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ABSTRACT
This paper introduces a novel four-stage methodol-
ogy for real-estate valuation. This research shows
that space, property, economic, neighbourhood and
time features are all contributing factors in produc-
ing a house price predictor in which validation shows
a 96.6% accuracy on Gaussian Process Regression
beating regression-kriging, random forests and an
M5P-decision-tree. The output is integrated into a
commercial real estate decision engine.
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1. INTRODUCTION
The primary aim of real-estate value prediction differs signif-
icantly from one stakeholder to another: (1) A developer is
looking simply to maximise their returns by purchasing un-
dervalued land or property; (2) Lenders and economists seek
to minimise their risk and hence are interested primarily in
the market form efficiency of real estate; (3) Home buyers
have non-return related priorities, such as life-style suitabil-
ity and location. Varying motives, macro-environmental fac-
tors and data sparsity are just some of the reasons why real-
estate valuation remains a challenging task. Additionally,
unprecedented leverage (for example 100% loans) and mar-
ket potential (a 4.5% increase in residential property prices
in the UK in 2015) [8] are some of the reasons why real-estate
value prediction can be so valuable. In a recent study [4] it

was shown that the most accepted UK real-estate prediction
models have been designed by the Office for National Statis-
tics (ONS), the Land Registry, the Halifax and Nationwide
Building Societies, and the LSL Academy (formed by Pink
and Aviva), which all utilise the Land Registry’ open source
sales data and/or private mortgage archives. The most pop-
ular valuation models include (1) median sales prices (2)
repeat sales and (3) hedonic regressions. Inconsistent out-
puts between these models provide uncertain accuracy of
these approaches [4]. This research, in partnership with the
Assured Property Group, aims to provide a real-estate valu-
ation model that delivers accurate and consistent valuations
for the whole of England and Wales. The benefit of this
work over others is its ability to predict individual house
prices based on space, time, economic and neighbourhood
features, rather than previously discussed spatial aggregates
with a comparably uninformed feature set.

The remainder of the paper is as follows: Section 2 reviews
the most successful residential value predictors published to
date; Section 3 describes the scientific methodology; Section
4 details the results of our validations; Section 5 concludes
the paper and presents avenues for further research.

2. BACKGROUND RESEARCH
From the perspective of lagged returns, the most popular
valuation models employ constant-quality indices, notably
repeat sale regression (RSR) [1]. As with most regressions
the RSR predicts through the application of cross-sectional
regression prior to applying ordinary least squares. In a
comparison study of methodologies, the RSR algorithm was
tested on 53,000 properties in and around Chicago and only
gained an R2 of 0.34 [7]. The key reason for such a poor
fit was due to the assumption that property characteristics
have no bearing on its price.

[9] introduced a RIPPER regression on 5,359 houses in Fair-
fax county. Similar to our research, this paper introduced a
number of property characteristics: size of building foot-



Figure 1: Process Diagram Corresponding to the Space, Time, Property, Network, Time Algorithm Detailed in Algorithm 1.

print, presence of a garage, the number of parking spaces,
and the size of the entire title. Additionally, they introduced
a number of environmental factors such as local school per-
formance, mortgage contract rate, list month, list price, year
built and number of days on the market. Their approach
produced a relative error of 0.248. The results of this pa-
per are informative; however, the size and variation of the
data is relatively limited compared to that available via open
source in the UK. Hence, our research includes variables such
as listed building status, council tax band, supermarket dis-
tance, flood risk and coastal proximity across a larger space.

With regard to the prediction of spatially dependant datasets,
spatial statistics and the removal of the IID assumption, the
most relevant research in this area is that of [6]. Their re-
search, based on 30,000 properties over six years in Lucas
County, showed that SDM-MISS (an extension to the Spa-
tial Durbin Model) removed 75% of the error between least
square prediction errors and those from the popularly em-
ployed spatial autoregressive model. Our research utilises
similar Gaussian process approaches, with the benefit of in-
cluding network, economic and property features.

From the perspective of modelling data with (spatial) de-
pendencies, [5] attempted a study between four kriging tech-
niques: detrended kriging, universal kriging (UnK), detrended
co-kriging and universal co-kriging on 1,707 households in
Austria, yielding an R2 of 0.66 on the best model (univer-
sal co-kriging). Our paper includes spatial predictions as a
single feature in the final Regression (GPR).

3. SCIENTIFIC METHOD
Our method introduces a novel, four-stage, methodology for
real-estate valuation as seen in figure 1:

Stage 1 (Temporal Interpolation): As defined by the
Office of National Statistics (ONS) we tested LSOA’s, OA’s
and postcode areas to identify the granularity of space re-
quired to enable an optimally representative space-time in-
terpolation. The interpolation provided a new dataset Dτ

where each point is time singular in price. The mean value
of each area was calculated and then extended on each prop-
erty in the land registry’s sales dataset. All properties sold in
April and May 2016 were used as the test set, this amounted
to over 12,000 transactions. Output Area’s (OA’s) were
utilised, yielding an R2 value of 0.71.

Stage 2 (Spatial Dependency Identification): This
stage overcomes the identical and independent distribution
assumption put forward in most statistical techniques. Com-
mon spatial interpolation techniques are based on Gaussian
processes set by some prior covariance function, known as
Kriging. In our case, Universal Kriging (UnK) was utilised
on a stratified sample ofDτ namedDτ

σ and then interpolated
to produce ouput ŷ−σ,τ . UnK was used because unlike the
popularly employed method of Ordinary Kriging it assumes
non stationarity. Uniquely, UnK considers the spatial corre-
lation between the points that need to be interpolated and
their neighbouring points [11]. Four covariance functions
(kernels) were tested with the UnK algorithm; Epanech-
nikov, Gaussian, Polynomial and Exponential. The best
performing UnK method employed a fifth order polynomial



kernel function. Finally Inverse Distance Weighting (IDW)
and Emperical Bayesian Kriging (EBK) were tested against
the UnK, see Table 1 for a comparison of results.

Result IDW EBK UnK

RMSE 104383.2 94810.6 94443.1

R2 0.816 0.836 0.839

Table 1: Spatial Statistic Model Performance Comparison

Stage 3 (property, network and economic features):
A pre-defined set of training features were agreed in co-
operation with industry experts alongside the removal of
all features with a Pearson correlation coefficient ≥ 85% of
each other. Property features, such as building footprints,
building height, title size, property type (detached, terraced,
apartment, etc.), freehold status and old/new-build status
were utilised. Network features included proximity to schools
and the performance of the closest primary and secondary
school, proximity and usage of the closest train station, traf-
fic flow passing the property, the population density within
(1) the postcode and (2) within 250, 500 and 1,000 meters
of the property. Finally, economic features such as variable
mortgage interest rate, total number of houses sold each
month, inflation and USD exchange rate were included.

Stage 4 (Gaussian Process Regression): We trained a
model to predict house prices based on the dataset {Dτ

σ, ŷσ,τ}
with a GPR, such that a model f(x) ∼ GP(m(x), kGPR(x,x′))
is built to provide a prediction of all house prices based on
space, time, property, economic and netowrk features. A
Gaussian Process (GP) is a powerful non-parametric Bayesian
model, specified by a mean and a covariance (kernel) func-
tion. 16,000 location-stratified instances were trained on the
GPR due to its computational complexity of O(N3) in the
number of points [10]. The covariance function (kernel) cho-
sen was a Radial Basis (Gaussian) function. The reason for
including this extra step, rather than undertaking Kriging
with an external drift, was to provide kernel flexibility which
otherwise might not have been applicable; for example it will
be seen that a separate kernel was utilised in the following
GPR to that of the kernel in our UnK in Stage 2. All four
stages are described using pseudo code in Algorithm 1.

4. RESULTS
Table 2 shows the results for each stage in the analytic
pipeline. The columns titled ‘Stage 3’ and ‘Stage 4’ include
a comparison of results on different machine learning re-
gressions, showing that the GPR outperformed Regression-
Kriging (R-K), a Random Forest (RF) and an M5P decision
tree on both stages for both the R2 and RMSE validation
metrics. In the final two stages, a ten-fold stratified sampling
technique was implemented and the average result for each
fold was calculated; the standard deviation between each
fold was 4485.104. Figure 2 visualises the GPR’s predic-
tion versus actual price for all properties trained and tested.
The models t-value and p-value were reported to be 27.9178
and ≤ 2.2e− 16 respectively, showing the statistical signifi-
cance of the GPR model on the house price data. Figure 3
shows the uncertainty bounds between folds for properties
between £0-£250,000 (the most dense section of the price
distribution).

Algorithm 1: Space-Property-Economic-Network-Time
(SPENT).

Require: kkrig, kGPR,Θ0 = {σ2
f0, σ

2
n0, λ0}

1: Input: D = {Xs
t ,y

s
t , } s={1:S}

t={t0:∆t:T}
Temporal mapping to time τ :

2: Dτ ← g(D) ∀ t, s ∈ {t0 : ∆t : T}, {1 : S}
3: Stratified Sampling: Sample across each LSOA
4: Dτ

σ ∼ σstratified(Dτ )
5: Spatial interpolation on held out locs
6: ŷ−σ,τ ← UnK(kkrig,yσ,τ )
7: for 1 to 10 folds do
8: Train GPR on {Dτ

σ, ŷσ,τ} with O(N3)
9: f(x) ∼ GP(m(x), kGPR(x,x′))

10: λ, σ2
f , σ

2
n ← argmax

λ,σ2
f
,σ2

n

log p(y|X) Type-II ML

11: GPR Forecast
12: p(f∗|X∗,X, f) ∼ N (f∗|µ∗,Σ∗)
13: where X∗ = [X−σ, ŷ−σ,τ ]
14: return R2,RMSE

15: Finish

4.1 Lower Bound on Performance
The previously discussed GPR was trained on 16,000 in-
stances of historic data which were mapped to the present
month (May 2016) and then validated ten-fold. 32,387 of
those points were sales from April and May 2016, and hence
have potential to bias the output of the predictor. A sec-
ond experiment was undertaken to provide a pedantically
pessimistic scenario whereby the remaining 198,613 historic
data points were utilised in building the training subset
and the resulting algorithm was then tested on the 32,387
non-simulated data points. The R2 and RMSE of this ex-
periment were 0.920 and 85,021.9 respectively. In addi-
tion, a paired t-test provided a t-value of 30.2196 and a
p-value of ≤ 2.2e − 16, showing a statistical significance of
the GPR model against the house price data. The mean of
differences was 14094.8, with a 95% confidence interval of
[13180.61,15008.99]. These results show a slight decrease in
accuracy, however is relatively good considering.

4.2 Interface Implementation
‘NimbusMaps’, developed by Assured Property Group em-
beds the techniques outlined in this paper. The interface,
powered by GoogleMaps, provides polygons representing all
the available title numbers in the UK. A customer is able to
search by postcode, current location or title number. Once
this title number has been selected, information including
ownership details, site size, number of buildings in the title,
flood risk, estimated residential value and traffic flow are
returned. One application of this tool is to consider a com-
pany that develops residential estates. Assuming that the
company is interested in searching for their next develop-
ment opportunity, they are able to request real-estate titles
within the radius of specific location, with a specified price
range, with a minimum surrounding population of x and a
maximum passing traffic flow of y.

5. CONCLUSIONS
In this research we: (i) Converted several discretized, non-
uniform, spatiotemporal sales data-points into a single space-



STAGE 1 STAGE 2 STAGE 3 STAGE 4

Result Interpolation UnK RF M5P GPR R-K RF M5P GPR
Sample Size 2.1m 231,000 231,000 231,000 16,000 231,000 231,000 231,000 16,000

R2 0.710 0.839 0.871 0.911 0.902 0.831 0.906 0.967 0.966
RMSE 179325.8 94,443 142,916 98,609 104,256 96,029 124,412 47,527 38,011

Table 2: Chronological Performance Comparison at Each Stage of the SPENT Algorithm.

Figure 2: Actual Versus Predicted Results for Final GPR. Figure 3: Prediction Uncertainty Bounds for GPR Prediction.

time cube to provide real-estate sales temporal singularity;
(ii) Produced a spatially aware UnK calculation identifying
house price spatial dependencies; (iii) Introduced a number
of property, economic and network features to better inform
the final model; (iv) Implemented each of the three previ-
ous stages into a single GPR producing an unprecedented
96.6% accuracy for real-estate price prediction (compared
with previous research yielding 82% accuracy [2][3]). (v)
We then implemented the results into a user-defined deci-
sion engine. Future work is to include (1) an extension to
properties with no sales data, (2) seasonality inclusion and
(3) scaling the GPR to allow for a larger training set.
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