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Abstract
Consistency of between-individual differences in behaviour or personality is a phenomenon

in populations that can have ecological consequences and evolutionary potential. One way

that behaviour can evolve is to have a genetic basis. Identifying the molecular genetic basis

of personality could therefore provide insight into how and why such variation is maintained,

particularly in natural populations. Previously identified candidate genes for personality in

birds include the dopamine receptor D4 (DRD4), and serotonin transporter (SERT). Studies
of wild bird populations have shown that exploratory and bold behaviours are associated

with polymorphisms in both DRD4 and SERT. Here we tested for polymorphisms in DRD4
and SERT in the Seychelles warbler (Acrocephalus sechellensis) population on Cousin

Island, Seychelles, and then investigated correlations between personality and polymor-

phisms in these genes. We found no genetic variation in DRD4, but identified four polymor-

phisms in SERT that clustered into five haplotypes. There was no correlation between bold

or exploratory behaviours and SERT polymorphisms/haplotypes. The null result was not

due to lack of power, and indicates that there was no association between these behaviours

and variation in the candidate genes tested in this population. These null findings provide

important data to facilitate representative future meta-analyses on candidate personality

genes.

Introduction
Between-individual differences in behaviour that are consistent through time/context are
referred to as personality [1]. Personality can be heritable (the average heritability estimate
across 209 studies was 0.26 [SE = 0.01, 2]), correlated across contexts and have the potential to
influence how populations adapt and evolve [2]. Why personality persists in populations is
hard to explain given the assumption that behaviour should be centred on an optimum strategy
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or co-existing evolutionary stable strategies [3]. It is thought that personality could be main-
tained if the fitness pay-offs associated with a behaviour were frequency dependent [4] or state-
dependent [5,6]. Despite the large heritable component personality can have [7], the genetic
loci underlying personality are relatively unknown. Identifying these genetic loci may therefore
be pivotal to our understanding of why personality occurs, and its ecological and evolutionary
significance.

The most promising candidate genes for human personality traits are the dopamine recep-
tor D4 (DRD4), involved in the mediation of the hormone dopamine in the dopaminergic sys-
tem, and the serotonin transporter (SERT), which controls the uptake of the hormone
serotonin in the synaptic clefts of the neurones [8]. Although null results have been found in
candidate gene association studies [8], variation in novelty-seeking behaviour in humans is
generally associated with polymorphisms in DRD4 [9] and low levels of novelty seeking behav-
iour have been recorded in DRD4 deficient mice [10]. Additionally, variation in measures of
anxiety related behaviour in humans has been associated with polymorphisms in SERT [11,12]
and high levels of anxiety related behaviour and low levels of novelty seeking have been
reported in SERT deficient mice [13,14].

It is important to investigate these associations in natural populations because, although
human personality is not directly comparable to animal personality, cultural determinants of
behaviour are thought to be less influential in natural animal populations and can provide
insight into why individual variation exists [8]. In captive animal populations the controlled,
artificial environment of the laboratory can alter the expression of, and selection on, genetic
variation [15,16,17]. In one of the first non-human studies of a wild population, a single nucle-
otide polymorphism (SNP) in exon 3 of DRD4 (SNP830) was identified and the genotype
SNP830T correlated with faster exploratory behaviour in a novel environment in one of four
populations of great tits, Parus major [18]. A similar association was found in a wild population
of collared flycatchers (Ficedula albicollis), where DRD4 SNP554 was linked with neophobia
and DRD4 SNP764 with risk-taking behaviour [19]. DRD4 SNP449 in two wild populations of
invasive yellow-crowned bishops (Euplectes afer) was also found to be positively correlated
with neophobic behaviour [20]. More recently, in free-ranging Rhesus macaques (Macaca
mulatta) DRD4 polymorphisms have also been associated with bold behaviour [21]. Conflict-
ing results have been found in association studies investigating SERT in wild populations.
Individuals heterozygous for SERT at SNP758 and SNP988 were more prevalent in rural, less
neophobic populations of wild blackbirds (Turdus merula) when compared to urban popula-
tions, between 23–45 km apart in the same country [22]. In contrast, free ranging Rhesus
macaques did not show an association between their exploration of novel stressors and their
SERT genotype (C.E. Fleener, personal communication).

Here we investigated whether polymorphisms in the candidate genes for exploratory and
for bold behaviour [23], DRD4 and SERT, are associated with variation in these respective
behavioural traits in a wild population of Seychelles warblers (Acrocephalus sechellensis). The
Cousin Island population of Seychelles warblers should prove to be a good model for such a
study, because adult individuals exhibit innate predator recognition behaviour [24]. Here we
test the prediction that between-individual variation in exploratory behaviour and bold behav-
iour is associated with polymorphisms and/or haplotype in DRD4 and in SERT.

Methods

Ethics statement
Local ethical regulations and agreements were followed for fieldwork. Nature Seychelles
permitted us to work on Cousin Island Nature Reserve. The Seychelles Department of
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Environment and the Seychelles Bureau of Standards authorized fieldwork and sampling (per-
mit reference AO157).

Study system
The Seychelles warbler is an endemic facultative cooperative breeding passerine that occurs on
five islands within the Seychelles. Dominant breeding pairs are territorial and socially monoga-
mous. Paternity is gained predominantly by dominant rather than subordinate males and
around 44% of offspring have extra-group fathers [25,26]. Due to habitat saturation, individu-
als are forced to assume subordinate roles [27]. Dominance status was assigned to individuals
in pairs that were observed in a territory within close proximity of one another, had frequent
vocal interactions and mate guarded [28]. A subordinate status was assigned to single birds
consistently seen in a territory interacting with group members but not engaging in dominant
pair behaviour.

At the study site of Cousin Island (29 ha; 048200 S, 558400 E), during the winter (Jan-Feb)
and summer (Jun-Sep) breeding seasons in 2010–15 the breeding status of each individual was
identified, territories mapped and birds caught with mist nets, colour/BTO ringed if necessary,
and a blood sample obtained from a brachial venipuncture. The blood sample was later used
for pedigree analysis and molecular sexing [29]. This population has been individually moni-
tored since the 1980s, providing a long-term dataset with accurate measurements of survival
and fecundity due to the 0.92 probability of re-sighting individuals in their first two years of life
and 0.98 probability of re-sighting adults [30,31].

Personality assays
Exploration behaviour was assayed in an Oxygen 4 tent (L322 x W340 x H210 cm; Gelert Ltd
Wigan). The tent contained three artificial trees and each tree had two branches that were 45
cm long (one attached at 95cm and one attached to the top of the trunk), and a trunk, 148 cm
high. The number of flights, hops and total number of trees visited were recorded in five min-
utes [32] and every minute over twenty minutes for twenty individuals to test for acclimation
to the novel environment (see S1 Table for break point analysis results). A flight denoted a
transfer between branches on the same tree, between trees or between floor and trees, or any
movement greater than a branch length, involving flapping of the wings. A hop was described
as both feet off the ground with no wing flapping, either on the same branch or on the floor.
The numbers of hops, flights and unique trees visited were totalled to give a measure of explo-
ration [33].

Bold behaviour was tested two minutes after the exploration assay to allow for habituation
to the novel environment of the tent. A novel pink toy attached to a tree branch (95cm long)
was inserted and positioned in the centre of the tent [32]. We also conducted a control assay
with the novel toy excluded. The order of the bold and control assays were randomised and
measured two minutes apart. The behaviour score (summed number of hops, flights and trees
visited) was higher in the novel object assay than the control assay (Wilcoxon signed rank test;
V = 2145, p<0.001), such that the behavioural reaction resulted from the novel object and not
the stick it was attached to. Behaviour scores in the novel object assay were therefore used as a
measure of bold behaviour similar to other studies [34,35,36,37]. Both exploratory behaviour
and bold behaviour are repeatable in this study species. Repeatability was calculated using a
generalised linear model with the package MCMCglmm [38]. Exploration had a repeatability
of 0.23 (CI: 0.08–0.37, n = 173 assayed once and 139 assayed more than once), bold behaviour
of 0.26 (0.05–0.52, n = 120 assayed once and 57 assayed more than once) and the correlation
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coefficient between these two behaviours was 0.60 (0.01–0.79, n = 177) H.A. Edwards, unpub-
lished data).

Primer design
DRD4 exon 3 sequences from the great tit DQ006802, the chicken Gallus gallus NP
001136321, blue tit (Cyanistes caeruleus) JN986724.1 and blackcap Sylvia atricapilla
(AEC22814.1), and SERT chromosome 19 sequences from the blackbird Turdus merula
KC584781, collared flycatcher Ficedula albicollis AGTO02004766.1 and zebra finch Taeniopy-
gia guttata ABQF01026424, were aligned using Mega 5.2 [39] to design conserved primers.
By looking for conserved sequences we designed suitable primers, tested their capability in
Primer 3 0.4.0, length: 18–22 bp, melting temp: 59–61°C [40], and then ran the FASTA
sequence in Genbank BLASTN 2.2.28 [41]. The graphical alignment output from BLASTN for
the presence of conserved segments among the sequences was inspected to check that primer
sets amplified the DNA products of predicted size and target area (Fig 1). Three primer sets
resulted: DRD4_395 (709 bp of the end region), DRD4_349 (290 bp of the start region) and
SERT_592 (394 bp of the non-coding end region, Table 1). Although SERT_592 amplified a
non-coding end region (approx 470 bp from the end of SERT exon), non-coding regions can
alter the level of gene expression and behaviour [42] and linkage disequilibrium (LD) was
expected to be high in the Seychelles warbler.

SNPs and genotyping
A power analysis [43] using the effect size in the Westerheide population from Korsten et al.
[18] revealed that a sample size between 49–56 was sufficient to detect an effect of polymor-
phisms on behaviour (S2 Table). Fifty-seven individuals with repeat exploratory assays that
belonged in the upper (n = 29) and lower (n = 28) ten per cent (based on 233 individuals,
n = 335 assays) were selected for genotyping. Fifty-seven birds were tested for the end region of

Fig 1. Schematic representation of theDRD4 and SERT regions.Grey boxes represent exons and the dotted line introns. The vertical black lines indicate
the locations of the primers used in this study.

doi:10.1371/journal.pone.0138439.g001

Table 1. Sequence, melting temperature (Tm) and length of product expected from each designed primer in base pairs.

Accession number Primer ID Primer sequence 5’-3’ Tm (°C) Expected product length (bp)

LN833019 DRD4_395 F: GATATTCGCCTTTGCTGTGG 60.6 395

R: TTCCTGAACTCGGCGTTG 60.6 395

LN833003 DRD4_349 F: CTCGCCCTCCTCGTCCT 60.6 349

R: GACGGGGATCCCAGGAA 60.6 349

LN833076 SERT_592 F: TGGAACCACAGTGTCAGCAG 60.8 592

R: CTGGATCACACCCTCTCAGG 60.8 592

doi:10.1371/journal.pone.0138439.t001
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DRD4 and, when this did not show any variation, we tested nineteen birds for the start region
of DRD4. An additional twenty-eight birds measured once for exploratory behaviour were
included in the SERT analysis, resulting in a total sample size of eighty-five. The number of
individuals measured for bold behaviour was lower because bold behaviour was not assayed in
earlier years.

Blood samples were collected and stored in absolute ethanol. DNA was extracted using
either a phenol extraction technique [44] or a salt extraction method [25]. SNP genotyping was
performed based on the PCR methods of Kenta et al. [45]; modifications included 4 μl of Qia-
gen PCR master mix, 1 μl of each forward and reverse primer at 5 μM, 1 μl of DNA (~10 ng/μl)
and 3 μl of ddH2O per PCR reaction. The Sanger sequencing protocol was modified using 1/8
of the BigDye1 Terminator Cycle Sequencing reagents 3.1 (Applied Biosystems). Sets of prim-
ers were used for sequencing on the ABI3730 sequencer.

Sequences were aligned in CodonCode Aligner 5.1.4 (Codon Code Corporation, www.
codoncode.com) and visually examined for polymorphisms. Note that 3 base pairs at position
80 were missing in two samples. Construction of haplotypes followed in DNAsp 5.10.1 [46];
sequences are provided in S3 Table.

Statistical analyses
Statistical analyses were performed in R 3.0.1 [47] to analyse the SERT polymorphisms. We
used Haldane’s exact test from the Hardy-Weinberg package 1.5.2 [48] to assess whether SNP
frequencies deviated from Hardy-Weinberg equilibrium (HWE).

A generalised linear mixed model, GLMM, was run in lme4 1.1–5 [49] using the function
glmer with a Poisson error distribution and log link, adjusted for over-dispersion [50]. We ran
both overdominant and additive models to investigate different SNP/haplotype effects on the
assayed personality traits. For the SNP analyses, the independent variables were each SNP
(SNP147, SNP209, SNP446, SNP467) as a factor for the overdominant model (3 levels i.e. Aa,
aa, AA) and SNP as a continuous variable for the additive model (0, 1, 2 copies of SNP). For
the haplotype analyses, the independent variables were each haplotype as a factor for the over-
dominant model (5 haplotypes with 0, 1, 2 copies of a haplotype) and haplotype as a continu-
ous variable for the additive model (0, 1 or 2 copies of the haplotype). Assay number, see S4
Table for repeat assay number, [51], social status, subordinate or dominant [52], sex [53] and
age [54] have been shown to correlate with personality so were included as fixed effects. Age
was mean centred and divided by two standard deviations [55] and, to account for non-linear
relationships it was included as a quadratic effect. Bird identity and observer identity were
included as random effects, as the analyses included birds with repeat personality assays and
measurements by more than one observer. The significance of SNP/haplotypes was assessed
using a likelihood ratio test (LRT) with a null model excluding the SNP/haplotype effect. The
p-values for each model were corrected for multiple testing with false discovery rate [56].
Including personality tent colour did not alter the results.

Results
DRD4 was monomorphic, however four SNPs were identified in SERT at SNP147, SNP209,
SNP446 and SNP467 in the non-coding end region. None of the four SNPs deviated from
Hardy-Weinberg equilibrium (S5 Table). The five haplotype sequences clustered with the
blackbird and great tit SERT exon one sequences, and the mRNA sequences for the chicken,
collared flycatcher and zebra finch clustered together (S1 Fig).

Overall, there was no effect of haplotype on bold and exploratory behaviours in the over-
dominant and additive models (Figs 2–5, accompanying LRT values can be found in S6 and
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S7 Tables). Similarly no SNP effect was seen in the overdominant and additive models for bold
and exploratory behaviour (S2–S5 Figs, accompanying LRT values can be found in S6 and S7
Tables). There was a positive correlation with age for exploratory behaviour and bold behav-
iour in all models (haplotype models Figs 2–5; SNP models S2–S5 Figs). Dominant individuals
were bolder than subordinates in the additive and overdominant models for haplotypes one
and two. Individuals also became bolder with increasing assay number in the overdominant
model for haplotype one (Fig 3).

Fig 2. The coefficients and associated 95% confidence intervals (CI) of the overdominant haplotype
models for exploratory behaviour. The models are relative to individuals with no copies of the haplotype,
subordinate is relative to dominant, male is relative to female.

doi:10.1371/journal.pone.0138439.g002

Fig 3. The coefficients and associated 95% confidence intervals of the overdominant haplotype
models for bold behaviour. The models are relative to individuals with no copies of the haplotype,
subordinate is relative to dominant, male is relative to female.

doi:10.1371/journal.pone.0138439.g003
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Discussion
Identifying the genetic basis of personality can greatly further our understanding of why
between-individual differences in behaviour persist in populations. Despite DRD4 polymor-
phisms being previously associated with exploratory behaviour [18], the portion of this locus
that we sequenced was monomorphic in our study population. Having sequenced both the
start and end regions, which represents 11% of the length of DRD4, from the regions that vary
in passerines, it is unlikely that we missed variation in this gene, but without sequencing the

Fig 4. The coefficients and associated 95% confidence intervals of the additive haplotypemodels for
exploratory behaviour. The models are relative to individuals with no copies of the haplotype, subordinate is
relative to dominant, male is relative to female.

doi:10.1371/journal.pone.0138439.g004

Fig 5. The coefficients and associated 95% confidence intervals of the additive haplotypemodels for
bold behaviour. The models are relative to individuals with no copies of the haplotype, subordinate is
relative to dominant, male is relative to female.

doi:10.1371/journal.pone.0138439.g005
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whole gene we cannot rule this out. Polymorphisms were, however, found in SERT, but these
did not correlate with variation in exploratory behaviour or bold behaviour.

Despite our null result, we cannot rule out induced and inherited changes in a gene's expres-
sion (known as epigenesis) influenced by factors such as age or the external environment [57].
Blue tit nestlings showed genetic correlations between two personality traits (aggression and
stress) that disappeared in adulthood. This was thought to be due to a change in the expression
of the genes determining the traits over development [58], highlighting the importance of
studying personality longitudinally [1]. Furthermore, in wild great tits an association between
exploratory behaviour and DRD4 genotype was detected in one of the four tested populations.
One of the potential reasons given for this result was environmental differences between popu-
lations modifying the genetic effects [18]. In our study species, an additional four populations
have been founded from the sequenced population; the first translocation was in 1988 and the
most recent was in 2011 [59]. It would be of interest to investigate whether genotype by envi-
ronment interactions occur within or between the five island populations.

An association between candidate genes and personality does not always imply a direct
functional effect [60]. For example LD was found between DRD4 polymorphisms and poly-
morphisms in the neighbouring DEAF1, involved in the regulation of the serotonergic system,
in chickens [61]. Although LD is not known in the Cousin population of the Seychelles warbler
it is expected to be high. The population has experienced a relatively recent bottleneck around
120–250 years ago (33–64 generations), reducing the population to around 29–75 individuals
[62,63], and consequently reducing genetic diversity by 25% and heterozygosity by 19% [63].
Therefore, the number of recombination events since the bottleneck will be small [60,64].
Additionally, it is a small population with a very low dispersal rate between islands [60,65].
High LD increases the power to detect a correlation between the SERT polymorphisms, and
bold behaviour and exploratory behaviour, because of higher linkage with other personality
related genes close by.

Being unable to identify the genes underlying focal traits is one disadvantage of the candi-
date gene approach. Additionally, the candidate gene approach is often biased towards genes
with large effect sizes [66] and this may be amplified by the publication of mainly positive
results [8]. As yet, it is unknown how many studies have found a null result and not published
the findings. This is why it is important to publish all studies, including studies with null results
like ours, to allow for more representative meta-analyses to be conducted. Nevertheless, we
chose the candidate gene approach to maximise the likelihood of detecting ageing effects while
minimising the chance of type I and II errors [67].

A future direction could be to employ a genome-wide study to look for signatures of selec-
tion on personality. The bottlenecked past of our study species may have left signatures of
selection at other putatively adaptive relevant loci that genome-wide scans could detect. A can-
didate gene approach could then follow at these loci to investigate their association with per-
sonality [66,68]. However, it is then necessary to rule out the possibility of pleiotropy,
correlated selection or transgenerational epigenetic effects [69]. Alternatively, genome-wide
study could look at the partitioning of genetic variance, which would facilitate detection of rele-
vant genes located in genomic regions with small effect sizes [70].

Conclusion
Understanding the molecular genetic basis of personality can ultimately help to explain why
behavioural differences between individuals occur in populations. Studies in wild populations
that experience natural selective pressures will allow us to address these questions. We found
no association between these behaviours and variation in the candidate genes tested in our
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study population. Future work should account for age or environment effects on SERT variants
and investigate underrepresented candidate genes that may have an additive or pleiotropic
effect on personality. We emphasise the importance of studying personality throughout devel-
opment in a controlled longitudinal study and the need for the publication of null findings to
aid future meta-analyses on personality candidate genes.

Supporting Information
S1 Fig. Neighbour-joining phylogenetic tree of avian SERT chromosome 19 sequences con-
structed in Mega 5.2 [39].Numbers at branching points represent bootstrap values inferred
from 5000 replicates. The horizontal scale bar indicates 0.1 nucleotide substitutions per site.
(TIFF)

S2 Fig. The coefficients and associated 95% confidence intervals (CI) of the overdominant
SNP models for exploratory behaviour. The models are relative to homozygotes with the G/
C/A SNP, subordinate is relative to dominant, male is relative to female.
(TIFF)

S3 Fig. The coefficients and associated 95% confidence intervals (CI) of the overdominant
SNP models for bold behaviour. The models are relative to homozygotes with the C/A SNP,
subordinate is relative to dominant, male is relative to female.
(TIFF)

S4 Fig. The coefficients and associated 95% confidence intervals (CI) of the additive SNP
models for exploratory behaviour. The models are relative to individuals with no copies of
the SNP, subordinate is relative to dominant, male is relative to female.
(TIFF)

S5 Fig. The coefficients and associated 95% confidence intervals (CI) of the additive SNP
models for bold behaviour. The models are relative to individuals with no copies of the SNP,
subordinate is relative to dominant, male is relative to female.
(TIFF)

S1 Table. Breakpoint analysis. A linear mixed model (LMM) was run in lme4 1.1–5 [49] with
exploration score as the dependant variable, minute and the breakpoint as independent vari-
ables and bird identity as a random effect. The model had random slope variances and a ran-
dom intercept variance for a break point at minute 10. The R function optimize was used to
estimate the breakpoint.
(TIFF)

S2 Table. Power analysis using R package pwr 1.1–2 [43] and the effect size from the Wes-
terheide population [18]. U is the degrees of freedom in the numerator. The sample size (N) is
calculated by adding the degrees of freedom in the denominator, U and one.
(TIFF)

S3 Table. The sequences of the five SERT haplotypes. Bold nucleotides indicate the SNPs.
(TIFF)

S4 Table. Number of Seychelles warblers with repeat assays for exploratory and bold behav-
iour.
(TIFF)

S5 Table. Nucleotide change and p-values of Haldane’s exact test for each SERT SNP.
(TIFF)
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S6 Table. Likelihood ratio test results for exploratory behaviour in the overdominant and
additive models using SNPs and haplotypes. False Discovery Rate (FDR) p values control for
running four SNP models and five haplotype models with alpha set at 0.05. d.f. = degrees of
freedom.
(TIFF)

S7 Table. Likelihood ratio test results for bold behaviour in the overdominant and additive
models using SNPs and haplotypes. False Discovery Rate (FDR) p values control for running
four SNP models and four haplotype models with alpha set at 0.05. d.f. = degrees of freedom.
(TIFF)
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