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Combustible Gaseous Products from Pyrolysis of Combustible Fractions of Municipal Solid 

Waste 

 

*Buah, W. K. and Williams, P. T. 
 

Abstract 

Municipal Solid Waste (MSW) sample was pyrolysed under inert atmosphere of nitrogen in a 

static bed pyrolysis reactor, heated at a controlled rate of 10 oC min-1 to a final temperature of 

700 oC to recover combustible gaseous product. The yield of the combustible gaseous product 

was 23.01 wt%. Other pyrolysis products were 32.00 wt% char and 44.99 wt% oil. The 

combustible gaseous product evolved, analysed off line by gas chromatography to contain 

mainly CO2, CO, H2, CH4, C2H6 and C3H8 has relatively high calorific value of 18.0 MJ m-3, 

making the gas suitable for use as a fuel. The significance of this research is that the pyrolysis 

recovered combustible gas can now be stored conveniently and easily transported for various 

applications. This research, in addition to providing energy needs if implemented, has the 

capacity to stimulate regular collection of MSW to feed a pyrolysis plant thereby reducing 

accumulation of the waste in communities, especially in developing countries. 
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1.0 Introduction 

The steady population growth and the numerous economic activities in Ghana result in 

increasing MSW generation. Inadequate information on waste arising and characterisation is, 

however, a common occurrence in Ghana. The quantification of MSW generation and its 

characterisation in this research is based on estimates on data available from the Accra 

Metropolitan Area. The urban areas of Accra, the capital city of Ghana produce about 2000 

tonnes of municipal solid waste per day (Environmental Protection Agency (EPA), 2002). 

According to the EPA report, by 2025, this figure is expected to increase to 4000 tonnes per 

day.  

 

The management of the waste, composed mainly of paper/cardboard, plastics, glass, metals, 

textile, food/garden waste and others, is a serious problem in Ghana (Boadi and Kuitunen, 

2002; Palczynski, 2002). The disposal of the municipal solid waste in many parts of Ghana is 

carried out through open dumps. Inadequate financial and human resources coupled with the 

absence of enabling policies, make it impossible to operate and maintain disposal sites at 

appreciable standards. The location of dumping sites is more often determined by access to 

collection vehicles rather than ecological/environmental or public health considerations. For 

example, waste dumped on the shores of the Korle Lagoon in the city of Accra has gradually 

eroded into the Korle Lagoon, leading to annual flooding over the banks of the lagoon in 

certain parts of the city (Boadi and Kuitunen, 2002).  

 

While only a small fraction of the waste is recycled, greater proportion is currently disposed 

off via landfills (Ghana Landfills Guidelines, 2002; Palczynski, 2002). This management 

system does not ensure source segregation of the waste. Non biodegradable materials such as 

plastics find their way into the landfills. Composting and anaerobic digestion of the waste is 

practically unfavourable. Open-air burning of the waste in the landfills to reduce the volume 

and create space for further waste accumulation is the common practice nationwide. The 

environmental problems associated with these options of waste disposal are subjects of great 

concern. Most landfills are close to residential communities and have no provisions for 

leachate management. Figure 1 shows a waste dump close to residential facilities in a 

community in Ghana. In most cases the accumulated wastes in such dumps are subjected to 

open air burning to reduce the volume and create space for further accummulation (Buah and 

Ndur, 2010). This is because land availability for waste landfill is becoming exhausted. The 

open-air burning releases dust particulates into the air and it has the potential to emit other 
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toxic gases such as SO2, HCl and polyaromatic hydrocarbons (Kawanishi et al., 2013; Mark 

et al., 2015; Williams, 2005; Zhang et al., 2014).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Open air burning of MSW at a dump site in a residentaial community in 

Ghana (Buah and Ndur, 2010) 

 

In several urban areas especially in developing countries the contribution to the particulate 

matter exposure has been demonstrated to range between 30 and 50% dependent upon 

weather conditions (Ravindra et al., 2001). Thermal treatment of the waste needs to consider 

a system such as pyrolysis which ensures less emission to the environment. 

 

This paper presents the results of a study on recovery of combustible gases via pyrolysis of 

combustible fractions of MSW.  Pyrolysis of MSW samples was performed under inert 

atmosphere of nitrogen in a static bed pyrolysis reactor, heated at a controlled rate of 10 oC 

min-1, to a final pyrolysis temperature of 700 oC to recover combustible gaseous product, char 

and oil. The yields of the pyrolysis products were quantified. The combustible gaseous 

product evolved during the pyrolysis was analysed off line by gas chromatography to 

establish the constituent gases and also to determine the calorific value of the product.  

 

2.0 Materials and Methods 

2.1 Composition of the waste 

The material used for this test was a composit of MSW from three different waste dumps in 

Tarkwa in the Western Region of Ghana. Twenty informal waste carriers, who collect 
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household wastes in baskets for a fee and take them to the three identified waste dumps, were 

contracted to composite their waste. The waste was sorted into various components, dried in 

the sun and the weights of the various components were determined. The waste components 

determination was done for seven continuous days. The easy to dry components in the waste 

stream: paper and cardboard, plastics and rubber, and textiles were composited and shredded 

as feed for pyrolysis. 

 

 

2.2 Pyrolysis of the waste 

Pyrolysis of the MSW sample was carried out under inert atmosphere of nitrogen in a static 

bed pyrolysis reactor, heated at a controlled rate of 10 oC min-1 to a final temperature of 700 
oC. The pyrolysis temperature of 700 oC was chosen because in an earlier research on 

characterisation of products from the pysolysis of MSW in the form of Refuse Derived Fuel 

(Buah et al., 2007), it was established that evolution of H2 with lower concentrations of CO, 

CH4 and other hydrocarbons gases occured mainly between 580 and 700 oC. Other 

researchers also submit that increase in gaseous products of pyrolysis, thought to be 

predominantly due to secondary cracking of the pyrolysis vapours, occurs at higher pyrolysis 

temperatures between 580 and 700 oC (Ding et al., 2015; Luo et al., 2004; Onay, 2007; Song 

et al., 2015).  

 

The reactor, diagrammatically shown in Figure 2, consists of a cylindrical steel reactor vessel 

and lid, which was surrounded by three electrical ring furnaces (7). The reactor was sealed 

using two concentric rings of crushed copper tubing acting as a sealing gasket between the lid 

and the reactor body flange, which accepts nuts to fasten the lid on top of the reactor.  

 

Within the reactor were two perforated tubing rings at the top and bottom, which allowed the 

purge gas to enter the reactor. There was also a 25 mm diameter steel down-tube (8) that 

allowed the purge gas and any vapour phase pyrolysis products to leave the reactor. The 

down-tube was surrounded by six housings of various heights that protected the 

thermocouples used to measure the sample temperature. The vapour phase produced during 

pyrolysis pass into a large primary condenser (9), which sits in a water tank, then through 

secondary and tertiary condensers (10 & 11) before entering an exhaust tube (13) into the 

ventilation system of the building. 
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Figure 2 The 3 kg Pyrolysis Reactor Assembly 

 

3 

1 

6 

5 

4 

17 

2 

8 

11 

9 

10 7 

15 
14 

16 

13 

12 

14 

21 

18 

19 

20 
22 

25 

24 

23 

28 26 

27 

1. Fume hood isolation valve 

2. Fume hood 

3. Curtain tracks 

4. 3-Phase socket 

5. Control and display panel 

6. Pressure relief valve 

7. Reactor and furnace 

8. Down-tube 

9. Primary condenser 

10. Secondary condenser 

11. Tertiary condenser 

12. Gas sampling point 

13. Exhaust tube 

14. Condenser taps 

15. Parts cabinet for rig parts 

16. Purge gas cylinder 

17. Retaining strap 

18. Rotameter for purge flow to top distributing ring 

19. Rotameter for purge flow to bottom distributing 

ring  

20. Rotameter for condenser cooling water flow  

21. Ditto 

22. Thermocouple display for flexible probe 

23. Thermocouple display for reactor thermocouple no. 2 

24. Display for thermocouple selector dial 

25. Thermocouple selector dial 

26. Furnace temperature controllers 

27. Furnace heater on indicator lights 

28. Furnace power on/off switches 

LEGEND 



6 
 

 

The heater controllers and furnace were powered by a three-phase electrical supply, whereas 

the thermocouple display panel was separately powered by a normal 13A supply. The purge 

gas, nitrogen flow rate through the bottom distribution ring was monitored by rotameter (18). 

The flow to the top distribution ring was monitored and controlled by a rotameter fitted with 

a needle valve (19). Water flow to the condenser was monitored and controlled by two further 

rotameters (20 & 21). 

 

Temperature indicators permanently displayed the temperature measured by a flexible probe 

in the reactor (22) and half-way up the sample bed (23). Three temperature controllers (26) 

regulated the reactor furnaces. The power state of the furnace was indicated by three lights 

above the switches, shown as (27).  

 

A mesh grate was used to separate the feedstock off the reactor floor, which was often cooler 

than the rest of the reactor. The weighed sample is loaded into the reactor ensuring that the 

stock level was below the level of the down-tube. The reactor was then covered and sealed 

making sure the two sealing rings were in place and heated to a final pyrolysis temperature of 

700 oC at a heating rate of 10 oC min-1. A pressure relief valve was provided on the reactor 

lid. At the end of the run period the reactor was switched off and allowed to cool overnight. 

The product char and oil were then collected taking the necessary health and safety 

precautions. 

 

2.3 Analysis of the pyrolysis products 

The products obtained from the pyrolysis of the MSW; carbonised MSW (char), gaseous and 

liquid products were analysed as follows:  

 

Carbonised MSW sample: Representative sample of the char obtained from pyrolysis of the 

MSW was crushed to -2.00 mm, dried at 110 ºC for 24 h and analysed for surface area by the 

nitrogen adsorption technique using a Micromeritics Tristar 3000 instrument. A standard 

bomb calorimeter was used to determine the calorific value and sulphur content of the char 

sample. The proximate analysis on the char sample was carried out using a Shimadzu TGA-

50H Analyser and a FlashEA 1112 analyser was used to carry out elemental analysis. 
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Liquid products: The liquid fraction comprised a viscous oil/wax phase and an aqueous 

phase. The two phases were separated using a high speed centrifuge. The calorific value and 

combustible sulphur contents of the viscous oil/wax phase were determined using a standard 

procedure by bomb calorimetry followed by volumetric analysis. Fourier transform infrared 

(FTIR) was also used to determine the functional groups in the oil fraction. 

 

Pyrolysis gases: The gases obtained from the pyrolysis were sampled at various time 

intervals by means of gas syringes and analysed off line by packed-column gas 

chromatography for CO, CO2, H2, CH4 and other hydrocarbon gases. The gases were 

immediately analysed via two packed column gas chromatographs, one for permanent gas 

analysis and one for hydrocarbon gas analysis. A Varian CP-3380 gas chromatograph with 

two packed columns and with two thermal conductivity detectors (GC/TCD) and argon 

carrier gas was used for the analysis of the permanent gases. Hydrogen, oxygen, carbon 

monoxide and methane were analysed on a 2 m length by 2 mm diameter column, packed 

with 60–80 mesh molecular sieve. Nitrogen, the purge gas used in the fixed bed reactor, was 

also determined, and the volumetric flow rates of the evolved gases were calculated by 

comparison with the N2 flow rate.   Carbon dioxide was analysed on a 2 m length by 2 mm 

diameter column with Haysep 80 – 100 mesh packing material. The gas chromatograph oven 

was held isothermally at 30oC for the analysis; the injector oven was at 120oC. The detector 

oven operated at 120oC with filament temperature of 160oC. 

 

Hydrocarbons from C1 to C4 were analysed using a second Varian CP-3380 gas 

chromatograph with a Flame Ionisation Detector (GC/FID). The column used was 2 m long 

with 2 mm diameter packed with 80 – 100 mesh Hysesp. Nitrogen was used as the carrier 

gas. The temperature was programmed to start at 60 oC for 3 min, ramped at 10 oC min-1 to 

100 oC, held for 3 min, finally ramped to 120 oC at 20 oC min-1, and held for 9 min at 120 oC. 

The injector was held at 150 oC while the detector temperature was 200 oC. 

 

3.0 Results and Discussion 

3.1 Composition of the waste 

It was found out that the types of materials in the waste streams going to the three different 

waste dumps were about the same except that they differed in their proportions. The average 

composition of the various components in the waste stream is shown in Figure 3.  
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Figure 3 Composition of MSW in Selected Waste Dumps in the Tarkwa Area 

 

The main components in the waste were organic materials, paper, cardboards, plastics, 

rubber, glass, metals, textiles and residue. The variations in the composition of the waste in 

the three dumps could be attributed to socio-economic factors such as levels and patterns of 

consumption, reuse and recycling practices prevailing in the studied zones. The influence of 

socio-economic conditions on waste composition is supported by the works of Taboada-

González et al. (2010) and Afroz et al. (2011). 

 

The organic components in the waste stream constitute about 67 wt%. Palczynski (2002) also 

reported on a research work on waste management in Africa that waste generated in 

developing countries has food remains as the largest fraction, ranging between 35 – 80 wt%. 

Some of these organic components in the waste were very difficult to dry because of their 

moisture content and may not easily undergo direct thermal decomposition. For this reason 

only the easy to dry combustible fractions were composited for pyrolysis. The composition of 

the reconstituted MSW was 41.81 wt% paper and cardboards, 45.20 wt% plastics and rubber 

and 12.99 wt% textiles. It is envisaged that the organic fractions of the waste may find 

suitable processing applications in compost production. 
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3.2 Gaseous Components of the MSW Pyrolysis 

Analysis of the gaseous product from the MSW sample pyrolysed to the final pyrolysis 

temperature of 700 ºC showed the main gases to be CO2, CO, H2, CH4, C2H6 and C3H8 with 

lower concentrations of other hydrocarbon gases. The gases are produced from the thermal 

degradation reactions of the waste constituents as they breakdown and also through 

secondary cracking reactions of the primary products. The evolution of permanent and 

hydrocarbon gases during pyrolysis to a final temperature of 700 oC occurred mainly within 

two temperature ranges as shown in Figures 4 and 5 respectively. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Evolution of Permanent Gases During Pyrolysis of the RDF to a Final 

Temperature of 700 oC 

 

Evolution of CO and CO2 occurred mainly at lower temperatures, between 200 and 480 oC, 

and H2 with lower concentrations of CO and CO2, CH4 and other hydrocarbons at higher 

temperatures between 580 and 700 oC.  The gross calorific value calculated from the gas 

analysis data of the gas, which was sampled when the pyrolysis of the MSW reached a 

temperature of 700 oC was 18.0 MJ m-3. This represents a significant calorific value when 

compared to that of natural gas of approximately 37 MJ m-3. The relatively high calorific 

value of the pyrolysis gaseous product suggests their potential use to provide process fuel.  
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The high concentration of carbon dioxide and carbon monoxide in the product gases is 

derived from the oxygenated structures in the original material, such as cellulose, 

hemicellulose and lignin. The compositions of the major products from pyrolysis of various 

carbonaceous materials have been shown to depend on temperature (Ding et al., 2015; Song 

et al., 2015; Uzun et al., 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Evolution of Hydrocarbon Gases During Pyrolysis of the RDF to a Final 

Temperature of 700 oC 

 

3.3 Yield of the pyrolysis products 

The mass balance of products obtained from the pyrolysis of the MSW was determined by 

weighing the char and oil fractions while the yield of the gaseous component was calculated 

by difference. The yield of the combustible gaseous product was 23.01 wt% and that of the 

char and oil fractions were 32.00 wt% and 44.99 wt% respectively. The char had a specific 

surface area of 82.00 m2 g-1, calorific value of 11.40 MJ kg-1 and contained 50.00 wt% C, 

0.77 wt% H, 0.92 wt% N, 0.20 wt% S, 6.11 wt% O and ash. The proximate analysis of the 

char showed that it contained 0.30 wt% moisture, 16.60 wt% volatile matter, 40.90 wt% fixed 

carbon and 42.00 wt% ash. The oil product, after separation of its water content, was 

analysed to have a calorific value of 35.50 MJ kg-1. FTIR spectrometry of the oil fraction 
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indicated the presence of carboxylic acids and their derivatives, alkanes, alkenes, mono and 

polycyclic and substituted aromatic groups. 

 

4. Conclusions  

Recovery of combustible gases has been achieved via pyrolysis of combustible fractions of 

Municipal Solid Waste. The combustible gaseous product, analysed off line by gas 

chromatography contained mainly CO2, CO, H2, CH4, C2H6 and C3H8 and has relatively high 

calorific value of 18.0 MJ m-3 making the gas suitable for use as a fuel. The significance of 

this research is that the pyrolysis recovered combustible gas can now be stored conveniently 

and easily transported for various applications. Again, recovery of the gaseous product from 

the waste has the potential to stimulate regular collection of MSW to feed a pyrolysis plant 

thereby reducing accumulation of the waste in communities, especially in developing 

countries. 
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