
This is a repository copy of Dynamic simulations of combined transmission and distribution
systems using parallel processing techniques.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/105997/

Version: Accepted Version

Proceedings Paper:
Aristidou, P orcid.org/0000-0003-4429-0225 and Van Cutsem, T (2014) Dynamic
simulations of combined transmission and distribution systems using parallel processing
techniques. In: Proceedings. 2014 Power Systems Computation Conference (PSCC),
18-22 Aug 2014, Wroclaw, Poland. IEEE . ISBN 978-83-935801-3-2

https://doi.org/10.1109/PSCC.2014.7038478

© 2014 IEEE. This is an author produced version of a paper published in Power Systems
Computation Conference (PSCC). Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. Uploaded in accordance with the publisher's
self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by White Rose Research Online

https://core.ac.uk/display/46664883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Dynamic Simulations of

Combined Transmission and Distribution Systems

using Parallel Processing Techniques

Petros Aristidou Thierry Van Cutsem

Abstract—Simulating a power system with both transmis-
sion and distribution networks modeled in detail is a huge
computational challenge. In this paper, we propose a Schur-
complement-based domain decomposition algorithm to provide
accurate, detailed dynamic simulations of the combined system.
The simulation procedure is accelerated with the use of parallel
programming techniques, taking advantage of the parallelization
opportunities inherent in domain decomposition algorithms. The
proposed algorithm is general, portable and scalable on inex-
pensive, shared-memory, multi-core machines. A large-scale test
system is used for its performance evaluation.

Index Terms—time simulations, domain decomposition meth-
ods, parallel computing, OpenMP

I. INTRODUCTION

The most noticeable developments foreseen in power sys-

tems involve Distribution Networks (DNs). Future DNs are

expected to host a big percentage of the renewable energy

sources. The resulting challenge in dynamic simulation is

to correctly represent DNs and their participation in system

dynamics. This becomes compulsory as DNs are called upon

to actively support the Transmission Network (TN) with an

increasing number of Distributed Generation Units (DGUs)

and loads participating in ancillary services through smart-grid

technologies.

In present-day dynamic security assessment of a large-scale

power system, it is common to represent the bulk generation

and higher voltage (transmission) levels accurately, while the

lower voltage (distribution) levels are equivalenced. On the

other hand, when concentrating on a DN, the TN is often repre-

sented by a Thévenin equivalent. The prime motivation behind

this practice has been the lack of computational resources.

Indeed, fully representing the entire power system network

was historically impossible given the available computing

equipment (memory capacity, processing speed, etc.) [1]. Even

with current computational resources, handling the entire,

detailed model with hundreds of thousands of Differential and

Algebraic Equations (DAE) is extremely challenging [2], [1].

As modern DNs are evolving with power-electronics inter-

faces, DGUs, active loads, and control schemes, more detailed

and elaborate equivalent models would be needed to encom-

pass the dynamics of DNs and their impact on global system

Petros Aristidou is with the Dept. of Elec. Eng. and Comp. Science,
University of Liège, Liège, Belgium, e-mail: p.aristidou@ieee.org

Thierry Van Cutsem is with the Fund for Scientific Research (FNRS) at
Dept. of Elec. Eng. and Comp. Science, University of Liège, Liège, Belgium,
e-mail: t.vancutsem@ulg.ac.be

dynamics. The three main equivalencing approaches reported

in the literature are modal methods, coherency methods and

measurement or simulation-based methods [3]. Equivalent

models, however, inadvertently suffer from a number of draw-

backs:

• the identity of the replaced system is lost. Faults that hap-

pen inside the DNs themselves cannot be simulated and

individual voltages at internal buses, currents, controllers,

etc. cannot be observed anymore;

• most equivalent models target a specific type of dynam-

ics (short-term, long-term, electromechanical oscillations,

voltage recovery, etc.) and fail when used for another

type. This requires running different types of simulations

with different models;

• in most cases, the use or not of these equivalent models

is decided off-line, when it is still unknown whether the

disturbance will affect or not the DNs of concern.

In this paper, a Schur-complement-based domain decomposi-

tion algorithm for the dynamic simulation of combined trans-

mission and distribution systems is presented. The algorithm

decomposes the combined system on the boundary between

the TN and the DNs. Following, a Schur-complement-based

solution is performed to solve the full, detailed DAE system

in a decomposed manner.

The proposed algorithm accelerates the simulation proce-

dure in two ways. First, the independent calculations of the

sub-networks (such as formulation of non-linear DAE system,

discretization, formulation and solution of linear systems,

check of convergence, etc.) are parallelized, thus providing

computational acceleration. Second, it performs a selective,

infrequent Jacobian update, that is, it exploits the decompo-

sition of the system to selectively update only the Jacobian

matrices of sub-networks converging more slowly.

The proposed algorithm is parallelized with the use of

shared-memory parallel computing techniques through the

OpenMP Application Programming Interface (API) targeting

common, inexpensive multi-core machines. The implementa-

tion is general, with no hand-crafted optimizations particular

to the computer system, operating system, simulated electric

power network or disturbance.

The paper is organized as follows. In Section II the

proposed Schur-complement-based algorithm is presented. In

Section III, the parallel processing techniques considered are

summarized. Simulation results are reported in Section IV and

followed by closing remarks in Section V.

Μ

Μ

Μ

Μ

Μ
Ινϕεχτορσ

Μ

Figure 1. Decomposed Power System

II. SCHUR-COMPLEMENT-BASED ALGORITHM

A. Model Decomposition

An important step in developing and applying a domain

decomposition algorithm is the identification of the partition

scheme to be used. In this paper, a topologically-based par-

titioning has been chosen lying on the boundary between

TN and DNs. The decomposition assumes that every DN is

connected to a single TN bus through a transformer [4].

Let the power system sketched in Fig. 1 be decomposed

into the TN and L DNs, along with the power system com-

ponents connected to them. For reasons of simplicity, all the

components connected to the TN or DNs that either produce

or consume power in normal operating conditions (such as

power plants, DGUs, induction motors, other loads, etc.) are

called injectors.

The injectors’ model can be described by a system of non-

linear DAEs [5]:

Γẋ = Φ(x,V)

where V is the vector of rectangular components of bus

voltages (VDi if connected to the i-th DN or VT if connected

to the TN), x is the state vector containing differential and

algebraic variables and Γ is a diagonal matrix with:

(Γ)ℓℓ =

{

0 if the ℓ-th equation is algebraic

1 if the ℓ-th equation is differential.

At the same time, under the standard phasor approximation,

the algebraic equations of each network (TN or DN) take on

the linear form:

0 = DV − I , g(x,V)

where D includes the real and imaginary parts of the bus ad-

mittance matrix and I is the vector of rectangular components

of the bus currents.

Hence, the DAE system describing the TN with its injectors

is:
0 = gT (xT ,VT ,VDt)

ΓT ẋT = ΦT (xT ,VT)
(1)

where VDt is a sub-vector of VD = [VD1 . . . VDL]
T , includ-

ing only the voltage components of the DN buses connected

to the TN through the distribution transformers (see Fig. 1).

Similarly, for the i-th DN with its injectors (i = 1, . . . , L):

0 = gDi(xDi,VDi,V Ti)
ΓDiẋDi = ΦDi(xDi,VDi)

(2)

where VTi is a sub-vector of VT , including only the voltage

components of the TN bus where the i-th DN is connected to

(see Fig. 1).

The proposed decomposition is reflected on the DAE sys-

tems (1) and (2), through the common variables VDt and VTi

(i = 1, ..., L) involved in the equations of the distribution

transformers connecting the DNs to the TN.

B. Discretization and Algebraization

For the purpose of numerical simulation, the injector DAE

systems are discretized using a differentiation formula (such

as Trapezoidal Rule, Backward Differentiation Formula, etc.)

which yields the corresponding non-linear algebraized system:

0 = f(x,V)

Next, these injector equations are linearized and solved

together with the network equations using a Newton-type

method to compute the state vectors VT , xT , VDi and xDi.

Thus, at each Newton iteration, the linear system to be

solved for the TN is:
[
JT1 JT2

JT3 JT4

]

︸ ︷︷ ︸

[
∆VT

∆xT

]

−
∑L

i=1

[
CDi△VDi

0

]

=

JT −

[
gT (xT ,VT ,VDt)

fT (xT , VT)

] (3)

where JT is the Jacobian matrix of gT and fT towards the

TN states and CDi towards the voltage of the i-th DN. It is

worth noting that the CDi matrix is very sparse with the only

non-zero columns corresponding to voltage variables of DN

buses directly connected to the TN through the transformers.

Similarly, for the i-th DN, it is:
[
JDi1 JDi2

JDi3 JDi4

]

︸ ︷︷ ︸

[
∆VDi

∆xDi

]

−

[
BDi△VT

0

]

=

JDi −

[
gDi(xDi,VDi,VTi)
fDi(xDi,VDi)

] (4)

where JDi is the Jacobian matrix of gDi and fDi towards the

DNi states and BDi towards the TN bus voltage variables. It

can be seen that the BDi matrix is very sparse with the only

non-zero columns corresponding to VTi variables.

C. Reduced System Formulation

The solution of the systems (3)-(4) is performed in a de-

composed manner using a Schur-complement-based method.

For this, the systems (4) are each solved towards ∆VDi and

substituted in (3) to build a reduced system involving only the

TN variables.

To solve for ∆VDi, the system (4) can be rewritten as:

JDi1∆VDi + JDi2∆xDi = −gDi(xDi,VDi,VTi)

+BDi△VT

JDi3∆VDi + JDi4∆xDi = −fDi(xDi,VDi)

[

JT1 −
∑L

i=1
CDiB̃Di JT2

JT3 JT4

] [

∆VT

∆xT

]

= −

[

gT (xT ,VT ,VDt) +
∑L

i=1
CDig̃Di(xDi,VDi,VTi)

fT (xT , VT)

]

(5)

and then solved for ∆VDi as:

∆VDi = + S−1

Di
BDi△VT − S−1

Di

[
gDi(xDi,VDi,VTi)

− JDi2J
−1

Di4
fDi(xDi,VDi)

]

= + B̃Di△VT − g̃Di(xDi,VDi,VTi)

where:

SDi , JDi1 − JDi2J
−1

Di4
JDi3

B̃Di , S−1

Di
BDi

g̃Di(xDi,VDi,VTi) , S−1

Di

[
gDi(xDi,VDi,VTi)

−JDi2J
−1

Di4
fDi(xDi,VDi)

]

The resulting equations are then substituted in (3) to formulate

the reduced system (5).

It should be noted that the Schur-complement terms

CDiB̃Di each contribute a [2 × 2] matrix centered on the

diagonal of JT1. Thus the original sparsity pattern of the TN

Jacobian matrix JT is preserved. Also, each Right-Hand-Side

(RHS) factor CDig̃Di(xDi,VDi,VTi) affects only the mis-

match values of the TN bus where the i-th DN is connected,

i.e. only two components when Cartesian coordinates are used.

Finally, all the inverse matrix operations appearing in the

above mathematical formulation are actually implemented as

sparse linear system solutions, with appropriate solvers, to

preserve computational efficiency.

D. Solution

The solution proceeds by solving the reduced system (5) to

compute the corrections related to the TN. Then, ∆VT and the

updated VT variables are back substituted in Eqs. (4), which

are solved to compute the DN corrections. After updating the

state vectors, if all the DAE systems (1)-(2) have been solved,

the simulation proceeds to the next time instant, otherwise a

new iteration is performed with the updated variables.

The solution algorithm performs a “dishonest” update of

the Jacobian matrices. That is, the Jacobian matrices JT and

JDi, as well as the Schur-complement terms CDiB̃Di and

the intermediate matrices (e.g. SDi), are kept constant over

several solutions or even time-steps. They are selectively and

independently updated only if the corresponding sub-network

DAE does not converge after a number of iterations within the

same discrete time computation.

The proposed algorithm is numerically equivalent to solv-

ing the original DAE system (1)-(2) using a simultaneous

Very DisHonest Newton (VDHN) method [6]. The Schur-

complement-based algorithm, though, allows to selectively up-

date the Jacobian matrices of DAE sub-systems when needed,

and to exploit the decomposition to parallelize the procedure.

III. PARALLEL COMPUTING ASPECTS

Domain decomposition-based algorithms offer paralleliza-

tion opportunities as independent computations can be per-

Parallel threads

Parallel threads

(L+1 parallel tasks)

(L parallel tasks)

Figure 2. Proposed Solution Algorithm

formed by different computing threads. The proposed algo-

rithm, sketched in Fig. 2, employs parallel computing for the

system formulation, Jacobian update and DN solution.

A. Parallel Algorithm

First, based on the proposed decomposition, no data depen-

dencies exist in the system formulation of each sub-network

(TN or DN). Thus, the independent calculations (injector

discretization and linearization, Jacobian matrix update, mis-

match and reduced system contribution evaluation) are each

performed in parallel for the various sub-networks. This is

shown in the upper shaded block in Fig. 2 where each parallel

task deals with one sub-network. If the L + 1 parallel tasks

are more than the number of available computational threads,

a sharing mechanism takes care of properly assigning the tasks

to the threads.

Next, the reduced system (5) is solved to compute the

updated TN variables and the convergence of the TN system

is checked. Schur-complement-based algorithms suffer from

the sequentiality introduced by the reduced system solution

[7]. However, due to the high sparsity (retained even after the

Schur-complement reduction), the linear nature of the network

equations and the infrequent Jacobian update, this bottleneck

is bounded to 1-2% of the overall computational cost in the

proposed algorithm. Thus, even though this sequentiality could

be tackled with a parallel sparse linear solver, the overhead

due to the new synchronization points would counteract the

benefits. Hence, in this work, a sequential sparse linear solver

has been used.

Finally, after the computed corrections ∆VT are back sub-

stituted in Eqs. (4), the DN systems are decoupled, removing

any data dependencies. The solution of DN sub-systems is

obtained in parallel, using sparse linear solvers, and their

convergence is checked. This is shown in the lower shaded

block in Fig. 2 where each parallel task deals with one DN.

B. Implementation Specifics

Shared-memory, multi-core computers are becoming more

and more popular among low-end and high-end users due

to their availability, variety and performance at low prices.

The OpenMP API was selected for this implementation as it

is supported by most hardware and software vendors and it

allows for portable, user-friendly programming.

OpenMP has the major advantage of being widely adopted,

thus allowing the execution of a parallel application, with-

out changes, on many different computers. It consists of a

set of compiler directives, library routines, and environment

variables that influence run-time behavior. A set of predefined

directives are inserted in Fortran, C or C++ programs to

describe how the work is to be shared among threads that will

execute on different processors or cores and to order accesses

to shared data [8].

One of the most important tasks is to make sure that

parallel threads receive equal amounts of work. Imbalanced

load sharing leads to delays, as some threads are still working

while others have finished and remain idle. OpenMP includes

three easy to employ mechanisms for achieving good load

balance among the working threads [8].

First, with the static strategy, the scheduling is predefined

and one or more parallel tasks are assigned to each thread

rotationally prior to the parallel execution. This decreases

the overhead needed for scheduling but can introduce load

imbalance if the work inside each task is not the same.

Second, with the dynamic strategy, the scheduling is updated

during the execution. This introduces a high overhead cost

for managing the threads but provides the best possible load

balancing. Finally, with the guided strategy, the scheduling

is again dynamic but the number of tasks assigned to each

thread are progressively reduced in size. This way, scheduling

overheads are reduced at the beginning of the loop and good

load balancing is achieved at the end.

In the proposed algorithm, high imbalance between parallel

tasks can arise from the different sizes of the various sub-

networks (TN or DNs). That is, if the sub-networks in the

system have different number of buses and injectors, hence

different size of DAE systems, the threads computing them

will have different work loads. In such situations, the dynamic

strategy is preferred for better load balancing. Spatial locality

can be addressed by defining a minimum number of successive

tasks to be assigned to each thread (chunk). Temporal locality,

on the other hand, cannot be easily addressed with this strategy

because the tasks treated by each thread, and thus the data

accessed, are decided at run-time and can change from one

parallel segment of the code to the next [8].

IV. RESULTS

In this section we present the results of the Schur-

complement-based algorithm implemented in the academic

simulation software RAMSES, developed at the University of

Liège. The software is written in modern Fortran 2003 with

the use of OpenMP directives for the parallelization as detailed

in Section III. The simulations are performed on a 48-core

AMD Opteron Interlagos1 desktop computer running Debian

Linux 6. The environment variable OMP_NUM_THREADS

was used to vary the number of computational threads avail-

able to the simulation software at each execution.

A. Performance Indices

Many different indices exist for assessing the performance

of a parallel algorithm A. The two indices used in this study,

scalability and speedup, are defined as [9]:

Scalability(N) =
Wall time (A) (1 core)

Wall time (A) (N cores)
(6)

Speedup(N) =
Wall time (V DHN) (1 core)

Wall time (A) (N cores)
(7)

where N is the number of available computational threads.

The first index shows how the parallel implementation

scales when the number of available processors increases.

That is, the tested parallel algorithm is benchmarked against

a sequential execution of the same algorithm.

The scalability index is directly related to Amdahl’s law [8]

and using the latter, can be rewritten as:

Scalability(N) =
S + P

S + P

N
+OHC(N)

(8)

where S is the sequentially computed portion, P the parallel

portion and OHC the OverHead Cost of making the code run

in parallel (creating and managing threads, communication,

memory latency, etc.). The values of S and P can be estimated

with the use of a profiler monitoring the sequential execution

of the algorithm. Equations (6) and (8) can be used to assess

the algorithm’s parallel efficiency, defined as the net incre-

mental acceleration gained with each additional computational

thread.

Usually, parallel algorithms are designed and optimized to

be executed in parallel and exhibit low performance in sequen-

tial execution. Thus, even though scalability is an important

index, it is not enough to assess the absolute performance

of a parallel algorithm. Hence, the speedup index (7) shows

how much faster is the proposed parallel algorithm compared

to a fast, optimized for sequential execution, algorithm. In

this study, the sequential VDHN algorithm was used as a

reference. In this algorithm, the combined DAE system (1)-(2)

1CPU 6238 @ 2.60GHz, 16KB private L1, 2048KB shared per two cores
L2 and 6144KB shared per six cores L3 cache, 128GB RAM

g11

g20

g19

g16

g17

g18

g2g9

g1 g3g10

g5

g4

g12

g8

g13

g14

g7

g6

g15

4011

4012

1011

1012 1014

1013

10221021

2031

cs

404640434044

40324031

4022 4021

4071

4072

4041

1042

10451041

4063

4061

1043 1044

4047

4051

40454062

TN

DN

NORTH

CENTRAL

EQUIV.

SOUTH

4042

2032

Figure 3. Expanded Nordic System

is solved as a whole using a Newton method with infrequent

Jacobian update. The full DAE system is discretized and

linearized, the combined Jacobian matrix is formulated and

the linear system solved to compute all variable corrections

simultaneously. The Jacobian matrix is updated only if the

solution has not converged after three iterations. This is a

well-known method used by many commercial and academic

software and considered to be one of the fastest sequential

algorithms [9].

It is noteworthy that both algorithms were implemented in

the same software. Thus, they solve exactly the same model

equations to the same accuracy, using the same algebraization

method (namely the second-order backward differentiation for-

mula), way of handling the discrete events [10], mathematical

libraries (i.e. sparse linear solver), etc. Keeping the aforemen-

tioned parameters the same for both algorithms permits for the

better evaluation of the proposed algorithm’s performance.

B. Test System Model

This section reports on results obtained with a large-scale

combined transmission and distribution network model based

on the Nordic system, documented in [11]. The original

TN model is extended with 146 realistic DNs replacing its

aggregated distribution loads as shown in Fig. 3. The model

and data of each DN were taken from [12] and scaled to match

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 0 20 40 60 80 100 120 140 160 180

t (s)

(pu)

VDHN
Parallel Algorithm

Figure 4. Case 1: Voltage on TN bus 1041

the original TN loads. Multiple DNs were used to match the

original load powers, taking into account the nominal power

of the TN-DN transformers.

Each one of the 146 DNs includes 100 buses, 108 branches,

one distribution voltage regulator equipped with Load Tap

Changing (LTC) device, three type-1, three type-2 and two

type-3 Wind Turbines (WTs) [13], 12 impedance loads and

133 dynamically modeled loads, such as small induction

machines and self-restoring exponential loads. The transformer

connecting each DN to the TN is also equipped with an LTC

controlling the distribution side voltage.

To further avoid identical DNs and artificial synchroniza-

tion, the delays on transformer tap changes were randomized

around their original values and the WTs were randomly

initialized to produce 80-100% of their nominal power.

In total, the combined transmission and distribution sys-

tem includes 14653 buses, 15994 branches, 20 synchronous

machines, 293 LTC equipped transformers, 1168 WTs, 1752

impedance loads and 19419 dynamically modeled loads. The

resulting DAE system has 143462 differential-algebraic states.

C. Case 1

The disturbance considered in this scenario is the loss

of approximately 115 MW of wind generation due to the

disconnection of 30 type-1, 30 type-2 and 20 type-3 WTs

located inside ten DNs, all connected to TN bus 1041 in the

CENTRAL area (see Fig. 3). The WTs, grouped per DN, are

successively disconnected over a period of 10 s and the system

is simulated for 180 s with a time-step size of one cycle at the

nominal frequency (50 Hz). This event might result from high

winds in the area, causing WTs to trip to avoid damage. Such

disturbances, with events happening inside the DNs, are very

difficult to simulate when detailed DN models are not used.

Figure 4 shows the voltage at the TN bus 1041, where the

affected DNs are attached. The successive disconnection of

the WTs inside the DNs is reflected on the voltage evolution

during the first 10 s. That is, as the WTs within each DN

disconnect, the corresponding DN imports the lost power

from the TN. This gradually increasing TN-DN power transfer

leads to depressed TN voltages. In the long term, the system

evolves under the effect of LTCs acting to restore distribution

-80

-75

-70

-65

-60

-55

 0 20 40 60 80 100 120 140 160 180

t (s)

(MW)

DNA
DND
DNF

Figure 5. Case 1: Active power transfer over TN-DN transformers
(negative sign signifies the DN is importing active power from the TN)

voltages, thus further depressing TN voltages. The simulated

evolution is shown with both VDHN and the proposed parallel

algorithm. As expected, the output trajectories are indistin-

guishable as the two algorithms solve the same DAEs with

the same accuracy.

Figure 5 shows the active power transfer over the TN-

DN transformers of three of the DNs. In particular, DNA

is the first, DND is the fourth and DNF the sixth whose

WTs disconnect. When the WTs of a DN disconnect, the

imported power is immediately increased to compensate for

the lost local generation. The already mentioned TN voltage

drop impacts the neighboring DNs and, due to the voltage

sensitivity of loads, the imported power decreases. Hence,

immediately after the disturbance, only a fraction of the lost

WT power is imported from the TN. In the long-term, as the

LTC actions restore the DN voltages, the load consumption

is also restored and the whole lost active power deficit is

compensated by importing from the TN.

This interaction mechanism shows the necessity for detailed

DN representation in dynamic simulations. The sequence of

discrete events, like WT disconnections, LTC actions, etc., the

behavior of DN components and controls, and the interactions

of DNs with the TN or between them, dictate the resulting

system evolution.

Figure 6 shows that algorithm A offers a speedup of up to

5.2 times when compared to the VDHN algorithm. Initially, the

parallel algorithm executed on a single core performs around

40% slower than the, optimized for sequential execution,

VDHN. This delay is due to the extra computational costs of

the domain decomposition-based scheme (e.g. partition-related

book-keeping, intermediate Schur-complement calculations,

etc.). As regards the scalability of the algorithm, Fig. 7 shows

that it executes up to nine times faster in parallel compared to

its own sequential execution.

From Figs. 6 and 7, it can be seen that the parallel

algorithm is more efficient in the range of up to 24 cores,

while after that the benefit becomes marginal. This can be

explained from Eq. (8). When increasing the number of

parallel threads by one, the execution time gained can be

computed as P

N
−

P

N+1
, assuming that the sequential and

 0

 150

 300

 450

 600

 750

 900

 1050

 1200

 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
 0

 1

 2

 3

 4

 5

W
a

ll
ti
m

e
 (

s
)

S
p

e
e

d
u

p

of cores

Simulated time=180s

VDHN=635s

Wall time
Speedup

Figure 6. Case 1: Speedup

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

S
c
a

la
b

ili
ty

of cores

Case 1
Case 2

Figure 7. Case 1 and 2: Scalability

parallel portions remain unchanged. Thus, when N increases,

it is easy to see that the incremental gain decreases. At the

same time, the incremental OHC of creating and managing

a new thread (OHC(N + 1)−OHC(N)), calculated for the

specific computer platform, is almost constant. Hence, as the

number of computational threads increases, the net incremental

gain (difference between incremental gain and OHC) declines

and can reach zero or even negative values.

D. Case 2

The disturbance considered in this scenario is a five cycle

(0.1 s) short circuit near the TN bus 4032 cleared by the

opening line 4032-4042. The system is then simulated over

240 s with one cycle time-step size. After the electromechan-

ical oscillations have died out, the system evolves in the long-

term under the effect of LTCs acting to restore distribution

voltages and overexcitation limiters on the generators. This is

a severe disturbance that affects all the TN and DNs.

Figure 8 shows the active power output of a type-3 WT

located in one of the DNs of the CENTRAL area. It is shown

with both VDHN and the proposed parallel algorithm. As

expected, the two are indistinguishable.

Figure 7 shows the scalability of the proposed algorithm

reaching 14.5 times, while Fig. 9 shows that the parallel

algorithm achieves a speedup of eight times compared to the

VDHN, simulating the disturbance in around 130 s.

 1.42

 1.43

 1.44

 1.45

 1.46

 1.47

 1.48

 0 40 80 120 160 200 240

t (s)

(MW)

VDHN
Parallel Algorithm

Figure 8. Case 2: DN type-3 WT active power output

It can be seen that both scalability and speedup are higher in

Case 2 compared to Case 1. Moreover, the algorithm exhibits

efficient scaling up to 32 cores, compared to the 24 cores of

the previous case. These differences can be explained by the

larger amount of computational work available in the parallel

portion of this simulation. Indeed, due to the severe nature

of this scenario, the system exhibits higher dynamic activity.

Thus, more frequent Jacobian matrix updates and more DN

system solutions are required, leading to an increased overall

computation time (S + P). At the same time, as most of the

aforementioned computations are in the parallel portion, the

ratio P

S+P
also increases. Hence, with a bigger P value, the

higher scalability and speedup achieved can be explained from

Eq. (8), considering that the incremental OHC, that depends

on the computer platform, is the same as before.

In general, the proposed algorithm is more efficient and

achieves higher speedup when simulations with high dynamic

activity are considered.

V. CONCLUSION

In the future, distributed protection and control schemes,

DGUs providing ancillary services and active demand re-

sponse will make the contribution of DNs to the system

dynamics more significant and their detailed simulation more

vital. Thus, the need for simulating larger power system

models, including DNs, will increase the computational burden

of dynamic simulations.

In this paper a parallel Schur-complement-based algorithm

for dynamic simulation of combined transmission and dis-

tribution systems has been presented. The algorithm yields

acceleration of the simulation procedure in two ways. On

the one hand, the procedure is accelerated numerically, by

performing selective and infrequent Jacobian updates of the

decomposed sub-systems. On the other hand, it is accelerated

computationally, by exploiting the parallelization opportunities

inherent to domain decomposition algorithms.

The proposed algorithm is accurate, as the original system

of equations is solved with the same accuracy. It has the

ability to simulate a wide variety of disturbances. It exhibits

high numerical convergence rate, provided by Newton-type

algorithms.

 0

 150

 300

 450

 600

 750

 900

 1050

 1200

 1350

 1500

 1650

 1800

 1950

 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

W
a

ll
ti
m

e
 (

s
)

S
p

e
e

d
u

p

of cores

Simulated time=240s

VDHN=1053s

Wall time
Speedup

Figure 9. Case 2: Speedup

Along with the proposed algorithm, an implementation

based on the shared-memory parallel programming model has

been presented. The implementation is portable, as it can be

executed on any platform supporting the OpenMP API. It

can handle general power systems, as no hand-crafted, system

specific, optimizations were applied. Finally, it exhibits good

parallel performance on inexpensive, shared-memory, multi-

core computers.

REFERENCES

[1] D. Koester, S. Ranka, and G. Fox, “Power systems transient stability-
A grand computing challenge,” Northeast Parallel Architectures Center,

Syracuse, NY, Tech. Rep. SCCS, vol. 549, 1992.

[2] R. Green, L. Wang, and M. Alam, “High performance computing for
electric power systems: Applications and trends,” in Proc. of IEEE PES

General Meeting, 2011.

[3] U. D. Annakkage, N. K. C. Nair, Y. Liang, A. M. Gole, V. Dinavahi,
B. Gustavsen, T. Noda, H. Ghasemi, A. Monti, M. Matar, R. Iravani, and
J. A. Martinez, “Dynamic System Equivalents: A Survey of Available
Techniques,” IEEE Transactions on Power Delivery, vol. 27, pp. 411–
420, Jan. 2012.

[4] T. Short, Electric Power Distribution Handbook. Electric power engi-
neering series, Taylor & Francis, 2003.

[5] P. Kundur, Power system stability and control. McGraw-hill New York,
1994.

[6] B. Stott, “Power system dynamic response calculations,” Proceedings of

the IEEE, vol. 67, no. 2, pp. 219–241, 1979.

[7] Y. Saad, Iterative methods for sparse linear systems. Society for
Industrial and Applied Mathematics, 2nd ed., 2003.

[8] B. Chapman, G. Jost, and R. Van Der Pas, Using OpenMP: Portable

Shared Memory Parallel Programming. MIT Press, 2007.

[9] J. Chai and A. Bose, “Bottlenecks in parallel algorithms for power
system stability analysis,” IEEE Transactions on Power Systems, vol. 8,
no. 1, pp. 9–15, 1993.

[10] D. Fabozzi, A. Chieh, P. Panciatici, and T. Van Cutsem, “On simplified
handling of state events in time-domain simulation,” in Proc. of the 17th

Power Systems Computation Conference, 2011.

[11] T. Van Cutsem, “Description, modeling and simulation results of a test
system for voltage stability analysis,” Internal Report, University of
Liège, Sept. 2013. http://hdl.handle.net/2268/141234.

[12] A. Ishchenko, Dynamics and stability of distribution networks with

dispersed generation. PhD thesis, Dept. Electrical. Eng., Univ. TU/
E, the Netherlands, 2008.

[13] A. Ellis, Y. Kazachkov, E. Muljadi, P. Pourbeik, and J. Sanchez-Gasca,
“Description and technical specifications for generic WTG models: A
status report,” in IEEE PES Power Systems Conference and Exposition,
March 2011.

