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Abstract

Short lived arbitrage opportunities arise when prices adjust with a lag to new informa-

tion. They are toxic because they expose dealers to the risk of trading at stale quotes.

Hence, theory implies that more frequent toxic arbitrage opportunities and a faster arbi-

trageurs’ response to these should impair liquidity. We provide supporting evidence using

data on triangular arbitrage. As predicted, illiquidity is higher on days when the fraction

of toxic arbitrage opportunities and arbitrageurs’ relative speed are higher. Overall, our

findings suggest that the price efficiency gain of high frequency arbitrage comes at the cost

of increased adverse selection risk.
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des Marchés Financiers, the 2015 American Finance Association meetings, the 8th conference of the Paul Wooley
Center for the study of Capital Markets Dysfunctionnality, the workshop on market microstructure theory and
applications at Cambridge, the 9th Central Bank Workshop on the Market Microstructure of Financial Markets,
the BIRS workshop on modeling high frequency trading activity, the 6th Erasmus Liquidity Conference, the Con-
ference on Liquidity and Arbitrage Trading in Geneva, and the CityU Finance Conference in Hong Kong. Thierry
Foucault acknowledges financial support from the Investissements d’Avenir Labex (ANR-11-IDEX-0003/Labex
Ecodec/ANR-11-LABX-0047).

�Corresponding Author: HEC, Paris, 1 rue de la Libération, 78351 Jouy en Josas; tel: +33 139679569; e-mail:
foucault@hec.fr

�Warwick Business School, University of Warwick, Scarman Road, Coventry, CV4 7AL, UK; tel: +44
2476522114; e-mail: Roman.Kozhan@wbs.ac.uk

§School of Banking and Finance, University of New South Wales, UNSW Sydney NSW 2052 Australia; tel:
+61 (2)93855484; e.mail: w.tham@unsw.edu.au

1



Arbitrageurs play a central role in financial markets. When the Law of One Price (LOP) breaks

down, they step in, buying the cheap asset and selling the expensive one. Thereby, arbitrageurs

enforce the LOP and make markets more price efficient. In theory, arbitrage opportunities

should disappear instantaneously. In reality, they do not because arbitrage is not frictionless.

As Duffie (2010) points out: “The arrival of new capital to an investment opportunity can be

delayed by fractions of a second in some markets, for example an electronic limit order-book

market for equities, or by months in other markets [...].”

Various frictions (e.g., short-selling costs, funding constraints, idiosyncratic risks, etc.) ex-

plain why some arbitrage opportunities persist (see Gromb and Vayanos 2010). For very short-

lived arbitrage opportunities–those lasting fractions of a second– attention costs and technolog-

ical constraints are the main impediments to a seamless Law of One Price. These barriers are

falling as high frequency arbitrageurs invest massively to detect and exploit ever faster arbitrage

opportunities. Returns on high speed arbitrage are substantial because arbitrage opportunities

are very frequent at the time scales of milliseconds (see Budish et al. 2015). This evolution

has triggered debates about the social value of high speed arbitrage, and in particular about

whether arbitrage strategies “benefit or harm the interests of long-term investors and market

quality [...]” (U.S. Securities and Exchange Commission (2010), Section B, p.51).

Arbitrageurs can be beneficial or harmful for other investors, depending on the cause of ar-

bitrage opportunities. When these opportunities are due to transient demand or supply shocks

(“price pressures”), arbitrageurs implicitly act as liquidity providers in exploiting them (see,

for instance, Holden 1995; Gromb and Vayanos 2002, 2010). In this case, trades between ar-

bitrageurs and their counterparties are mutually beneficial.1 However, short lived arbitrage

opportunities are also due to asynchronous adjustments in asset prices following information

arrival. Arbitrageurs’ profits in these trades are obtained at the expense of dealers with stale

quotes.2 Thus, asynchronous price adjustments to information in asset pairs generate “toxic”

arbitrage opportunities, i.e., opportunities in which dealers are at risk of being adversely se-

lected.3 High speed arbitrageurs can harm market liquidity through this channel because dealers

1For instance, Gromb and Vayanos (2002) write (on p.362): “In our model, arbitrage activity benefits all
investors. This is because through their trading, arbitrageurs bring prices closer to fundamentals and supply
liquidity to the market.”

2This problem is not new. For instance, in the 90s, professional day traders (so-called SOES bandits) were
picking off Nasdaq dealers with stale quotes by using Nasdaq’s Small Order Execution System (a system that
guaranteed automatic execution of market orders up to a certain size at Nasdaq dealers quotes). See Harris and
Schultz (1997) and Foucault et al. (2003).

3Our definition of a toxic trade follows Easley et al. (2012). They write (p.1458): “Order flow is regarded as
toxic when it adversely selects market makers who may be unaware that they are providing liquidity at a loss.”
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charge larger bid-ask spreads to cover the risk of trading at stale quotes (Copeland and Galai

1983).

Our contribution is to model this channel and provide evidence of its importance for liquidity.

To our knowledge, our paper is first to do so. This is important for at least two reasons. First,

arbitrage is a central notion in finance. Thus, understanding how it affects market quality

in general, not just pricing efficiency, is of broad interest. Second, recent proposals advocate

slowing down the pace of trading precisely on the grounds that high speed arbitrageurs raise

dealers’ risk of trading at stale quotes (see, e.g., Budish et al. 2015). However, there is yet no

evidence on whether arbitrageurs’ contribution to this risk is significant or not. Measuring this

contribution is not straightforward because it is not the level of arbitrage activity per se that

should affect dealers’ risk of trading at stale quotes (and therefore their spreads). Rather, as

shown by our model, this risk is determined both by the “arbitrage mix” (i.e., the proportion of

toxic arbitrage opportunities in the pool of all arbitrage opportunities) and arbitrageurs’ relative

speed of reaction to toxic arbitrage opportunities. Specifically, illiquidity should be higher in

periods (or for asset pairs) where (i) the fraction of arbitrage opportunities that are toxic is

higher (the arbitrage mix is more toxic) or (ii) the likelihood that a toxic arbitrage opportunity

terminates with an arbitrageur’s trade is higher (arbitrageurs are relatively faster).

These two predictions follow from a new model of cross-market arbitrage that we develop

in the first part of our paper. In the model, arbitrage opportunities can be either toxic (due to

asynchronous price adjustments to news) or non-toxic (due to liquidity shocks). As in reality, an

arbitrage opportunity terminates either with an arbitrageur’s trade or a dealer’s quote update,

depending on whoever observes the opportunity first. We solve for equilibrium bid-ask spreads

in each asset and traders’ optimal speed of reaction to arbitrage opportunities. Thus, in equi-

librium, illiquidity and the duration of arbitrage opportunities (a measure of pricing efficiency)

are jointly determined.

The model generates predictions (i) and (ii) above and two additional predictions about

the durations of arbitrage opportunities. First, when the arbitrage mix becomes more toxic,

arbitrage opportunities should be shorter, even though bid-ask spread costs of arbitrage are

higher. The reason is that dealers react faster to arbitrage opportunities (by updating their

quotes) when they expect more of them to be toxic. This effect induces arbitrageurs to be faster

as well and, as a result, arbitrage opportunities are more short-lived. Second, by a similar logic,

a technological change that makes arbitrageurs relatively faster should reduce the duration of
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arbitrage opportunities, even though it increases illiquidity.

We test these predictions using data on triangular arbitrage opportunities for three currency

pairs (dollar-euro, dollar-pound, and pound-euro).4 Although our predictions and methodology

apply to any type of high frequency arbitrage opportunities, we focus on triangular arbitrage

opportunities for a couple of reasons.

The first one is practical. For our tests, we must accurately measure when an arbitrage

begins, when it terminates, how it terminates (with a trade or a quote update), and we must

track prices after the arbitrage terminates (to identify toxic arbitrage opportunities; see below).

Our data has the required granularity for this analysis: we observe all orders and trades for

currency pairs in our sample from January 2003 to December 2004 in Reuters D-3000 (one of the

two major interdealer trading platforms used by foreign exchange dealing banks) with a time

stamp accuracy of 10 milliseconds.5 Moreover, asynchronicities in price reporting for different

assets is not an issue in our data because all data are generated by the same trading platform.

Second, strategies exploiting triangular arbitrage opportunities are not hindered by taxes,

short-selling or funding constraints, and the risk of these strategies is very limited. Hence,

standard limits to arbitrage cannot explain why triangular arbitrage opportunities are not

eliminated instantaneously (see Pasquariello 2014).6 The most likely explanation is that, as

in our model, technological constraints limit the speed at which traders react to arbitrage

opportunities. Thus, triangular arbitrage opportunities are very similar to other high speed

opportunities: they are (i) frequent (we observe more than 172,044 in our sample), (ii) very

short-lived (in our sample, 25% of all arbitrage opportunities last less than half a second), (iii)

more efficiently exploited by machines than by humans, and (iv) they deliver very thin profits

per opportunity (0.6 to 0.7 basis points in our sample).7

As any other arbitrage opportunities, triangular arbitrage opportunities arise for two rea-

sons: (i) asynchronous price adjustments of different currency pairs to new information or (ii)

4One can buy euros with dollars, exchange the euros against pounds, and then exchange pounds against
dollars. If one ends up with more dollars than the initial dollar investment then a triangular arbitrage opportunity
exists. We define triangular arbitrage opportunities formally in Section 2.2.

5Kozhan and Tham (2012) use the same data to measure the profitability of triangular arbitrage opportunities.
6Pasquariello (2014) finds that none of the usual proxies for limits to arbitrage explain the size of triangular

arbitrage opportunities (Pasquariello 2014, see Table 2 in). For other relatively short-lived opportunities, these
limits can be more important. For instance, Gagnon and Karolyi (2010) find that holding costs (e.g., idiosyncratic
risk) explain the size of arbitrage opportunities between home and U.S. stock prices for stocks cross-listed in the
U.S.

7Arbitrage opportunities in the foreign exchange market (either violations of covered interest parity or tri-
angular arbitrage) are well documented. See, for instance, Akram et al. (2008), Fong et al. (2008), Fenn et al.
(2009), Mancini-Griffoli and Ranaldo (2011), Marshall et al. (2008), Kozhan and Tham (2012), Ito et al. (2013),
Chaboud et al. (2014), and Pasquariello (2014).
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price pressures effects. Price pressure effects generate price reversals, while asynchronous price

adjustments to information generate staggered price movements in the same direction for related

assets.8 Thus, as in Schultz and Shive (2010), we use price patterns following the occurrence

of arbitrage opportunities to sort them into two groups: toxic (characterized by staggered price

movements in the same direction following the occurrence of a triangular arbitrage opportunity)

and non-toxic (characterized by a reversal in the rate of the currency pair that triggers the arbi-

trage opportunity).9 With this approach, we obtain 83,488 toxic arbitrage opportunities (about

112 per day), i.e., about 48% of all arbitrage opportunities in the sample. On average (across

all days in our sample), we find that these opportunities terminate with an arbitrageurs’ trade

in about two-third of the cases. Thus, arbitrageurs are often faster than dealers in our sample.

Arbitrageurs’ relative speed is endogenous to illiquidity because arbitrageurs have less in-

centive to quickly detect arbitrage opportunities when transactions costs are high. To account

for this in our tests, we use an instrument for arbitrageurs’ relative speed (measured by the

frequency with which a toxic arbitrage opportunity terminates with a trade). Until July 2003,

traders had to manually submit their orders to Reuters D-3000. In July 2003, Reuters intro-

duced the “AutoQuote API” functionality (API means “Application Programming Interface”).

Traders using this functionality can directly feed their algorithms to Reuters D-3000 data and

let these submit orders automatically, reducing thereby their monitoring costs. Arbitrageurs

were among the first to use Autoquote API (see Chaboud et al. 2014), which suggests that the

reduction in monitoring costs mainly accrued to them.10 In our model, this implies that arbi-

trageurs’ relative speed should increase following the introduction of Autoquote API. Thus, we

instrument arbitrageurs’ relative speed with AutoQuote API. In line with our conjecture, the

8For instance, for cross-listed stocks, Gagnon and Karolyi (2009) show that there is negative autocorrelation
in home and foreign returns at the daily frequency. This negative autocorrelation however is weaker for stocks in
which informed trading is more intense. This is consistent with the idea that delays in adjustment to information
for assets with correlated payoffs (e.g., cross listed stocks) induce positive spillovers in price changes.

9Suppose that euro/dollar dealers receive information that calls for an appreciation of the euro and raise
their bid and ask quotes (expressed in dollars per euro). If this appreciation is large enough and dealers in, say,
the dollar/pound market are slow to adjust their quotes, there is a triangular arbitrage opportunity: one can
indirectly buy dollars with euros at a price less than the current bid price in the dollar/euro market. This toxic
arbitrage opportunity vanishes when dealers in the dollar/pound market raise their quotes or arbitrageurs hit
stale quotes in this market. In either case, the rate in the dollar/pound market adjusts in the direction of the shift
in the euro/dollar market. Alternatively, if euro/dollar dealers temporarily accumulate a large short position in
euro, they will mark up the value of the euro against the dollar to attract sellers of euros and reduce their risk
exposure. If this price pressure effect is large enough, a non-toxic triangular arbitrage opportunity arises. As
dealers’ short position decreases, their quotes will revert (see, for instance, Grossman and Miller 1988).

10Hendershott et al. (2011) use the implementation of the NYSE “autoquote” software in 2003 as an instrument
for algorithmic trading. The NYSE autoquote functionality is different from Reuters AutoQuote API because
the former automates the dissemination of updates in best quotes for NYSE stocks while the latter automates
order entry. Automation of order entry clearly accelerates the speed at which traders react to market events. We
discuss the differences between our findings and those in Hendershott et al. (2011) in Section 3.1.
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first stage of the IV regression shows that the introduction of Autoquote API has a significant

positive effect on the likelihood that a toxic arbitrage opportunity terminates with a trade.

More importantly, the second stage shows that, as predicted, the likelihood that a toxic

arbitrage opportunity terminates with a trade has a positive effect on illiquidity. For instance,

a 1% increase in this likelihood in a day is associated with a 0.063 basis points increase in

quoted bid-ask spreads in this day (2.3 to 5% of the average bid-ask spread depending on the

currency pair). The economic size of this effect is significant given the daily trading volume

for the currency pairs in our sample (we estimate that a 0.063 basis points increase in quoted

spread raises the total cost of trading for the currency pairs in our sample by about $131, 319

per day). We find similar effects when we measure illiquidity with effective spreads, the slope

of limit order books, or a measure of adverse selection costs for dealers.

Moreover, consistent with our first prediction, we also find a positive and significant relation

between the daily fraction of arbitrage opportunities that are toxic and illiquidity. Specifically,

on days where this fraction is higher, illiquidity is higher, after controlling for the number of ar-

bitrage opportunities (scaled by the number of trades) and standard determinants of illiquidity.

For instance, a one standard deviation increase in the fraction of arbitrage opportunities that

are toxic on one day is associated with a 2.3% increase in the average quoted spread for the

currencies in our sample on the same day. Thus, the arbitrage mix matters: illiquidity is higher

when arbitrage opportunities are more frequently due to asynchronous price adjustments than

price pressures.

In sum, consistent with our predictions, illiquidity is positively related to (i) the fraction of

arbitrage opportunities that are toxic and (ii) arbitrageurs’ relative speed. Additional predic-

tions of our model are supported by the data as well: (a) the duration of arbitrage opportunities

is shorter on days in which the fraction of arbitrage opportunities that are toxic is higher and

(b) the introduction of AutoQuote API (an increase in arbitrageurs’ relative speed) coincides

with a 6.7% (about 115 milliseconds) decrease in the average duration of arbitrage opportunities

in our sample.

It is well known that liquidity facilitates arbitrage. The reverse relation–the effect of ar-

bitrageurs on liquidity (our focus here)–has received much less attention.11 Kumar and Seppi

11Roll et al. (2007) show that there exist two-way relations between index futures basis and stock market
liquidity. In particular, a greater index futures basis Granger-causes greater stock market illiquidity. Roll et al.
(2007) argue that this effect could be due to arbitrageurs’s trades but do not specifically show that these trades
explain the relation. Rosch (2014) uses the size of arbitrage opportunities in Depositary Receipts as an inverse
proxy for arbitrage activity and finds a positive association between arbitrage activity and liquidity.
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(1994) model cross-market arbitrageurs as informed traders and show that, in their model, the

effect of the number of arbitrageurs on liquidity is non-monotonic. They do not study how

the arbitrage mix affects illiquidity (all arbitrage opportunities are due to stale quotes in their

model) and traders’ speed is not a choice variable in their model. Hence, they do not derive the

predictions that we test in this paper.

Several papers argue that fast traders raise adverse selection costs for slow traders.12 Our

empirical findings about the effect of arbitrageurs’ speed are consistent with this view. The

main message of our paper, however, is not that adverse selection is a source of illiquidity. This,

of course, is well known. What is novel is that high speed arbitrage can be a source of adverse

selection and that, for this reason, the “arbitrage mix” in an asset pair is a determinant of its

liquidity. These new findings contribute to the burgeoning literature on short lived arbitrage

opportunities in various asset pairs, such as currencies, ETFs, cross-listed stocks, dual class

shares etc. (see, for instance, Akram et al. 2008; Ben-David et al. 2012; Gagnon and Karolyi

2010; or Schultz and Shive 2010).

1. Illiquidity, arbitrage mix, and arbitrageurs’ relative speed

In this section, we present the model of cross-market arbitrage that guides our empirical analysis.

Before describing it formally, it is worth outlining its main ingredients and why these are required

for our analysis. The model has two assets with identical payoffs. Quotes for each asset are

posted by two different market makers. To generate arbitrage opportunities, we assume that

the market maker in one asset can receive a random shock to his valuation for this asset, either

due to news arrival or liquidity needs. This feature enables us to study how the likelihood

that an arbitrage is toxic (i.e., due to news arrival) affects market makers’ bid-ask spreads

(illiquidity). Moreover, we allow for heterogeneity in traders’ speeds of reaction to arbitrage

opportunities. This feature is required for analyzing how arbitrageurs’ relative speed affects

illiquidity. Importantly, we endogenize traders’ speeds because, in reality, their incentive to

eliminate arbitrage opportunities quickly is endogenous to illiquidity. Finally, when there is no

shock to market makers’ valuation, we assume that market makers trade with liquidity traders

to capture the fact that, in practice, arbitrageurs only account for a fraction of trading volume.

12See, for instance, Biais et al. (2015), Brogaard et al. (2015) Budish et al. (2015), Foucault et al. (2003),
Foucault et al. (2016), Garvey and Wu (2010), Hendershott and Moulton (2011), Hoffmann (2014), Jovanovic
and Menkveld (2012), or Menkveld and Zoican (2014).
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1.1 Model

The model has two assets, X and Y , three dates (t ∈ {0, 1, 2}), two market makers, and one

arbitrageur (A). At date t = 2, the payoffs of the assets, denoted θ̃X for X and θ̃Y for Y are

realized. These payoffs are identical and given by θ̃Y = θ̃X = µ+ ε̃ where ε̃ = σ/2 or ε̃ = −σ/2

with equal probabilities, where σ > 0.13

Market Makers. Market maker j ∈ {X,Y } is specialized in asset j. As in other models

of multi-asset trading (e.g., Boulatov et al. 2013 or Pasquariello 2016), markets for assets X

and Y are segmented because market makers in each asset are different and, for this reason,

information available to one market maker (e.g., from news or past trades) is not instantaneously

available to the other.14 Thus, short lived arbitrage opportunities between markets X and Y

can happen. In the baseline version of the model, we focus on the case in which shocks to market

maker Y ’s valuation (due to information arrival or liquidity needs) cause these opportunities

(see below). Thus, asset Y “leads” asset X.

At date t = 1, market makers simultaneously post an ask price, aj , and a bid price, bj , for

j ∈ {X,Y } such that:

aj = vj +
Sj
2
, and bj = vj −

Sj
2
, (1)

where vj is market maker j’s valuation for asset j and Sj is the bid-ask spread for asset j.

Quotes are for a fixed number of shares, normalized to 1, of each asset.

Market makers’ valuations for assets X and Y are determined at date 0. Market maker X

derives a utility θ̃X per share of asset X owned at date 2 and has no information about the

payoff of asset X. Thus, prior to trading, his valuation is vX = E(θ̃X) = µ.

With probability (1 − α), market maker Y also derives a utility θ̃Y per share of asset Y

owned at date 2 and has no information about the payoff of asset Y . In this case, his valuation

is vY = E(θ̃Y ) = µ. Alternatively, with probability α, there is a shock to market maker Y ’s

valuation. This shock can be due either to information arrival (with probability ϕ) or liquidity

needs (with probability (1 − ϕ)). In case of information arrival, market maker Y privately

observes ε and therefore his valuation for asset Y becomes vY = E(θ̃Y | ε) = µ+ ε. In case of a

13For instance, assets X and Y might be two derivatives on the same underlying asset (e.g., the E-mini S&P
500 Futures (ES) and the SPDR S&P 500 Exchange Traded Funds (SPY)) or asset X might be a synthetic asset
with the same payoff as asset Y .

14 In reality, information flows between markets cannot be instantaneous and market makers are specialized.
For instance, market makers in equities markets specialize in a few individual stocks and do not share information
in real time, even when they belong to the same trading desk (see Naik and Yadav 2003). This is also the case
in currency markets where market makers often specialize in one currency pair (see Bjønnes and Rime 2005).
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liquidity need, market maker Y ’s utility for the asset becomes (θ̃Y +δ̃) per share of asset Y owned

at date 2 where δ̃ is equal to σ/2 or −σ/2 with equal probabilities and is independent from ε̃.

Thus, in this case, market maker Y ’s valuation for the asset becomes vY = E(θ̃Y ) + δ = µ+ δ.

The private value component δ represents, for instance, the hedging value of the asset for the

market maker (as in Duffie et al. 2005).

Arbitrage Opportunities. As assets X and Y have identical payoffs, the arbitrageur

can take advantage of a divergence in market makers’ valuations. For instance, suppose that

vY > vX . If the arbitrageur buys asset X (at ask price aX) and sells asset Y (at bid price bY ),

she locks in a sure profit of bY − aX = (vY − vX) − (SY + SX)/2 since assets X and Y have

identical payoffs. By symmetry, if vX > vY , the arbitrageur’s profit is (vX −vY )− (SY +SX)/2.

Thus, if she trades, the arbitrageur’s profit is:

ArbProfit = ∆XY − (SY + SX)/2, (2)

where ∆XY = |vY − vX |. The arbitrageur’s profit is positive if ∆XY > (SY + SX)/2, i.e., if

the difference in market makers’ valuations is large enough relative to the bid-ask spread cost

borne by the arbitrageur.

Given our assumptions, ∆XY = σ/2 when there is a shock to market maker Y ’s valuation,

whether this shock is due to news arrival or a liquidity need.15 Thus, in these cases, the

arbitrageur’s expected profit (eq.(2)) is strictly positive when

SX + SY < σ. (3)

This condition will always be satisfied in equilibrium (see below).

If there is no shock to market maker Y ’s valuation (probability (1−α)) then ∆XY = 0 and

there is no profitable trade for the arbitrageur. In this case, a liquidity trader arrives in the

market to buy or sell one share of asset X or Y , with equal probabilities.

Toxic and non-toxic arbitrage opportunities. If market maker X trades with a liq-

uidity trader, he earns half his bid-ask spread. In contrast, if he trades with the arbitrageur,

his expected profit depends on the type of shock that triggers the arbitrage opportunity.

15For instance, if this shock is positive, we have vY = µ+ σ/2. Accordingly, in this case, ∆XY = (vY − vX) =
µ + σ/2 − µ = σ/2. The absolute difference in market makers’ valuation is the same whether news arrival
or liquidity needs trigger the change in market maker Y ’s valuation because innovations in the asset value are
identical (equal to σ) in each case. This assumption can be relaxed but it simplifies the exposition of the model
by reducing the number of parameters.
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For instance, consider a positive shock to market maker Y ’s valuation. In this case, if the

arbitrageur trades, he buys asset X. If the shock to Y ’s valuation is due to news then asset

X’s expected payoff is E(θ̃X | ε̃ = σ/2) = µ + σ/2. Thus, if market maker X sells the asset to

the arbitrageur, he earns an expected profit of aX − (µ+ σ/2) = (SX − σ)/2, which is negative

if the arbitrageur finds it profitable to trade (i.e., if Condition (3) is satisfied). In other words,

an arbitrage opportunity due to the arrival of news about asset Y is toxic for market maker X

because he is exposed to the risk of trading at a loss with the arbitrageur.

If instead, the shock to market maker Y ’s valuation is due to a liquidity shock then the

expected payoff of asset X is E(θ̃X | δ̃ = σ/2) = µ. Thus, if market maker X trades with the

arbitrageur, he obtains an expected profit of aX −µ = SX
2 , as if he were trading with a liquidity

trader. Thus, an arbitrage opportunity due to a liquidity shock for market maker Y is non-toxic

for market maker X.

Market maker X can avoid toxic trades if he cancels his quotes before the arbitrageur hits

them. We denote by (1 − π) the probability that X is fast enough to do so. Thus, when a

toxic arbitrage opportunity occurs, the arbitrageur can actually trade on it with probability π.

In contrast, if a non-toxic arbitrage opportunity happens, there is no reason for market maker

X to cancel his quotes since he makes a profit when he trades with the arbitrageur. Thus, we

assume that the arbitrageur can exploit a non toxic arbitrage opportunity with certainty.

Table 1 gives the expected payoffs of the arbitrageur and each market maker for each possible

event at date 1: a liquidity trader arrives (probability (1 − α)); a toxic arbitrage happens

(probability αϕ); a non-toxic arbitrage happens (probability α(1 − ϕ)). Thus, parameter α

controls the likelihood of occurrence of an arbitrage opportunity while parameter ϕ controls

the likelihood that an arbitrage is toxic conditional on an arbitrage opportunity occurring. We

therefore call it the “arbitrage mix”.

Market maker Y ’s quotes always reflect all available information about the payoff of asset

Y . Thus, in contrast to market maker X, he earns half his bid-ask spread in all cases. When

a toxic arbitrage opportunity happens, total gains from trade between the arbitrageur and

market makers (last line of Table 1) are zero: the loss of market maker X if he trades with

the arbitrageur is just equal to the profits of the arbitrageur and market maker Y . In contrast,

when a non-toxic arbitrage opportunity happens, total gains from trade are strictly positive

and equal to σ/2, the difference between market makers’ valuations. Indeed, in this case, this

difference reflects true gains from trade between market makers. By trading across the two
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markets, the arbitrageur enables market makers to achieve these gains.

Table 1: Traders’ Expected Payoffs

This table gives the expected payoff of each trader in the model for the various possible events at date 1. The line
called “Termination” indicates how the trading round terminates: a trade (from a liquidity trader or the arbitrageur) or a
cancellation of his quotes by market maker X. We use the following abbreviations: “Liq. trader” for “Liquidity trader”;
“Arb.” for “Arbitrageur”; and “prob” for probability. The last line of the table gives the sum of the expected payoffs for
the arbitrageur and the market makers for each event considered in the table.

Liq. trader arrives
(with prob 1− α)

A toxic arbitrage happens
(with prob αϕ)

A non-toxic arbitrage happens
(with prob α(1− ϕ))

↓ ↙ ↘ ↙ ↘

Termination Liq. trader trades
Arb. trades

(with prob π)

X cancels
(with prob 1− π)

Arb. trades
(with prob 1)

X cancels
(with prob 0)

Arb’s expected payoff 0
σ−(SX+SY )

2
0

σ−(SX+SY )
2

0

X’s expected payoff SX
4

− (σ−SX )
2

0 SX
2

0

Y’s expected payoff SY
4

SY
2

0 SY
2

0

Aggregate expected payoff
(Arbs + Market Makers)

SX+SY
4

0 0 σ
2

0

Speed. In reality, the probability, π, that an arbitrageur can hit stale quotes before they

are cancelled depends on her speed of reaction to market events relative to liquidity providers.

Speed is a choice variable for traders. We model it as in Foucault et al. (2003). Specifically,

when an arbitrage opportunity occurs, it takes Da and Dm units of time for the arbitrageur

and market maker X, respectively, to spot it (index m refers to a market maker), where Da and

Dm are exponentially distributed with intensity γ and λ, respectively. The randomness of Da

and Dm captures the fact that, in practice, traders’ response times to market events (e.g., an

arbitrage opportunity) depend on a myriad of random factors (e.g., time required by platforms

to process orders) that cannot be fully controlled by traders.

If Da < Dm, the arbitrageur is first to observe the arbitrage opportunity and she exploits

it. Otherwise market maker X is first to observe the opportunity and cancels his quotes. Thus,

the likelihood, π, that a toxic arbitrage opportunity terminates with a trade by the arbitrageur

is:

π = Pr (Da < Dm) =
γ

λ+ γ
, (4)

where the second equality follow from the fact that Dm and Da are exponentially distributed.

Other things equal, an increase in γ (resp., λ) increases (resp., reduces) the likelihood that

the arbitrageur exploits a toxic arbitrage before it vanishes. We therefore refer to λ and γ as

traders’ speeds. In line with intuition, π increases with the arbitrageur’s relative speed, i.e., γ
λ .
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Technological investments (e.g., in hardware and software, fast data feed, dedicated commu-

nication lines, colocation, etc.) and attention enable traders to reduce their average response

times to market events (e.g., they can reduce latencies in communicating with trading plat-

forms). Investments and attention are costly.16 Hence, we assume that if the market maker

operates at speed λ then he bears a monitoring cost Cm(λ) = cmλ
2 . Similarly, if the arbitrageur

operates at speed γ then she bears a cost Ca(γ) = caγ
2 .17

Traders’ expected profits. Using Table 1, we deduce that the expected profits of market

makers X, Y, and the arbitrageur, net of monitoring costs, are:

ΠX(SX , λ, γ) = −(ϕαπ)
(σ − SX)

2
+ (1− α(2ϕ− 1))

SX
4
− cmλ

2
, (5)

ΠY (SY , λ, γ) = (2α(1− (1− π)ϕ) + (1− α))
SY
4
, (6)

ΠA(SX , SY , λ, γ) = (αϕπ)
(σ − (SX + SY ))

2
+ α(1− ϕ)

(σ − (SX + SY ))

2
− caγ

2
, (7)

where, as previously explained, π = γ
λ+γ .18 For instance, the first term in eq.(5) is market maker

X’s expected losses when he trades with the arbitrageur in a toxic arbitrage opportunity while

the second term is his expected payoff when he trades with liquidity traders or the arbitrageur

in a non-toxic arbitrage. Finally, the last term is the cost of speed for the market maker.

Equilibrium. Market makers and the arbitrageurs simultaneously choose their bid-ask

spreads and speeds. We focus on competitive equilibria, i.e., a set {S∗X , S∗Y , λ∗, γ∗} such that:

ΠY (S∗Y , λ
∗, γ∗) = 0, (8)

ΠX(S∗X , λ
∗, γ∗) = 0, (9)

ΠX(SX , λ, γ
∗) < 0 ∀SX < S∗X ,∀λ, (10)

λ∗ ∈ Argmaxλ ΠX(S∗X , λ, γ
∗), (11)

16Attention can be interpreted literally as the effort that human traders must exert to follow prices in different
markets. It can also represent the computing capacity that traders allocate to a particular task, e.g., detecting
an arbitrage opportunity in a specific pair of assets. Allocating greater capacity to this specific pair reduces the
capacity available for other trading opportunities, which generates an opportunity cost.

17We assume linear costs of speed to obtain closed form solutions. Implications however do not crucially
depend on this assumption. For instance, predictions of the model are identical with quadratic costs of speeds.

18Other things equal, traders’ expected profits gross of their investment in speed increase in their relative
speed (i.e., arbitrageurs’ expected profits increase in π while dealers’ expected profits increase with π−1). This is
consistent with Baron et al. (2016), who find that high frequency trading firms’ revenues increase in their relative
speed, not absolute speed.
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γ∗ ∈ Argmaxγ ΠA(S∗X , S
∗
Y , λ

∗, γ). (12)

In a competitive equilibrium, market makers earn a zero expected profit and their bid-ask spread

cannot be profitably undercut. For market maker Y , these two conditions are satisfied if the

zero profit condition (8) holds because market maker Y ’s expected profit increases in his bid-

ask spread. For market maker X, the zero profit condition (9) is necessary but not sufficient.

In addition, his bid-ask must be such that it cannot be profitably undercut by choosing a

speed level different from his equilibrium speed level (Condition (10)). Last, market maker X

and the arbitrageur choose the speed that maximizes their expected profit given other traders’

equilibrium actions (Conditions (11) and (12)).

Proposition 1 provides a closed form solution for the unique competitive equilibrium of the

model. It forms the backbone of our empirical tests (see the next section). Henceforth, ρ =
(
cm

ca

)
denotes the ratio of market maker X’s cost of speed to the arbitrageur’s cost of speed.

Proposition 1. There is a unique competitive equilibrium. In this equilibrium, market maker

Y ’s bid-ask spread is nil (S∗Y = 0) while market maker X’s bid-ask spread is:

S∗X =

(
2ϕαπ∗(ρ)(2− π∗(ρ))

2ϕαπ∗(ρ)(2− π∗(ρ)) + (1− α(2ϕ− 1))

)
× σ. (13)

where the likelihood that a toxic arbitrage opportunity terminates with an arbitrageur’s trade is:

π∗(ρ) =
γ∗

λ∗ + γ∗
=

ρ

1 + ρ
. (14)

Moreover, in equilibrium, absolute speeds for market maker X and the arbitrageur are:

λ∗ =
ϕα(σ − S∗X)ca

(ca + cm)2
, (15)

γ∗ =
ϕα(σ − S∗X)cm

(ca + cm)2
. (16)

Market maker Y ’s competitive bid-ask spread is zero because he is never exposed to the risk

of trading at stale quotes. In contrast, market maker X’s competitive bid-ask spread is strictly

positive, except if he is not exposed to the risk of trading at stale quotes (e.g., if ϕ = 0 or

α = 0). His bid-ask spread allows him to recoup his losses when he trades at stale quotes with

gains in other cases. For ϕ < 1, market maker X’s bid-ask spread is always strictly smaller than

σ. Thus, as mentioned previously, in equilibrium, total bid-ask spread costs for the arbitrageur
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(S∗X + S∗Y ) are smaller than σ (i.e., Condition (3) is satisfied in equilibrium). Interestingly, this

is the case even when α = 1, i.e., when trades happen only between the arbitrageur and market

makers (no liquidity traders). The reason is that strictly positive gains from trade exist when

a non-toxic arbitrage opportunity occurs. Thus, in this case, all parties can trade at a profit,

which allows market maker X to recoup his trading losses when toxic arbitrage opportunities

occur. The more general case in which α < 1 allows us to capture the fact that arbitrageurs’

trades only account for a fraction of the trading volume in reality.

In equilibrium, the likelihood that a toxic arbitrage terminates with an arbitrageur’s trade,

π∗, increases with ρ, the ratio of market maker X’s cost of speed (cm) to the arbitrageur’s cost

of speed (ca). The arbitrageur is relatively faster than the market maker (π∗ > 1/2) if and

only if her cost of speed is relatively smaller (ρ > 1). Our predictions do not depend on who is

relatively faster (i.e., do not specifically require ρ > 1).

1.2 Testable predictions

Proposition 1 has several testable implications. First, market maker’s X’s bid-ask spread

(eq.(13)) increases when arbitrage opportunities are more likely to be toxic (ϕ is higher) or,

holding this likelihood constant, when the arbitrageur becomes relatively faster, i.e., when π∗

is higher. Traders’ speeds however are endogenous and jointly determined with the bid-ask

spread (see eq.(15) and (16)). The model suggests using shocks to the arbitrageur’s relative

cost of speed as a source of exogenous variations for π∗. Indeed, a decrease in the relative cost

of speed for the arbitrageur (i.e., an increase in ρ = cm/ca) triggers an increase in π∗ (eq.(14))

and, through this channel only, an increase in the bid-ask spread. These observations yield the

following testable implications.

Implication 1. Consider a pair of assets X and Y linked by a no-arbitrage relation. An

increase in the likelihood that an arbitrage opportunity is toxic (ϕ) causes an increase in the

bid-ask spread of asset X.

Implication 2. Consider a pair of assets X and Y linked by a no-arbitrage relation. A

reduction in arbitrageurs’ relative cost of speed (i.e., an increase in ρ) triggers an increase in

π∗ – the probability of an arbitrageur’s trade, conditional on the occurrence of a toxic arbitrage

– and, through this channel, it increases the bid-ask spread of asset X.

In practice, changes in trading technologies can affect traders’ relative costs of speed. For

instance, the implementation of its “Hybrid Market” mechanism by the NYSE (in 2006) raised
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off-floor traders’ relative speed advantage by increasing twofold the speed of execution of their

market orders (see Figure 2 in Hendershott and Moulton (2011)). Another example are speed

bumps that delay the execution of incoming market orders, as implemented recently by some

trading platforms (e.g., EBS in FX markets or IEX in equities markets).19 This practice reduces

liquidity takers’ speed advantage and is thus similar to reducing ρ in our model. In sum,

changes in trading technologies that affect market makers’ relative costs of speeds can provide

good instruments to measure the effect of π∗ on the bid-ask spread because they should affect

liquidity only through their effects on π∗, as implied by Implication 2. As explained in Section

3.1, we use this insight in our tests.

In our model, the expected duration of an arbitrage opportunity is jointly determined with

illiquidity (because traders’ speeds are inversely related to the equilibrium bid-ask spread; see

eq.(15) and (16)) and affected by the same exogenous factors. Thus, in our tests, we will also

study how the likelihood that an arbitrage is toxic (ϕ) and arbitrageurs’ relative cost advantage

(ρ) affect the expected duration of an arbitrage opportunity, denoted E(D). According to the

model:

E(D) = ϕE (Min{Da, Dm}) + (1− ϕ)E(Da) =
(1 + ρ)− ϕ
(γ∗ + λ∗)ρ

, (17)

where the second equality follows from the fact that Da and Dm are exponentially distributed

with parameters γ∗ and λ∗, respectively. As speed is costly, equilibrium speeds are never

infinite. Thus, in equilibrium, arbitrage opportunities do not immediately vanish, i.e., E(D) > 0.

However, holding arbitrageurs’ relative cost advantage, ρ, constant, arbitrage opportunities

become increasingly short-lived when ca and cm tend to zero because then the sum of traders’

absolute speed levels (γ∗ + λ∗) becomes increasingly large.20 Thus, arbitrage opportunities can

be very short-lived in equilibrium, as we will observe in our data.

Now, consider a change in trading technology that reduces the arbitrageur’s cost of speed,

ca and thereby increases the arbitrageur’s relative cost advantage, ρ. Holding ρ fixed, the direct

effect of this change is to induce the arbitrageur to be faster, which raises traders’ aggregate

speed (λ∗ + γ∗) and therefore reduces the duration of arbitrage opportunities. However, as ρ

increases as well, the equilibrium bid-ask spread is higher (Implication 2), which reduces the

arbitrageur’s expected profit per opportunity and thereby her incentive to be fast (see eq.(14)).

19See “EBS takes new steps to rein in high frequency traders,” Reuters, August 23, 2013 or “Brad Katsuyama’s
next chapter,” Bloomberg Markets magazine, October 2015.

20Indeed, λ∗ + γ∗ =
ϕα(σ−S∗

X )

(ca+cm)2
and therefore becomes infinite as cm and ca go to zero, holding ρ (hence S∗X)

constant
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This indirect effect tends to increase the arbitrage duration. However we show in the appendix

that it is always dominated by the direct effect. This yields our next testable implication.

Implication 3. The average duration of arbitrage opportunities should decrease following

a decrease in arbitrageurs’ cost of speed, ca (see the appendix for a proof).

Chaboud et al. (2014) find that algorithmic trading leads to fewer triangular arbitrage op-

portunities per second in the FX market. They also find that this reduction is mainly due to

algorithmic arbitrageurs hitting quotes of slower (human) traders. These findings are consis-

tent with our model if algorithmic trading reduces relatively more the cost of being fast for

arbitrageurs. Indeed, in this case, algorithmic trading is associated with an increase in ρ, and

therefore π∗, increases. Accordingly, arbitrage opportunities terminate more frequently with ar-

bitrageurs hitting quotes, as found by Chaboud et al. (2014) and, per Implication 3, the duration

of arbitrage opportunities decreases. Hence, if one checks for the presence of arbitrage oppor-

tunities at fixed points in time (e.g., every second), fewer triangular arbitrage opportunities are

observed (even though the true occurrence rate of these opportunities, α, is unchanged).

Implication 4. The average duration of arbitrage opportunities decreases with ϕ, the like-

lihood that an arbitrage opportunity is toxic, if α(4ϕ− 1) ≤ 1 (see the appendix for a proof).

The direct effect of an increase in ϕ is to induce the arbitrageur and the market maker

to react faster to arbitrage opportunities (holding S∗X constant, γ∗ and λ∗ increase in ϕ; see

eq.(15) and (16)). The indirect effect however is that the equilibrium bid-ask spread increases

(Implication 1), which reduces traders’ incentives to be fast as explained previously. The direct

effect dominates when the bid-ask spread is not too large, i.e., when α and ϕ are not too large so

that α(4ϕ− 1) ≤ 1 (Implication 4). In our data, the number of arbitrage opportunities relative

to the total number of trades (a proxy for α) is small and well below 1/3, which is sufficient

for this condition to be satisfied for all values of ϕ. Hence, we expect the duration of arbitrage

opportunities to be negatively related to ϕ.

1.3 Extensions

In this section, we discuss two extensions of the model. For brevity, we omit full derivations

of the equilibrium in each case discussed below. They are available upon request. We have

checked that our testable implications still hold in each case.

Multiple arbitrageurs. The baseline model features a single arbitrageur. We have also

considered the case with M > 1 arbitrageurs. This case is more difficult to analyze because
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then arbitrageurs choose their speed to beat both the market maker and other arbitrageurs.

However, the implications of the model still hold in this case. In fact competition among

arbitrageurs reinforces dealers’ exposure to the risk of trading at stale quotes when a toxic

arbitrage occurs because the likelihood (π∗) that the market maker cannot cancel his quotes

fast enough increases with the number of arbitrageurs. Thus, the competitive bid-ask spread

increases with the number of arbitrageurs (M).

Shocks to market maker X’s valuation. In the baseline model, arbitrage opportunities

are only due to shifts in market maker Y ’s valuation (i.e., always originates in asset Y ). Suppose

instead that a shock to a market maker’s valuation at t = 0 can affect either market maker X or

Y with equal probabilities. Under these assumptions, markets for assets X and Y are perfectly

symmetric. Thus, in equilibrium bid-ask spreads are identical in each asset and strictly positive

(S∗Y = S∗X > 0). In this case, there is no closed form solution for the competitive bid-ask

spread.21 The equilibrium can be solved numerically, however. Numerical simulations show

that our predictions still hold in this more general case.

2. Data and variables construction

In the rest of the paper, we provide evidence supporting our predictions using data on order

submissions and triangular arbitrage opportunities in the foreign exchange (FX) market. In

this section, we describe our data and we define the main variables used in our tests. Empirical

findings are reported in Section 3.

2.1 Data

We use data from Reuters D-3000 from January 2, 2003 to December 30, 2004 for three cur-

rency pairs: US dollar/euro (dollars per euro; hereafter USD/EUR), US dollar/pound sterling

(USD/GBP), and pound sterling/euro (EUR/GBP). These pairs account for 60 percent of all

FX spot transactions at the time of our sample (see Bank for International Settlements 2005).

Our sample has 485 days after excluding weekends and certain holidays (as in, for instance,

Andersen et al. 2003) because trading activity is considerably lower during these days.

Reuters D-3000 is an electronic limit order book market in which foreign exchange dealing

21 In this more general case, π∗ is a non-linear decreasing function of the bid-ask spread (in the baseline model,
π∗ only depends on ρ for any value of the spread). As π∗ is non-linear in the bid-ask spread, market makers’
expected profits are non linear in their spread and competitive bid-ask spreads solve a cubic polynomial.
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banks (“FX dealers”) can post quotes or hit quotes posted by other dealers. In 2003-2004,

Reuters D-3000 has the dominant market share in the dollar-sterling and euro-sterling pairs

while its competitor, EBS (Electronic Broking Services), is dominant in the dollar-euro pair.22

For our tests, we exclusively focus on triangular arbitrage opportunities within Reuters D-3000.

When an arbitrageur exploits a toxic arbitrage opportunity in Reuters D-3000, it inflicts a loss

on market makers with stale quotes on this platform. Hence, quotes in Reuters D-3000 should

reflect this risk, as predicted by our model.

For each order submitted to Reuters D-3000, our dataset reports (i) the currency pair in

which the order is submitted; (ii) the order type (limit or marketable) and its direction (buy or

sell); (iii) the size of the order (in millions of the base currency); (iv) its price for a limit order;

and (v) the time at which the order is entered with an accuracy of one-hundredth of a second.

These data enable us to measure accurately the duration of triangular arbitrage opportunities

in our sample, identify their nature (toxic/non-toxic), and observe whether they terminate with

an arbitrageurs’ trade or a quote update. This is key for our tests (see below).

2.2 Toxic and non-toxic triangular arbitrage opportunities

Let A
i/j
t be the amount of currency i required, at time t, to buy one unit of currency j and B

i/j
t

be the amount of currency i received for the sale of one unit of currency j. These are the ask

and bid quotes posted by market makers in currency i versus j at time t. A triangular arbitrage

opportunity exists at time t when

Â
i/j
t < B

i/j
t or, (18)

B̂
i/j
t > A

i/j
t , (19)

where Â
i/j
t ≡ A

i/k
t ×A

k/j
t and B̂

i/j
t = B

i/k
t ×B

k/j
t . In the first case, an arbitrageur can secure a

risk free profit, net of bid-ask spread costs, equal to (B
i/j
t − Â

i/j
t ) units of currency i. Indeed,

he can first buy A
k/j
t units of currency k with currency i for a total cost of Â

i/j
t , then use his

position in currency k to buy one unit of currency j and finally sell this unit for B
i/j
t units of

currency i. In the second case, an arbitrageur can secure a risk free profit equal to (B̂
i/j
t −A

i/j
t )

22See Pierron (2007), Osler (2008), King and Rime (2010), and King et al. (2012) for excellent descriptions of
participants, market structure, and recent developments in foreign exchange markets. At the time of our sample,
the FX market is a two-tier market. In the first tier, FX dealers trade exclusively with end-users (e.g., hedge
funds, mutual funds, pension funds, corporations, etc.). The second-tier is an interdealer market. In this market,
dealers can trade (i) bilaterally (by calling each other), (ii) through voice brokers, or (iii) electronic broker systems
(e.g., EBS and Reuters D-3000).
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units of currency i with a symmetric strategy. We refer to Â
i/j
t and B̂

i/j
t as being the “synthetic”

quotes for currency i versus j.

Our definition of a triangular arbitrage opportunity accounts for bid-ask spread costs for

arbitrageurs. In reality, traders also pay brokerage fees for executing trades on Reuters D-3000.

These fees are small and in general well below one basis point (see Chaboud et al. 2014). To

account for them, we focus on triangular arbitrage opportunities that deliver a profit of at least

0.2 basis points (bps):

B
i/j
t − Â

i/j
t

Âi/j
> 0.2 bps, or (20)

B̂
i/j
t −A

i/j
t

B̂
i/j
t

> 0.2 bps. (21)

Our empirical findings are qualitatively unchanged if we set a higher bar (1 basis point) for the

profitability of triangular arbitrage opportunities.

Our first step is to identify triangular arbitrage opportunities in our data, measure their

duration, and record how they terminate. To this end, we proceed as follows (see the appendix

for a numerical example).

� Starting from a state in which there is no triangular arbitrage opportunity (i.e., a state

in which Conditions (20) and (21) do not hold), we record the latest best bid and ask

prices for the three currency pairs each time a new limit order is submitted and we check

whether a triangular arbitrage opportunity exists (using Conditions (20) and (21)). If this

is the case we deduce that the limit order arrival created the opportunity and we record

the order arrival time, t0, as the time at which the arbitrage opportunity begins.

� We then record the time t1 at which the arbitrage opportunity disappears and define the

duration of the arbitrage opportunity as (t1 − t0). We also record whether the arbitrage

opportunity terminates with a trade from an arbitrageur or quote updates by market

makers (the only two ways in which an arbitrage opportunity can terminate).

By definition, a triangular arbitrage opportunity happens in all three currency pairs at the

same time. However, the opportunity is triggered by a new limit order submitted in one specific

pair, which we call the “initiating pair.”23 The number of arbitrage opportunities in our data

23The arrival of a market order cannot create an arbitrage opportunity. For instance, suppose that A
i/j
t > B̂

i/j
t

and Â
i/j
t > B

i/j
t , so that, at time t, there is no arbitrage opportunity. If a buy (resp. sell) market order arrives
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is therefore the number of times a new limit order creates a triangular arbitrage opportunity.

Using this methodology, we count 172, 044 triangular arbitrage opportunities in our sample.

In a second step, we sort all triangular arbitrage opportunities into two groups labeled toxic

(i.e., due to an asynchronous reaction of rates to information arrival) and non-toxic (i.e., due

to a transient price pressure in one rate). To this end, we proceed as in Schultz and Shive

(2010). That is, for each triangular arbitrage opportunity in our sample, we compare the

exchange rate for the initiating currency pair when the arbitrage opportunity begins (time t0)

and when it terminates (time t1). If we observe a reversal of the rate toward its level just before

the opportunity starts then we consider that the arbitrage opportunity is due to a transient

price pressure. Hence, we classify it as non-toxic. Otherwise, we consider that the arbitrage

opportunity is due to asynchronous price adjustments in the rates of the three currency pairs

and we classify it as toxic.

[Insert Figure 1 about here.]

Figure 1 illustrates this methodology for four arbitrage opportunities. The solid and dashed

lines in Panels A and B show the evolution of actual and synthetic bid and ask quotes during

these opportunities. In Panel A, actual and synthetic quotes of the currency pair initiating

the arbitrage (EUR/GBP) opportunity shift to a new level when the arbitrage opportunity ter-

minates. The pattern is consistent with the arrival of fundamental information (e.g., macroe-

conomic news or headlines news on Reuters). We classify these opportunities as toxic. In

contrast, in Panel B, only the quotes of the initiating pair (EUR/USD) change during the ar-

bitrage opportunity. Moreover, when the arbitrage opportunity terminates, these quotes revert

to their initial level. This pattern (reversal and the absence of changes in the synthetic quotes)

is consistent with a transient price pressure in the initiating pair. Accordingly, we classify these

arbitrage opportunities as non-toxic.

[Insert Figure 2 about here]

Using this methodology, we identify 83, 488 toxic arbitrage opportunities, i.e., 48% of all op-

portunities. Panel A of Figure 2 shows the time-series of the daily number of (a) all triangular

in the market for currency i versus j, it executes at A
i/j
t (resp., B

i/j
t ) and possibly higher (resp., lower) prices if

the size of the order is larger than the quantity available at A
i/j
t (resp. B

i/j
t ). Thus, just after the arrival of a

buy (sell) market order (at time t+), the new best offer (bid) price is A
i/j

t+
≥ A

i/j
t > B̂

i/j
t (B

i/j

t+
≤ B

i/j
t < Â

i/j
t ),

so that no arbitrage opportunity exists if there is none at date t. In contrast, if a market maker posts a new ask
price A

i/j

t+
at time t+ such that A

i/j

t+
< B̂

i/j
t then he creates an arbitrage opportunity. The same is true for orders

arriving in other currency pairs and affecting the synthetic quotes.

20



arbitrage opportunities (light grey line) and (b) toxic arbitrage opportunities (black line) in our

sample. There is substantial variation in the number of arbitrage opportunities per day and

the number of these opportunities that are toxic. On average, per day, there are 112 toxic tri-

angular arbitrage opportunities (standard deviation (s.d.)=49.62) and 108 non-toxic arbitrage

opportunities (s.d.=39.22).

Panel B of Figure 2 shows average intra-day patterns in the number of arbitrage opportu-

nities. The bulk of the activity for currency pairs in our sample occurs from 7:00 GMT when

European markets open until 17:00 GMT when European markets close. Not surprisingly, most

arbitrage opportunities occur during this period, with peaks when trading activity in the U.S.

and in Europe overlap (13:00 to 17:00). Hence, we only retain observations from 7:00 to 17:00

GMT for the variables used in our tests (see the next section).

2.3 Variables of interest and summary statistics

Our tests focus on the effects of (i) the likelihood that an arbitrage opportunity is toxic (ϕ in the

model) and (ii) the likelihood that a toxic arbitrage opportunity terminates by an arbitrageur’s

trade (π∗ in the model) on illiquidity and the duration of arbitrage opportunities. We explain

below how we measure empirically these variables.

We use four different measures of illiquidity. Our first three measures are daily averages

of the (i) the quoted bid-ask spread, spreadit (for currency pair i on day t), (ii) the effective

spread (espreadit), and (iii) a measure of the price impact of trades (adv selectionit). The

effective bid-ask spread for a particular transaction is defined as twice the buy-sell indicator

for the transaction (+1 for a buy and −1 for a sale) multiplied by the difference between the

transaction price and the prevailing mid-quote. The price impact of a trade is defined as the

change in the mid-quote following the trade over one minute following the transaction times

the buy-sell indicator. The average price impact over day t in currency i is a measure of losses

due to adverse selection for liquidity suppliers in this currency on this day (see, for instance,

Hendershott et al. 2011). According to our model, an increase in dealers’ exposure to toxic

arbitrage should raise illiquidity because it increases adverse selection costs for dealers.

In our model, dealers react to an increase in their exposure to toxic arbitrage by increasing

their bid-ask spread. In reality, they might also reduce the size of their limit orders (quoted

depth). Our fourth measure of illiquidity, slopeit, accounts for this possibility. It is defined as

the equally weighted average of two ratios: (i) the difference between the second and first best
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ask prices divided by the number of shares offered at the best ask price and (ii) the difference

between the first and second best bid prices divided by the number of shares offered at the best

bid price for currency i on day t. Hence, slopeit is higher when the number of shares offered at

the best quotes is smaller and the second best prices in the book are further away from the best

quotes. A higher slopeit implies that the limit order book is thinner for currency i on day t.

The duration of arbitrage opportunities on day t (E(D) in the model) is measured by

durationt, which is the average duration of all triangular arbitrage opportunities on day t in

our sample.

We now turn to our two main explanatory variables: the arbitrage mix, ϕ, and arbitrageurs’

relative speed, π. On each day t, we measure the likelihood that an arbitrage opportunity

is toxic, ϕt, by the number of toxic arbitrage opportunities divided by the total number of

arbitrage opportunities on day t. That is,

ϕt =
No. of toxic arbitrage opportunities on day t

No. of all arbitrage opportunities on day t
. (22)

Similarly, on each day t, we measure the likelihood, πtoxt , that an arbitrageur is fast enough

to exploit a toxic arbitrage opportunity by the number of toxic arbitrage opportunities that

terminate with a trade divided by the total number of arbitrage opportunities on day t:

πtox
t =

No. of toxic arbitrage opport. that terminate with a trade on day t

No. of toxic arbitrage opportunities on day t
. (23)

The likelihood of occurrence of an arbitrage opportunity, α, and the size of arbitrage oppor-

tunities, σ, also affect illiquidity according to the model (see eq.(13)). We therefore control for

these variables in our tests. We measure α on day t by the number of all arbitrage opportunities

on day t divided by the total number of trades on this day (denoted αt). For σ, we use the

average absolute percentage difference between the mid-points of the actual quotes on the one

hand and synthetic quotes on the other hand for all currency pairs in our sample at the time

of each toxic arbitrage opportunity on day t.24 We denote this difference on day t by σtoxt .

[Insert Table 2 here]

Table 2 presents summary statistics for the main variables in our analysis. Panel A reports

24Formally, suppose that a toxic arbitrage opportunity occurs at time τ on day t. Let f
i/j
τ,t =

A
i/j
τ,t+B

i/j
τ,t

2

and f̂
i/j
τ,t =

Â
i/j
τ,t+B̂

i/j
τ,t

2
be the mid-points of actual quotes and synthetic quotes, respectively, in the market of

currency i versus j at this time. We define σtoxt as the average value of |(f i/jτ,t − f̂
i/j
τ,t )/f

i/j
τ,t | over all toxic arbitrage

opportunities on day t.
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that αt = 6.5% (s.d= 1.6%) on average, which means that, in a given day, there is one arbitrage

opportunity every twenty trades. About half of these opportunities are toxic (ϕt = 50.1% on

average). Panels B and C present the characteristics of toxic and non-toxic arbitrage oppor-

tunities. Both types of opportunities vanish very quickly: they last on average for about 1.71

seconds (s.d= 0.524) and 1.448 seconds (s.d.= 0.505), respectively. The likelihood that a toxic

arbitrage opportunity terminates with a trade (πtox) is 63.1% on average (s.d.= 0.059). For a

non-toxic arbitrage opportunity, this likelihood (denoted πnontox) is smaller and equal to 47%.

The average size of a toxic arbitrage opportunity, σtoxt , is 2.669 basis points (s.d. = 0.529)

and, after accounting for trading costs (as in eq. (20) and (21)), the average daily arbitrage

profit on a toxic arbitrage opportunity is 0.651 basis points (s.d.= 0.148) per dollar traded. The

minimum quoted depth on Reuters is one million of base currency. Thus, the average profit

on a toxic triangular arbitrage opportunity is at least $65.1 per opportunity, i.e., $7,291.2 per

day (since there are 112 opportunities per day on average). Very similar figures are obtained

for non-toxic arbitrage opportunities. As a point of comparison, Brogaard et al. (2014) report

that, after accounting for trading fees, high frequency traders in their sample earn, in aggregate,

$4,209.15 per stock-day on their market orders in large-cap stocks and much less in small-cap

stocks (see Table 4 in Brogaard et al. 2014).

To save space, we report summary statistics for our various measures of illiquidity in Table

IA.1.1 (Panels A and B) of the Internet Appendix. Average quoted and effective bid-ask spreads

are very tight (between 1 and 3 basis points on Reuters). We also compare the average quoted

depth and quoted bid-ask spread in toxic and non-toxic arbitrage opportunities just before

these opportunities (see Panel C of Table IA.1.1). Quoted depth is not statistically different

between toxic and non-toxic arbitrage opportunities and it varies between 2.5 million of dollar

(for USD/EUR) and 3.2 millions dollar (for EUR/GBP). Quoted spreads tend to be slightly

higher just before the occurrence of toxic arbitrage opportunities.

Table IA.1.2 in the Internet Appendix reports the correlation of the main variables used in

our tests. Consistent with Implication 1, all measures of illiquidity are positively and signifi-

cantly correlated with ϕt, the fraction of arbitrage opportunities that are toxic. Moreover, as

expected, they are also positively and significantly correlated with the size of toxic arbitrage

opportunities (σtoxt ) and the frequency (per trade) of these opportunities (αt). In contrast,

the correlation between πtox (our proxy for π∗) and measures of illiquidity is not significantly

different from zero. This is not surprising because arbitrageurs should react faster to arbi-
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trage opportunities when trading costs are smaller. This effect works to make πtox higher when

bid-ask spreads are smaller, even if πtox’s effect on illiquidity is positive. This highlights the

importance of accounting for endogeneity in analyzing the effect of arbitrageurs’ relative speed

on illiquidity.

The duration of arbitrage opportunities and the various measures of market illiquidity are

positively correlated. That is, toxic arbitrage opportunities last longer on average when the

market for the three currency pairs is more illiquid. Again this is not surprising because,

other things equal, a higher bid-ask spread should induce arbitrageurs to react more slowly

to arbitrage opportunities, which eventually results in more persistent arbitrage opportunities.

Our Implication 3 however shows that a positive shock to arbitrageurs’ relative speed can

simultaneously increase bid-ask spreads while reducing the duration of arbitrage opportunities.

3. Empirical evidence

3.1 Is liquidity sensitive to the arbitrage mix and arbitrageurs’ relative

speed?

We first test whether illiquidity increases in (i) the likelihood that an arbitrage opportunity is

toxic, ϕt, and (ii) the likelihood that an arbitrage opportunity terminates with an arbitrageur’s

trade, πtoxt , as predicted by Implications 1 and 2. For this, we regress each measure of illiquidity

for each currency pair, illiqit, on πtoxt , ϕt, and various controls (stacked in vector Xit), for time-

varying market conditions. That is, we estimate:

illiqit = ωi + ξt,m + b1π
tox
t + b2ϕt + b

′
Xit + εit, (24)

where ωi is a currency pair fixed effect and ξt,m is a monthly fixed effect (a dummy equal to one

if day t is in month m). Coefficients b1 and b2 should be positive according to Implications 1

and 2. All our variables are measured at the daily frequency. There are two days without any

arbitrage opportunity, which prevents us from computing πtox on these days. Hence we exclude

them from our sample and we eventually conduct our tests with a sample of 483 days (i.e., 1449

currency-day observations).

The vector of control variables, Xit, includes αt and σtoxt (defined in Section 2.3) and ad-

ditional control variables. First, we use currency-specific controls known to be correlated with
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illiquidity, namely (i) trsizeit, the average trade size in currency i on day t, (ii) volit, the realized

volatility (the sum of squared five minutes mid-quote returns) in currency i on day t, and (iii)

nrordersit, the number of orders (new limit and market orders as well as limit order updates)

in currency i on day t. As in Pasquariello (2016), we also control for the TED spread (denoted

tedt on day t), i.e., the difference between the LIBOR and the T-Bill rate because variations in

funding costs can affect liquidity and the duration of arbitrage opportunities (seeBrunnermeier

et al. 2008). Market-wide sources of variations in liquidity should affect in the same way the

liquidity of a currency pair on Reuters and its competitor, EBS. Thus, in estimating eq.(24)

for a particular illiquidity measure on Reuters (say, the quoted bid-ask spread), we include its

EBS counterpart (denoted illiqEBSit for currency i on day t) in our set of controls.25 Finally, we

use the number of days since the beginning of the sample to control for a possible trend in our

illiquidity measures.

In the model, the likelihood that a toxic arbitrage terminates with an arbitrageur’s trade

(πtoxt ) is endogenous and simultaneously determined with the bid-ask spread. Thus, to identify

the effect of πtoxt , we use an instrumental variable (IV). In July 2003, Reuters D-3000 introduced

a new functionality, “Reuters AutoQuote API” (Application Programming Interface), allowing

traders to automate order submission instead of manually typing trading instructions. This

functionality marked the beginning of algorithmic trading on Reuters by enabling traders to

input Reuters datafeed in their algorithms and let these trade accordingly. The order-to-trade

ratio (the number of orders to the number of trades) is often used as an indicator of algorithmic

trading activity (see Hendershott et al. 2011). Figure 3 shows that this ratio for Reuters D-

3000 experiences a significant increase in July 2003, suggesting that some traders quickly took

advantage of Autoquote API to automate their trading decisions.

[Insert Figure 3 about here.]

Two conditions must be satisfied for AutoQuote API (henceforth “AutoQuote”) to serve as

a valid instrument for πtoxt , the likelihood that a toxic arbitrage terminates by an arbitrageur’s

trade. First, AutoQuote should have a clear effect on this likelihood. Second, it should satisfy

25Our EBS data are identical to those for Reuters D-3000, except that all orders and trades on EBS occurring
within the same second receive the same time stamp. Thus, EBS data cannot be used to accurately measure
when a triangular arbitrage opportunity (across trading systems or within EBS) starts, and when and how it
terminates. For example, suppose two market orders and two limit orders are submitted in a second in which
an arbitrage opportunity occurs and that the arbitrage starts and terminates within this second. EBS data do
not allow us to identify whether the arbitrage terminates due to a marketable order (a trade) or a limit order (a
quote update). Hence, we cannot compute πtox and ϕ using EBS data.
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the “exclusion restriction,” i.e., the introduction of Autoquote should not be correlated with

the error term in eq.(24).

The first condition is very likely to be satisfied because AutoQuote reduces the time cost

of reacting quickly to arbitrage opportunities for market participants. Thus, it should affect

arbitrageurs relative cost of speed (ρ in the model) and therefore arbitrageurs relative speed

(π in the model) since the latter increases with the former in equilibrium (see eq.(14)). For

identification, it is not important whether the sign of this effect is positive or negative: it

suffices that the effect exists. However, anecdotal evidence suggests that Autoquote was, at

least initially, predominantly use by arbitrageurs. For instance, Pierron (2007) writes that

Autoquote API: “allows a full benefit from algorithmic trading, since it enables the black box

to route the order to the market with the best prices and potential arbitrage across markets

despite the fragmentation of the various pools of liquidity in the FX market.” Similarly, Chaboud

et al. (2014) note that (on p.2058): “From conversations with market participants, there is

widespread anecdotal evidence that in the very first years of algorithmic trading in this [FX]

market, a fairly limited number of strategies were implemented with triangular arbitrage among

the most prominent.” Thus, we expect Autoquote to increase the likelihood that a toxic arbitrage

terminates by an arbitrageur’s trade. The first stage of the IV regression (see below) confirms

this conjecture.

The second condition–the exclusion restriction–requires that Autoquote should affect illiq-

uidity only through its effect on πtox, after controlling for other variables appearing in eq.(24).

One concern is that the introduction of Autoquote might coincide with other contemporaneous

shocks to the liquidity of the currencies in our sample. However, to bias our estimate for the

effect of πtox, these shocks should be unrelated to our control variables (e.g., funding liquidity

shocks and volatility). Moreover, they should be specific to the Reuters trading platform since

we control for systematic variations in the liquidity of the currency pairs in our sample by

including measures of illiquidity for the same pairs on EBS (illiqEBSit ).

Another threat to identification is that Autoquote directly influences the costs of market

making or rents earned by market makers. In particular, automation of order entry might

reduce dealers’ order processing costs or increase competition among dealers by triggering entry

of new participants. Our control for the number of order submissions on Reuters (nrordersit)

should capture, to some extent, the effect of new entry since the volume of order submissions

should increase with the number of participants. In any case, if they are present, these effects
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imply that Autoquote should be associated with a decrease in bid-ask spreads. Hence, they

should bias downward our estimate of the effect of πtox on illiquidity and make it more difficult

for us to detect a positive effect. Moreover, our measure of adverse selection costs for dealers

(adv selectionit) is immune to these problems because this component of bid-ask spreads is

not affected by order processing costs and market power (see, for instance, Stoll 2000). The

possibility remains that Autoquote affects adverse selection costs through channels other than

the risk of trading at stale quotes when a toxic arbitrage opportunity arises (the source of

adverse selection in our model). We address this concern in Section 3.3.

Insert Table 3 About Here

Table 3 reports estimates of eq.(24) using the introduction of Autoquote API as an instrument.

The first stage of the IV regression is:

πtoxt = ωi + ξt,m + a1ADt + a2ϕt + a′Xit + ut, (25)

where ADt is our instrument (a dummy equal to 1 after July 2003 and zero before) and Xit is

the same set of control variables as in eq.(24).26 In our estimation, we account for time series

autocorrelation and heteroscedasticity in residuals in computing standard errors.

Estimates of the coefficients of the first stage (eq.(25)) are reported in Columns (1), (3),

(5) and (7) of Table 3 (one column per illiquidity measure). They are very similar across

all illiquidity measures.27 The coefficient (a1) on the dummy variable, ADt, is statistically

significant and equal to about 0.035. The instrument is not weak since the F statistics is

around 28 in all specifications.28 Overall, as we expected, the first stage regression indicates

that AutoQuote had a positive effect on arbitrageurs’ relative speed. This is consistent with

Chaboud et al. (2014), who note (p.2067) that triangular arbitrage opportunities in their sample

disappear mainly through “computer hitting existing quotes, with most of these quotes posted

by human traders.”

26 We have not been able to retrieve the exact day of the introduction of Autoquote API in July 2003. Thus,
ADt takes the value one only starting in August 2003. This is unlikely to affect our results since the adoption of
Autoquote API certainly took a few weeks.

27The first stage is specific to each illiquidity measure because our set of control variables include illiqEBSit ,
which is specific to the illiquidity measure used as dependent variable.

28One should perform the Sargan-Hansen test of overidentifying restrictions routinely in any overidentified
model estimated with instrumental variables to check whether the excluded instruments are appropriately inde-
pendent of the error process. This is done if and only if an equation is overidentified. We do not carry out the
test because we have a just-identified case in our setup.
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We now turn to our main variables of interest, i.e., the estimates for coefficients b1 and b2

in eq.(24). For all illiquidity measures, we find that illiquidity is higher when the fraction of

arbitrage opportunities that are toxic is higher, as predicted by Implication 1. This effect is

both statistically and economically significant. For instance, for the quoted bid-ask spread, we

find that b2 = 0.875 (t-stat=3.53) and for the adverse selection cost, we find that b2 = 0.428

(t-stat=4.11). Thus, an increase in ϕt by a one standard deviation (i.e., 0.06) is associated with

an increase of 0.0257 basis points in the adverse selection cost for the currencies in our sample

(i.e., about 40% of the average quoted spread in our sample).

As predicted, the effect of πtox on illiquidity, b1, is also positive and statistically significant

for all measures of illiquidity. For instance, for the quoted bid-ask spread, we find that b1 = 6.341

(t-stat=4.55) and for the adverse selection cost, we find that b1 = 2.223 (t-stat=3.43). Thus,

a 1% increase in πtoxt raises the quoted bid-ask spread (spreadit) by 0.0634 basis points (t-stat

= 4.55). The economic size of this effect is significant as well since it represents about 3% of

the average bid-ask spread (about 2 basis points) for currencies in our sample.

Another way to evaluate the economic significance of this finding is to consider the effect

of an increase of 1% in πtoxt on daily trading costs. The average trade sizes (in dollar) for

the currencies considered in our sample are $2.404 million in GBP/USD, $1.667 million in

EUR/USD, and $1.839 million in EUR/GBP. Moreover, the average number of transactions

per day is 4.751 in GBP/USD, 2.399 in EUR/USD, and 2.876 in EUR/GBP. Hence, according

to our estimates, a 1% increase in πtoxt raises total daily trading costs by 0.06341bps× ($2.404×

4.751 + $1.667× 2.399 + $1.839× 2.876) = $131, 319 for the three markets in total. Thus, even

a small increase in arbitrageurs’ speed can be rather costly for other market participants given

the large volume of trade in currency markets.

Other control variables in eq.(24) are signed as expected. For instance, daily changes in

illiquidity are positively and significantly related to the size of toxic arbitrage opportunities

(σtoxt ) and the likelihood of occurrence of an arbitrage opportunity (αt). They are also positively

associated with realized volatility and funding constraints.

In the Internet Appendix (see Table IA.2.1 in this appendix), we report estimates of eq.(24)

with Ordinary Least Squares (OLS) instead of the instrumental variable (IV) approach. The

OLS estimate for the effect of πtox (i.e., b1) is positive. However, it is in general smaller than

the IV estimate and its statistical significance is weaker. This is consistent with the fact that

traders’ relative speed is endogenous and jointly determined with illiquidity.
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Hendershott et al. (2011) find that algorithmic trading improves liquidity, mainly because

it reduces the adverse selection cost component of the bid-ask spread (as measured by price

impact). At first glance, this finding seems to contradict ours. However, our tests do not

focus on the effect of the same variables on liquidity and our results are therefore not directly

comparable. Specifically, we study the effects of the arbitrage mix (ϕ) and arbitrageurs’ relative

speed (πtox) while Hendershott et al. (2011) study the effect of algorithmic trading measured

by AT , defined as the number of electronic messages normalized by trading volume for NYSE

stocks. Importantly, Hendershott et al. (2011) emphasize that variations in AT are mainly

driven by variations in limit order submissions and cancellations. Thus, AT mainly picks up

algorithmic liquidity provision, not algorithmic arbitrage since algorithmic arbitrageurs use

market orders (take liquidity), not limit orders (see Chaboud et al. 2014). For this reason, the

AT variable in Hendershott et al. (2011) is likely to be positively associated with dealers’ relative

speed and therefore inversely related to πtox. Thus, according to our model, an increase in AT

should reduce the adverse selection cost component of the bid-ask spread, which is indeed

Hendershott et al. (2011))’s finding. This discussion suggests that the correlation between

proxies for algorithmic trading and liquidity providers’ relative speed is key to interpret how

these proxies are associated with liquidity measures.29

3.2 Duration of arbitrage opportunities

As explained in the previous section, the introduction of Autoquote reduces arbitrageurs’ cost of

speed. Thus, according to Implication 3, Autoquote should be associated with shorter arbitrage

opportunities. Moreover, Implication 4 predicts that the duration of arbitrage opportunities

should be shorter on days in which the fraction of toxic arbitrage opportunities is higher. To

test these implications, we estimate the following equation:

log(durationt) = ωi + ξt,m + c1ADt + c2ϕt + c
′
Xit + ut, (26)

where durationt is the average duration of arbitrage opportunities on day t and Xit is the same

vector of control variables as in eq.(24) (where illiqEBS is measured by the EBS quoted spread).

29This point might explain why various papers reach different conclusions about the effect of trading speed on
liquidity. For instance, Hendershott and Moulton (2011) find empirically that the increase in speed of execution
for marketable orders (a decrease in liquidity providers’ relative speed) results in an increase in illiquidity while
Brogaard et al. (2015) find that an increase in liquidity providers’ speed of access to the market (through upgrades
in co-location services) improves liquidity.
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We do not control for πtoxt in this case because, in theory, the duration of arbitrage opportunities

is affected by shocks (i.e., ADt in our test) to arbitrageurs’ cost of speed directly, not through

πtoxt (see eq.(17)). Implications 3 and 4 predict that c1 and c2 should be strictly positive.

[Insert Table 4 about here]

Estimates of eq.(26) are reported in Table 4. In Column (1), the dependent variable is

the log of the duration of toxic arbitrage opportunities, while in Column (2) the dependent

variable is the log of the duration of all arbitrage opportunities. Consistent with Implication 3,

Autoquote (AD) is associated with shorter arbitrage opportunities. For instance, in Column (1),

a1 = −0.067 (t-stat=−3.68). This point estimate implies that the introduction of Autoquote

reduced the duration of toxic arbitrage opportunities by about 6.7%.30 Relative to the average

duration of toxic arbitrage opportunities (1710 milliseconds; see Table 2), this implies a drop

of about 115 milliseconds (6.7% × 1.710) in the duration of toxic arbitrage opportunities after

the introduction of Autoquote. Very similar estimates are obtained when we use the average

duration of all arbitrage opportunities.

Moreover, as predicted by Implication 4, we find that, on average, the duration of arbitrage

opportunities is shorter when the fraction of arbitrage opportunities that are toxic, ϕ, is higher.

For instance, in Column 1, a2 = −0.934 (t-stat=−7.91). Thus, a one standard deviation increase

in the fraction of arbitrage opportunities that are toxic (i.e., an increase of 0.06, see Table 2) is

associated with a 5.6% drop in the duration of toxic arbitrage opportunities.

3.3 Exposure to toxic arbitrage or other forms of adverse selection?

As explained previously, one might be concerned that Autoquote affects dealers’ adverse selec-

tion costs through other channels than dealers’ exposure to toxic arbitrage. Another concern

is that our measures of arbitrage toxicity (ϕ and πtox) might just pick the effect of more tradi-

tional measures of adverse selection. To address these concerns, we add four different measures

of adverse selection in the set of control variables used in eq.(24) and study whether this alters

our conclusions regarding the effects of ϕ and πtox on illiquidity.

Our first measure is a dummy variable equal to one on days with “influential” macro-

economic announcements for currency pairs in our sample (i.e., about the EMU, U.K., and

30The coefficient on a particular control variable in eq.(26) measures the percentage change in the duration
of arbitrage opportunities following a one unit change in this control variable because our dependent variable is
the log of duration.
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U.S.).31 Indeed, Green (2004) finds empirically that the release of macro-economic news is

associated with an increase in informed trading. Overall, there are 242 days with at least one

macro-announcement in our sample.

In addition, Pasquariello and Vega (2007) shows that adverse selection costs are higher

when informed traders’ beliefs are more heterogeneous. Thus, as a second proxy for adverse

selection, we use a measure of heterogeneity in informed traders’ beliefs, which, as in Pasquariello

and Vega (2007), is based on the dispersion of professional forecasts about macro-economic

announcements. Specifically, Bloomberg asks a panel of experts to provide forecasts about the

next macro-economic announcement one week before its release. Using these forecasts, for, say,

the nth announcement of type j, we compute the standard deviation, SDjn, of experts’ forecasts

(across experts) and compute

stdmacrojn =
SDjn − µ(SDjn)

σ(SDjn)
, (27)

where µ(SDjn) and σ(SDjn) are, respectively, the mean and standard deviation of SDjn over

all announcements of type j. Then, as in Pasquariello and Vega (2007), we assume that this

measure of heterogeneity in professional forecasts about the announcement of type j is con-

stant every day in-between announcements of this type and we measure the heterogeneity in

informed traders’ beliefs on day t by stdmacrot , i.e., the average of stdmacrojn on day t across all

announcements.

Third, following Easley et al. (2008) and Holden and Jacobsen (2014), we also consider the

average absolute daily order imbalance across the three currency pairs in our sample as another

measure of adverse selection. Specifically, for each currency i on day t, we compute

|oibit| =
|buysit − sellsit|
buysit + sellsit

, (28)

where buysi (sellsi) is the number of buy (sell) market orders for currency pair i on day t. We

then define oibt as the average of |oibit| across the three currency pairs on day t and use it as

another measure of adverse selection. Importantly, in computing |oibit|, we exclude buy and sell

market orders that terminate an arbitrage opportunity to mitigate the concern that |oibit| might

31Influential macro-economic announcements are defined as in Pasquariello and Vega (2007) or Rime et al.
(2010). These are non-farm payroll (US), leading indicators (US), retail sales (US), new home sales (US), con-
sumer confidence index (US), unemployment claims (US), NAPM index (US), current account (EMU), industrial
production (EMU), CPI (EMU), retail sales (EMU), trade balance (UK), and GDP growth (UK).
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reflect arbitrageurs’ activity.

Last Easley et al. (2012) advocates the use of VPIN (“volume-synchronized probability of

informed trading”) as a measure of high-frequency adverse selection. Following Easley et al.

(2012), in each trading day t, we group successive trades into 50 equal volume buckets of size

vit, where vit is equal to the trading volume in day t for currency i divided by 50.32 The vpinit

metric for currency pair i and day t is then

vpinit =

50∑
τ=1

∣∣∣vi,sτ − vi,bτ ∣∣∣
50× vit

, (29)

where vi,bτ and vi,sτ are the amount of base currency purchased and sold, respectively, within the

τ th bucket for currency pair i. As for the order imbalance measure and for the same reason, we

exclude arbitrageurs’ trades when computing vpinit.

[Insert Table 5 about here]

Table 5 reports the result of the IV regression when we control for days with macro-economic

announcements (Dmacro), dispersion of professional forecasts (stdmacro), absolute order imbal-

ance (|oib|) and VPIN (vpin). In general, these variables are positively related to our various

measures of illiquidity but this relationship is not statistically significant. More importantly

for our purpose, the effects of ϕt and πtoxt on illiquidity remain positive and significant for all

measures of illiquidity. Furthermore, estimates of the effect of these variables are very similar

to those reported in Table 3. Hence, ϕt and πtoxt contain information about market makers’

exposure to adverse selection, that is not subsumed in other measures of adverse selection.

3.4 Robustness

We conduct additional robustness checks, which, for brevity, are only reported in the Internet

Appendix. First, we estimate eq.(24) and eq.(26) at the hourly frequency rather than at the daily

frequency. Results are qualitatively similar and statistically stronger due the increase in the

number of observations (see Table IA.3.1 in the Internet Appendix). We also estimate eq.(24)

and eq.(26) with other proxies for funding liquidity shocks than the TED spread, namely (i)

aggregate primary dealer repo positions as in Adrian and Shin (2010), (ii) difference between the

32For robustness, we have also grouped trades into different volume buckets of 30, 75, and 100 in the construc-
tion of VPIN. Results reported below are not sensitive to the size of grouping.
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three-month commercial paper rate and the three-month Treasury Bill rate as in Krishnamurthy

(2002) and (iii) a measure of noise in U.S. Treasury yields as constructed by Hu et al. (2013).

Our findings are not sensitive to how we measure funding liquidity shocks (see Table IA.3.2).

In Table IA.3.3, we use the quoted depth (in million of dollar of the base currency) as another

measure of liquidity. We again find that increases in πtoxt and ϕt are associated with a drop

in liquidity (i.e., a reduction in quoted depth). The effect is statistically significant only for

πtoxt . However, as an increase in ϕt is associated with a larger quoted bid-ask spread, liquidity

unambiguously drops when ϕt is higher. Finally, in Table IA.3.4, we measure adverse selection

costs with 5-minutes price impacts. Results with this measure are identical to those obtained

with 1-minute price impacts as a measure of adverse selection costs.

By construction, the arbitrage mix, ϕt, is positively related to the number of toxic arbitrage

opportunities and negatively related to the number of non-toxic arbitrage opportunities. To

analyze separately the role of each variable, we replace ϕt by the logarithm of the number

of toxic arbitrage opportunities (log(narbtox)) and the logarithm of the number of non-toxic

arbitrage opportunities (log(narbnontox)) in our regressions. We find (see Table IA.3.5) that

the number of toxic arbitrage opportunities has a significant and positive effect on illiquidity,

consistent with the notion that toxic arbitrage opportunities increase illiquidity. In contrast, the

number of non-toxic arbitrage opportunities has no significant effect on illiquidity. Moreover,

the duration of arbitrage opportunities is negatively related to the number of toxic arbitrage

opportunities, consistent with the fact that both arbitrageurs and market makers should monitor

the market more closely when there are more toxic arbitrage opportunities.

Liquidity providers might be more sensitive to surprises in the fraction of toxic arbitrage

opportunities in a given day than to the expected level for this fraction. For instance, a sud-

den unexpected increase in the number of toxic arbitrage opportunities might lead dealers to

significantly cut on liquidity provision. To test for this possibility, we decompose ϕt into an

anticipated component (ϕanticipatedt ) and an unanticipated component (ϕsurpriset ). For this de-

composition, we estimate an autoregressive model for ϕt with 20 lags (to capture persistence

in the level of ϕt) and additional lagged control variables for the three currencies in our sam-

ple. On day t, ϕanticipatedt is the predicted value of ϕt according to the forecasting model and

ϕsurpriset is the residual of this model. We then re-estimate eq.(24) and eq.(26) allowing the

coefficients on the anticipated and the unanticipated components of ϕt to be different. We

report estimates obtained with this approach (including those for the forecasting model for ϕt)
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in Table IA.3.6 in the Internet Appendix. We find that both the anticipated and unanticipated

components of ϕt are positively associated with all measures of illiquidity. Coefficients on both

components are statistically significant at least at the 10% level, with, in general, a stronger

statistical and economic significance for the anticipated component. Moreover, the duration of

arbitrage opportunities is significantly smaller when either components of ϕt are higher.

Our classification of arbitrage opportunities into toxic and non-toxic arbitrage opportunities

assumes that price reversals associated with non-toxic arbitrage occur immediately after the

arbitrage terminates. If instead price reversals take more time, our approach might mistakenly

classify an arbitrage opportunity as toxic while in fact it is not. Hence, as a robustness check,

we lengthen the window of observation following an arbitrage opportunity to classify it as toxic

or non-toxic. Specifically, we classify an arbitrage opportunity as toxic only if the three quote

updates after its termination do not lead to a price reversal. As quote updates are very frequent

in our data (the average inter-quote duration is about 1.18 second), this time window should be

long enough for rates to revert after the termination of an arbitrage opportunity due to a price

pressure, while alleviating the concern that the reversal is due to other confounding factors.

With this approach, the number of toxic arbitrage opportunities drops to 68, 053 (i.e., 40.13%

of all arbitrage opportunities). However, the results of our tests with this new classification are

qualitatively similar to those obtained previously (see Table IA.3.7 in the Internet Appendix).

3.5 External validity

For our tests, we are constrained by data availability. Our data from Reuters D-3000 allow

us (i) to accurately measure when and how an arbitrage opportunity terminates and (ii) to

instrument arbitrageurs’ relative speed with the introduction of Autoquote API. We are not

aware of other datasets with these features, which are necessary for our tests.33 One concern is

that trading was slower during our sample period than it is today. This raises the question of

whether our results are relevant for today’s markets. We think that this is the case for three

reasons.

First, the arbitrage opportunities in our sample are very short lived (see Table 2). Thus,

at the time of our sample, speed was already of paramount importance for exploiting these

33In particular, arbitrage typically take place between assets traded in different platforms (e.g., a stock that
trades on multiple trading platforms). This creates problems for studying arbitrage opportunities at the high
frequency because the clocks on which different platforms report orders and trades are often not perfectly syn-
chronised. This problem does not arise in our data because we focus on triangular arbitrage opportunities within
the same trading platform (Reuters D-3000).
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opportunities as it is in today’s markets. Second, Reuters D-3000 is an electronic limit order

market. Thus, its market structure is very similar to that in which today’s fast traders operate.

Last, and maybe most important, the predictions of our model are unchanged whether the dealer

and the arbitrageur’s reaction times are respectively, say, 600 and 800 milliseconds on average

(λ = 1/600 and γ = 1/800) or whether they are 100 times smaller. Indeed, this is traders’

relative speed (λγ ) that matters for dealers’ exposure to the risk of trading at stale quotes with

an arbitrageur (see eq.(4)), not their absolute speed. An increase in absolute speeds only means

that the race between dealers and arbitrageurs is played over a shorter time interval.

As a robustness check, we have obtained data (from Thomson Reuters Tick History dataset)

on trades and orders in Reuters D-3000 for the the three currency pairs in our sample over a

more recent period (January 2, 2005-December 30, 2011). The data are identical to those used

in our main tests, except that we do not observe the quantities posted at the best quotes.

Hence, we cannot use the slope of the limit order book as a measure of illiquidity. Descriptive

statistics for this alternative sample are provided in the Internet Appendix (see Table IA.4.1).

Not surprisingly, the duration of arbitrage opportunities is smaller in the 2005-2011 sample

(equal to 783 ms versus 1554 ms in the 2003-2004 period) because traders’ absolute speeds

have increased over time. More importantly, toxic arbitrage opportunities still occur frequently

in recent years (ϕt = 40.5% in the 2005-2011 sample versus 50% in the 2003-2004 sample).

Moreover, arbitrageurs’ relative speed is higher in the 2005-2011 sample (πtoxt = 80% versus

63.5% in 2003-2004).

In sum, despite the fact that trading is much faster in recent years, dealers are still exposed

to the risk of trading at stale quotes with arbitrageurs. Thus, their bid-ask spreads should

reflect this risk. To check this, we have estimated eq.(24) and eq.(26) for the 2005-2011 sample

with OLS (without controlling for illiquidity on EBS as we do not have EBS data over the same

period). Results are reported in Table IA.4.4 in the Internet Appendix.

We still observe a significant and positive relationship between the daily fraction of toxic ar-

bitrage opportunities (ϕt) and illiquidity in the 2005-2011 sample (e.g., for the adverse selection

component, b2 = 1.330 with a t-stat of 7.06). Moreover, as predicted, arbitrage opportunities

are shorter on days in which the fraction of arbitrage opportunities that are toxic is higher.

The relationship between the likelihood that a toxic arbitrage terminates with a trade (πtoxt )

and illiquidity is positive but it is not statistically significant for some illiquidity measures. As

previously observed, this might reflect the fact that arbitrageurs’ relative speed is endogenous
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to illiquidity. We cannot address this issue because we have no instrument for πtoxt over the

2005-2011 period . Interestingly, the effects of ϕt and πtoxt on illiquidity are weaker during the

crisis period (2008-2009), maybe because arbitrage was more difficult during the crisis.

4. Conclusions

At high frequency, transient demand shocks or delays in the adjustment of prices to news create

very short lived arbitrage opportunities in pairs of assets with correlated payoffs. Arbitrage

opportunities due to asyncronicities in the adjustment of prices to news are toxic because they

expose dealers to the risk of trading with arbitrageurs at stale quotes. We show theoretically

that, for this reason, more frequent toxic arbitrage opportunities and a faster arbitrageurs’

response to these opportunities raise adverse selection costs for dealers and therefore impair

liquidity. We provide evidence for these predictions using a sample of triangular arbitrage op-

portunities. Specifically we find that bid-ask spreads and adverse selection costs for the currency

pairs in our sample are larger on days in which (a) the fraction of arbitrage opportunities that

are toxic (i.e., due to news rather than transient demand shocks) is higher and (b) the frequency

with which arbitrageurs successfully exploit these opportunities is higher.

One way to alleviate adverse selection costs due to toxic arbitrage opportunities is to reduce

arbitrageurs’ relative speed. For instance, as some market participants advocate, market orders

could be put on hold for a very small random period of time before execution.34 However,

adverse selection costs of high frequency arbitrage must be balanced with its benefits, namely

a greater price efficiency and a quicker provision of liquidity when arbitrage opportunities are

due to transient demand shocks. Slowing down high frequency arbitrageurs is desirable only

if associated adverse selection costs exceed these benefits. Our findings suggest that these

costs can be significant. In contrast, little is known about the social value of accelerating by a

few milliseconds the speed at which prices converge to efficient levels or at which arbitrageurs

respond to price pressures. Future research should address this issue. It would help policy

makers and market organizers to design trading rules that optimally balance the costs and

benefits of high frequency arbitrage.

In any case, some care must be taken with our conclusions since our data cover only one

type of the many high frequency arbitrage opportunities that are exploited by high speed arbi-

34See for instance “Interactive Brokers Group Proposal to Address High Frequency Trading” available at:
“https://www.interactivebrokers.com/download/
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trageurs. Our tests provide suggestive evidence for the mechanisms highlighted in our model but

more research is needed to establish the robustness of our conclusions for other high frequency

arbitrage opportunities (e.g., between ETFs and futures).
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APPENDIX

Proof of Proposition 1

Using eq.(6), it is immediate that the unique bid-ask spread S∗Y solving the zero profit

condition (8) for market maker Y is S∗Y = 0. Furthermore, solving eq.(5) for the bid-ask spread

S∗X such that ΠX(S∗X , λ
∗, γ∗) = 0 yields a unique solution for S∗X , given by eq.(13) in Proposition

1. This proves that S∗Y = 0 and S∗X in eq.(13) are the unique zero profit bid-ask spreads.

Now consider the choices of their speeds by market maker X and the arbitrageur. The speed

chosen by market maker X in equilibrium, λ∗, maximizes his expected profit, ΠX(S∗X , λ
∗, γ∗).

Hence, it must solve the following first order condition:

∂ΠX(S∗X , λ
∗, γ∗)

∂λ
= (

ϕα

2
)

γ

(λ+ γ)2
(σ − S∗X)− cm

2
= 0. (30)

This condition is necessary and sufficient because market maker X’s expected profit is concave

in its speed, λ. Similarly, the speed chosen by the arbitrageur in equilibrium, γ∗, maximizes her

expected profit, Πa(S∗X , S
∗
Y , λ

∗, γ∗) = 0. Hence, it must solve the following first order condition:

∂ΠA(S∗X , 0, λ
∗, γ∗)

∂γ
= (

ϕα

2
)

λ

(λ+ γ)2
(σ − S∗X)− ca

2
= 0, (31)

where we have replaced S∗Y by its equilibrium value, i.e., zero. Again, this condition is necessary

and sufficient because the arbitrageur’s expected profit is concave in its speed, γ.

Thus, we have a system of two equations (eq.(30) and eq.(31)) that must be satisfied by λ∗

and γ∗. Solving this system of equations for λ∗ and γ∗, we obtain a unique solution, which is

as given in eq.(15) and eq.(16) in Proposition 1. Moreover, using the expressions for λ∗ and γ∗

in Proposition 1, one gets that γ∗

λ∗ = cm

ca , which implies that π∗ = γ∗

λ∗+γ∗ = ρ
1+ρ .

Finally, observe that:

ΠX(SX , λ, γ
∗) < ΠX(S∗X , λ, γ

∗) < ΠX(S∗X , λ
∗, γ∗) ∀SX < S∗X , ∀λ. (32)

The first inequality follows from the fact that, other things equal, ΠX(SX , λ, γ
∗) increases with

SX (see eq.(5)) and the second inequality follows from the fact that λ∗ maximizes ΠX(S∗X , λ, γ
∗)

(Condition (11)). Now, as ΠX(S∗X , λ
∗, γ∗) = 0, we deduce from the previous equation that

ΠX(SX , λ, γ
∗) < ΠX(S∗X , λ, γ

∗) < 0 ∀SX < S∗X ,∀λ. (33)
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This shows that the equilibrium (S∗X , S
∗
Y , λ

∗, γ∗) satisfies the no undercutting condition (10).

Moreover, as S∗X , S∗Y , λ∗, γ∗ are the unique solutions to eq.(8), (9), (11), and (12), we deduce

that the competitive equilibrium of the model is unique.

Derivation of Implications 3 and 4

Using the fact that γ∗ = ρλ∗ in equilibrium, we deduce from eq.(17) that the expected duration

of an arbitrage opportunity in equilibrium is:

E(D) =
(1 + ρ)− ϕ
γ∗(1 + ρ)

. (34)

Next, substituting the expression for the equilibrium spread, S∗X (given in eq.(13)) in eq.(16),

we obtain that:

γ∗ =
(ϕαρ)(1− α(2ϕ− 1))

(ca(1 + ρ)2)(2ϕαπ∗(ρ)(2− π∗(ρ)) + (1− α(2ϕ− 1)))
σ. (35)

Substituting (35) in (34), we obtain:

E(D) =
h(ρ)(ca(1− ϕ) + cm)

ϕα(1− α(2ϕ− 1))σ
, (36)

with

h(ρ) = 2ϕα(
2 + ρ

1 + ρ
) + (1− α(2ϕ− 1))(

2 + ρ

ρ
).

It is straightforward that h(ρ) decreases with ρ. As ρ increases when ca decreases, we deduce

from eq.(36) that the expected duration of arbitrage opportunities decreases when ca decreases

(Implication 3).

Finally, using eq.(35), we also deduce that γ∗(S∗X) increases with ϕ if α(4ϕ − 1) < 1. We

deduce from eq.(34) that the average duration of an arbitrage opportunity decreases with ϕ if

α(4ϕ− 1) < 1 (Implication 4).
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Triangular Arbitrage Opportunities: Example.

We illustrate our methodology to identify triangular arbitrage opportunities in our sample

with an example. The table below gives best ask and bid prices for the three currency pairs in

our sample at time t−0 , just before an arbitrage opportunity.

Triangular Arbitrage Opportunities: An Example

Quotes Bi/j Ai/j

$/e 1.074 1.0780

$/£ 1.6255 1.6265

£/e 0.6622 0.6632

These quotes are such that there is no triangular arbitrage opportunity. Now suppose that

a sell limit order placed at 1.075 arrives in the USD/EUR market at time t0. The new best

quotes in this market become A$/e = 1.075 and B$/e = 1.074. If other rates are unchanged, we

have B̂$/e = B$/£ × B£/e = 1.0764. As B̂$/e > A$/e = 1.075, there is a triangular arbitrage

opportunity.

Now suppose that at date t1, the limit sell order placed at A$/e = 1.075 is filled and that

the new best ask price becomes again A$/e = 1.078. The arbitrage disappears and its duration

is t1− t0 seconds. We record that a trade terminates the arbitrage. Alternatively, suppose that

at t1, dealers in the USD/GBP market update their bid price at, say, B$/£ = 1.622 so that

B̂$/e = 1.074. Thus, the arbitrage disappears but without any trade. In this case, we record

that it terminates with a quote update.
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Figures

Figure 1: Toxic versus Non-Toxic Arbitrage Opportunities

This figure illustrates how we classify triangular arbitrage opportunities into toxic and non-toxic oppor-
tunities. In each panel, the arbitrage opportunity starts at time t and ends at time t+ τ . The solid lines
show the evolution of best ask and bid prices in the currency pair that initiates the arbitrage opportunity.
The dashed lines show the evolution of best bid and ask synthetic quotes. In Panel A, we provide two
examples of opportunities that we classify as toxic because they are associated with permanent shifts
in exchange rates. In Panel B, we provide two examples of opportunities that we classify as non-toxic
because the exchange rate in the currency pair initiating the arbitrage opportunity reverts to its level at
the beginning of the opportunity.

Panel A: Toxic Arbitrage Opportunities

Panel B: Non-Toxic Arbitrage Opportunities
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Figure 2: Number of Arbitrage Opportunities

Panel A shows the time series of the daily number of all triangular arbitrage opportunities (grey line)
and toxic arbitrage opportunities (black line) in our sample. Panel B shows the average number of toxic
and non-toxic arbitrage opportunities per hour in our sample. Time is GMT.

Panel A: Daily Numbers of Arbitrage Opportunities

Panel B: Intraday Pattern in the Number of Arbitrage Opportunities
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Figure 3: AutoQuote and Order-to-Trade Ratio.

This figure shows the evolution of the order-to-trade ratio (defined as the daily number of orders to the
daily number of trades for the three currency pairs in our sample) from January 2003 to December 2004.
The dashed lines indicate the average levels of the order to trade ratio before and after July, 1st 2003.
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Tables

Table 2: Descriptive Statistics

This table presents the descriptive statistics for the variables used in our tests for each currency pair
i ∈ {GU,EU,EG), where indexes GU , EU , and EG refer to the GBP/USD, EUR/USD, and EUR/GBP
currency pairs, respectively. Panels A provides descriptive statistics common to all opportunities while
Panels B and C present descriptive statistics for variables that are specific to toxic (non-toxic) arbitrage
opportunities. ϕt is the number of toxic arbitrage opportunities on day t divided by the number of
arbitrage opportunities on this day; αt is the number of all arbitrage opportunities on day t divided
by the total number of trades on this day; durationallt denotes the duration in seconds of all arbitrage
opportunities on day t; durationtoxt (durationnontoxt ) denotes the average duration in seconds of toxic
(non-toxic) arbitrage opportunities on day t; nrarbtoxt (nrarbnontoxt ) is the number of toxic (non-toxic)
arbitrage opportunities on day t; πtox

t (πnontox
t ) is the number of toxic (non-toxic) arbitrage opportunities

on day t that terminate with a trade divided by the total number of toxic (non-toxic) arbitrage oppor-
tunities on this day; σtox

t (σnontox
t ) is the average size of toxic (non-toxic) arbitrage opportunities on

day t (in basis points); profittoxt (profitnontoxt ) is the average profit in basis points on toxic (non-toxic)
triangular arbitrage opportunities on day t (calculated as explained in Section 3.2). The sample period
is from January 2, 2003 to December 30, 2004.

Panel A: The Arbitrage Mix

Variable Mean Std.Dev. Min Q1 Median Q3 Max

durationall 1.554 0.480 0.898 1.213 1.440 1.775 4.990

ϕ 0.501 0.060 0.280 0.463 0.505 0.545 0.650

α 0.065 0.016 0.029 0.052 0.064 0.077 0.109

Panel B: Toxic Arbitrage

durationtox 1.710 0.524 0.858 1.344 1.615 1.960 4.715

nrarbtox 112.0 49.62 2.000 76.00 105.0 137.0 288.0

πtox 0.631 0.059 0.449 0.593 0.627 0.663 1.000

σtox 2.669 0.529 1.647 2.312 2.614 2.910 5.129

profittox 0.651 0.148 0.452 0.578 0.623 0.683 2.035

Panel C: Non-toxic Arbitrage

durationnontox 1.448 0.505 0.842 1.101 1.335 1.671 6.768

nrarbnontox 108.0 39.22 4.000 80.00 102.0 131.0 243.0

πnontox 0.470 0.068 0.286 0.420 0.469 0.513 0.712

σnontox 2.641 0.634 1.653 2.270 2.539 2.871 10.41

profitnontox 0.707 0.243 0.383 0.571 0.652 0.761 3.584
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Table 3: Arbitrageurs’ Relative Speed (πtox), Arbitrage Mix (ϕ) and Liquidity

This table reports estimates of the following equation: illiqit = ωi + ξt,m + b0t+ b1π
tox
t + b2ϕt + b3αt + b4σ

tox
t + b5volit + b6trsizeit + b7nrordersit +

b8tedt + b9illiq
EBS
it + εit, for i ∈ {GU,EU,EG} where indexes GU , EU , and EG refer to the GBP/USD, EUR/USD, and EUR/GBP currency pairs,

respectively. illiqit is one of our four proxies for illiquidity for currency i on day t: spreadit is the average quoted bid-ask spread (in basis points) in
currency pair i on day t; espreadit (in basis points) is the average effective spreads in currency pair i on day t; slopeit is the average slope of the limit
order book in currency pair i on day t; adv selectionit, is the average 1-minute price impact of trades. Superscript EBS is used for measures of these
variables computed using EBS data. ϕt is the number of toxic arbitrage opportunities on day t divided by the number of arbitrage opportunities on
this day and πtox

t is the number of toxic arbitrage opportunities on day t that terminate with a trade divided by the total number of toxic arbitrage
opportunities on day t. We instrument πtox

t with the introduction of AutoQuote on Reuters D-3000 (see the text). The first stage regression is:
πtox
t = ωi + ξt,m + a0t+ a1ADt + a2ϕt + a3αt + a4σ

tox
t + a5volit + a6trsizeit + a7nrordersit + a8tedt + a9illiq

EBS
it +uit, where ADt is a dummy variable

equal to one after July 2003 and zero before. Other control variables are: αt is the number of all arbitrage opportunities on day t divided by the
total number of trades on this day; σtox

t is the average size of toxic arbitrage opportunities on day t (in basis points); volit is the realized volatility (in
percentage) of 5-minutes returns for currency pair i on day t; nrordersit (in thousands) is the total number of orders (market, limit or cancelations)
in currency pair i on day t; trsizeit is the average daily trade size (in million) for currency pair i on day t; tedt is the TED spread on day t, i.e., the
difference between the LIBOR and the T-Bill rate on day t. In all regressions we include a currency pair fixed effect (ωi), a monthly fixed effect (ξt,m)
and a time trend (coefficients b0 and a0). t-statistics in parenthesis are calculated using robust standard errors correcting for heteroscedasticity and
serial correlation. The sample period is from January 2, 2003 to December 30, 2004.

spread espread slope adv selection

1st stage 2nd stage 1st stage 2nd stage 1st stage 2nd stage 1st stage 2nd stage

AD 0.036 (5.37) 0.038 (5.61) 0.034 (5.12) 0.034 (5.22)

πtox 6.341 (4.55) 2.198 (4.00) 4.831 (4.68) 2.223 (3.43)

ϕ -0.046 (-1.21) 0.875 (3.53) -0.047 (-1.23) 0.393 (3.93) -0.044 (-1.16) 0.575 (3.20) -0.043 (-1.14) 0.428 (4.11)

α -0.693 (-5.09) 8.243 (5.57) -0.712 (-5.27) 3.551 (5.77) -0.717 (-5.26) 6.015 (5.42) -0.696 (-5.14) 4.144 (5.76)

σtox -0.001 (-0.24) 0.121 (3.13) -0.002 (-0.32) 0.119 (6.46) -0.001 (-0.29) 0.038 (1.44) -0.001 (-0.15) 0.059 (3.22)

vol -0.008 (-0.45) 1.429 (7.47) -0.007 (-0.40) 0.749 (8.11) -0.004 (-0.22) 0.835 (6.41) -0.010 (-0.58) 0.767 (7.82)

trsize -0.018 (-0.52) -0.109 (-0.46) -0.023 (-0.68) -0.054 (-0.60) -0.019 (-0.56) -0.229 (-1.33) -0.019 (-0.57) -0.138 (-1.45)

nrorders -0.002 (-3.48) -0.034 (-8.94) -0.002 (-3.52) -0.013 (-8.41) -0.002 (-3.51) -0.017 (-6.50) -0.002 (-3.49) -0.012 (-7.21)

ted -0.111 (-2.21) 0.919 (2.23) -0.114 (-2.27) 0.396 (2.45) -0.129 (-2.55) 0.611 (1.98) -0.108 (-2.15) 0.346 (2.01)

illiqEBS 0.002 (1.82) 0.009 (1.00) 0.0042 (3.87) -0.001 (-0.27) 0.0024 (1.48) -0.003 (-0.39) 0.003 (2.87) -0.006 (-1.39)

Adj. R2 9.7% 70.4% 10.1% 86.3% 10.0% 39.2% 9.9% 74.0%

F − stats 28.8 31.4 26.2 27.2

Obs. 1,449 1,449 1,449 1,449

Currency FE YES YES YES YES

Month FE YES YES YES YES
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Table 4: Duration of Arbitrage Opportunities

In this table, we present OLS estimates of the following equation: log(durationt) = ci + ξt,m + a0t +
a1ADt + a2ϕt + a3αt + a4σt + a5volit + a6trsizeit + a7nrordersit + a8tedt + a9spread

EBS
it + uit where

durationt is the average duration of toxic arbitrage opportunities (Toxic column) on day t or all (both
toxic and non-toxic) arbitrage opportunities (All column); AD (AutoQuote Dummy) is a dummy variable
equal to one after July, 2003 and 0 before; ϕt is the number of toxic arbitrage opportunities divided by
the number of arbitrage opportunities on day t; αt is the number of all arbitrage opportunities on day t
divided by the total number of trades on this day; σtox

t is the average size of arbitrage opportunities in
day t (in basis points); volit is the realized volatility (in percentage) of 5-minutes returns for currency
pair i on day t; nrordersit (in thousands) is the total number of orders (market, limit or cancelations)
in currency pair i on day t; trsizeit is the average daily trade size (in million) for currency pair i on
day t; tedt is the TED spread on day t, i.e., difference between the LIBOR and the risk-free T-Bill rate;
spreadEBS

it is the average quoted bid-ask spread (in basis points) in currency pair i on day t computed
using the EBS data. In all regressions we include a currency pair fixed effect (ωi), a monthly fixed effect
(ξt,m, a dummy equal to one if day t is in month m) and a time trend (coefficients b0 and a0). t-statistics
in parenthesis are calculated based on robust standard errors correcting for heteroscedasticity and serial
correlation. The sample period is from January 2, 2003 to December 30, 2004.

Toxic All

AD -0.067 (-3.68) -0.068 (-4.34)

ϕ -0.934 (-7.91) -0.868 (-8.80)

α -0.125 (-0.30) -0.694 (-1.80)

σ 0.103 (6.38) 0.125 (8.76)

vol -0.221 (-3.47) -0.240 (-4.28)

trsize 0.159 (1.58) 0.103 (1.11)

nrorders -0.023 (-15.8) -0.024 (-17.8)

ted -0.190 (-1.19) -0.261 (-1.96)

spreadEBS 0.004 (1.01) 0.006 (1.53)

Adj. R2 58.4% 67.3%

Currency FE YES YES

Month FE YES YES

Obs. 1,449
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Table 5: Toxic Arbitrage or Other Forms of Adverse Selection?

This table reports estimates of the following equation for i ∈ {GU,EU,EG}: illiqit = ωi+ξt,m+b0t+b1π
tox
t +b2ϕt+b3αt+b4σ

tox
t +b5volit+b6trsizeit+

b7nrordersit + b8ted+ b9illiq
EBS
it + b10D

macro
t + b11std

macro
t + b12vpinit + b13|oib|it + εit, for i ∈ {GU,EU,EG}. where indexes GU , EU , and EG

refer to the GBP/USD, EUR/USD, and EUR/GBP currency pairs, respectively. illiqit is one of four proxies for illiquidity for currency i on day t:
spreadit is the average quoted bid-ask spread (in basis points) in currency pair i on day t; espreadit (in basis points) is the average effective spreads in
currency pair i on day t; slopeit is the average slope of the limit order book in currency pair i on day t; adv selectionit, is the average 1-minute price
impact of trades. Superscript EBS is used for measures of these variables computed using EBS data. ϕt is the number of toxic arbitrage opportunities
on day t divided by the number of arbitrage opportunities on this day and πtox

t is the number of toxic arbitrage opportunities on day t that terminate
with a trade divided by the total number of toxic arbitrage opportunities on day t. We instrument πtox

t with the introduction of AutoQuote on Reuters
D-3000 (see the text). The first stage regression is: πtox

t = ωi + ξt,m + a0t + a1ADt + a2ϕt + a3αt + a4σ
tox
t + a5volit + a6trsizeit + a7nrordersit +

a8tedt + a9illiq
EBS
it + a10D

macro
t + a11std

macro
t + a12vpinit + a13|oib|it + uit, for i ∈ {GU,EU,EG}, where ADt is a dummy variable equal to one

after July 2003 and zero before. Other control variables are: αt is the number of all arbitrage opportunities on day t divided by the total number of
trades on this day; σtox

t is the average size of arbitrage opportunities in day t (in basis points); volit is the realized volatility (in percentage) of 5-minutes
returns for currency pair i in day t; trsizeit is the average daily trade size (in million) for currency pair i on day t; nrordersit (in thousands) is the
total number of orders (market, limit or cancelations) in currency pair i on day t; Dmacro

t is a dummy equal to one if there is at least one influential
macro-announcement in the EMU, U.K., and U.S. areas on day t; stdmacro

t is the average dispersion of professional forecasts on day t for influential

macro-announcements (see the text); |oibit| is the absolute order imbalance in currency i on day t, defined as |oibit| =
|buysit−sells

i
t|

buysit+sellsit
, where buysi (sellsi)

is the number of buy (sell) market orders for currency pair i on day t excluding buy and sell market orders that terminate arbitrage opportunities;
vpinit is a measure of adverse selection in currency pair i on day t (see Easley et al. (2012)); tedt, is the TED spread on day t, i.e., the difference
between the LIBOR and the T-Bill rate; In all regressions we include a currency pair fixed effect (ωi), a monthly fixed effect (ξt,m) and a time trend
(coefficients b0 and a0). t-statistics in parenthesis are calculated based on robust standard errors correcting for heteroscedasticity and serial correlation.
The sample period is from January 2, 2003 to December 30, 2004.
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Table 5 continued.

spread espread slope adv selection

1st stage 2nd stage 1st stage 2nd stage 1st stage 2nd stage 1st stage 2nd stage

AD 0.036 (5.36) 0.038 (5.59) 0.034 (5.13) 0.035 (5.23)

πtox 6.457 (4.61) 2.230 (4.06) 4.837 (4.72) 2.254 (3.53)

ϕ -0.043 (-1.17) 0.845 (3.39) -0.044 (-1.19) 0.386 (3.85) -0.041 (-1.13) 0.563 (3.17) -0.041 (-1.11) 0.419 (4.00)

α -0.717 (-5.19) 8.378 (5.52) -0.735 (-5.37) 3.586 (5.71) -0.745 (-5.38) 6.084 (5.39) -0.723 (-5.25) 4.180 (5.72)

σtox -0.001 (-0.13) 0.119 (3.04) -0.001 (-0.21) 0.118 (6.42) -0.001 (-0.16) 0.036 (1.36) -0.001 (-0.03) 0.059 (3.20)

vol -0.007 (-0.37) 1.431 (7.30) -0.006 (-0.34) 0.750 (7.95) -0.003 (-0.17) 0.832 (6.30) -0.009 (-0.50) 0.769 (7.65)

trsize -0.007 (-0.24) -0.211 (-0.90) -0.012 (-0.39) -0.078 (-0.86) -0.008 (-0.26) -0.263 (-1.58) -0.009 (-0.29) -0.175 (-1.85)

nrorders -0.002 (-3.12) -0.030 (-6.83) -0.002 (-3.15) -0.012 (-6.76) -0.002 (-3.17) -0.016 (-4.99) -0.002 (-3.12) -0.011 (-5.68)

ted -0.119 (-2.33) 0.965 (2.28) -0.121 (-2.38) 0.406 (2.46) -0.138 (-2.71) 0.632 (2.01) -0.115 (-2.28) 0.363 (2.06)

illiqEBS 0.002 (1.75) 0.009 (1.02) 0.004 (3.84) -0.001 (-0.28) 0.003 (1.56) -0.004 (-0.42) 0.004 (2.87) -0.006 (-1.40)

Dmacro -0.007 (-2.11) 0.046 (1.79) -0.006 (-2.09) 0.012 (1.21) -0.006 (-1.94) 0.026 (1.45) -0.007 (-2.13) 0.009 (0.81)

stdmacro 0.001 (1.79) -0.004 (-0.83) 0.001 (1.79) -0.001 (-0.45) 0.001 (1.82) -0.003 (-0.96) 0.001 (1.88) -0.001 (-0.43)

vpin -0.101 (-1.25) 0.786 (1.78) -0.102 (-1.26) 0.185 (1.06) -0.106 (-1.31) 0.320 (0.93) -0.100 (-1.24) 0.264 (1.39)

|oib| 0.062 (0.76) 0.031 (0.07) 0.057 (0.70) -0.003 (-0.02) 0.073 (0.90) -0.119 (-0.35) 0.061 (0.75) 0.048 (0.23)

Adj. R2 10.6% 69.8% 10.9% 86.2% 10.9% 39.3% 10.8% 73.8%

F − stats 28.7 31.3 26.3 27.3

Obs. 1,449 1,449 1,449 1,449

Currency FE YES YES YES YES

Month FE YES YES YES YES
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