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Abstract

Aims: Carbon monoxide-releasing molecules (CORMs) are being developed with the ultimate goal of safely
utilizing the therapeutic potential of CO clinically, including applications in antimicrobial therapy. Hemes are
generally considered the prime targets of CO and CORMs, so we tested this hypothesis using heme-deficient
bacteria, applying cellular, transcriptomic, and biochemical tools. Results: CORM-3 [Ru(CO)3Cl(glycinate)]
readily penetrated Escherichia coli hemA bacteria and was inhibitory to these and Lactococcus lactis, even
though they lack all detectable hemes. Transcriptomic analyses, coupled with mathematical modeling of
transcription factor activities, revealed that the response to CORM-3 in hemA bacteria is multifaceted but
characterized by markedly elevated expression of iron acquisition and utilization mechanisms, global stress
responses, and zinc management processes. Cell membranes are disturbed by CORM-3. Innovation: This work
has demonstrated for the first time that CORM-3 (and to a lesser extent its inactivated counterpart) has multiple
cellular targets other than hemes. A full understanding of the actions of CORMs is vital to understand their toxic
effects. Conclusion: This work has furthered our understanding of the key targets of CORM-3 in bacteria and
raises the possibility that the widely reported antimicrobial effects cannot be attributed to classical biochemical
targets of CO. This is a vital step in exploiting the potential, already demonstrated, for using optimized CORMs
in antimicrobial therapy. Antioxid. Redox Signal. 23, 148–162.

Introduction

Carbon monoxide (CO) is a gaseous signaling molecule
in biology and medicine with numerous beneficial effects,

including vasodilation, anti-inflammation, and anti-apoptosis
(50). Carbon monoxide-releasing molecules (CORMs) (25,
44, 45) enable this noxious gas to be safely and selectively
delivered, and they have also been exploited as antibacterial

agents (15–17, 48, 52, 68, 69). However, CO gas is surpris-
ingly ineffective in inhibiting microbial growth. Thus, bacteria
have been grown with high concentrations of CO to maximize
expression of heterologous globins (62) and CO is much less
effective than CORMs in inhibiting bacterial growth (52) and
respiration (74). It is tacitly assumed that the oxygen-binding
hemes of globins and oxidases are prime targets of CO,
CORMs, and other gasotransmitters, such as NO and H2S.
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However, recent studies on the interactions of CORMs
with bacteria suggest that these compounds have numerous
targets and that toxicity is the outcome of diverse effects,
many of which cannot be traced directly to the actions of CO
(17, 48, 74). Indeed, the literature contains several reports of
nonheme targets of CO (31), including examples of nonheme
iron(II) carbonyls, including metals coordinated to S from
cysteine and/or N from histidine. These ligands may constitute
targets in cation channels (21) or in bacterial ion channels,
leading to subsequent respiratory stimulation (74). Other ex-
amples of nonheme interactions include CO binding to iron in
[Fe]-, [Fe-Fe]- and [Fe-Ni]-hydrogenases as in Chlamydomonas
(66). CO also binds to binuclear copper sites, for example in
tyrosinase (38) and hemocyanins (22). In CO dehydrogenase,
which oxidizes CO to CO2, CO interacts with the nickel ion in
one of the metalloclusters (‘‘C-cluster’’) (39). Endogenous CO
is regarded as an important factor in natural redox signaling (7)
and promotes a prooxidant milieu in aerobic mammalian cells
(55). CORMs too may generate oxidative stress (51, 67).

Here, we exploited the ability to study in Escherichia coli
and Lactococcus lactis the effects of a CORM in cells totally
devoid of heme proteins. We tested the effects of CO ad-
ministered via CORM-3 [Ru(CO)3Cl(glycinate)], the first
water-soluble metal-based CORM (11, 33), and the focus of
many detailed physiological and biochemical studies. To
elucidate the mechanisms of CORM-3 activity in heme-
deficient E. coli, we assessed gene expression changes of a
hemA mutant and the isogenic wild-type strain via tran-
scriptome profiling and statistical data modeling, together
with protein quantitation and studies of membrane integrity.
Importantly, analyses were also performed on mutant cells
exposed to inactive CORM-3 (i.e., CORM-3 depleted of CO)
(11, 41, 48) to address the critical question: are the observed
effects CO specific?

Results

CORM-3 is bactericidal against heme-deficient
bacteria

The hemA ( = hemM) gene of E. coli encodes a glutamyl-
tRNA reductase that catalyzes the second step in heme bio-
synthesis, leading to glutamate 1-semialdehyde (5). The next
intermediate is d-aminolevulinic acid (d-ALA), which limits
heme biosynthesis (71). Strains of E. coli carrying a hemA

mutant allele (28, 30) cannot grow on oxidisable substrates
when d-ALA is not present, a phenotype attributed to the
absence of functional cytochromes, and grow only fermen-
tatively. Reconstitution of oxidase activity and formation of a
functional proton-translocating respiratory chain (28–30) can
be achieved by incorporation of heme into pre-existing
apoproteins.

We first verified that the hemA strain constructed by P1
transduction lacked cytochromes (Supplementary Fig. S1A;
Supplementary Data are available online at www.liebertpub
.com/ars) and was unable to grow on nonfermentable sub-
strates, such as glycerol or succinate (not shown). Cultures of
the heme-deficient mutant and wild type strains were then
stressed with CORM-3 or inactive CORM-3 (iCORM-3).
Micromolar concentrations of CORM-3 resulted in a con-
centration-dependent slowing of growth (Fig. 1A–C) for the
wild-type strain, hemA mutant, and the mutant after re-
constitution with d-ALA. Wild-type cultures stressed with
100 lM CORM-3 showed a marginally increased doubling
time (0.81 – 0.18 h) compared with the control (0.79 –
0.13 h) but, at 200 and 300 lM CORM-3, growth was pre-
vented for 5 h. At these concentrations, cultures showed some
recovery between 8–24 h, but cell densities did not reach the
level of control or 100 lM-treated cultures (Fig. 1A). Similar
results were obtained for the hemA mutant; 100 lM CORM-3
increased the doubling time from 2.0 – 0.33 h (control) to
3.6 – 1.3 h. Unlike the control, mutant cultures did not re-
cover even after 28 h of incubation with the CORM (Fig. 1B).

It should be noted that supplementation with d-ALA re-
stored growth yields to the hemA mutant (compare Fig. 1A,
C) but did not fully restore cell viability, as the number of
viable cells declined after a few hours (compare Fig. 1D, F).
The reason is unclear, but it may reflect a drain on ATP
required for cytochrome biosynthesis from d-ALA (30). The
d-ALA-reconstituted mutant (Fig. 1C) was also inhibited by
200 lM CORM-3, with the doubling time increasing from
0.86 – 0.14 h to 2.9 – 1.0 h. Interestingly, growth of the wild-
type strain was significantly slowed (doubling time increas-
ing typically from 1.0 h to 1.75 h) by CO gas bubbled into
cultures at 100 ml min - 1 (Supplementary Fig. S2A), but
growth of the heme-deficient mutant was unaffected (Sup-
plementary Fig. S2B). The reduction in growth rate of wild-
type cultures by CORM-3 may be due to a metabolic switch
from anaerobic respiration, where CO binds to hemes of the
anaerobic respiratory chain, to mixed-acid heme-independent
fermentation, which supports lower growth rates.

iCORM-3 was prepared by a standard procedure to give a
preparation that releases to ferrous myoglobin typically < 5%
of the CO delivered by equimolar CORM-3. iCORM-3 had a
concentration-dependent effect on the mutant (Supplemen-
tary Fig. S3B), increasing the doubling time from 1.76 –
0.19 h (control) to 2.0 – 0.25 h (CORM-3) but not to the same
extent as CORM-3 (Fig. 1). Inactive CORM-3 (iCORM-3,
200 lM) also marginally increased the doubling time of the
wild-type strain (from 0.76 – 0.14 h, control; 0.80 – 0.09 h,
200 lM CORM-3), but the effect was insignificant when
compared with CORM-3 (Supplementary Fig. S3A). This
minor growth inhibition may be explained by residual CO
release (Supplementary Fig. S3A inset).

Viability assays revealed a gradual decline in wild-type
cell counts after addition of 200 lM CORM-3 by 0.5-log over
3–4 h, with a 2- to 3-log drop within 24 h (Fig. 1D). However,

Innovation

Although carbon monoxide (CO) gas has therapeutic
benefits, and carbon monoxide-releasing molecules
(CORMs) are promising antimicrobial agents, their bio-
logical targets are poorly understood. By using bacteria
that lack all hemes, this work provides the most direct
evidence to date that CORMs target other cellular pro-
cesses. CORM-3, and to a lesser extent its CO-depleted
form, has comprehensive time-dependent effects on
transcript profiles and transcription factor activities in a
heme-deficient mutant of Escherichia coli. Particularly
affected are iron acquisition, membrane stress resistance,
and zinc transport. Our work highlights the need for in-
tegration of chemistry, physiology, and molecular biology
before CORMs are clinically used.
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mutant cell viability dropped by more than 3-log within the
first hour of CORM-3 treatment (Fig. 1E). On adding 100 lM
CORM-3, wild-type cell counts were similar to those of the
control culture for 4 h, with a 0.5-log drop within 24 h (Fig.
1D), and levels of viable mutant cells remained static for 4 h,
but dropped by 2-log within 24 h (Fig. 1E). Viability of both
strains was unaffected for 4 h post-addition of iCORM-3
(Supplementary Fig. S3). However, after 24 h, the viability of
wild-type cultures treated with 100 and 200 lM was reduced
by 1- and 3-log, respectively (Supplementary Fig. S3C). At
24 h, 200 lM iCORM-3 decreased the mutant cell count by 2-
log, while 100 lM was ineffective (Supplementary Fig. S3D).
Surprisingly, although control d-ALA-supplemented cells
showed declining viability (Fig. 1F), those treated with
CORM-3 showed a recovery after an initial precipitous drop
(Fig. 1F). The explanation is unclear but Haddock (30) cal-
culated that even 10 lM d-ALA (10% of the concentration
used here) is adequate for the synthesis of a 10-fold higher
cytochrome concentration than that found in reconstituted
cells. We speculate that excess d-ALA, or hemes synthesized
in its presence that are not dithionite reducible (Fig. S1), may
bind CORM-3, which is known to bind, for example, to ex-
posed histidine residues (10).

To examine whether CORM-sensitive growth is a general
feature of heme-deficient bacteria, we also studied L. lactis
(Supplementary Fig. S4A, B), a Gram-positive, homo-
fermentative bacterium that is naturally devoid of heme, yet
whose capacity for respiration can be invoked by growth with

exogenous heme (19). At 200 lM, CORM-3 completely
suspended growth within 0.5 h and caused a gradual decrease
in viability, with a 2.5- to 3-log drop after 24 h (Supple-
mentary Fig. S4A, C). At 100 lM, the compound allowed
continued growth for 1 h, but then suspended growth, de-
creased the stationary phase population by *15%, and re-
duced cell viability by 0.5- to 1-log over 24 h (Supplementary
Fig. S4A, C). In contrast, iCORM-3, even at 200 lM, barely
inhibited growth of L. lactis and was without measurable
effect on viability (Supplementary Fig. S4B, D).

Thus, CORM-3 is a potent bactericidal agent, even against
heme-deficient bacteria that do not respire. Thus, CORM or
CO cannot be responsible for generating oxidative stress by
blocking respiratory electron transfer and promoting super-
oxide formation (49). The data comparing CO gas and
iCORM-3 suggest that the ruthenium co-ligand fragment
(iCORM-3) together with the labile CO produce a synergistic
effect that is important for the full toxicity of CORM-3.

Reconstitution of the heme-deficient mutant with d-ALA
reduces CORM-3 toxicity

To determine whether reconstitution of heme protects
against CORM-3, we exposed cultures of the heme-deficient
mutant, grown in the presence of d-ALA, to the compound.
Reconstitution was confirmed in spectra that revealed char-
acteristic heme signals (Supplementary Fig. S1A, B) (30).
After reconstitution of cellular hemes in vivo, the mutant

FIG. 1. Heme-deficient Escherichia coli are more CORM-sensitive than isogenic wild-type or heme-reconstituted
bacteria. Cultures were grown anaerobically and stressed with 100 lM (open circles), 200 lM (closed triangles), and for
growth studies only, 300 lM (open triangles) CORM-3 at an OD600 of *0.1 (dashed line). Growth and viability of CORM-
3-treated cultures were compared with control cultures (nothing added, closed circles). To determine the effects of CORM-3
on growth, hourly OD600 readings were taken for 6 h post-addition of the compound, followed by a final 24 h reading. Wild
type (A), heme-deficient mutant (B), and cells reconstituted for heme (C) by adding d-ALA (0.1 mM final concentration).
For viability assays, a sample was taken immediately before addition of the compound, followed by sampling every hour for
4 h post-stress and at 24 h to complete the experiment. Wild type (D), heme-deficient mutant (E), and cells reconstituted for
heme (F) by adding d-ALA. Data show patterns seen in ‡ 3 biological replicates. Viability data are plotted as means – SEM
from ‡ 3 individual spots. Note that the scale on the y-axis is logarithmic in base 10, hence 1e + 3 = 1000.
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control culture (no CORM-3) reached a maximum optical
density (OD) (Fig. 1C) that was comparable with wild-type
controls (Fig. 1A). Although growth was slowed within 1 h
after exposure to the compound, the kinetics were similar to
those seen for the wild-type (compare Fig. 1A, C) but not the
cytochrome-deficient hemA mutant (compare Fig. 1B, C). Over
the remaining 20 h, cells reconstituted with d-ALA grew slowly
(Fig. 1C), mimicking growth of the wild-type strain under
these conditions (Fig. 1A) but unlike the hemA mutant (Fig.
1B). After reconstitution with d-ALA, the untreated culture
showed an *1-log increase in the number of viable cells,
followed by a slow decline (Fig. 1F). In contrast, the culture
treated with 200 lM CORM-3 showed a precipitous 2-log
drop in viable cells over the first 2 h after addition of CORM-
3 (Fig. 1F) and cell numbers then recovered. Thus, recon-
stitution with d-ALA restores growth, measured as culture
OD, to levels seen in the wild-type strain at 200 lM CORM-3,
and cultures are protected from the 3-log CORM-induced
drop in viability that is seen in the mutant (compare Fig. 1E,
F). Thus, respiration in the presence of CO is not detrimental
to growth as a result of reactive oxygen species generation.

Cellular retention of CO is reduced in the heme-deficient
mutant of E. coli

To assess CO removal from CORM-3 and intracellular
binding of CO in wild-type and heme-deficient E. coli, we
followed formation of extracellular carboxymyoglobin (Mb-

CO) over time after adding CORM-3 to bacterial suspensions
in buffer in the presence of exogenously added myoglobin
(Fig. 2A, B). Myoglobin cannot enter cells and so acts as a
‘‘sink’’ for unbound CO that would otherwise freely diffuse
through membranes. Wild-type cells retained a significant
amount of the CO released from CORM-3 (*50%), making
it unavailable to the extracellular myoglobin (Fig. 2B).
However, in the heme-deficient strain, the accumulation of
Mb-CO mirrored the pattern observed after addition of
CORM-3 to myoglobin in buffer alone. That is, CO is not
retained by hemA bacteria that lack a ‘‘CO trap.’’

To determine whether this retention was due to CORM
transport to the cell interior, we measured intracellular ruthe-
nium levels after adding CORM-3 to cultures. Under anaerobic
conditions (as in Fig. 1), hemA mutant cells accumulated ru-
thenium to levels that are three-fold higher than wild-type cells
(Fig. 2C). Aerobically (Fig. 2D), the ruthenium concentration
in hemA cells was two-fold higher than in the wild-type strain.
Thus, CORM-3 enters bacteria via a heme-independent
mechanism and accumulates to a greater degree in the absence
of heme, perhaps as a result of impaired CORM efflux.

CORM-3 and iCORM-3 elicit multifaceted
transcriptomic effects even in the absence
of heme proteins

The differences in gene expression between the mutant and
wild-type under control conditions, that is, before adding

FIG. 2. CO retention and access of CORM-3 to the cell interior is dependent on heme. (A) Myoglobin (10 lM) and
CORM-3 (8 lM) were added to buffer only (circles), wild-type (squares), or hemA mutant (triangles) cells in the presence
of Na dithionite. The concentration of Mb-CO accumulated was measured at several time points in CO difference spectra.
Data are plotted as means – SEM from ‡ 5 replicates. (B) CO-reduced minus reduced spectra of myoglobin (10 lM) and
CORM-3 (8 lM) added to buffer only (solid line), wild-type (dotted line), or hemA mutant (dashed line) cells in the presence
of Na dithionite at t = 5 min. (C, D) Intracellular ruthenium levels in hemA (closed circles) and wild-type (open circles) cells
were measured by ICP-AES over 120 min after exposure of cultures to 100 lM CORM-3 under anaerobic (C) or aerobic (D)
conditions. Data are plotted as means – SEM from ‡ 3 biological replicates.
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CORM-3, are shown in Supplementary Fig. S5. Only 6% of
the genome in the mutant (of a total of 4,598 genes) were
significantly altered (summing the percentages changing up
or down) in comparison with the wild type (Fig. S5A). Fur-
thermore, the changes in expression were small, with only
0.6% of the genome being altered by ‡ 10-fold (Fig. S5B). As
expected for a mutation affecting primarily respiratory me-
tabolism, the genes that changed most in the hemA strain are
implicated in iron-sulfur (Fe-S) protein assembly and me-
tabolism, energy metabolism, glycolysis, the TCA cycle and
fermentation, and membrane transport.

To provide an in-depth, time-resolved assessment of the
response of the heme-deficient mutant and wild-type
strains to CORM-3 and iCORM-3, we performed tran-
scriptomic analyses, sampling cultures after CORM-3 ad-
dition to both wild-type and hemA mutant cultures. The
CORM-3 added (100 lM) was sufficient to challenge cells
without significantly reducing viability within the time-
frame of the experiment (Fig. 1D, E). The genome-wide
effects of CORM-3 are revealed for each sampling point
by the percentages of up- and downregulated genes in a
number of functional categories (Fig. 3). Based on the
proportions of genes in each class, the wild-type initially
(20–60 min after CORM-3 addition) responds to CORM-3
more than the mutant but, by 120 min, the responses are
similar (Fig. 3A). The upregulation at 10–60 min in both
strains of genes involved in iron transport and acquisition
is striking. However, at 20–120 min after CORM-3 addi-
tion, genes in most functional classes are down-, not up-,
regulated in both strains (Fig. 3A).

We estimated the impact of CORM-3 versus iCORM-3 on
the entire genome by measuring the percentages of genes
changing either up or down (Fig. 3B). After 120 min of ex-
posure to CORM-3, 5.7% of the genome was upregulated
in the hemA mutant, and 14.4% was downregulated. For
iCORM-3, these percentages were lower: 4.8% of the ge-
nome was upregulated and 6.6% was downregulated. Im-
portantly, the fractions of the genome changing after 120 min
in the wild-type strain were 5.4% up and 11% down. Thus,
the hemA mutant experiences the impact of CORM-3 to
a greater degree than the wild-type strain: summing up the
up- and downregulated genes at 120 min for the hemA
mutant, the value is 20%, whereas for the wild type strain
the value is 16.3%.

Genes involved in iron transport and acquisition
are highly upregulated in response to CORM-3
in the heme-deficient mutant

The category of genes most affected by CORM-3 were
those encoding iron transport and acquisition functions;
even after 10 min of exposure, *60% of such genes in-
creased in expression in both the hemA and wild-type
strains (Fig. 3A). The heat map in Figure 4 quantifies the
changes elicited by CORM-3 and iCORM3 in selected
genes involved in iron acquisition; it should be noted that
the ‘‘heat scale’’ at the right is expressed as the natural
logarithm of the fold change. Genes involved in the bio-
synthesis of the catecholate siderophore enterobactin (ent)
were the most highly altered, with expression levels

FIG. 3. Functional categories of genes affected by CORM-3 in the heme-deficient mutant and wild-type strains and
a comparison of gene changes in the hemA mutant treated with CORM-3 versus iCORM-3. Cultures were grown
anaerobically in defined medium. The bars show the percentage of genes in each group that exhibit altered expression after
treatment with 100 lM CORM-3. (A) Data are shown for the hemA mutant (left of the midline in each panel) and the wild-
type (WT, right of the midline in each panel). Data are shown for cells at 10 min (i), 20 min (ii), 40 min (iii), 60 min (iv), and
120 min (v) after addition of CORM-3. (B) The bars show the percentage of genes in each group that exhibit altered
expression after treatment with 100 lM CORM-3 (left of the midline in each panel) and iCORM-3 (right of the midline in
each panel) in the hemA mutant. Data are shown for cells at 10 min (i), 20 min (ii), 40 min (iii), 60 min (iv), and 120 min (v)
after addition of CORM-3. For each group of data (WT vs. hemA or CORM-3 vs. iCORM-3), the darker bars in each
category indicate the percentage of upregulated genes and the paler bars indicate the percentage of downregulated genes.

152 WILSON ET AL.



reaching 80-fold in the mutant and 10-fold in the wild-
type strain (Fig. 4). Upregulated genes across all condi-
tions tested also included the following: (i) fepA, which
encodes an outer membrane (OM) protein that ac-
tively transports ferric enterobactin into the periplasm; (ii)
fepBCDG, which encodes an ABC transporter that trans-
ports the iron(III)-bound siderophore through the cyto-
plasmic membrane (9); and (iii) fes, which encodes an
enterobactin/ferric enterobactin esterase for intracellular
breakdown of the ferrated carrier (8). The fes gene was
also more highly upregulated in the mutant (19–35-fold)
compared with the wild-type (2–6-fold) in response to
CORM-3. Genes encoding the hydroxamate siderophore
uptake system (fhu) that enables utilization of ferri-
chrome, ferric coprogen, and ferrioxamine B as sources of
iron under low iron conditions were upregulated, as were
genes encoding the ferric citrate (fec) and ferrous iron-
uptake (feoA) systems (Fig. 4). Overall, the transcriptomic
analysis reveals a marked enhancement of the expression
of genes involved in iron scavenging in the hemA mutant
when treated with CORM-3.

Genes involved in iron homeostasis were also affected by
CORM-3 (Fig. 4). The gene encoding the iron storage
protein, ferritin (ftnA), was downregulated in both the mu-
tant and the wild-type (2–4-fold in the mutant, and 5–8-fold
in the wild-type). In contrast, bfd (encoding bacterioferritin-
associated ferredoxin) was upregulated (8–20-fold in the
mutant, and 3–6-fold in the wild-type). It has been sug-
gested that Bfd is involved in the release or delivery of
iron to/from bacterioferritin, or other iron complexes (2).
Interestingly, an sRNA gene, ryhB, was highly upregulated
in both the mutant (21–62-fold) and the wild-type (7–181-
fold). RyhB reduces iron consumption under low-iron
conditions by downregulating iron-containing proteins, in-
cluding ferritins, superoxide dismutase, and some genes of
the TCA cycle (47), as well as promoting enterobactin
synthesis (64). Collectively, the data point to iron depriva-

tion or the perception of iron starvation in the hemA mutant
when challenged with CORM-3.

Since transcript levels for genes involved in iron homeo-
stasis were altered, suggesting a shortage of biologically
available iron induced by CORM-3 stress, we measured in-
tracellular iron levels in wild-type and hemA cells under the
same conditions used for microarray experiments. The level
of iron was higher in the heme-deficient mutant at all time-
points; however, after CORM-3 addition, iron levels dropped
by *50% in both cultures over 120 min (Fig. 5). A hemA
mutant of Salmonella enterica also showed marginally higher
free iron levels than the wild-type strain (20).

FIG. 4. Differential expression of genes involved in iron transport and acquisition. The heat map quantifies the
changes elicited by CORM-3 and iCORM3 in selected genes; it should be noted that the ‘‘heat scale’’ at the right is
expressed as the natural logarithm of the fold changes in individual genes of the heme-deficient mutant of E. coli (hemA)
and the corresponding wild-type grown anaerobically in defined medium after addition of 100 lM CORM-3 or, for the
mutant only, 100 lM iCORM-3.

FIG. 5. CORM-3 treatment depletes iron levels in wild-
type and heme-deficient E. coli cells over time. In-
tracellular iron levels in hemA (closed circles) and wild-type
(open circles) cells were measured by ICP-AES over a time-
course of 120 min after exposure of cultures to 100 lM
CORM-3. Data are plotted as means – SEM from ‡ 3 bio-
logical replicates.
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CORM-3 differentially alters transcription of genes
involved in iron-sulfur cluster assembly and repair

Genes implicated in processes involving Fe-S proteins
were differentially altered in the two strains as revealed by
heat plots (Supplementary Fig. S6). Generally, genes en-
coding the housekeeping Fe-S cluster assembly system (isc)
were downregulated in the wild-type and upregulated in the
hemA mutant, irrespective of whether CORM-3 or iCORM-3
was used. In contrast, the suf genes involved in building Fe-S
clusters during iron starvation and oxidative stress (18, 53,
63) were upregulated under most conditions, perhaps con-
sistent with the slight loss of iron during CORM-3 treatment
(Fig. 5). Finally, ytfE was upregulated in the mutant ( £ 18-
fold) and unaffected in the wild-type, irrespective of whether
CORM-3 or iCORM-3 was used (Supplementary Fig. S6).
The product of this gene has been implicated in the repair of
damaged Fe-S clusters, and its expression is stimulated by
iron starvation (35, 54).

CORM-3 perturbs the expression of genes involved
in general stress response, zinc homeostasis,
and signal transduction

Some of the most highly altered genes in this study are
involved in signal transduction and general stress response.
Genes shown in Figure 6 were the most altered, and many
have been reported to change in response to CORM-3 stress
in previous transcriptomic studies (15, 51). Exceptions in-
clude the upregulation of hns, whose product is a global
transcriptional regulator that responds to environmental
changes and stress, and marked upregulation in the mutant of
hmp, encoding a flavohemoglobin (70) with NO dioxygenase
activity (26).

The most upregulated gene in this study was spy, as pre-
viously reported (15, 48), which exhibited a 600–1000-fold
change in the mutant and a 1200–5100-fold change in the
wild-type. Upregulation was also noted in the mutant treated
with iCORM-3, but by £ 10% of that seen after stressing with
CORM-3 (21-109-fold), reflecting the reduced ability of
iCORM-3 to release CO. Other genes within the same reg-
ulatory network as spy (i.e., regulated by BaeR and/or CpxR)
were also greatly altered, including mdtABC encoding the
multidrug efflux system, as well as baeR and cpxP. In addition,
consistent with previous studies (15, 51), genes encoding pro-
teins that respond to intracellular stresses and biofilm formation
were upregulated to varying extents: bhsA, bssR, bssS, clpB,
htpX, yodA, ibpA, and ibpB. Collectively, these patterns point to
a profound stress at the cell membrane after exposure of the
mutant and the wild-type to CORM-3 and, to a lesser extent,
iCORM-3. However, expression levels of the majority of the
genes were much higher in the wild-type than in the mutant.

Some of these genes also have roles in zinc homeostasis,
namely spy and yodA, as well as the mdtABC operon that is
upregulated in response to zinc (40). Furthermore, genes
encoding the zinc(II)-transporter protein (znuABC) were
upregulated, particularly in the mutant treated with CORM-3
(Fig. 6). The compound may therefore elicit a general effect
on metal homeostasis.

CORM-3 induces the expression of Spy protein
and downregulates the production of CpxP,
a regulatory protein involved in the cell stress response

It is clear that upregulation of spy at the transcriptomic
level, along with transcripts such as cpxP, is indicative of the
upregulation of the Cpx, or ‘‘cell envelope stress,’’ response
when cells are exposed to CORM-3. Although these effects at

FIG. 6. Differential expression of genes involved in general stress responses, signal transduction, and zinc ho-
meostasis. The heat map quantifies the changes elicited in selected genes; the ‘‘heat scale’’ at the right is expressed as the
natural logarithm of the fold change. Shown are individual genes of the heme-deficient mutant of E. coli (hemA) and the
corresponding wild-type grown anaerobically in defined medium after addition of 100 lM CORM-3 or, for the mutant only,
100 lM iCORM-3.
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the transcriptomic level are marked, it was important to de-
termine whether the rise in level of transcripts reflects
physiological production of protein. Western blot assays
were therefore carried out using antisera to two key players in
the response: Spy and CpxP. Spy was detected in periplasmic
fractions of wild-type cells as expected. However, it was only
readily detected in soluble, presumably cytoplasm-derived,
fractions of hemA cells; the reason is unclear. For immuno-
blotting with CpxP, soluble fractions were used for hemA and
the isogenic wild-type strain. Loading controls confirmed
equal loading of protein in each well (Coomassie-stained
gels, not shown), and nonspecific binding in the case of the
Spy blots also indicate equal sample loading. As shown in
Figure 7A, addition of only 20 lM CORM-3 leads to a large
increase in cellular protein after 1 h of incubation of the
compound in wild-type cells; further incubation did not sig-
nificantly increase Spy levels. The control in the absence of
CORM shows very little Spy protein. Interestingly, the level
of Spy protein is also increased with time after addition of
CORM to hemA cells.

In addition to Spy, levels of the periplasmic chaperone
CpxP were also determined. As shown in Figure 7B, levels of
CpxP are higher in wild-type cells in the absence of CORM-
3. A slight decrease in CpxP levels at 4 h compared with that
at 1 h after CORM treatment showed a further slow decline in
CpxP abundance. This is expected, since CpxP is a negative
regulator of the Cpx response (60); if the Cpx response is to
be active, levels of CpxP must be minimal. The result is also
confirmed in hemA cells, with lower levels of CpxP protein
after 4 h of incubation with CORM-3. These results, taken
together with high levels of Spy protein, suggest that the
induction of the Cpx response is a global consequence of
CORM addition to cells.

Membrane perturbation by CORM-3

The effects of CORM-3 on cell outer membranes were
assayed using the fluorescent probe N-phenyl-1-napthyla-

mine (NPN) (42), a membrane-impermeable dye that has a
weak fluorescence emission in buffer but increased fluores-
cence on exposure to a hydrophobic environment. Thus,
when the bacterial membrane becomes perturbed (for ex-
ample, by addition of an antibiotic or, here, CORM-3), the
dye partitions into the outer membrane, leading to an increase
in fluorescence. The potent respiratory inhibitor, potassium
cyanide (KCN) was added, where indicated, to cell suspen-
sions to prevent the expulsion of the dye by E. coli cells and
give simpler fluorescence kinetics (12). CORM-3 perturbed
the membrane of wild-type and hemA E. coli cells in the
presence and absence of KCN (Fig. 8); a control with NPN
incubated with cells alone showed no increase in basal
fluorescence levels over 60 min. Since KCN is an inhibitor of
terminal heme-mediated respiration, which is lacking in the
hemA mutant, it was not surprising that KCN had less effect
on the fluorescence profiles in hemA cells (compare Fig. 8E,
G) than in wild-type cells (compare Fig. 8A, C). Interestingly,
in mutant cell suspensions, basal levels of NPN fluorescence
were greater than in the wild-type, reflected in the fluores-
cence intensity at zero time. Addition of CORM-3 to hemA
cells, with or without KCN, led to higher fluorescence than in
wild-type cells, suggesting greater damage to the membrane
by CORM-3 perhaps due to an already compromised outer
membrane. In wild-type cells, neither equimolar CO nor
iCORM-3 significantly increased NPN fluorescence (Fig. 8B,
D). However, in hemA cells, particularly in the presence of
KCN, iCORM-3 but not CO elicited fluorescence increase,
suggesting membrane destabilization (Fig. 8F, H).

We recently reported that CORM-3 has a role in K + /Na+ ion
transport across the membrane of E. coli cells (74). To inves-
tigate whether this process was dependent on heme-containing
proteins and correlated with membrane integrity, movement of
K + /Na + was explored by testing osmotic swelling of hemA
spheroplasts in iso-osmotic solutions. Interestingly, no swelling
was observed in response to CORM-3 in iso-osmotic solutions
of K + or Na+ salts (Supplementary Fig. S7) whereas wild-type
spheroplasts swell with CORM-3 in these media (74). Controls
with the K + ionophore valinomycin and the metal cation
(Supplementary Fig. S7A, B), and use of the nonionic detergent
Triton X-100, confirmed the osmotic sensitivity of the sphero-
plasts (Supplementary Fig. S7). This probably reflects the
membrane destabilization in hemA cells and loss of osmotic
selectivity. The mechanisms of CORM-promoted ion transport
in bacteria are not understood, but the present data indicate an
energy- (respiration-) dependent transport mechanism in wild-
type cells that is activated by CORM-3.

Modeling of transcriptomic data

Transcriptomic data sets are exceptionally informative;
however, their very wealth can occasionally make interpre-
tation difficult. The measured altered patterns of gene ex-
pression shown in Figs. 3, 4, and 6 and Supplementary Figs.
S5 and S6 pass a statistical filter, but it is beneficial to use
further statistical methods to explain the changes in terms of
more interpretable factors. In this study, we use the TFInfer
approach (4, 65), a Bayesian statistical method that integrates
gene expression data with regulon information (collected
from online databases such as Regulon DB or Ecocyc) to
identify transcription factor (TF) activity profiles that opti-
mally explain the measured changes in gene expression.

FIG. 7. Levels of Spy and CpxP protein are altered in
response to CORM-3 in wild-type and hemA cells.
Western blotting of subcellular fractions was carried out in
the absence and presence of 20 lM CORM-3. (A) A typical
Western blot is shown in the absence of CORM-3 (lane 1),
or with 1, 2, or 4 h of incubation for wild-type or hemA cells
with anti-Spy and (B) anti-CpxP. Bands of nonspecific
binding of antibody are shown to demonstrate equal loading
of protein in each lane.
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We ran TFInfer separately on the CORM-3 and iCORM-3
data sets and devised an intuitive visualization method that
highlights differences in the magnitude of the response, and
differences in the kinetics of the response, to the two stimuli.
Namely, for each TF, we plot on the abscissa the profile
difference (computed as 1 minus the absolute Pearson cor-
relation coefficient between the two profiles) versus the dif-
ference in magnitude of the response on the ordinate
(computed as the absolute difference of the norms of the two
profiles, Table 1 and Fig. 9). We term these plots coherence
plots. Hence, TFs whose response is similar in both magni-
tude and kinetics will be located near the origin of the co-
herence plot, while TFs in the top right corner of the plot
respond very differently in both kinetics and amplitude.
Several of the regulators whose activity is inferred to underlie
effects described in this paper feature in this analysis. Thus,
CpxR, which appears in quadrant A of Figure 9, is a member
of the two-component regulatory system CpxA/CpxR that

combats extra-cytoplasmic protein-mediated toxicity by in-
creasing the synthesis of the periplasmic protease DegP as
well as that of CpxP protein. The position of CpxP in the
matrix is consistent with the membrane disturbance elicited
by CORM-3 but not iCORM-3 (Fig. 8). The response regu-
lator BaeR, however, which confers resistance to novobiocin
and bile salts by stimulating drug exporter gene expression is
near the origin in the coherence plot (Fig. 9), indicating that
its response is similar in terms of magnitude and kinetics
when cells are exposed to iCORM-3 or CORM-3, and is not
markedly upregulated (Fig. 7). In contrast, H-NS gave a low
correlation coefficient for this comparison, indicating a spe-
cific response to CORM-3 (Fig. 9).

These outcomes reflect the fold changes shown in Figure 7
and reveal the presence of targets for CORM-3 in hemA cells,
although the molecular mechanisms underpinning the H-NS
response remain uncertain. The coherence plot also reveals
that OxyR and SoxS respond similarly in terms of magnitude

FIG. 8. CORM-3 per-
turbs the outer membrane
of E. coli in both wild-type
and hemA cells. Wild-type
(A–D) and hemA cells (E–H)
were washed, resuspended in
PBS, adjusted to an OD600 of
*0.5, and then exposed to
NPN alone (squares), NPN +
30 lM CORM-3 (circles), or
NPN + 100 lM CORM-3 (tri-
angles) (A, C, E, G). Data are
shown for measurements in
the absence (left) or presence
(right) of cyanide (KCN). In
control experiments (B, D, F,
H), the compounds used were
100 lM iCORM-3 (open cir-
cles) or 100 lM CO gas in
solution (open squares). All
concentrations given are final
concentrations in the fluores-
cence cuvette. Data are rep-
resentative of ‡ 2 biological
replicates.
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when hemA cells are exposed to CORM-3 or iCORM-3, but
the activity profiles are dissimilar. Interestingly, these two
TFs were implicated in a transcriptomic profiling study of E.
coli exposed to CORM-2 and subsequently mutated (51);
deletion of these oxidative stress-sensing regulators in-
creased CORM-2 sensitivity. In a final example, the TF IscR,
for ‘‘iron-sulfur cluster regulator’’ (72), is negatively auto-
regulated, and it contains an Fe-S cluster that acts as a sensor
required for components of a secondary pathway of cluster
assembly and integration into Fe-S proteins, and respiratory
enzymes. Thus, IscR responds similarly in terms of magni-
tude when hemA cells are exposed to CORM-3 or iCORM-3,
but the activity profiles are dissimilar. Each point on the plot
has associated horizontal and vertical error bars that take into
account the uncertainty of the inferred TF activities derived
from TFInfer. These error bars have been removed from
Figure 9 to reduce visual clutter. The same plot with error
bars is shown in Supplementary Fig. S8.

Discussion

The idea that CO liberated from a CORM has targets other
than heme has been proposed in light of the multifaceted
CORM-induced alterations in the transcriptome of bacterial
cells (51). However, the data presented here provide the first
clear evidence that a CORM is toxic to bacteria in the absence
of heme, a ‘‘classical’’ target of CO. Growth with CO gas did
not inhibit growth of the heme-deficient mutant of E. coli and
only marginally slowed wild-type growth (Supplementary
Fig. S2A, B). The slight effects observed with iCORM-3
(Supplementary Figs. S3 and S4) are attributed to residual
CO release from the compound (Supplementary Fig. S3A
inset), and/or the low turbidity at which the cultures were
stressed, as the inactive compound did not affect the viability
of L. lactis after addition at mid-log phase of growth

Table 1. Absolute Pearson Correlations Comparing Transcription Factors of Interest

hemA CORM-3 vs. iCORM-3 Wild type vs. hemA (CORM-3)

Transcription
factor name

Mean absolute
Pearson correlation

Standard deviation
of correlation

Mean absolute
Pearson correlation

Standard deviation
of correlation

BaeR 0.968 0.017 0.810 0.043
CpxR 0.718 0.039 0.959 0.008
CRP 0.829 0.019 0.814 0.014
CysB 0.570 0.034 0.535 0.036
Fis 0.715 0.030 0.860 0.023
FNR 0.807 0.014 0.766 0.013
Fur 0.630 0.019 0.987 0.004
GadX 0.927 0.037 0.064 0.048
H-NS 0.223 0.043 0.859 0.024
IHF 0.873 0.015 0.862 0.014
IscR 0.324 0.055 0.812 0.036
NarL 0.759 0.052 0.382 0.246
NarP 0.479 0.249 0.386 0.240
NsrR 0.745 0.047 0.820 0.067
OxyR 0.244 0.089 0.889 0.037
SoxS 0.177 0.132 0.814 0.111

Mean absolute Pearson correlation values are given for transcription factor activity profiles in the heme-deficient mutant of Escherichia
coli (hemA) treated with CORM-3 versus iCORM-3 and the heme-deficient mutant versus wild-type after exposure to CORM-3. Values
close to 1 indicate transcription factors that exhibit a similar pattern of activity over 2 h post-treatment of heme-deficient or wild-type E. coli
with the compound. Listed also is the resulting standard deviation of the absolute Pearson correlation.

FIG. 9. Coherence plot showing transcription factors
(TFs) involved in the response to CORM-3 versus
iCORM-3 in hemA cells. The x-coordinate of each point
represents the ‘‘profile difference’’ between the two conditions
(computed as 1 minus the absolute Pearson correlation coeffi-
cient between the two profiles), while the y-coordinate repre-
sents the change in magnitude of the response (computed as the
difference of the norm of the two profiles). Hence, TFs whose
response is similar in both magnitude and kinetics will be lo-
cated near the origin of the coherence plot in quadrant C, while
TFs in quadrant B of the plot respond very differently both in
terms of kinetics and in terms of amplitude. The activity of the
TF BaeR in hemA cells is similar in response to both iCORM-3
and CORM-3, whereas HNS and NarP respond differently
when cells are exposed to iCORM-3 or CORM-3.
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(Supplementary Fig. S4D). Collectively, the data show that a
synergistic effect of CO and the ruthenium co-ligand frag-
ment are required for full bactericidal activity.

The enhanced toxicity of CORM-3 in the absence of heme
suggests that heme proteins protect the wild-type from the
full potential of CORM-3 toxicity, perhaps, in part, by acting
as a ‘‘CO-sink.’’ Furthermore, hemA cells accumulated more
CORM-3 than wild-type cells (Fig. 2); metal accumulation
presumably contributes to toxicity of the CORM. Recon-
stitution of the mutant’s ability to synthesize heme by adding
d-ALA yielded cultures that were sensitive in the first 2 h to
200 lM CORM-3, but later recovered to wild-type levels of
viability (Fig. 1F). This may be explained by incomplete
reconstitution, that is, the degree of heme synthesis was not
fully restored to wild-type levels. Samples of wild-type cells
grown under anaerobic conditions contained 0.68 nmol cy-
tochrome b (mg protein) - 1 and 0.53 nmol cytochrome d (mg
protein) - 1, in comparison with 0.46 and 0.36 nmol mg - 1 in
the reconstituted mutant, respectively.

Interestingly, the transcriptomic analyses highlight a pro-
found effect of CORM-3, and to a lesser extent iCORM-3, on
iron homeostasis even in the heme-deficient mutant (Fig. 5).
In mammalian cells, disruption of heme synthesis elicits
massive import of iron, presumably because the lack of iron is
‘‘sensed’’ by the cell as an indication of iron deficiency (23).
Altered expression levels of some of these genes have been
previously reported in wild-type cells, namely down-
regulation of ftnA and bfr and upregulation of ftnB (15, 51)
under anaerobiosis. In this study, hmp is highly upregulated
by CORM-3 in the hemA, but it is unaltered in the wild type
(Fig. 7). The response may relate to the ferrisiderophore re-
ductase activity of Hmp (3, 56), consistent with the iron-
starvation response observed here. However, the ability of
Hmp to reduce iron(III) in vitro is not believed to have
physiological significance.

Statistical modeling of the transcriptomic data inferred
the activity of FNR and Fur, which are involved in iron
homeostasis. An interaction of CO with the iron centers of
these TFs has been previously suggested (15). In its active
form, Fur contains a nonheme ferrous iron site but, on iron
deprivation, iron(II) is lost from the protein, resulting in
de-repression of genes involved in siderophore biosynthesis
and iron transport (61). Fur is also capable of sensing other
metal ions, including zinc(II) (1), which may be relevant to
the involvement of Fur in the response to CORM-3. Davidge
et al. (15) suggested an interaction of CO with the [4Fe-4S]
cluster of FNR, which reacts with NO (13). A gene impli-
cated in the repair of damaged Fe-S clusters (ytfE) (35), and
perhaps iron centers in general (54), was also upregulated in
the mutant treated with CORM-3, and an interaction of
CORM-2 with Fe-S clusters has recently been reported:
CORM-2 lowers the activity of the Fe-S-containing aconi-
tase and glutamate synthase (68).

In addition to CORM-3 effects on iron homeostasis, tar-
geting of the cell membrane is indicated here as a major
casualty of CORM-3 stress, by both CORM-enhanced NPN
fluorescence assays of membrane integrity (Fig. 8) and up-
regulation of several genes implicated in stress responses at
the membrane and in the periplasm. Here, we also show for
the first time that CORM induced changes in bacterial protein
levels, specifically proteins involved in the cell envelope
response—Spy and CpxP. Upregulation of spy transcript

levels (Fig. 6) and Spy protein (Fig. 7) can occur due to
envelope stress (58); cpxP encodes the inhibitor of the Cpx
response that is activated by misfolded envelope proteins (14,
59). These findings are consistent with previous transcriptomic
studies (16, 48, 51), yet here we show that the effects are
independent of hemes in the membrane. The TFs CpxR and
BaeR identified by statistical modeling (Fig. 9) regulate the
expression of spy and a number of other genes encoding
membrane proteins. Both of these TFs may therefore have
roles in the maintenance of envelope integrity and response to
envelope stress after exposure of both the mutant and the wild
type to CORM-3. Future work should extend the intensive
transcriptomic and modeling approaches described here, al-
ready supported by immunoblotting of selected key proteins,
by applying the concept of proteomic signatures (73) as a
diagnostic tool to pinpoint the targets of CORM action.

Materials and Methods

Bacterial strains and growth conditions

Wild-type strains of E. coli K12 MG1655 and L. lactis
(kind gift from Dr. Marc Solioz, University of Berne, Swit-
zerland) were used. The heme-deficient mutant of E. coli
(W3310 hemA::KmR) was obtained from the Keio collection
(6, 75) and the mutant allele P1-transduced into strain
MG1655. Cells were grown anaerobically in defined me-
dium, pH 7, (24) supplemented with 0.1% casamino acids
and 5% LB (15), 0.5% (w/v) glucose as carbon source,
d-ALA (final concentration 0.1 mM) where indicated, and
kanamycin (final concentration 50 lg/ml) for the heme-
deficient mutant.

For growth and viability assays, cells were grown at 37�C
in 8 ml anaerobic tubes with screw-tops containing a Suba-
Seal to maintain anaerobiosis during additions and sampling.
Cultures were inoculated with 1% v/v of overnight cultures
grown in rich broth (K2HPO4 (4 g/L), KH2PO4 (1 g/L), tryp-
tone (10 g/L), and yeast extract (5 g/L), adjusted to pH 7).

For transcriptomic studies, E. coli were grown in batch
cultures in custom-made, stirred (200 rpm) 250 ml mini-fer-
menter vessels at 37�C (40) during continuous sparging with
nitrogen to maintain anaerobiosis. Cultures were inoculated
with 5% v/v of cells grown overnight in rich broth that were
harvested and resuspended in defined medium. OD measure-
ments were made using a Jenway 7315 spectrophotometer.

For bacterial growth with CO gas, cells were incubated in
defined medium in batch culture in an Infors Multifors biore-
actor adapted to fit a Labfors-3 fermenter base unit. Tem-
perature was 37�C with continuous stirring at 200 rpm, and
mass flow controllers allowed the flow of gas at 100 ml min - 1.
Cultures were grown to an OD600 of *0.2 in pure nitrogen
before switching to CO.

Under these conditions, cells grew at rates that approxi-
mated to linear, not exponential, kinetics. Therefore, growth
rates are expressed as doubling times (h) at the point of
adding CORMs or CO gas, not specific growth rates (h - 1).
The values given are means of 3 separate growths – SD.

Analysis of cytochrome content of bacterial whole cells

Cultures were grown anaerobically in defined medium in
100 ml Duran bottles for 24 h (mutant cells) or 7–8 h (re-
constituted cells) during gentle rotation on a roller mixer.
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Cells were harvested, washed in 0.1 M KPi (pH 7), and re-
suspended to give a thick suspension. Cytochromes were
quantified using an SDB-4 dual-wavelength scanning spec-
trophotometer and dithionite-reduced minus persulfate-
oxidized difference spectra obtained as earlier (36). For CO
plus reduced minus reduced difference spectra, reduced
samples were bubbled with CO for 2 min. Protein concen-
trations were measured using the Markwell assay (46).
Concentrations of cytochromes b and d were calculated from
reduced minus oxidized spectra using established extinction
coefficients: b (560–575 nm; e 17.5 mM cm - 1) and d (630–
655; e 19 mM cm - 1) (34).

CORM-3 and control treatments

CORM-3 has been described earlier (11). iCORM-3 was
prepared as described earlier (11, 41, 74) to give a preparation
that releases to ferrous myoglobin typically < 5% of the CO
delivered by equimolar CORM-3. The basis for the inability
of iCORM-3 to release CO is poorly understood, since
CORM-3 does not release CO spontaneously (10). The
compounds (74) were added directly to cultures of E. coli at
an OD600 of 0.1–0.2, and L. lactis at an OD600 of 0.4.

Bactericidal assays

Serial dilutions of culture samples between 10 - 1 and 10 - 8

were prepared in 1 · PBS. From each dilution, 10 ll drops
were plated onto rich broth agar, adjusted to pH 7, and in-
cubated overnight at 37�C. The average number of colonies
was calculated from the dilution giving the highest number of
colonies without confluence and used to determine the
number of colony-forming units per ml (CFU/ml).

Metal analyses

Cultures were grown to log phase (for wild-type OD600 0.4
and for hemA OD600 0.2) where 20 ml samples were taken
both before and after the addition of 100 lM CORM-3.
Samples were assayed for metal content as earlier (48).

Microarray analysis

Microarray experiments were performed as earlier (48)
except that, for RNA isolation, bacteria were grown and
treated with CORM-3 in batch culture. In the microarray
data, arbitrary values of ‡ 2-fold or £ 0.5-fold changes in
expression were chosen to represent significantly altered
genes. Information about gene products and their function
was obtained from GeneSpring GX v7.3 (Agilent Technol-
ogies). Functional category lists were created using KEGG
(Kyoto Encyclopedia of Genes and Genomes) (37). Relevant
regulatory proteins for each gene were identified (where
available) using regulonDB and EcoCyc (World Wide Web).
The data have been deposited in NCBI’s Gene Expression
Omnibus and are accessible through GEO series accession
number GSE55097 (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc = GSE55097).

Mathematical modeling of transcriptomic data

Modeling of TF activities using TFInfer (4, 65) and mea-
suring similarity in TF activities between two different con-
ditions were performed as described in (48).

Western blotting for Spy and CpxP detection

Wild-type MG1655 and hemA cells were grown in hemA
defined minimal medium as described earlier. When cultures
reached the mid-exponential phase, CORM-3 was added to a
final concentration of 20 lM and incubated for 1, 2, or 4 h.
Cells were harvested, and periplasmic fractions were isolated
using the Tris/sucrose/EDTA (TSE) method (57). For Western
blotting with anti-CpxP, soluble fractions were made by sus-
pending cell pellets in 0.5 ml Tris-HCl buffer (pH 7.4) and
sonication at 15lm for two cycles of 30 s. Soluble fractions were
isolated by ultracentrifugation at 30,000 rpm at 4�C for 30 min
and reduced with 200 mM dithiothreitol before separation by
SDS-PAGE on NuPAGE 4–12% Bis-Tris Gels (Life Technol-
ogies). Proteins were blotted onto Hybond-P polyvinylidene
difluoride membrane (Amersham). Immunoblots were carried
out using primary rabbit anti-Spy/CpxP antibodies at 1:25,000/
1:50,000 dilutions, respectively. Anti-rabbit secondary anti-
bodies were incubated at a concentration of 1:50,000 for 1 h
before detection using the ECL-Plus Western blotting detection
system (Amersham) with Hyperfilm ECL (Amersham).

OM permeabilization assays

OM permeability of CORM-3 was assayed using NPN
(32, 42). Cultures were grown to exponential phase (OD600

of 0.6 for wild type and 0.3 for hemA), pelleted, then wa-
shed, and resuspended in PBS. The final cell suspension was
adjusted to an OD600 of *0.5. Cells were incubated with
NPN (final concentration 1 lM) and, where indicated, KCN
(final concentration 1 mM). Fluorescence was measured
(kex = 340 nm, kem = 420 nm) using a Hitachi F-2500 fluo-
rescence spectrophotometer.

Spheroplasts and osmotic swelling measurements

hemA cells were grown anaerobically in LB supplemented
with 20 mM glucose to an OD600 of *0.6, and spheroplasts
were prepared (43). Cells were washed in 10 mM Tris-HCl
(pH 7.4) and resuspended in 20% w/v sucrose containing
33 mM Tris-HCl (pH 8). Spheroplast formation was as de-
scribed earlier (43) except that EDTA/lysozyme treatment
was at 37�C (74). Osmotic swelling was measured by mon-
itoring change in turbidity at 500 nm using a Cary 50 spec-
trophotometer (Varian) (27) after dilution of spheroplasts in
iso-osmotic 0.25 M solutions of KNO3, KNO2, or NaNO3.
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Abbreviations Used

d-ALA¼ d-aminolevulinic acid
CFU¼ colony-forming units

CORM¼ carbon monoxide-releasing molecule
CORM-3¼Ru(CO)3Cl(glycinate)

Fe-S¼ iron-sulfur (as in cluster)
iCORM-3¼ inactivated CORM-3
ICP-AES¼ inductively coupled plasma atomic

emission spectroscopy
KCN¼ potassium cyanide

KPi¼ potassium phosphate buffer
Mb-CO¼ carboxymyoglobin

NPN¼N-phenyl-1-naphthylamine
OD¼ optical density
OM¼ outer membrane
PBS¼ phosphate-buffered saline

TF¼ transcription factor
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