any cell degradation (e.g. capacity fade) that may occur due to the higher current rates 

and reduced relaxation times. The presence of significant capacity fade would invalidate any 

comparison of residual energy from an accelerated test condition to the original reference test 

performed at the start of the procedure. Further, evidence that cells were physically damaged as a 
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consequence of the accelerated measurements would undermine the ethos of the test approach 

and reduce the feasibility of its introduction within a broader circular economy strategy for 

managing EOL vehicle battery systems.  

6 Results 

6.1 Experimental Error Analysis 

To improve the efficacy of the results obtained, six cells of each type (twelve in total) were 

employed within the test programme. Based on a study of the relative accuracy of the 

experimental facilities employed within the laboratory and the manufacturing tolerances of the 

cell types used (e.g. variations in measured OCV and impedance) a sample size of 6 for each cell 

type was selected. This sample size provides a mean measurement error of 1.13% and 0.34% for 

the pouch and 18650 cells respectively. The results presented in the following subsections 

highlight the region of measurement uncertainty the arises from this potential measurement 

error. The numerical results presented in Tables 4 and 5 show the arithmetic mean value of energy 

capacity. For each test condition, the standard deviation is provided to highlight the spread of 

values across the samples of 6 cells.  

 

6.2 Accelerated Measurement of Residual Stored Energy 

Table 4 and 5 present the measured capacity values (averaged over the six cells) for the pouch 

cells and the 18650 cells for the different test conditions. Both Tables highlight the variations in 

the measured cell capacity as a function of the C-rate, the wait time allowed between successive 

charge and discharge events and the temperature of the cell when the capacity was measured. For 

each test case, the energy capacity recorded under the corresponding reference conditions is also 

highlighted. Figures 6 and 7 present the deviation of the measured cell capacity values with the 
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energy capacity measured under referenced test conditions. The figures highlight the region of 

uncertainty associated with the measurement error for each cell type. It can be seen that there is 

a greater variability in the residual energy measured as a function of cell temperature, than for the 

C-rate and the associated wait times.  For example, for the test condition (C-Rate = 1C and wait 

time = 60 minutes) the average value of residual energy measured within the pouch cell varies 

from 40.82 Ah through to 31.81 Ah as cell temperature is changed from 400C to 00
. Conversely, for 

a defined cell temperature (e.g. 250C), Figure 6 show that variations in the measured energy 

capacity are within the range of 0.48% under-estimation - 0.66% over-estimation for the different 

C-rates and wait times respectively. 

 

6.3 Cell Degradation 

Figures 8 and 9 presents the measured residual capacity for each cell (measured after electrically 

loading the cell with a given C-rate) relative to the initial reference value for the pouch and 18650 

cells respectively. In addition, the region of uncertainty within the results from the measurement 

error is highlighted. For the pouch cell, the results shown in Figure 8 indicate that for ambient 

temperature conditions of 250C and 400C there is negligible capacity fade (e.g. at 400C the 

difference lies within the region of measurement error and for a temperature equal to 250C the 

maximum difference is only 1.41%).  However, under cold temperature conditions, in particular 

when the cell is cycled at a high electrical load, significant performance degradation can be 

observed. As a direct consequence of the cell being cycled at its maximum C-rate at zero degrees, 

the cells experiences an average 8.6% reduction in energy capacity. This result is consistent with a 

number of other publications that address the topic of Li-ion cell degradation and discuss the 

possible causality between low temperature, high current and the occurrence of lithium plating 

[53,54] and high temperature and high current and the growth of the solid electrolyte interphase 
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layer growth [54]. From Figure 9, similar conclusions for the 18650 cell type may be made. At 

ambient temperatures of 250C and 400C, the measured reduction in cell capacity, experienced 

after cycling the cell at the highest C-rate was found to be between circa: 0.94-2.06%. Conversely, 

considerable capacity increase can be observed when cycling the cell at low temperatures, where 

a capacity increase of  between 0.3 - 1% was recorded due to the cell warming effect reported in 

[17].  

 

6.4 Timing Saving from the Reference Test Condition 

Figure 10 presents the time saving possible when accelerating the energy capacity measurements. 

Data is presented as a percentage relative to the reference test condition for both pouch and 

18650 cells for an ambient temperature of T=250C.  The values shown represent those actually 

measured during test programme and therefore include the variable time element associated with 

the CV phase of the charge-cycle. The reference test, defined in [44] requires the use of wait times 

of 180 minutes for a change in cell SOC through a charge or discharge event. The reference test 

includes a wait step, charge step, another wait step and discharge step to measure cell capacity. 

The total time therefore required to complete a reference energy measurement test is circa: 614 

minutes. It is noteworthy, that in order to better isolate the causality between measurement 

accuracy and the voltage relaxation time, defined in  [44], for the cell to soak at the desired test 

temperature was unchanged. 
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7 Discussion  

7.1 Optimizing the Relationship between Capacity Test Time and Accuracy  

Table 6 presents the different test cases, defined in Figures 11 and 12 with each test allocated a 

unique number between one and nine. Tests are ranked in ascending order in terms of the time 

required for their completion. It is possible to combine the relative measures of test time and 

accuracy with the cost function: 

                                                                                    
                                                                      (1) 

Where   
  defines the normalized accuracy of the accelerated test condition: 

                                                                                 
       

      
                                                                      (2) 

in which    and    denote the measured capacity from the reference test case and the 

accelerated test condition respectively. The term     defines the duration of the corresponding test 

case. The coefficients   and   are weighting factors that can be applied by organizations to 

express the relative importance of experimental accuracy verses test duration. For example, 

Figure 11 presents the cost function J for each test case, defined in Table 6 for the pouch cell, 

when both   and   have an equal value of 0.5. For these requirements, the optimal test 

parameters are those defined by test case 3 in which the cells are electrically cycled at 3C with 

wait-times of 30 minutes between successive charge-discharge events. The test duration is 50 

minutes with an estimated accuracy 0.18% under-estimation when compared to the reference 

test condition (defined by Standard IEC 62660-1) that would require a test duration of 240 

minutes (when the discharge time and wait time before the discharge is considered only). For 

another scenario, the relative weighting of   and   is changed to 0.2 and 0.8 respectively to 

emphasis the relative importance of process efficiency as opposed to absolute test accuracy. 
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Figure 12 highlights that the optimal parameters for the pouch cell have changed to those defined 

by test condition 1 from Table 5, namely a C-rate of 3C with a weight times of 0 minutes after each 

SOC adjustment. The test duration is now 20 minutes with an estimated accuracy of 0.7% over-

estimation when compared to the reference test condition (defined by Standard EC 62660-1) 

corresponding to a reduction in testing time of circa: 220%. These scenarios highlight the flexibility 

of the approach in which different organizations could prioritize the relative importance of test 

accuracy verses experimental time when sorting/grading Li-ion cells for different EOL applications. 

However, irrespective of the final test parameters selected, the results presented in Tables 4 and 5 

highlight that a significant reduction in test time (and thus cost and energy requirements) are 

achievable when compared to the experimental methods defined within current international 

battery test standards for Li-ion characterization. 

 

7.2 Cell Damage 

It is noteworthy that significant damage occurred to the pouch (power) cells during low 

temperature cycling. When the cell temperature was raised back to 250C to complete the 

monitoring characterization (to assess cell degradation) significant swelling was observed within 

three of the six cells. Figure 13 presents an example pouch cell showing clear signs of mechanical 

deformation. Due to safety concerns, the reference test was not performed on these cells. 

Throughout the experimental programme, no cell failures were observed with the 18650 energy 

cells. These results highlight the potential hazards associated with attempting to compress the 

energy measurement process too far. A number of publications discuss the relative degradation of 

Li-ion cells due to storage or calendar ageing [31,32]. Studies discuss that reduced calendar ageing 

is often observed with cells stored at lower temperatures [55,56]. For example, in [56] a high 

power 12Ah Kokam cell capacity reduced by 50% over 500 days when stored at 600C compared to 
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the 10% reduction in capacity when the cell is stored at 100C over the same period. These results 

imply that within a circular economy strategy, in which Li-ion cells are stored at lower 

temperatures to reduce ageing, the temperature of the cells should be raised before accelerated 

energy measurements are made if permanent damage within the cell is to be avoided. This 

constraint implies that either greater time must be allocated within the cell sorting/grading 

strategy for cell temperature to rise naturally or the OEM must incur the capital cost and greater 

running costs (including the associated CO2 emissions) of warming the cells prior to commencing 

the accelerated test programme.  

 

7.3 Further work  

 

The results highlight that it is feasible to reduce the test duration required to assess the energy 

capacity (and thus SOH) for a Li-ion cell while still retaining levels of measurement accuracy that 

would support decision-making at battery EOL. Broadening the experimental programme to 

include cells from a wider cross-section of manufacturers and chemistries will further highlight the 

transferability of these results to other cell technologies. Based on these results the authors are 

currently investigating two primary areas of further work. The first, is to assess the scalability of 

this framework. It is probable that vehicle OEMs and specialist suppliers will seek to grade EV 

batteries at the module or pack level, rather than at the cell level. Research is therefore required 

to ascertain if the same levels of test accuracy are achievable with comparable levels of test time 

compression when characterizing complete battery modules or pack assemblies. Secondly, 

another measure often cited to quantify battery SOH is a rise in cell impedance. The test standards 

defined in Table 2 also include procedures for measuring cell impedance for different ambient 

temperatures and SOC. Research is currently ongoing to assess whether these procedures, most 
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notably the time allocated for the cell to stabilize after each SOC correction can be reduced, 

thereby improving the efficiency of the impedance characterization process.  

8 Conclusions 

Underpinning a number of studies that critically evaluate different circular economy strategies for 

the vehicle battery system are implicit assumptions about the retained capacity within the battery 

and thus it’s SOH. Legislative and best-practice standards exist that address the performance 

evaluation requirements for the both EV and HEV battery systems. However, their test time 

requirements vary considerably depending on the exact nature of the test strategy; including the 

number of test points defined for battery SOC and temperature and the time defined to allow the 

battery voltage to stabilize after each change in SOC and after any charge or discharge event. The 

authors assert that these test durations would be prohibitive for a number of vehicle 

manufacturers and specialist energy storage suppliers wishing to sort or grade used vehicle 

battery systems to ascertain the most appropriate circular economy strategy for the battery. 

Experimental results are presented for two cell types and form-factor, that highlight that it is 

possible to significantly reduce the duration of the characterisation test (circa: 70-90% reduction) 

while still retaining levels of measurement accuracy in the order of 1% for cell temperatures of 

250C. Even at elevated temperatures of 400C, the peak measurement error for the pouch cell was 

found to be circa: 3%. Only at low temperatures was measurement accuracy and cell degradation 

deemed to be so high as to prohibit its inclusion within a viable EOL battery strategy. A simple 

cost-function was formulated to highlight the flexibility of the approach in which different 

organizations could prioritize the relative importance of test accuracy verses experimental time 

when sorting/grading Li-ion cells for different EOL applications. 
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9 Figure Captions 

Figure 1: Capacity test durations defined within international standards [44,57–59] 

Figure 2: (a) Schematic representation of the experimental set-up; (b) Photograph of the 

experimental set-up (c) Photograph of the cell mounting fixture   

Figure 3: Cell temperature measurement locations for both the 18650 and pouch cells  

Figure 4: Overview of the experimental study 

Figure 5: (a) Experimental test matrix completed; (b) Subset of the current profile applied to the 

cells under test  

Figure 6: Average difference in measured capacity between the reference value and that 

measured for higher C-rates and reduced relation times for the pouch (power) cell 

Figure 7: Average difference in measured capacity between the reference value and that 

measured for higher C-rates and reduced relation times for the 18650 (energy) cell 

Figure 8: Measured cell degradation, averaged over each cell, for the pouch (power) cell 

Figure 9: Measured cell degradation, averaged over each cell, for the 18650 (energy) cell 

Figure 10: Time saving possible from accelerated energy capacity measurements (a) Pouch cell; (b) 

18650 cell   

Figure 11: Optimal selection of the accelerated energy capacity test (             

Figure 12: Optimal selection of the accelerated energy capacity test (             

Figure 13: Mechanical deformation of a pouch cell after low temperature, high current, testing  
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10 Tables 

Nissan Leaf Battery System Overview 

Module Stack 1 
 

Item                 Quantity 

Module Stack 2 
 

Item                    Quantity 

Module Stack 3 
 

Item                       Quantity 

Mechanical Subsystems 
 

Item                       Quantity 

Mechanical Subsystems 
 

Item                       Quantity 

Modules 12 Modules 12 Modules 24 Compression Test 
Plug 

1 BMS 1 

Enclosures 24 Enclosures 24 Enclosures 48 Enclosures 2 BMS Mounting Bracket 1 

Inner Cell Bundles 12 Inner Cell Bundles 12 Inner Cell Bundles 24 Cross-member 
Support 

3 BMS Casing  2 

Insulation sheets 24 Insulation sheets 24 Insulation sheets 48 Wiring Harness 
Brackets 

4 Enclosures 
(Top/Bottom) 

2 

Metal Inserts 48 Metal Inserts 48 Metal Inserts 96 Seal 1 Bus Bar  4 

Spaces 24 Spaces 24 Spaces 48   Current Sensor 1 

Terminal 
Protection 

12 Terminal 
Protection 

12 Terminal Protection 24   Wiring Harness 1 

Front Brackets 12 Front Brackets 12 Front Brackets 32   Relay Bracket  1 

Rear Brackets 4 Rear Brackets 4 Rear Brackets 16   High Voltage Bus Bar  4 

Bus Bar Assembly 1 Bus Bar Assembly 1 Bus Bar Assembly 1   Wiring Support  2 

Base Plate 1 Base Plate 1 Base Plate 1   Plug 1 

Front and Rear 
Plate Assembly 

2 Front and Rear 
Plate Assembly 

2 Brackets 4   Fuse 1 

    Sub-pack Restraining 
Bolts 

4   Relays 3 

        Temperature Sensors 3 

        Spacer 1 

        Resistor 1 

 

 Table 1: Overview of the Nissan Leaf battery system 
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Title  Description 

US Advanced Battery Consortium 
(USABC) Electric Vehicle Battery Test 
Procedures Manual: 1996 (Updated in 
June 2015 Revision 3) 

This manual summarizes the procedural information needed to perform 
the battery testing specified by the USABC. This manual provides the 
structure and standards to be used by all testing organizations, including 
the USABC developers, national laboratories, or other relevant test 
facilities. The specific procedures defined in this manual support the 
performance and life characterization of advanced battery devices under 
development for EV applications. 

US Department of Energy Standard 
DOE/ID-11069 

USABC FreedomCAR battery test manual for power-assisted hybrid 
electric vehicles. This standard defines a series of tests to characterize 
aspects of the performance or cycle life behavior of batteries for hybrid 
electric vehicle applications. 

Idaho National Laboratory (INL) 
Battery Test Manual for Plug-in Hybrid 
Electric Vehicles: 2010 

This battery test procedure manual was prepared for the United States 
Department of Energy (DOE), Office of Energy Efficiency and Renewable 
Energy (EERE), Vehicle Technologies Program. It is based on technical 
targets established for energy storage development projects aimed at 
meeting system level DOE goals for Plug-in Hybrid Electric Vehicles 
(PHEV). The specific procedures defined in this manual support the 
performance and life characterization of advanced battery devices under 
development for PHEV’s. 

SAE J2288:2008 This standard is for lifecycle testing of electric vehicle battery modules. 
This SAE recommended practice defines a standardised test method to 
determine the expected service life, in cycles, of electric vehicle battery 
modules. 

ISO 12405:2014 ISO 12405:2014 consists of the following parts, under the general title 
Electrically propelled road vehicles — Test specification for lithium-ion 
traction battery packs and systems: 

 Part 1: High-power applications 

 Part 2: High-energy applications 

 Part 3: Safety performance requirements. This part of ISO 12405 
provides specific test procedures and related requirements to 
ensure an appropriate and acceptable level of safety of lithium-
ion battery systems specifically developed for propulsion of road 
vehicles. 

IEC EN 62660:2010 IEC EN 62660 has 2 parts and a third part in draft form. The standard is as 
follows: 
IEC EN 62660-1 – Secondary batteries for the propulsion of electric road 
vehicles – Performance testing for lithium-ion cells. 
IEC EN 62660-2 – Secondary batteries for the propulsion of electric road 
vehicles – Reliability and abuse testing for lithium-ion cells. 
Draft: IEC 62660-3.  Secondary lithium-ion cells for the propulsion of 
electric road vehicles - Part 3: Safety requirements of cells and modules. 
The UK equivalent Standard is: BS EN 62660:2011 and also consist of two 
parts and a third draft section. The standard is as follows: 
BS EN 62660-1:2011 - Secondary lithium-ion cells for the propulsion of 
electric road vehicles. Performance testing.  
BS EN 62660-2:2011 - Secondary lithium-ion cells for the propulsion of 
electric road vehicles. Reliability and abuse testing.  
Draft: BS EN 62660-3. Secondary lithium-ion cells for the propulsion of 
electric road vehicles. Part 3. Safety requirements of cells and modules. 

IEC EN 62281:2012  
 

This standard specifies test methods and requirements for primary and 
secondary (rechargeable) lithium cells and batteries to ensure their safety 
during transport other than for recycling or disposal. The UK equivalent 
standard is: BS EN 62281:2013 and is about safety of primary and 
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secondary lithium cells and batteries during transport. 

QC/T 743-2006:2006 This Chinese standard are for Lithium-ion batteries for electric vehicles: 
This standard specifies the requirements, test methods, inspection rules, 
marking, packaging, transportation and storage of lithium-ion batteries 
for electric vehicles. 

UN 38.3 – UN Manual of Tests and 
Criteria: 2009 

The Manual of Tests and Criteria contains criteria, test methods and 
procedures to be used for classification of dangerous goods according to 
the provisions of Parts 2 and 3 of the United Nations Recommendations 
on the Transport of Dangerous Goods, Model Regulations, as well as for 
chemicals presenting physical hazards according to the Globally 
Harmonized System of Classification and Labeling of Chemicals (GHS). 

 

Table 2: Overview of legislative and best practice test standards for vehicle battery systems  
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Parameter Pouch (Power Cell) 18650 (Energy Cell) 

Nominal energy 

Capacity  

40 Ah 2.98 Ah 

Maximum continuous 

charge rate 

3C C/3 

Maximum continuous 

discharge rate 

8C 3C 

Maximum cell voltage  4.2 V 4.2 V 

Minimum cell voltage  2.7 V 2.5 V 

 

Table 3: Electrical performance data for both the Pouch and 18650 cell types 
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Temperature 

(
0
C) 

Wait Time 

(min) 

  C-Rate 

1C Max-C/2 Max-C 

Mean 

Capacity   

Standard 

Deviation 

Mean 

Capacity   

Standard 

Deviation 

Mean 

Capacity   

Standard 

Deviation 

25 0 39.29 0.086 39.21 0.103 39.31 0.228 

25 30 39.29 0.091 39.15 0.082 38.96 0.123 

25 60 39.24 0.090 39.12 0.082 38.84 0.098 

25 180 39.5 0.095 39.56 0.081 39.58 0.084 

Temperature 

(
0
C) 

Wait Time 

(min) 

C-Rate 

  1C Max-C/2 Max-C 

  Mean 

Capacity   

Standard 

Deviation 

Mean 

Capacity   

Standard 

Deviation 

Mean 

Capacity   

Standard 

Deviation 

40 0 40.82 0.280 40.72 0.491 40.71 0.465 

40 30 40.85 0.263 40.72 0.522 40.59 0.505 

40 60 40.82 0.237 40.68 0.546 40.51 0.542 

25 180 40.67 0.375 40.69 0.578 40.64 0.555 

Temperature 

(
0
C) 

Wait Time 

(min) 

C-Rate 

  1C Max-C/2 Max-C 

  Mean 

Capacity   

Standard 

Deviation 

Mean 

Capacity   

Standard 

Deviation 

Mean 

Capacity   

Standard 

Deviation 

0 0 31.89 0.557 32.14 0.917 31.69 2.232 

0 30 31.83 0.492 31.88 0.716 31.04 2.362 

0 60 31.81 0.481 31.76 0.607 31.05 1.930 

25 180 31.72 
 

0.477 
 

31.20 
 

0.732 
 

29.59 
 

1.844 
 

Table 4: Average capacity values measured during the accelerated testing on the power (pouch) 

cell. 
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Temperature 

(
0
C) 

Wait Time 

(min) 

  C-Rate 

1C Max-C/2 Max-C 

Mean 

Capacity   

Standard 

Deviation 

Mean 

Capacity   

Standard 

Deviation 

Mean 

Capacity   

Standard 

Deviation 

25 0 2.74 0.02 2.73 0.02 2.77 0.02 

25 30 2.74 0.02 2.74 0.02 2.78 0.02 

25 60 2.75 0.02 2.74 0.02 2.78 0.02 

25 180 2.74 0.02 2.71 0.02 2.69 
 

0.02 

Temperature 

(
0
C) 

Wait Time 

(min) 

C-Rate 

  1C Max-C/2 Max-C 

  Mean 

Capacity   

Standard 

Deviation 

Mean 

Capacity   

Standard 

Deviation 

Mean 

Capacity   

Standard 

Deviation 

40 0 2.83 0.02 2.82 0.02 2.81 0.02 

40 30 2.84 0.02 2.83 0.01 2.81 0.02 

40 60 2.84 0.02 2.83 0.02 2.81 0.02 

25 180 2.83 
 

0.02 
 

2.81 
 

0.02 
 

2.80 
 

0.02 
 

Temperature 

(
0
C) 

Wait Time 

(min) 

C-Rate 

  1C Max-C/2 Max-C 

  Mean 

Capacity   

Standard 

Deviation 

Mean 

Capacity   

Standard 

Deviation 

Mean 

Capacity   

Standard 

Deviation 

0 0 2.20 0.03 2.26 0.03 2.44 0.01 

0 30 2.21 0.03 2.25 0.03 2.45 0.01 

0 60 2.22 0.03 2.25 0.02 2.44 0.01 

25 180 2.22 0.03 
 

2.22 
 

0.03 
 

2.23 
 

0.02 

Table 5: Average capacity values measured during the accelerated testing on the energy (18650) 

cell.  
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Test Number  Description Duration (minutes) cell 

1 0 minutes wait Max C 20 

2 0 minutes wait Max C/2 40 

3 30 minutes wait Max C 50 

4 0 minutes wait  1C 60 

5 30 minutes wait  Max C/2 70 

6 60 minutes wait  Max C 80 

7 30 minutes wait 1C 90 

8 60 minutes wait Max C/2 100 

9 60 minutes wait 1C 120 

 

Table 6: Nine test cases ranked from in order of test duration  
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