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Abstract 18 

Hydrothermal liquefaction (HTL) is an emerging and promising technology for the 19 

conversion of wet biomass into bio-crude, however, little attention has been paid to the 20 

utilization of hydrothermal liquefaction wastewater (HTLWW) with high concentration of 21 

organics. The present study investigated biogas production from wastewater obtained from 22 

HTL of straw for bio-crude production, with focuses on the analysis of the microbial 23 

communities and characterization of the organics. Batch experiments showed the methane 24 

yield of HTLWW (R-HTLWW) was 184 mL/g COD, while HTLWW after petroleum ether 25 

extraction (PE-HTLWW), to extract additional bio-crude, had higher methane yield (235 26 

mL/g COD) due to the extraction of recalcitrant organic compounds. Sequential batch 27 

experiments further demonstrated the higher methane yield of PE-HTLWW. LC-TOF-MS, 28 

HPLC and gel filtration chromatography showed organics with molecular weight 29 

(MW)<1000 were well degraded. Results from the high-throughput sequencing of full-length 30 

16S rRNA genes analysis showed similar microbial community compositions were obtained 31 

for the reactors fed with either R-HTLWW or PE-HTLWW. The degradation of fatty acids 32 

were related with Mesotoga infera, Syntrophomonas wolfei et al. by species level 33 

identification. However, the species related to the degradation of other compounds (e.g. 34 

phenols) were not found, which could be due to the presence of uncharacterized 35 

microorganisms. It was also found previously proposed criteria (97 % and 98.65 % similarity) 36 

for species identification of 16S rRNA genes were not suitable for a fraction of 16S rRNA 37 

genes. 38 

Key Words: hydrothermal liquefaction wastewater; biogas production; degradation of 39 
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organics; microbial community compositions 40 

1. Introduction 41 

Hydrothermal liquefaction (HTL) is an attractive mean to generate renewable bio-energy 42 

from biomass. The organic components of biomass are converted into bio-crude under certain 43 

temperatures (200-350 oC) and pressures (4-22 MPa), and at the same time a large amount of 44 

wastewater containing various organic compounds is produced in the process (Fig 1) (Gai et 45 

al. 2015). Previous studies mainly focused on the characterization and potential utilization of 46 

the bio-crude (Davis et al. 2011, Xu and Lad 2008), and little attention was paid to the 47 

utilization of hydrothermal liquefaction wastewater (HTLWW) even though a significant 48 

fraction (20-50 %) of the organics in the biomass was converted and entered into HTLWW 49 

(Panisko et al. 2015, Tommaso et al. 2015, Xu and Lad 2008). HTLWW may contain 50 

cyclopentenones, phenols, acids et al. depending on the feedstocks and reaction conditions 51 

(Cheng et al. 2016, Panisko et al. 2015, Villadsen et al. 2012). Inappropriate disposal of 52 

HTLWW would result in the environmental pollution considering its high organic contents. 53 

The utilization of HTLWW is therefore important in order to achieve overall environmental 54 

and economical sustainability of the HTL process(Nelson et al. 2013). 55 

Anaerobic digestion is widely used in the treatment of organic wastes, which can reduce the 56 

environmental pollution of organic wastes and at the same time produce energy in the form of 57 

biogas. Only one previous study investigated the biogas potential of HTLWW, which was 58 

obtained from the HTL of algae (Tommaso et al. 2015). It was reported that around 44 %-61 % 59 

of the COD was removed and converted to biogas after anaerobic digestion, which indicated 60 

that part of the organics in HTLWW was not bio-degradable or even toxic to the 61 
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microorganisms. Therefore, the characterization of the organic components in HTLWW and 62 

elucidation of their degradation during anaerobic digestion are crucial in order to make full 63 

utilization of HTLWW. Lignocellulosic materials, different from algae, are abundant in the 64 

world, and their utilization via HTL has been studied before (Gan 2012, Kumagai et al. 2007, 65 

Tekin et al. 2014), however, the HTLWW remains to be investigated. Since the organic 66 

components of HTLWW strongly depend on the feedstocks, it is necessary to investigate the 67 

biogas potential of HTLWW obtained from the HTL of lignocellulosic materials. In addition, 68 

several previous studies not only extract the bio-crude from solid phase as shown in Fig 1, 69 

but also from HTLWW (Leng et al. 2015, Shuping et al. 2010, Yin et al. 2010). The organic 70 

solvents could extract some compounds like ketones, phenols and aloxyphenolic according to 71 

Yang’s research (Yang et al. 2014), which were recalcitrant or inhibitory molecules for 72 

anaerobic digestion. Therefore, the extraction of HTLWW by organic solvents before 73 

anaerobic digestion could potentially increase the biogas yield (Cheng et al. 2016, Mottu et al. 74 

2000). However, the effects of organic solvents extraction on the subsequent biogas 75 

production from HTLWW was still unknown. Organic solvents, including tetrahydrofuran, 76 

toluene, ethyl acetate, acetone, ether, methylene chloride, methanol petroleum ether and 77 

n-hexane, are organic solvents that can be used to extract bio-oil from HTL mixture products 78 

and their extraction properties were main determine by their polarity (Yang et al. 2014). 79 

Some organic solvents are highly toxic to human and therefore only four solvents with 80 

different polarities and less toxicity to human were chosen (Semenov 1986).” 81 

Anaerobic digestion involves various microorganisms for the degradation of organic 82 

compounds (Luo et al. 2016b). Considering the complex organics in HTLWW, it is necessary 83 
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to reveal the microbial communities responsible for the degradation of organics in HTLWW, 84 

what would provide in-depth understanding of anaerobic digestion of HTLWW. The rapid 85 

development of next-generation sequencing technologies makes it possible to reveal the 86 

diversity and structure of the microbial community, with high sequencing depth (Luo et al. 87 

2013). However, currently 16S rRNA genes analysis were mainly based on the second 88 

generation sequencing (e.g. 454 GS Junior (Roche), Miseq (Illumina), and Ion Torrent PGM 89 

(Life Technologies)), which could only make sequencing on short sequences (< 600bp) and 90 

were not able to provide reliable taxonomic information down to genus and species level 91 

(Loman et al. 2012, Mosher et al. 2013). Single molecule, real time sequencing (i.e. third 92 

generation sequencing) by PacBio RS SMRT chip can generate longer sequences than the 93 

second generation sequencing, and is possible to make high-throughput sequencing of the 94 

full-length 16S rRNA genes (Mosher et al. 2013, Mosher et al. 2014). A previous study 95 

demonstrated the sequences obtained from high-throughput sequencing of full-length 16S 96 

rRNA genes of Shewanella oneidensis MR1 by Pacific Biosciences RS II sequencer can be 97 

accurately assigned to the species level (>99 % accuracy) (Mosher et al. 2014). However, 98 

high-throughput sequencing of full-length 16S rRNA genes has not been used for the 99 

microbial community analysis in mixed cultures (e.g. anaerobic digestion) until now. 100 

Based on the above considerations, the present study aimed to elucidate the mechanisms 101 

involved in biogas production from HTLWW obtained from HTL of rice straw. The biogas 102 

production potentials from HTLWW extracted by various commonly used organic solvents 103 

were investigated, the organics and their removal during anaerobic digestion were 104 

characterized, and the microbial community involved in the anaerobic digestion of HTLWW 105 
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were revealed by high-throughput sequencing of full-length 16S rRNA genes using Pacific 106 

Biosciences RS II sequencer for the first time. 107 

2. Material and methods 108 

2.1. HTLWW 109 

The HTLWW was obtained from a pilot-scale hydrothermal reactor with a volume of 80 L. 110 

3.0 kg of minced rice straw mixed with 47 kg of water were added into the reactor and then 111 

heated to 280 oC at 12.0 MPa for 30 min (Chen et al. 2015). The mixture was filtered by a 112 

300-mesh screen after HTL, and the filtrate was HTLWW. 113 

HTLWW was then extracted by petroleum ether (PE), cyclohexane (CH), dichloromethane 114 

(DM) and ethyl acetate (EA) to separate parts of the organic components (Duan and Savage 115 

2011, Yang et al. 2014), and they were named as PE-HTLWW, CH-HTLWW, DM-HTLWW 116 

and EA-HTLWW, respectively. The raw HTLWW was named as R-HTLWW. For the 117 

extraction, 125 mL organic solvent was added to a 500 mL bottle, and 250 mL HTLWW was 118 

also added. The bottles were then capped tightly and shaken with the speed of 120 rpm for 10 119 

min by a shaker (Duan and Savage 2011). The mixture was then transferred to a funnel for 120 

the separation of organic solvents and HTLWW. The above procedure was repeated for the 121 

separated HTLWW for the second time extraction. The four samples PE-HTLWW, 122 

CH-HTLWW, DM-HTLWW and EA-HTLWW were then obtained. They were all placed in a 123 

refrigerator at -20 oC for further usage. Table 1 presents the COD values of the HTLWW 124 

samples and the saturated organic solvents in water. 125 

2.2. Biogas production potentials of HTLWW 126 

Batch experiments were conducted to determine the biogas potentials of HTLWW extracted 127 
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by various organic solvents. 118 mL serum bottles were used. 15 mL inoculum and 45 mL 128 

BA medium containing a certain amount of HTLWW were added to each bottle. The initial 129 

COD value of all the bottles were 0.75 g/L by adding different amounts of HTLWW to the 130 

BA medium. The pH value was adjusted to 7.5. All the bottles were flushed with N2 for 5 min 131 

to remove oxygen, and then sealed with butyl rubber stoppers and aluminum screw caps. All 132 

the bottles were placed in an incubator with constant temperature 37 oC. The inoculum was 133 

obtained from an anaerobic reactor treating cassava stillage in an ethanol plant (Taicang, 134 

Suzhou, China). The bottles with only inoculum were used as control. All the experiments 135 

were done in triplicates. 136 

2.3. Semi-continuous experiments 137 

Based on the batch experiments, R-HTLWW and PE-HTLWW were used for the anaerobic 138 

sequencing batch reactors (ASBR) to determine the long-term biogas production 139 

performances, the degradation of organics, and the microbial community involved in the 140 

degradation of organics. ASBR has been widely used in previous studies for the treatment of 141 

organic wastewater (Angenent et al. 2002, Timur and Özturk 1999). Two 800 mL ASBR were 142 

used with working volume 400 mL. The reactors were fed every two days. The reactors were 143 

settled for 2 hours before discharging the supernatant, and new substrates were then fed to the 144 

reactors. The hydraulic retention time was controlled at 5 days and sludge retention time was 145 

controlled at 40 days by discharging excess sludge periodically for each reactor. Initially, 10 146 

g/L glucose was used as the substrate to ensure both reactors had comparable performances. 147 

Then reactor R was fed with R-HTLWW, and reactor PE was fed with PE-HTLWW. For 148 

reactor R, R-HTLWW was diluted to the same COD concentration as PE-HTLWW in order 149 
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to have the same organic loading rate as reactor PE. 150 

2.4 High-throughput sequencing of full-length 16S rRNA genes and bioinformatic 151 

analysis  152 

Samples were obtained during the steady-states of both reactors. Total genomic DNA was 153 

extracted from each sample using QIAamp DNA Stool Mini Kit (QIAGEN, 51504). The 154 

quantity and purity of the extracted DNA were checked by Nanodrop 2000. PCR was then 155 

conducted with the primers 27F (AGAGTTTGATCCTGGCTCAG) and 1492R 156 

(GGTTACCTTGTTACGACTT) for bacteria and the primers 20F 157 

(TTCCGGTTGATCCYGCCRG) and 1492R for archaea (DeLong 1992). All PCR 158 

amplifications were performed using the Taq PCR Core Kit (QIAGEN) with 1 uL template 159 

DNA and 20 pmol of each primer. The PCR conditions for bacteria were: 95 °C for 5 min, 28 160 

cycles of three steps: 95 °C for 45 s, 55 °C for 1 min, and 68 °C for 2 min, followed by a final 161 

step at 68 °C for 7 min. The PCR conditions for archaea were: 95 °C for 2 min, 27 cycles of 162 

three steps: 94 °C for 45 s, 54 °C for 45 s, and 72 °C for 1.5 min, followed by a final step at 163 

72 °C for 7 min. The samples were sent out for sequencing in one cell of the Pacific 164 

Biosciences RS II platform combined with the P4/C2 chemistry. The obtained sequences 165 

were deposited into the European Nucleotide Archive (ENA) with accession number 166 

PRJEB14373. The onboard software provided on the Pacific Biosciences RS II sequencer 167 

was used to eliminate CCS (circular consensus sequences) with <99 % predicted accuracy. 168 

The low-quality sequences (no exact matches to the forward and reverse primers, and length 169 

<1300 bp) and chimeras were removed from the raw sequencing data by MOTHUR program. 170 

The numbers of high quality sequences were 7911 (R) and 9099 (PE) for bacteria with 171 
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average length of 1390 bp, 1667 (R) and 1905 (PE) for archaea with average length of 1450 172 

bp. The numbers of sequences were normalized to the same sequencing depths (7911 173 

sequences for bacteria and 1667 sequences for archaea) to facilitate the comparison between 174 

different samples. The sequences were clustered into operational taxonomic units (OTU) with 175 

cutoff 0.03. Rarefaction curves, Shannon diversity index, coverage were also analyzed by 176 

MOTHUR program. The sequences were phylogenetically assigned to taxonomic 177 

classifications by RDP Classifier with a confidence threshold of 80 %. RDP could only assign 178 

the sequences into genus level. In order to get species classification, all the sequences were 179 

aligned using BLASTN against NCBI 16S rRNA database with strict criteria (percentage 180 

identity at both 97 % and 98.65 %, and alignment length>1300 bp). Both 97 % and 98.65 % 181 

of percentage identity were proposed in previous studies for species identification (Kim et al. 182 

2014, Stackebrandt and Goebel 1994, Tindall et al. 2010). MEGAN software was then used 183 

to assign the sequences down to species level based on the BLASTN results (Huson et al. 184 

2007). The volumes of gases reported in the present study were at standard temperature and 185 

pressure. 186 

2.5. Analytical methods 187 

COD was measured according to APHA (APHA 1995). Gas produced during the anaerobic 188 

digestion was detected by GC with thermal conductivity detector. Helium was used as the 189 

carrier gas (Liu et al. 2016). GC–MS was used to characterize the chemical compositions of 190 

organics extracted from HTLWW by different organic solvents. Gas chromatography was 191 

performed on a 30 m HP-INNOWax quartz capillary column with 0.25 mm inner diameter 192 

(I.D.) and 0.25 �m film thickness with injection temperature of 250 °C. The column was 193 
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initially held at 60 °C for 2 min and heated to 250 °C and held there for 10 min. Helium was 194 

used as the carrier gas (1.0 mL/min). A NIST Mass Spectral Database was used for 195 

compound identification. HPLC was used to measure the organic acids in the HTLWW 196 

samples as described previously (Chen et al. 2015). LC-TOF-MS was used to provide a 197 

detailed overview of the organic compounds in the HTLWW samples. It was performed on a 198 

Waters ACQUITY UPLC system equipped with a binary solvent delivery manager and a 199 

sample manager, coupled with a Waters Micromas Q-TOF Premier Mass Spectrometer 200 

equipped with an electrospray interface. Acquity BEH C18 column (100 mm×2.1 mm i.d., 201 

1.7 µm; Waters, Milford, USA) was maintained at 45 °C and eluted with gradient solvent 202 

from A:B (99:1) to A:B (0:100) at a flow rate of 0.40 mL/min, where B was acetonitrile (0.1 % 203 

(v/v) formic acid) and A was aqueous formic acid (0.1% (v/v) formic acid). The wavelength 204 

was 280 nm and the injection volume 5.00 ul, column temperature was 50.0 °C. The source 205 

and desolvation temperature were 115 °C and 350 °C respectively. The UV–Vis spectrum 206 

was studied using absorptions at 254 wavelength, and the analysis was carried out using a 207 

double-beam UV–Vis spectrophotometer from Shimadzu (UV-1800). The molecular weight 208 

distributions of HTLWW before and after anaerobic digestion were determined by a GFC 209 

analyzer (LC-10ADVP, Shimadzu) according to a previous study (Wen et al. 2012). 210 

3. Results and discussion 211 

3.1. Biogas production potentials of HTLWW extracted by different organic solvents 212 

Fig 2(A) presents the cumulative methane yields of HTLWW extracted by different organic 213 

solvents during the biogas potential tests. The methane yields increased fast in the first 10 214 

days for the samples not including DM-HTLWW, which could be related with the 215 
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degradation of easy biodegradable organics. Slight increase of methane yields were observed 216 

after 10 days for R-HTLWW, PE-HTLWW and CH-HTLWW. Fig 2(B) shows the methane 217 

yields of the five HTLWW after 27 days digestion. The methane yield of R-HTLWW (184 218 

mL/g COD) was much lower than the theoretical value (350 mL/g COD), and it indicated 219 

there were organics which were difficult to be biodegraded. However, the methane yield of 220 

HTLWW was increased after extraction by the organic solvents except DM, which showed 221 

that proper organic solvents could improve the anaerobic biodegradability of HTLWW. 222 

Further study was conducted to characterize the different HTLWW in order to understand 223 

how the organic solvents extraction affected its biodegradability. 224 

3.2 Characterization of HTLWW extracted by different organic solvents 225 

The high methane yield of EA-HTLWW was mainly attributed to the degradation of EA 226 

rather than the organics in the HTLWW since EA contributed to more than 98% of the COD 227 

in EA-HTLWW (Table 1), and the high methane yield of EA itself was shown in Fig S1. The 228 

negligible methane yield of DM-HTLWW was due to the toxicity of DM to the methanogens 229 

since no methane was produced when DM alone was used (Fig S1), and the toxicity of DM to 230 

methanogens was also reported in previous studies (Kim et al. 1996, McBride and Wolfe 231 

1971). The above results showed that both EA and DM were not suitable as organic solvents 232 

since they would increase the difficulty of the subsequent utilization of HTLWW. Both PE 233 

and CH had low solubility as demonstrated by their contribution to the total COD in Table 1. 234 

Higher methane yield was obtained from PE-HTLWW compared to CH-HTLWW and 235 

R-HTLWW, which indicated that PE might have extracted more organics that are difficult to 236 

be biodegradated and thereby improved the biodegradability of HTLWW.  237 
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GC-MS was conducted to characterize the organics that extracted by different solvents Fig S2, 238 

and the relative amounts of major compounds extracted by four different organic solvents 239 

were summarized in Table S1. For PE and CH, the two weak polar solvents extracted weak 240 

polar components including furans, ketones and phenols. In general, more organics were 241 

extracted by PE compared to CH, which might result in the increased methane yield of 242 

PE-HTLWW since furans, ketones and phenols were recalcitrant or inhibitory molecules for 243 

anaerobic digestion (Speece 1983). Compounds detected from DM and EA organic phases 244 

had higher response values than those from PE and CH organic phases in terms of both 245 

quantities and types, which was consistent with their higher extracting yields (Table 1), and 246 

the results were also agreed with Yang’s (Yang et al. 2014) study where DM and EA with 247 

higher polarity were found to extract more organic acids, alcohol, ketones and phenols since 248 

many polar organic can be produced in HTL process. As GC-MS in our study only detected 249 

the extracted compounds by organic solvents, the organic acids in the HTLWW, which was 250 

shown to be dominant in the HTLWW in a previous study (Panisko et al. 2015), were further 251 

analyzed by HPLC, and the results were show in Table 2. The concentrations of residual 252 

organic acids in HTLWW after extraction decreased with the increase of solvent polarity. 253 

Lactic acid, acetic acid and propionic acid, which were easy to be converted to methane (Jeris 254 

and McCarty 1965, Vandenberg et al. 1976), were not extracted by PE and CH.  255 

3.3 Biogas production from R-HTLWW and PE-HTLWW in ASBR 256 

The two reactors were operated for around 100 days until steady-states were achieved (Fig 257 

S3). The methane yield (153 mL/g COD) of R-HTLWW was significantly higher than that 258 

(218 mL/g COD) of PE-HTLWW (P<0.01, ANOVA). The higher methane yield from 259 
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PE-HTLWW compared to R-HTLWW was consistent with the batch experiments. However, 260 

the methane yields from both PE-HTLWW and R-HTLWW were relatively lower than that 261 

from batch experiments, which could be due to the short HRT since the batch experiments 262 

allowed the full conversion of biodegradable organics. The above results further 263 

demonstrated that PE extraction improved the biodegradability of HTLWW in a certain 264 

extent. 265 

3.4 Degradation of organic compounds in ASBR 266 

The UV-VIS (Fig S4) of R-effluent and PE-effluent spectral absorption decreased compared 267 

to R-HTLWW and PE-HTLWW, respectively, which was related with the degradation of 268 

organic compounds in the anaerobic reactors. However, the absorption between 210-250 nm 269 

and 260-300 nm of R-effluent and PE-effluent suggested that ketones and phenols were not 270 

fully degraded in the anaerobic reactors (Cheng et al. 2016), which could resulted in the 271 

lower methane yield of both R-HTLWW and PE-HTLWW compared to the theoretical value 272 

(350 mL/gCOD). 273 

LC-TOF-MS identified 785 organic compounds from the four samples. As shown in Fig 3, 274 

the dominant organic compounds were well degraded, and the detected organic compounds in 275 

R-effluent and PE-effluent were less compared to R-HTLWW and PE-HTLWW, further 276 

indicating that most of the organic compounds were degraded in anaerobic reactors. NMDS 277 

analysis based on LC-TOF-MS results also showed a clear separation of the samples of 278 

influent and effluent. The main organic compounds as determined by GC-MS and HPLC 279 

were also identified from LC-TOF-MS as shown in Table S2. It is obvious that most of the 280 

organic acids, ketones and about half of the phenols were degraded in the anaerobic reactors 281 
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and the organics left in the effluent were mainly phenols. The full degradation of organic 282 

acids were also demonstrated by HPLC analysis as shown in Table 2. Organic acids are 283 

preferable substrates for biogas production and therefore they could be fully 284 

degraded. Although phenols were reported to be biodegradable under mesophilic conditions 285 

(Agarry et al. 2008, Karlsson et al. 2000, Knoll and Winter 1989), there were various types of 286 

phenols detected in HTLWW (Table S1), which might result in the partly degradation of the 287 

phenols. 288 

Since LC-TOF-MS only detected compounds with molecular weight (MW) less than 1000 in 289 

our study as shown in Table S2, the MW distributions of compounds in the samples were 290 

further measured by GFC. As shown in Fig 4, there were two peaks for R-HTLWW and 291 

PE-HTLWW, which corresponded to the MW 1798 and 180. The results indicated that a 292 

considerable amount of organics in the HTLWW were higher MW compounds, and it might 293 

be the polymers of HTL intermediate like carbonhydrates, cellulose, hemicellulose, lignin 294 

and repolymerization compounds (Zhu et al. 2015). After anaerobic digestion, most of the 295 

compounds with MW less than 1000 were degraded, which was consistent with the 296 

LC-TOF-MS and HPLC results. However, one peak corresponding to MW 9300 was still 297 

observed for samples R-effluent and PE-effluent, which suggested that the organics with MW 298 

higher than 1000 were not well degraded. Therefore, the lower methane yields of both 299 

R-HTLWW and PE-HTLWW compared to the theoretical value (350 mL/gCOD) could be 300 

mainly attributed to the presence of MW higher than 1000 in the HTLWW. Furthermore, a 301 

small peak with MW around 180 was observed for both R-HTLWW and PE-HTLWW, which 302 

might relate with the organics which were not fully biodegraded as mentioned before. 303 
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3.5 Microbial community compositions as revealed by high-throughput sequencing of 304 

full-length 16S rRNA genes 305 

The samples obtained from the continuous reactors were then used for microbial community 306 

analysis. The rarefaction curves of all the samples at 0.03 distance is shown in Fig S5. The 307 

curves of bacteria and archaea were overlapped for both samples, and it indicated samples R 308 

and PE had similar microbial richness, which was also reflected by the similar OTU numbers 309 

(Bacteria, around 1500 for both samples; Archaea, around 210 for both samples) (Table S3). 310 

The results showed that PE extraction of HTLWW did not have obvious effects on the 311 

microbial community richness. It should be noted that the sequencing depths for both bacteria 312 

(7911) and archaea (1167) were still not enough to cover the whole microbial diversity since 313 

plateaus were not achieved for all the rarefaction curves. However, the coverage values for 314 

bacteria (>86%) and archaea (>90%) indicated that most common OTUs were detected. The 315 

coverage values were relatively lower compared to previous studies (e.g. coverage value 97.4% 316 

with sequencing depth 50000 for bacteria (Luo et al. 2013), coverage value 98.7% with 317 

sequencing depth 63699 for bacteria (Pan et al. 2015)), which was mainly due to the 318 

sequencing depths was relatively lower in our study. However, it should be noted all the 319 

above mentioned studies were based on high-throughput sequencing of partial 16S rRNA 320 

genes (less than 500 bp). The Shannon diversity index provides both species richness and the 321 

evenness of the species in the microbial community (Lu et al. 2012). Similar with the 322 

microbial richness, the microbial diversities were not affected by PE extraction of HTLWW 323 

for both bacteria (around 5.44) and archaea (around 3.3). The higher OTU numbers and 324 

Shannon diversity of bacteria compared to archaea were consistent with previous studies 325 
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(Luo et al. 2013, Zhang et al. 2009), further showing bacteria were more diverse than 326 

archaea. 327 

The taxonomic classification of bacterial sequences by RDP classifier is shown in Fig 5(A). 328 

The similar taxonomic distribution in phylum, class and genus levels were observed for R 329 

and PE, further indicating PE extraction did not affect the bacterial communities. It could be 330 

due to that PE might only extract unbiodegradable organic compounds and therefore the 331 

degraded organic compounds in both reactors R and PE were similar. Firmicutes, 332 

Synergistetes, Chloroflexi, and Bacteroidetes were dominant phyla, and their dominance in 333 

mesophilic anaerobic reactors were also reported previously (Luo et al. 2016a, Sundberg et al. 334 

2013). Although Thermotogae had high relative abundance, its dominance was mainly found 335 

in thermophilic anaerobic reactors (Shi et al. 2013). Genus level identification indicated 336 

Thermotogae were mainly composed of Mesotoga, which was recently reported to be the 337 

only mesophilic genus (Nesbø et al. 2012). Mesotoga was reported to use lactic acid and its 338 

dominance might be related with the degradation of lactic acid as seen in Table 2. Clostridia 339 

and Synergistia were the dominant classes in phylum Firmicutes and Synergistetes, 340 

respectively, and they were known as syntrophic partners together with hydrogenotrophic 341 

methanogens for the efficient degradation of lactic acid and VFAs (Li et al. 2016). Their 342 

dominances were most probably related with the high concentrations of lactic acid and VFAs 343 

in HTLWW (Table 2). The relative abundances of Anaerolineae and Bacteroidia were 344 

between 7-9 % in both samples, and they were capable of hydrolysis and fermentation of 345 

carbohydrates to VFAs (Narihiro and Sekiguchi 2007, Robert et al. 2007) , however, the 346 

carbohydrates were not detected in our study (data not shown), which indicated that their 347 
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presence might be related with the degradation of other organics. The genus level 348 

classification showed that higher percentages (around 40 %) of sequences were unclassified, 349 

which was consistent with previous studies (Lu et al. 2012, Luo et al. 2013), and it could be 350 

attributed to that most of biogas reactor’s communities are still uncharacterized (Bassani et al. 351 

2015). The dominant genus were Syntrophobotulus, Mesotoga, and T78. Syntrophobotulus 352 

glycolicus is currently the only known member of the genus Syntrophobotulus, however, it 353 

can only degrade glyoxylate (Yin et al. 2010), which was not detected in our study. Further 354 

species level identification did not detected Syntrophobotulus glycolicus (Table 3), and it 355 

indicated the genus Syntrophobotulus might contain unknown species with different 356 

metabolic potentials, which deserves further investigation. The role of Mesotoga was 357 

mentioned previously for the utilization of lactic acid, while the exact role of T78 was still 358 

unknown (Goux et al. 2015). 359 

Species level identification of full-length 16S rRNA gene sequences would provide more 360 

information on the microbial compositions and their metabolic potentials. Table 3 361 

summarized the identified bacterial species. At 97 % similarity, the sequences assigned to 362 

species level were 5.6 % and 5.1 % of the total sequences for R and PE, respectively. 363 

However, increased sequences (9.9% for R and 8.8% for PE) assigned to species level were 364 

obtained at 98.65 % similarity. It would be expected less sequences would be assigned to 365 

species level with more critical criteria. The higher sequences assigned at 98.65% similarity 366 

was attributed to the algorithm (lowest common ancestor) used by MEGAN (Huson et al. 367 

2007). For instance, one sequence might match two or more species in NCBI 16S rRNA 368 

genes database at 97 % similarity, therefore MEGAN could not assign the sequence to 369 
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species level. However, the matched species might decrease to one at 98.65% similarity, and 370 

therefore it could be assigned to species level. Fig S6 shows that 550 sequences were 371 

assigned to the genus Mesotoga, however, only 172 sequences were further assigned to 372 

species Mesotoga infera and Mesotoga prima at 97 % similarity, while 488 sequences were 373 

assigned to the genus Mesotoga at 98.65 % similarity and all of the sequences were further 374 

assigned to species level (Fig S8). The above results indicated that 97 % similarity was not 375 

enough to make species level identification. Although more sequences were assigned to 376 

species level at 98.65 %, still the genus Trichococcus was not further assigned to species 377 

level (Fig S8 and S12). The sequences belonging to Trichococcus (Fig S12) were also 378 

extracted, and it was found that all the sequences had more than one match to the species in 379 

NCBI 16S rRNA genes database at 98.65 % similarity (Table S4). 98.65 % was previously 380 

proposed as the threshold for differentiating two species based on the analysis of 6787 381 

genomes belonging to 1738 species (Kim et al. 2014). However, 98.65 % was not the optimal 382 

value in our study since microbial community in anaerobic reactor was more diverse. It 383 

should be noted that 98.65 % was still suitable for the species level identification of 384 

sequences belonging to most genus except Trichococcus (Fig S8 and S12). As shown in Table 385 

2, lactic acid and VFAs were well degraded during anaerobic digestion, and their degradation 386 

could be correlated with the several known species as shown in Table 3. Mesotoga infera, 387 

Mesotoga prima, and Petrimonas sulfuriphila were reported to use lactic acid as carbon 388 

source (Ben Hania et al. 2015, Grabowski et al. 2005). Syntrophobacter sulfatireducens were 389 

known as propionate-oxidizing bacteria (Chen et al. 2005). Syntrophomonas wolfei, 390 

Syntrophus aciditrophicus and Syntrophus buswellii were demonstrated to be able to degrade 391 
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saturated four to eight fatty acids (Jackson et al. 1999, McInerney et al. 1981, Wallrabenstein 392 

and Schink 1994). Both Syntrophus aciditrophicus and Syntrophus buswellii could also 393 

degrade benzoate, which is the intermediate during phenol degradation (Na et al. 2016). 394 

However, the species for the degradation of phenols, ketones and alkenes were not detected, 395 

which were major organic compounds in HTLWW and were degraded in different extents 396 

during anaerobic digestion (Table S2). There were two reasons. First and most important, 397 

only a fraction of the bacterial species were recognized and characterized until now (Bassani 398 

et al. 2015, Schloss and Handelsman 2005), and therefore many new species remained to be 399 

explored, which was reflected by the large numbers of “not assigned” and “no hits” 400 

sequences as seen in Fig S6-S13. Second, the sequences had high similarity to several known 401 

species, and therefore they were not assigned to the species as discussed before. 402 

Fig 5(B) shows the taxonomic classification of archaea sequences by RDP classifier, and the 403 

similar taxonomic distribution in order and genus levels for R and PE also suggested PE 404 

extraction did not affect the archaea communities. The order Methanosarcinales was 405 

dominant in both samples, and it was composed by the genus Methanosaeta and 406 

Methanosarcina. The microorganisms belonging to Methanosaeta were strict aceticlastic 407 

methanogens, and the higher percentage of Methanosaeta compared to Methanosarcina was 408 

due to the low acetic acid concentration in biogas reactors as seen in Table 2 (Karakashev et 409 

al. 2005). All the rest sequences were assigned to the orders Methanomicrobiales and 410 

Methanobacteriales, mediating hydrogenotrophic methanogenesis, which was consistent with 411 

the syntrophic degradation of fatty acids and the detected syntrophic species as described 412 

before. The genus Methanoculleus (Order Methanomicrobiales) was the main 413 
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hydrogenotrophic methanogenesis genus, which was also found to be dominant in other 414 

biogas reactors (Jaenicke et al. 2011, Krause et al. 2008). The species level identification by 415 

MEGAN showed that 40.9 % and 47.9 % of the sequences were assigned to species level at 416 

98.65 % similarity, which was much higher than that (<10 %) for bacteria. It could be due to 417 

the higher diversity of bacteria compared to archaea as seen in Table S3 and as reported in 418 

previous studies (Luo et al. 2013, Zhang et al. 2009), which resulted in the more 419 

uncharacterized species in bacteria than that in archaea. The overwhelming majority of the 420 

sequences were assigned to Methanosaeta concilii. Although more than 200 sequences were 421 

assigned to the genus Methanosarcina (Fig S9 and S13), only very few sequences were 422 

further classified down to species level. The results further indicated that the 98.65 % 423 

threshold for differentiating two species was not fully appropriate for all the archaea genus. 424 

3.6 Outlook 425 

The present study showed that HTLWW contains relatively higher amount of 426 

unbiodegradable organic compounds (e.g. phenols and other high MW (>1000) organic 427 

compounds), which were still left in HTLWW after anaerobic digestion. Therefore, further 428 

studies via aerobic biodegradation or chemical oxidation should be conducted to remove the 429 

residual organic compounds before discharging to the environment (Jang et al. 2015, Moreira 430 

et al. 2015). In addition, the usage of catalysis and changes of the HTL conditions also 431 

deserves further investigation in order to decrease the formation of unbiodegradable organic 432 

compounds without affecting the bio-crude production (Anastasakis and Ross 2011, Tekin 433 

and Karagöz 2013). For the first time, the third generation sequencing by PacBio RS SMRT 434 

was applied for the high-throughput sequencing of full-length 16S rRNA genes of mixed 435 
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cultures. The present study showed that the previously proposed thresholds (97 % and 98.65 % 436 

similarity) for species identification of 16S rRNA genes were not suitable for a fraction of 437 

16S rRNA genes since different species might have high similarity (>98.65%) (Table S4). 438 

Therefore, the species level identification of 16S rRNA genes based on similarity is still 439 

challenging and remains further investigation. In addition, high percentages of “not assigned” 440 

and “no hits” sequences for bacteria sequences were observed, which could be related with 441 

the uncharacterized bacteria, and it could be solved with the gradually increased numbers of 442 

characterized species in 16S rRNA gene database. Recently, there were studies focusing on 443 

the identification of the genomes of microorganisms from mixed cultures by metagenomic 444 

analysis, which is independent of traditional cultivation methods, and thereby it might expand 445 

the sequences in 16S rRNA gene database (Bassani et al. 2015, Campanaro et al. 2016). 446 

4.Conclusions 447 

The present study showed that the methane yield of HTLWW (R-HTLWW) was 184 mL/g 448 

COD, while HTLWW after petroleum ether extraction had higher methane yield (235 mL/g 449 

COD) due to the extraction of recalcitrant organic compounds. The higher methane yields of 450 

PE-HTLWW (225 mL/gCOD) compared to R-HTLWW (160 mL/gCOD) was also 451 

demonstrated in the continuous experiments. Further study showed that organics with 452 

molecular weight (MW)<1000 were well degraded by LC-TOF-MS, HPLC and gel filtration 453 

chromatography analysis. The results from high-throughput sequencing of full-length 16S 454 

rRNA genes showed that similar microbial community compositions were obtained for the 455 

reactors fed with either R-HTLWW or PE-HTLWW, and the degradation of fatty acids were 456 

related with Mesotoga infera, Syntrophomonas wolfei et al. by species level identification. 457 
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However, the species related to the degradation of other compounds (e.g. phenols) were not 458 

found, and it could be due to the presence of uncharacterized microorganisms. The study also 459 

showed that previously proposed criteria (97 % and 98.65 % similarity) for species 460 

identification of 16S rRNA genes were not suitable for a fraction of 16S rRNA genes. 461 
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Table 1 COD values of HTLWW and organic solvents 

Organic 
solvents 

Agent 
polarity 

Saturated 
solvent 
(gCOD/L) 

HTLWW 
(gCOD/L) 

COD contributed by 
organic solvents (%) 

COD extracting 
percent (%) 

- - - 20.74 - - 

PE 0.01 0.09 15.99 0.56 23.33 

CH 0.1 0.22 17.63 1.25 16.06 

DM 3.4 7.95 13.28 59.86 74.30 

EA 4.3 146.35 148.90 98.29 87.70 
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Table 2 The concentrations of organic acids (mg/L) 

 

Name 
R- 

HTLWW 
PE-HTLW

W 
CH-HTL

WW 
DM-HTLW

W 
EA-HTL

WW 
R- 

effluent 
PE- 

effluent 

Lactic acid 3722 3708 3698 1628 592 – – 

Acetic acid 1802 1792 1782 740 – – – 

Propionic acid 680 657 657 399 – – – 

N-butyric acid 281 289 260 59 – – – 

Isovaleric acid 146 142 133 – – – – 
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Table 3 Species level identification of the full-length 16S rRNA sequences 

*“Others” are the species with numbers of sequences less than 5 

  
Number of sequences  

(97% Similarity) 
Number of sequences 
(98.65% Similarity) 

R PE R PE 

Bacteria 
Acinetobacter seohaensis 5 0 3 0 
Advenella faeciporci 9 2 0 0 
Alkalibacter saccharofermentans 9 5 0 0 
Aminivibrio pyruvatiphilus 10 12 0 2 
Halothiobacillus neapolitanus 15 6 14 5 
Mesotoga infera 169 185 483 519 
Mesotoga prima 3 8 5 9 
Ornatilinea apprima 14 8 10 4 
Parasporobacterium paucivorans 100 93 25 21 
Petrimonas sulfuriphila 5 5 5 5 
Pseudomonas caeni 4 7 1 3 
Pseudomonas stutzeri 2 1 6 5 
Syntrophobacter sulfatireducens 25 2 23 2 
Syntrophomonas wolfei 28 37 3 3 
Syntrophus aciditrophicus 3 1 14 15 
Youngiibacter fragilis 9 6 186 89 
Others* (28 species) 30 26 9 13 

Total 440 (5.6%) 404 (5.1%) 787 (9.9%) 695 (8.8%) 
Archaea 
Methanosaeta concilii 746 896 666 792 
Methanoculleus palmolei 90 109 0 0 
Methanomassiliicoccus luminyensis 30 32 0 0 
Others* (11 species) 16 13 17 7 

Total 
882 

 (52.9%) 
1050 

(62.9%) 
683 

(40.9%) 
799 

(47.9%) 
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Fig 1 Hydrothermal liquefaction process 
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(A)                                  (B) 

Fig 2 Biogas production potentials of HTLWW (A) time courses of methane 
production (B) methane yields 
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 Fig 3 Heatmap (A) and NMDS (B) analysis of the samples based on LC-TOF-MS 
results 
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Fig 4 GFC analysis of the samples 
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 Fig 5 Taxonomic classification of bacteria (A) and archaea (B) sequences based on the high-throughput sequencing of full-length 
16S rRNA genes 
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Highlights: 

� The methane yield of HTLWW was increased after petroleum ether extraction 

� Organics in HTLWW with molecular weight (MW)<1000 were well degraded  

� High-throughput sequencing of full-length 16S rRNA genes was applied 

� Microbial community compositions were analyzed down to the species level 


