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Bridging the Gap between the Gas and Solution Phase: Solvent Specific 

Photochemistry in 4-tert-Butylcatechol 

Michael D. Horbury, Lewis A. Baker, Wen-Dong Quan, Jamie D. Young, Michael Staniforth, Simon E. 

Greenough, and Vasilios G. Stavros* 

Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK. 

 

ABSTRACT: Eumelanin is a naturally synthesized ultraviolet light absorbing biomolecule, possessing both photoprotective and 

phototoxic properties. We infer insight into these properties of eumelanin using a bottom-up approach, by investigating a subunit 

analogue, 4-tert-butylcatechol. Utilizing a combination of femtosecond transient electronic absorption spectroscopy and time-re-

solved velocity map ion imaging, our results suggest an environmental-dependent relaxation pathway, following irradiation at 267 

nm to populate the S1 (
1ππ*) state. Gas-phase and non-polar solution-phase measurements reveal that the S1 state decays through 

coupling onto the S2 (
1πσ*) state that is dissociative along the non-intramolecular hydrogen bonded ‘free’ O–H bond. This process is 

mediated by tunneling beneath an S1/S2 conical intersection and occurs in 4.9 ± 0.6 ps in the gas-phase and 27 ± 7 ps in the non-polar 

cyclohexane solution. Comparative studies on the deuterated isotopologue of 4-tert-butylcatechol in both the gas- and solution-phase 

(cyclohexane) reveals an average kinetic isotope effect of ~19 and ~7, respectively, supportive of O–H dissociation mediated by a 

quantum tunneling mechanism. In contrast, in the polar acetonitrile, the S1 state decays on a much longer timescale of 1.7 ± 0.1 ns. 

We propose that the S1 decay is now multicomponent, likely driven by internal conversion, intersystem crossing and fluorescence, as 

well as O–H dissociation. The attribution of conformer driven excited state dynamics to explain how the S1 state decays in the gas- 

and non-polar solution-phase versus the polar solution-phase, elegantly demonstrates the influence the environment has on the ensu-

ing excited state dynamics.     

 

1. INTRODUCTION 

The photoexcited state dynamics of biomolecules have 

borne extensive interest in the field of photochemistry due, in 

part, to an apparent relative photostability present in key bio-

chemical systems, despite the fact that they contain ultraviolet 

(UV) chromophores.1-4 The absorption of UV radiation has the 

ability to cause bond dissociation within molecules, which can 

lead to undesired chemical changes; mutagenesis in DNA being 

a prime example.5 In order for biomolecules to be photostable 

after UV absorption, they must be able to efficiently redistribute 

any excess energy away from such harmful pathways. Typi-

cally, these non-dissociative processes must occur on an ultra-

fast (femtosecond (fs) to picosecond (ps)) timescale in order to 

kinetically out-compete the destructive pathways; however, no-

table exceptions of longer-lived excited states do exist, e.g. 

DNA excimers.6 

Employing a bottom-up approach, in which the UV chro-

mophore subunit of a larger biomolecule is isolated and stud-

ied,2,3 can lend valuable insights from which we may begin to 

understand the photochemistry of the larger biomolecule as a 

whole. Much of the previous work in this field has been per-

formed in the isolated gas-phase,2-3,7-13 which proves successful 

in recovering information about the molecular dynamics of 

these UV chromophores without the presence of environmental 

effects. Whilst this provides a good starting point for the inter-

pretation of excited state dynamics in larger systems, interac-

tions with surrounding solvent and solute molecules need to be 

taken into consideration in order to develop a more complete 

picture of photostability in nature.14 Placing a chromophore in 

solution allows for environmental perturbations on the chromo-

phore to be studied, more closely matching the native environ-

ment of such biomolecules. A comparison of gas- and solution-

phase dynamics has been previously performed on an amino 

acid subunit, the UV chromophore phenol.15,16 Subtle differ-

ences between the two phases were observed, supporting the 

postulate that the local environment of biomolecules can play 

an important role in the molecule’s photodynamics, whilst also 

highlighting that knowledge of the dynamics in the gas-phase is 

highly transferable and complementary to solution-phase stud-

ies. 

Many other phenol analogues have also been studied in the 

gas-phase,17-21 one of which is catechol (1,2-dihydroxybenzene) 

- a UV chromophore in a range of biomolecules, one of which 

is eumelanin. As one of three types of melanin,22 eumelanin is 

largely responsible for skin’s frontline defense to UV expo-

sure.23-24 However, gaining a complete understanding of its pho-

todynamics is ongoing, with much progress to be made,25-28 ev-

idenced by recent work implicating the long-term (after many 

hours of UVA exposure) phototoxicity of eumelanins.29 Previ-

ous gas-phase studies of catechol21 have shown that after exci-

tation to the first excited 1ππ* state (S1), H-atom elimination is 

observed from dissociation of the non-intramolecular hydrogen 

bonded ‘free’ O–H bond, leading to the formation of the cate-

choxyl radical in approximately 10 ps. Immediately, this sug-

gests that catechol is not photostable following UV exposure, 

and yet it is a subunit of a photoprotective biomolecule.26 In na-

ture, eumelanin resides within an organelle as large hetero-pol-

ymer fibrils,30 thus gas-phase studies are unable to fully capture 

the photodynamics of catechol in this native environment. 

Therefore, we ask: do the natural surroundings of catechol in-

fluence its photodynamics? 

In the present study, we try to address this question. Owing 

to catechol’s poor solubility in non-polar solvents, the function-

alized catechol, 4-tert-butylcatechol (termed 4-TBC hereon), is 
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used instead, shown in Figure 1. In order to gauge how well 4-

TBC performs as a proxy for catechol, we performed gas-phase 

time-resolved velocity map ion imaging (TR-VMI) and time-

resolved ion yield (TR-IY) measurements. To model the role 

that the surrounding solvent plays in the excited state dynamics 

of 4-TBC after excitation to the S1 state, we employ fs transient 

electronic (UV-visible) absorption spectroscopy (TEAS), using 

the weakly perturbing, non-polar solvent, cyclohexane, and the 

highly perturbing polar solvent, acetonitrile.  

 

II. METHODS 

The detailed experimental procedures pertaining to TR-

VMI, TR-IY and TEAS have been extensively described else-

where.31-33 Briefly, a commercially available Ti:Sapphire oscil-

lator and amplifier system (Spectra-Physics) produces 3 mJ la-

ser pulses of ~40 fs duration centred at 800 nm and a repetition 

rate of 1 kHz. For TR-VMI and TR-IY two optical parametric 

amplifiers (Light Conversion TOPAS-C), each pumped with ~1 

mJ/pulse at 800 nm, produce tunable UV pump and probe 

pulses (hpu and hpr respectively). hpu is centred at 267 nm (~6 

J/pulse) and is temporally varied with respect to the probe us-

ing a hollow gold retroreflector mounted on a motorized stage, 

which enables a maximum temporal delay of t = 1.2 ns to be 

achieved. hpr is set to 243 nm (~7 J/pulse) to resonantly ionize 

H-atoms. Both beams are then focused, near-collinearly, into 

the VMI spectrometer, perpendicularly intersecting a molecular 

beam of 4-TBC (95%, Sigma-Aldrich) seeded in 2 bar of he-

lium. The molecular beam is formed by supersonic jet expan-

sion from an Even-Lavie pulsed solenoid valve34 heated to 100 
oC, and is passed through a 2 mm conical skimmer. The VMI 

spectrometer is in line with the molecular beam and follows the 

standard Eppink and Parker design.35 After photolysis of 4-TBC 

with hpu, resulting H-atoms are ionized with hpr. The VMI 

optics project the 3-D velocity distribution of H+ ions towards a 

position sensitive detector which consists of a pair of micro-

channel plates and a P-43 phosphor screen (Photek, VID-240), 

the emitted light being captured on a CCD camera (Basler, A-

312f). The original 3-D velocity distribution is reconstructed 

from the resulting 2-D image using an image reconstruction al-

gorithm.36 Radial pixels on the image are converted into total 

kinetic energy release (TKER) using the appropriate Jacobian, 

calibration factor and co-fragment mass, generating the desired 

1-D TKER spectra. For TR-IY, we simply record the appear-

ance of the parent ion signal (4-TBC+) as a function of t, by 

gating the detector on this signal and recording the total emitted 

light registered on the detector.   

For TEAS, a 1 mJ/pulse 800 nm laser beam is split into two 

beams of: (i) 0.95 mJ/pulse and (ii) 0.05 mJ/pulse. (i) is used to 

generate hpu centred at 267 nm (1–2 mJcm-2) through second 

and then third harmonic generation using two beta-barium bo-

rate crystals. (ii) is used to generate hpr, a white light contin-

uum (330-675 nm). Pump-probe polarizations are held at magic 

angle (54.7°) relative to one another. Changes in optical density 

(OD) of the sample were calculated from probe intensities, 

collected using a spectrometer (Avantes, AvaSpec-ULS1650F). 

The delivery system for the samples (4-TBC in either cyclohex-

ane (100%, VWR) or acetonitrile (99.9%, VWR)) is a flow-

through cell (Demountable Liquid Cell by Harrick Scientific 

Products, Inc.). The sample is circulated using a PTFE tubing 

peristaltic pump (Masterflex) recirculating sample from a 50 ml 

reservoir in order to provide each pump-probe pulse-pair with 

fresh sample.  

Comparative TR-VMI and TEAS studies also were carried 

out on the deuterated isotopologue of 4-TBC, i.e., 4-TBC-d2, 

in which we have selectively deuterated both O–H bonds 

(C10H12O2D2) synthesized and characterized according to the 

description provided in the supporting information (SI). For the 

TEAS, a bespoke sample delivery system was implemented in 

order to keep the sample in a dry, inert atmosphere to minimize 

isotopic exchange. Further details are provided in the SI. 

 

III. RESULTS and DISCUSSION 

a. Gas-phase studies 

Figure 2a shows an example TKER spectrum with the im-

age from which it was extracted shown inset; the left side cor-

responds to the recorded H+ image while the right half shows 

the reconstructed slice through the centre of the 3-D ion distri-

bution (the black arrow indicates the electric field polarization, 

, of the pump pulse). A pump wavelength of 267 nm (4.65 eV) 

was used to photoexcite 4-TBC to the S1 state, with the gener-

ated H-atoms, associated with O–H dissociation, subsequently 

ionized via a [2+1] resonance enhanced multiphoton ionization 

(REMPI) scheme. The pump-probe time delay (t) used when 

recording this particular image was set at t = 1.2 ns. A high 

kinetic energy (KE) feature is apparent in the TKER spectrum 

centered at ~7000 cm-1, which returns to the baseline by 

~10,000 cm-1. This high-KE signature strongly accords with our 

previous work in catechol,21 and is associated with H-atoms 

generated through dissociation of the ‘free’ (non-hydrogen 

bonded) O–H bond (see Figure 1a) to yield the 4-tert-bu-

tylcatecoxyl radical C10H13O2(X) (termed 4-TBC hereon) plus 

H photoproduct, via the dissociative (O–H coordinate) 1πσ* sur-

face (S2).  

Collecting a series of TKER spectra at varying t and then 

integrating the high KE feature over the range ~5500-8500 cm-1 

results in the H+ transient shown in Figure 2b (blue circles). In 

order to obtain a time constant for the S2 mediated O–H disso-

ciation, a kinetic fit to the data is applied, comprising two ex-

ponential rise functions convoluted with our instrument re-

sponse (~120 fs full width half maximum), shown by the blue 

line. Two (gas-phase, g) time constants (τ) are returned: gτMP 

>30 fs, which is associated with multiphoton processes (MP),37-

a) b) 

Figure 1. ‘Gas-phase’ calculations of the first a) and second b) low-
est energy conformers (‘closed’ and ‘open’ respectively) in the 
ground electronic (S0) state of 4-TBC. Molecular geometries cal-
culated in Gaussian 09a using the M052X functional with a 6-
311G** basis set. See SI for details. 
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38 and a slower rise in the H+ (and thus H-atom) signal, gτH
+= 5.9 

± 0.3 ps, which we attribute to quantum tunneling beneath an 

S1/S2 conical intersection (CI, vide infra).21 In addition to the H+ 

transient, Figure 2b also shows a complementary TR-IY trace 

of the 4-TBC+ parent ion signal, as a function of t (purple dia-

monds), which provides a measure of the dynamics occurring 

on the photoprepared S1 state following excitation at 267 nm. 

Cursory inspection of the 4-TBC+ parent transient relative to the 

corresponding H+ transient reveals that the S1 state decays on a 

similar timescale to the appearance of H-atoms associated with 

O–H dissociation. Indeed, fitting this transient with a bi-expo-

nential decay function (purple line) returns time constants of 
gτIVR(H) = 0.4 ± 0.1 ps, associated with rapid intramolecular vi-

brational energy redistribution (IVR) in the S1 state as seen in 

our previous investigation,21 and gτP
+
 = 4.9 ± 0.6 ps, which is 

assigned to excited state population flux from the S1 state, the 

P+ signifying decay of the non-deuterated isotopologue parent 

ion signal (and therefore S1 state population). Importantly, this 

shows a clear correlation to the appearance time of H+.  

To confirm the role of tunneling following photoexcitation 

to S1, we have also carried out measurements on 4-TBC-d2. The 

results of both the D+ and 4-TBC-d2
+ transients are shown in 

Figure 2c. Kinetic fits to the transients return time-constants of 
gτD

+ = 98 ± 2 ps and gτDP
+
 = 102 ± 3 ps and thus an average kinetic 

isotope effect (KIE, kH/kD) of ~19. Here the time-constant ty-

pography has the same meaning as above, but applied to the 

deuterated isotopologue. The large KIE obtained here is a tell-

tale signifier that the ‘free’ O–H dissociation is very likely me-

diated through tunneling under the S1/S2 CI. For completeness, 

we also note that gτIVR(D) = 1.0 ± 0.1 ps compares favorably with 

the value extracted for the non-deuterated isotopologue. Nota-

bly, the KIE obtained for 4-TBC accords well with similar 

measurements carried out in catechol, which returned a KIE 

~30, validating the use of 4-TBC as a proxy for catechol (vide 

supra). 

 

b. Solution-phase studies 

 The non-polar solvent, cyclohexane, was used as the start-

ing point for unraveling the solution-phase dynamics of 4-TBC, 

as the weakly perturbing environment of cyclohexane serves as 

a good model for the gas-phase environment. Figure 3a shows 

transient absorption spectra (TAS) of 4-TBC in cyclohexane, 

following 267 nm (4.65 eV) excitation, having two main fea-

tures at early t (~1-5 ps); a peak centered around 370 nm and 

another broader feature centered at 495 nm. These features are 

attributed to the excited state absorption (ESA) from the S1 state 

to higher-lying Sn states.15,32 At t = 5 ps, peaks at 375 and 390 

nm appear to lie on top of the S1 absorption; these peaks are the 

signature absorption of 4-TBC in concordance with literature 

on other phenols.39,40 The peak at 390 nm (and to a lesser extent 

375 nm) appears to narrow as the spectra evolve over time (t 

= 5-40 ps). This may be explained by quenching of the initially 

produced hot radical through vibrational energy transfer 

(VET).41,42 Figure 3b (red circles) shows a transient acquired by 

integrating a 5 nm wide slice of the TAS, centered on 450 nm, 

as a function of t. This wavelength is chosen due to the ab-

sence of radical absorption in this region, ensuring that signal at 

this wavelength will come primarily from S1 absorption. This 

transient was fit with a tetra-exponential decay function (red 

line); the first three exponentials account for the cyclohexane 

solvent response alone (see SI for further details). The single 

time constant found for (non-deuterated i.e. H) 4-TBC in cyclo-

hexane (c), cτ(H) = 27 ± 7 ps, is assigned to excited state popula-

tion flux out of the S1. TAS of 4-TBC-d2 (see SI for details) 

were also recorded to acquire a corresponding 4-TBC-d2 transi-

ent centered at 450 nm (again using a 5 nm integration around 

this spectral region) (Figure 3b, blue diamonds). Our kinetic fit 

(blue line) returns an S1 lifetime for the deuterated (D) species 

of cτ(D) = 190 ± 20 ps and thus a KIE of ~7. Whilst the KIE 

returned from the cyclohexane measurements is less than that 

obtained from the gas-phase measurements (cf. KIE ~19), this 

still suggests O–H dissociation likely occurs along a pathway 

that is mediated by tunneling through a potential barrier.43  
We now begin to evaluate the environmental influence on 

the excited state dynamics of 4-TBC by using a more perturba-

tive, polar solvent. Acetonitrile was selected due to its high po-

larity and (apparent) low reactivity towards 4-TBC. Figure 3c 

shows the TAS of 4-TBC in acetonitrile. The main feature at 

early t is a broad ESA across the entire probe window, which 

we once again attribute to absorption from the S1 state to higher-

Figure 2. a) TKER spectrum of TBC following excitation at 267 
nm and probing H-atom photoproducts with a 243 nm probe pulse 
at t = 1.2 ns. Inset: H+ velocity map image, left half showing raw 
image, right half showing reconstructed image. b) Normalized in-
tegrated H+ signal transient (blue circles) and the corresponding 
parent ion signal transient (purple diamonds), solid lines show the 
kinetic fits. c) Normalized integrated D+ signal transient (dark 
brown circles) and the corresponding parent (4-TBC-d2

+) ion signal 
transient (light brown diamonds). Solid lines show kinetic fit. 
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lying Sn states.15,32 At t = 300 ps, a smaller peak, which is as-

signed to the 4-TBC absorption, sits atop the S1 state absorption 

at 390 nm. Beyond t = 2 ns, this radical signature appears more 

defined and the S1 state absorption has decayed away suffi-

ciently to reveal an absorption resembling that of an excited tri-

plet state.44 By t = 10 ns the S1 absorption has completely de-

cayed yielding the triplet state and radical species absorptions, 

reminiscent of previous studies in guaiacol.32 TAS of 4-TBC-d2 

in acetonitrile do not show (within the signal-to-noise) the rad-

ical absorption; a t = 10 ns TAS is shown in the lower panel 

in Figure 3c to highlight this (see discussion below). Unlike the 

transients obtained in cyclohexane, the transient in acetonitrile 

(Figure 3d) requires only two exponential decay functions to fit 

the data (red line), both of which are attributed to solute-only 

dynamics. Solvent contribution from acetonitrile was negligible 

(see SI for details). The (acetonitrile, a) time-constants returned 

from the kinetic fit are aτIVR(H) = 230 ± 50 fs and aτ(H) = 1.7 ± 0.1 

ns. The very fast decay manifests due to a decrease in the ex-

cited state absorption as the Franck-Condon overlap for the Sn

S1 absorption evolves due to IVR, evidently resulting in a 

reduction of the overlap between the S1 and Sn states. Whilst 

these dynamical processes are intriguing, we are unable to re-

solve a similar decay pathway in 4-TBC/cyclohexane, due to 

the very large solvent-only dynamics at short time-delays, and 

they do not contribute to the main focus of this current work, so 

they are not discussed further.  

The second extracted time-constant, aτ(H) = 1.7 ± 0.1 ns, is 

assigned to excited state population flux out of the S1 state in 

concord with our previous studies on guaiacol.32 Intriguingly, 

we note there is a >50-fold increase in the lifetime of the S1 state 

in acetonitrile relative to cyclohexane (cf. cτ(H) = 27 ± 7 ps), the 

significance of which is discussed below. TAS of 4-TBC-d2 in 

acetonitrile collected and then integrated with a 5 nm wide slice 

centered around 450 nm yielded a similar transient (Figure 3d). 

Our kinetic fit (blue line) returned an S1 lifetime of aτ(D) = 3.3 ± 

0.1 ns (as well as aτIVR(D) = 180 ± 50 fs for completeness) and 

thus a KIE of ~1.9.  

 

c. The gas- versus solution-phase studies 

We now compare our findings between the gas- and solu-

tion-phase. In the gas-phase, the parent+ transient, which di-

rectly reports on the S1 lifetime, returns a time-constant of gτ(H) 

= 4.9 ± 0.6 ps whilst the S1 lifetime in cyclohexane is cτ(H) = 27 

± 7 ps. The almost six-fold increase in the S1 lifetime in cyclo-

hexane may be attributed to the very modest polarity of cyclo-

hexane (dielectric constant (r) = 2.02), which will perturb, al-

beit weakly, the electronic state energies. The KIE returned 

from both the gas- and solution-phase (gas ~19, solution ~7) 

strongly suggests that, following excitation to S1, O–H dissoci-

ation proceeds along a barriered pathway. Our attribution of 

tunneling mediated dissociation along the ‘free’ O–H bond, be-

neath an S1/S2 CI, also accords with previous studies on phenols 

in the gas- and solution-phase (see reference 2 and references 

therein). Studies on substituted phenols have also shown the 

quite dramatic effect substituents have on the topography of ei-

ther the S1 or S2 (or both) potential energy surface (PES), result-

ing in noticeable effects on the S1/S2 tunneling probability and 

¬

Figure 3. a) Selection of TAS of 35 mM 4-TBC in cyclohexane with an excitation wavelength of 267 nm. b) Transient slices of 35 mM 4-

TBC in cyclohexane (red circles) and 35 mM 4-TBC-d2 in cyclohexane (blue diamonds) acquired by integrating over a 5 nm window centered 

at 450 nm; solid lines are the kinetic fits. c) Selection of TAS of 35 nm mM 4-TBC in acetonitrile and 30 mM 4-TBC-d2 in acetonitrile 

(bottom trace) with an excitation wavelength of 267 nm. d) Transient slices of 35 mM 4-TBC in acetonitrile (red circles) and 30 mM 4-TBC-

d2 in acetonitrile (blue diamonds) acquired by integrating over a 5 nm centered at 450 nm; solid lines are the kinetic fits. Note that optical 

density is plotted in the range mOD = 3-12 to magnify the extended decay. 
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hence S1 lifetime.17-18,21,45,46 Similar effects on the local topog-

raphy of the S1 or S2 PESs from a weakly perturbing solvent 

will undoubtedly have a similar effect on the S1 lifetime as ob-

served here. 

Whilst the gas-phase studies compare favorably with those 

in the non-polar cyclohexane, as expected, this is not the case 

in acetonitrile (r = 37.5). The S1 lifetime, aτ(H) = 1.74 ± 0.1 ns, 

is >50 times that of 4-TBC in cyclohexane and >350 times that 

of gas-phase 4-TBC (cτ(H) = 27 ± 7 ps and gτ(H) = 4.9 ± 0.6 ps 

respectively). The polar acetonitrile is thought to induce the 

same conformer change to 4-TBC as with catechol, where the 

intramolecular hydrogen bond is broken, resulting in two inter-

molecular hydrogen bonds with the solvent.27,36 To explore the 

role of conformational change on the observed dynamics, time-

dependent density functional theory calculations were per-

formed with the Gaussian0947 package using both the M052X48 

and CAM-B3LYP49 functionals and a 6-311G**50 basis set. 

These calculations show that the ‘open’ and ‘closed’ conform-

ers are planar in the S0 state (see Figure 1 and SI). In contrast, 

in the S1 state, whilst the ‘open’ conformer retains planarity, the 

‘closed’ conformer becomes distorted (see SI).  

In the gas-phase and in cyclohexane, the photoexcited S1 

state is non-planar. The non-planar ‘closed’ conformer has been 

proposed to explain the dramatic decrease in S1 lifetime in cat-

echol relative to phenol (due to symmetry enhanced tunnel-

ing).20,21 A similar reasoning can be applied here for 4-TBC in 

both non-perturbing environments. In the polar solvent acetoni-

trile, the photoexcited S1 state likely retains a planar ‘open’ ge-

ometry. Such a conformer change (with solvent polarity) has 

also been observed in guaiacol,51,52 resulting in considerably al-

tered photodynamics.32 In 4-TBC we see an analogous altera-

tion in the observed photodynamics of the S1 excited state in the 

form of an increased lifetime, an appearance of the triplet state 

absorption at large values of t and a smaller radical absorption 

appearing at t ~300 ps and beyond; dynamics which are ex-

tremely similar to those seen for guaiacol in methanol32 as well 

as bearing resemblance to their archetype, phenol in cyclohex-

ane.15,16 This leads to the conclusion that a solvent-induced con-

former change causes the suppression of the O–H bond fission 

pathway (likely due to an enhanced barrier to tunneling) allow-

ing for additional decay pathways such as internal conversion 

(IC), fluorescence and intersystem crossing (ISC) to effectively 

compete with ‘free’ O–H dissociation.15,32,53 The absence of 4-

TBC-d2
 out to t = 10 ns in our deuterated studies supports this 

idea; O–D bond fission is kinetically outcompeted by other 

pathways, which is unsurprising given that D-atom tunneling 

through the barrier beneath an S1/S2 CI will be significantly sup-

pressed. As such, we see an increase in the triplet state signal. 

On the basis of our discussion above, a proposed schematic 

summarizing the various decay pathways in 4-TBC, both in per-

turbative and non-perturbative environments, is given in Figure 

4. Photoexcitation with 267 nm radiation, prepares 4-TBC in 

the S1 state. In the gas-phase, the excited state decays through 

dissociation of the ‘free’ O–H bond, along a pathway that has a 

barrier. The KIE of ~19 strongly suggests that O–H dissociation 

is mediated through tunneling beneath the S1/S2 CI. In the 

weakly perturbing cyclohexane solvent, the photoexcited S1 

state decay appears to follow a similar path: tunneling mediated 

O–H dissociation. While a milder KIE ~7 makes this supposi-

tion less conclusive, it is still strongly supportive of a barriered 

O–H dissociation coordinate. The left side of Figure 4 contains 

a single, dominant process involved in the non-perturbative, 

gas-phase and weakly perturbative, (cyclohexane) solution-

phase: kH signifies the rate constant of O–H dissociation. In the 

strongly perturbing acetonitrile solvent, we have contrasting dy-

namics. The ‘open’ conformer, which now dominates, displays 

a diminished 4-TBC feature. Upon deuteration, the 4-TBC-d2
 

absorption signature is almost completely extinguished. In-

stead, the excited state decay reveals an absorption feature in 

the TAS that is reminiscent of triplet state absorption. As a con-

sequence, we propose that excited state decay in 4-TBC (ace-

tonitrile) is multicomponent, including O–H dissociation, ISC 

and likely IC and fluorescence, characterized by associated rate 

constants kH, kISC, kIC and kF respectively. The right side of Fig-

ure 4 shows this process.     

We close by returning to the original question regarding 

whether the natural surroundings impact the photostability of 

biomolecules. In 4-TBC, a close analogue to the catechol chro-

mophore, it is clear that the photoinduced dynamics in non-per-

turbing environments compare favorably with those in the gas-

phase; both cases involve O–H dissociation to yield the photo-

toxic radical species 4-TBC.54 When 4-TBC is placed into a 

polar solvent, this pathway is severely suppressed. This is a con-

sequence of a change in molecular geometry through solvent 

interactions. This structural change reduces the excited state de-

cay, with the phototoxic radical pathway becoming less favora-

ble, and opens up alternative (and competitive) relaxation path-

ways, including potentially harmful triplet state formation.29 In-

terestingly, the triplet state formation accords with previous 

studies by Sundström and coworkers on 5,6-dihydroxyindole,28 

one of the main building blocks of eumelanin, which incorpo-

rates the catechol chromophore. Thus, the present bottom-up 

study provides a key steppingstone between a model UV chro-

mophore in the gas phase and a larger biomolecule within its 
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Figure 4. Schematic representation of the observed decay pro-
cesses in 4-TBC. The left panel demonstrates the S1 decay of the 
‘closed’ (non-planar) conformer, which dominates in the gas-phase 
and in the non-polar cyclohexane. The right panel shows the S1 de-
cay of the ‘open’ (planar) conformer, which dominates in the polar 
acetonitrile. Dashed grey arrows represent processes that our cur-
rent measurements cannot probe and are based on previous work in 
phenol.15 
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native environment. This emphasizes the critical role of envi-

ronment-induced photodynamics. 

  

IV. CONCLUSIONS 

The excited state dynamics of 4-TBC have been investi-

gated in both gas- and solution-phase using a combination of 

TR-VMI, TR-IY and TEAS, following photoexcitation of the 

S1 (1ππ*) state at 267 nm. Through the recorded gas-phase 

TKER spectra and associated H+ transient, a time constant for 

H-atom elimination of gτH
+ = 5.9 ± 0.3 ps is found. Complemen-

tary TR-IY of the parent+ transient yields a time constant of gτP
+
 

= 4.9 ± 0.6 ps. Comparative studies in 4-TBC-d2 yield time con-

stants of gτD
+ = 98 ± 2 ps and gτDP

+
 = 102 ± 3 ps and thus an 

average KIE of ~19. A dominant dissociation of the non-intra-

molecular hydrogen bonded ‘free’ O–H bond is deduced, very 

likely mediated through tunneling beneath an S1/S2 CI. Solu-

tion-phase studies in the weakly perturbing cyclohexane solvent 

yield excited state decay time constants of cτ(H) = 27 ± 7 ps and 
cτ(D) = 190 ± 20 ps for 4-TBC and 4-TBC-d2 respectively. The 

KIE of ~7 implies, together with the emergent 4-TBC-d2
 fea-

ture, that a similar relaxation pathway in 4-TBC/cyclohexane is 

operative as in 4-TBC in the gas-phase. In the strongly perturb-

ing, polar acetonitrile solvent, excited state decay occurs with 

time constants of aτ(H) = 1.7 ± 0.1 ns and aτ(D) = 3.3 ± 0.1 ns for 

4-TBC and 4-TBC-d2 respectively. The dominant decay chan-

nel in acetonitrile is no longer O–H dissociation, but rather mul-

ticomponent, involving ISC, IC and fluorescence together with 

O–H dissociation. The dramatic differences in excited state life-

time in the two solvents, is attributed to conformational change 

between 4-TBC (and 4-TBC-d2) in cyclohexane and acetoni-

trile, in which, respectively, the closed and open conformers 

dominate. This result thus serves to highlight the critical im-

portance of the influence of structure on dynamics.  
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