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Distributed Two-Step Quantized Fusion Rules via

Consensus Algorithm for Distributed Detection in

Wireless Sensor Networks
Edmond Nurellari, Des McLernon, Member, IEEE, and Mounir Ghogho, Senior Member, IEEE

Abstract—We consider the problem of distributed soft deci-
sion fusion in a bandwidth-constrained spatially uncorrelated
wireless sensor network (WSN). The WSN is tasked with the
detection of an intruder transmitting an unknown signal over a
fading channel. Existing distributed consensus-based fusion rules
algorithms only ensure equal combining of local data and in
the case of bandwidth-constrained WSNs, we show that their
performance is poor and does not converge across the sensor
nodes (SNs). Motivated by this fact, we propose a two-step
distributed quantized fusion rule algorithm where in the first
step the SNs collaborate with their neighbors through error-free,
orthogonal channels (the SNs exchange quantized information
matched to the channel capacity of each link). In the second
step, local 1-bit decisions generated in the first step are shared
among neighbors to yield a consensus. A binary hypothesis testing
is performed at any arbitrary SN to optimally declare the global
decision. Simulations show that our proposed quantized two-step
distributed detection algorithm approaches the performance of
the unquantized centralized (with a fusion center) detector and
its power consumption is shown to be 50% less than the existing
(unquantized) conventional algorithm.

Index Terms—Distributed detection, soft decision, quantized
weighted average consensus, wireless sensor networks.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) are spatially de-

ployed over a field to monitor certain physical or

environmental phenomena, to detect relevant quantities and to

perform decision making functions. Because of their relatively

low cost and robustness to sensor node (SN) failures they are

receiving significant attention. However, there are a number of

different strategies as to how the test statistics from each SN

will be used in order to arrive at a final decision. We will first

give a brief review before introducing our proposed approach.

First consider the centralized solution where noisy obser-

vations collected from spatially distributed local SNs are sent

(inter-sensor collaboration is not considered) to a global fusion

center (FC) for a final decision [1]-[12]. Then, there are some

recent publications [13]-[14] (in the context of estimation)

that considered the effect of inter−sensor collaboration on

the estimation performance. Here, the local SNs collaborate
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through error-free, low cost transmission links (defined by the

symmetric adjacency matrix). After the collaboration stage,

the SNs (which in general can be a subset of all SNs) report

to a FC where the final decision is made. Reference [13]

proposes an efficient collaboration strategy in a distributed

fashion (as opposed to [15] where this optimal collaboration

strategy is computed at a FC) by means of using only local SNs

observations. While the authors in [13] claim to reduce the FC

control overhead, [14] derives the optimum power allocation

scheme constraint on the maximum total network power

budget in order to improve the quality of the estimation back

at the FC. These two hybrid approaches (a SN collaboration

stage followed by reporting to a FC), like the first approach (no

collaboration stage and every SN reports directly to a FC), rely

on the integrity of the FC. Furthermore, collecting information

at the FC lacks scalability, and may require large amounts of

energy and communication resources [16].

The second approach is a fully distributed strategy
(i.e., without a FC) [17]-[26], where the SNs exchange local

information iteratively among their neighbors and are capable

of reaching a global optimum decision. The authors of [17]

and [18] adopt the diffusion-based protocol and propose a

new diffusion LMS algorithm while [19] develop a fully

distributed consensus-based LMS algorithm that outperforms

the existing (relying on information diffusion) alternatives.

The authors of [20] design a bio-inspired algorithm that can

achieve globally optimal distributed decisions while in [21]

they investigate the consensus problem in the presence of

propagation delays. Reference [21]-[27] employ the iterative

distributed consensus algorithm [28] for distributed inference.

But these approaches consider ideal exchange of information

among all the SNs, and as the SNs are battery operated (i.e.,

with limited energy available on-board) this assumption is

unrealistic. Furthermore, practical WSN scenarios suffer from

channel impairments such as fading and attenuation. Recently,

to address the problem of consensus algorithms with quantized

communications, a number of different approaches have been

proposed. The authors in [29] propose a probabilistic quan-

tization scheme that is shown to reach a consensus (almost

surely) to a random variable whose expected value is equal to

the desired average. Unfortunately, it is shown that this scheme

performs poorly at low bit rate. Another approach to mitigate

the quantization error in the consensus algorithm is to use

an iteration dependent step size as in [6] and [30]. Adapting

the weight link sequence in order to guarantee convergence

is shown to decrease the convergence rate and so introduces
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a delay to the detection algorithm. Even employing such

decaying link weights satisfying a persistence condition (i.e.,

their sum over time diverges, while their square sum is finite)

cannot guarantee the convergence to the target average [30].

Recently [31] introduced a progressive quantization scheme

that is shown to achieve the true average solution even at a

low communication rate. However, this scheme has a high

computational complexity and relies on doubly stochastic

weight matrix. Now, most of the existing works on quantized

consensus assume that the communication topology is sym-

metric (which is not the case in our manuscript). Furthermore,

all the above-mentioned algorithms either maintain the average

value in the network but cannot reach a consensus effectively,

or converge to a random variable that is not always the target

average value.

So, the purpose of this paper is to develop a fully dis-

tributed detection framework for realistic WSN scenarios. The

communication links among SNs are modeled as channels

with path loss, flat fading and additive white Gaussian noise

(AWGN). The assumption of flat fading is reasonable because

most of the WSNs operates at both short distances and low

bit rate due to resource limitations. We will show that this

new distributed framework can approach the performance of

a centralized optimum detector (i.e., with a FC).

A. Contributions & Organization

So, the main contributions are as follows:

(i) First, the (unquantized) consensus algorithm [28] is modi-

fied in such a way that the SNRs of the local SNs are taken

into account in order to further improve the global detection

performance. We re-state the necessary conditions for conver-

gence to the (unquantized) optimum linear combining solution

[10]. Based on this, we provide a distributed consensus-based

detection framework with (weight combining) quantized test

statistic exchange (SNs implement a low complexity uniform

quantizer and the number of quantization bits is constrained to

match the channel capacity of each link). Using the probability

of detection and the probability of false alarm as metrics,

we show that this approach: (a) does not converge to a

global decision across the network, and (b) does not approach

the optimum quantized centralized detector (i.e., with a FC)

performance [10].

(ii) Second, motivated by the above, we propose a novel

two-step quantized distributed weighted fusion algorithm that

now: (a) converges to a global decision across the network,

(b) approaches the optimum centralized detector performance,

and (c) achieves the global decision in a finite number of

iterations. The main idea of this proposed two-step distributed

(quantized) fusion algorithm is to arrive at an optimum global

decision at every SN by taking advantage of the spatially

distributed information across the WSN while combating flat

fading.

Now, the summary of the paper is as follows. In Section

II we formulate the detection problem and recall some basic

definitions from graph theory that we will be using. Section

III describes two different approaches (i.e., the centralized

approach (with a FC) and the fully distributed approach

(without a FC)). In Section IV we describe a consensus-based

distributed detection framework and analyze the detection

performance by proving that the quantized distributed detector

performance does not converge across the SNs. Motivated by

this, we then propose a two-step quantized weighted fusion

algorithm with performance comparable to the centralized

(unquantized) optimum detector. Finally, Section V presents

simulation results that confirm our analytical findings and in

Section VI we give conclusions.

II. PROBLEM FORMULATION

Consider the problem of detecting the presence of any

intruders by a use of WSN consisting of M spatially uncor-

related distributed SNs. The intruder leaves a signature signal

s(n) that is unknown to the WSN but it is assumed to be

deterministic. N samples of the observed signal are gathered

and energy estimation is then performed by each SN. The

measurement (of s(n)) at each SN si(n) is further corrupted

by AWGN wi(n) ∼ N (0, σi
2). In this paper, we consider two

different schemes: a) the centralized approach (see Fig. 1),

where each SN sends its test statistic (quantized to Li bits) to

the FC (see section III-A) where the FC combines them and

makes the final decision; and b) is the decentralized approach

(see Fig. 2 and section III-B), where SN i shares iteratively its

current test statistic (quantized to qi bits) across the set (∆i)

of its neighbors (see ∆i definition in section II-B). Next, we

explain in more detail the local sensing model and some graph

theory definitions.

A. Sensing

The measured signal at SN i is either:

H0 : yi (n) = wi (n) (1)

H1 : yi (n) = si (n) + wi (n) (2)

and energy estimation is performed at the ith SN to give

Ti =

N∑

n=1

(yi(n))
2
, i = 1, 2, . . . ,M (3)

which for large N has an approximately Gaussian distribution

[33]. Furthermore, the noise samples are assumed to be

identically and independently distributed (i.i.d.) across time

and space. It is not difficult to show that

E {Ti|H0} = Nσ2
i , Var {Ti|H0} = 2Nσ4

i

E {Ti|H1}=Nσ
2
i (1 + ξi) ,Var {Ti|H1}=2Nσ4

i (1+2ξi) (4)

where ξi =
N∑

n=1
s2i (n) /Nσ

2
i .

B. Sensor Nodes Interaction Model

The interaction among SNs is according to the commu-

nication topology which is given by an undirected graph

G = (V, E), where V ={1, 2, . . . ,M} represents the set of

M SNs and E ⊆ V × V is the set of edges {i, j}. The
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Fig. 1. Schematic communication architecture between peripheral SNs and
the fusion center (FC). Each SN generates a test statistic (Ti) by observing
the target and can communicate (using [Ti]Q) with the FC only over an
energy-constrained/bandwidth-constrained link.

graph properties can be represented by an adjacency matrix
E ∈ R

M×M whose entries are defined as

eij = eji =

{

1, if j ∈ ∆i

0, otherwise.
(5)

We denote the ith SN neighbor set as ∆i and |∆i| is the num-

ber of neighbors. The definition of the graph Laplacian matrix

(L∈ R
M×M ) is L=D − E with D=diag(|∆1|, . . . , |∆M |).

Next, we discuss the centralized and distributed detection

approaches and provide an optimum distributed (i.e., without

a FC) weight combining fusion rule framework.

III. CENTRALIZED VS. DISTRIBUTED

The first scheme1 (see Fig. 1) is a WSN consisting of M
spatially distributed SNs that report to a FC. Upon receiving

the contributions from each individual local SN, the FC

linearly combines them and then declares a global decision.

We refer to this approach as a centralized scheme. In the

other approach (see Fig. 2) the SNs collaborate among each

other iteratively to come up to a global decision in a fully

distributed fashion (i.e., without a FC). In this case, each SN i
is able to perform a (global) decision. We refer to this approach

as a decentralized scheme. Note that the results derived in

this section will serve as the basis for developing the new

optimum two-step quantized (weighted) fusion rule algorithm

in section IV.

A. Centralized Approach

In order to better understand the fully distributed algorithm

that we propose later in this paper we first describe two dif-

ferent centralized approaches: quantized and unquantized.

1Now, [Ti]Q is the ith SN quantized test statistic (see (7)),
{

αi

}M

i=1
are

the optimum weights (see (12)) and the superscript “q” refers to “quantized”.

1) Quantized Centralized Approach [10]-[11]: Here, quan-

tized linear2 soft decision combining at the FC is proposed,

where each individual SN has to quantize its observed test

statistic (Ti) (prior to transmission to a FC) to Li bits. So, to

satisfy the capacity constraint on each SN to FC channel, we

require:

Li ≤
1

2
log2

(

1 +
pih

2
i

ζ0

)

bits/sample (6)

where pi denotes the transmit power of SN i, hi is the flat

fading coefficient between SN i and the FC, and ζ0 is the

variance of the AWGN at the FC. The quantized test statistic

([Ti]Q) at the ith SN can be modeled as

[Ti]Q = Ti + vi (7)

where vi is the quantization noise independent of wi (n) in

(1) and (2). Assuming uniform quantization with Ti ∈ [0, 2U ],
then

σ2
vi

=
U2

3× 22Li
. (8)

Linearly combining
{
[Ti]Q

}M

i=1
at the FC gives1

T q
f =

M∑

i=1

αi[Ti]Q. (9)

For large M , T q
f will be approximately Gaussian and we can

show (10) and (11). Now, the optimum weights {αi}
M
i=1 are

given as [10]:

α =

[
Nσ2

1ξ1
2Nσ4

1(1+2ξ1)+σ2
v1

, . . . ,
Nσ2

MξM
2Nσ4

M
(1+2ξM )+σ2

vM

]

. (12)

So (12) establishes a relationship between the optimum

weighting vector (α) and the SN transmit power (pi) through

the σ2
vi

quantity (see definition (6) and (8)). The FC then

makes the following decisions:

if T q
f < Λf , decide H0

if T q
f ≥ Λf , decide H1

}

(13)

where Λf is the FC detection threshold. The probability of

detection (Pd) for a fixed probability of false alarm (Pfa) is

given as [34]:

Pd=Q







Q−1 (Pfa)

√

Var
{

T q
f |H0

}

−E

{

T q
f |H1

}

+E
{

T q
f |H0

}

√

Var
{

T q
f |H1

}







(14)

with appropriate quantities given in (10)-(11) (see [10]) and

where Q(.) is the Q-function.

2The main motivation behind the linear combining rule consideration is
that the probability of detection and the probability of false alarm metrics are
obtained in a closed-form. This gives insight into the design of the system’s
parameters, whereas for the LRT-based detector, analytically analyzing the
detection performance is not tractable.
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E

{

T q
f |H0

}

=

M∑

i=1

αiNσ
2
i , E

{

T q
f |H1

}

=

M∑

i=1

αi

(

Nσ2
i (1 + ξi)

)

(10)

Var
{

T q
f |H0

}

=
M∑

i=1

α2
i

(

2Nσ4
i + σ2

vi

)

, Var
{

T q
f |H1

}

=

M∑

i=1

α2
i

(

2Nσ4
i (1 + 2ξi) + σ2

vi

)

. (11)

2) Unquantized Centralized Approach: Given the local test

statistic Ti (see (3)) at the ith SN, the optimum (unquantized)

linear fusion rule3 has the structure [10]:

Tuq
f =

M∑

i=1

αiTi (15)

where the superscript “uq” refers to “unquantized” and

{αi}
M
i=1 are the optimum weights given in (12) but now with

{σ2
vi
}Mi=1 = 0. The probability of detection (Pd) for a fixed

probability of false alarm (Pfa) is given again as in (14) (re-

placing T q
f by Tuq

f ) by substituting the appropriate quantities

given in (10)-(11) with {σ2
vi
}Mi=1 = 0. This gives an upper

bound on the receiver operating characteristic performance and

we will refer later to this in the simulation results.

Now the limitation of the centralized approach is both the

requirement of the FC to process a large amount of data (i.e.,

possible bottleneck) and the possible failure of the FC. Hence,

distributed solutions are very attractive as the computational

load splits across the network. The final decision can be taken

at any arbitrary SN. As a result, the system is more robust

against FC failure than in a centralized system.

B. Distributed Approach

Now we are after the fully distributed approach (see Fig.

2) and we propose a distributed quantized linear fusion rule.

Even though there are different distributed algorithms in

the literature (i.e., average consensus, diffusion, gossip-type

algorithms, etc), we will use the consensus algorithm [28] as

a basic tool to develop the distributed quantized linear fusion

rule.

1) Unquantized Distributed Equal Combining: Now con-

sider the conventional consensus-based [28] distributed equal

combining scheme that fuses the contributions received

among SNs (i.e., it does not accommodate properly the

more informative and the less informative neighbors). At

iteration k+1, each SN i updates its test statistic (T eq
i [k+1])

as follows [28]:

T eq
i [k + 1]=T eq

i [k]− ǫ

M∑

j=1

eij
(
T eq
i [k]−T eq

j [k]
)
, k ≥ 0,

for i = 1, 2, · · · ,M (16)

where the superscript “eq” refers to “equal combining”,

0 < ǫ < 1/∆max with ∆max = max(|∆1|, . . . , |∆M |), eij

3This is a special case assuming that the FC receives all the local test

statistics
{

Ti

}M

i=1
without errors and in practice it is a strong assumption.

SN1

SN2

SN3

SN5

SN4

SN6

Target

T1

T2

T3

T4

T6

T5

Fig. 2. Schematic for a distributed communication architecture among
peripheral SNs. Each SN generates a test statistic (Ti) by observing the target
(thick lines). The SNs have partial connectivity (thin lines) among themselves
(i.e., not a complete graph), but only over an energy-constrained/bandwidth-
constrained network.

is defined in (5) and T eq
i [0] = Ti in (3). The time evolution

of (16) can be written as

T
eq[k] = W

k
T

eq[0], k ≥ 1 (17)

where W = I − ǫL and T
eq[k] =

[T eq
1 [k], T eq

2 [k], . . . , T eq
M [k]]T . The decision can be taken

locally at the ith SN at the kth iteration as follows:

if T eq
i [k] < Λi[k], decide H0

if T eq
i [k] ≥ Λi[k], decide H1

}

(18)

where Λi[k] is the threshold for the ith SN at the kth iteration.

We can write:

E {T eq
i [k]|Hp}p={0,1} = (Wk

E {Teq[0]|Hp})i (19)

Var {T eq
i [k]|Hp}p={0,1} = (Cov {Teq[k]|Hp})ii

= (WkCov(Teq[0]|Hp)W
k)ii (20)

where4 (a)i denotes the ith element of vector a and (A)ij
denotes the (i, j) element of matrix A. For a fixed probability

of false alarm (i.e., P i
fa[k] = Pfa, ∀i and ∀k), the detection

4For a random vector x, E {x} denotes expectation and Cov {x}=E[(x−
E {x})(x− E {x})T ] is the covariance matrix.
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probability for the ith SN at the kth iteration can be written

as

P i
d[k] = Q

(

Q−1 (Pfa)
√

Var {T eq
i [k]|H0}+Ψ

√

Var {T eq
i [k]|H1}

)

(21)

where Ψ = E {T eq
i [k]|H0} − E {T eq

i [k]|H1}. Now, (21)

establishes a relationship between the probability of detection

(P i
d[k]) and the iteration number k at the ith SN. It can

be shown [28] that as k gets larger, the performance of the

distributed detector (18) for a connected network5 approaches

that of the (unquantized) equal combining centralized detector

(13) (i.e., limk→∞ P i
d[k] = Pd, ∀i with αi = 1 and σ2

vi
= 0, ∀i

in (15)). However, this distributed fusion rule realizable via

(16) (and also its centralized counterpart) is not optimum.

What we require now is a distributed approach that will

converge to the equivalent of the optimum weighted linear

combining FC solution in (15).

2) Unquantized Distributed Weight Combining: In our pre-

vious work [10] we have optimized the weights (αi) such

that the probability of detection is maximized. As can be

seen from (12), the optimum weights are a function of local

sensing quality (σ2
i ), received signal strength (ξi) and the SN

transmit power (pi) through the quantization noise (σ2
vi

) (see

(6) and (8)). So now using these optimal weights we derive

a weighted exchange of information version of (16). Because

the ith SN does not know its neighbors’ weights
{
αj

}

j∈∆i
,

we propose to weight the contributions received from the |∆i|
neighbors by f(αi), where f is the function that we elaborate

later on. More specifically, the ith SN updates its test statistic

as follows:

Tw
i [k+1] = Tw

i [k]−ǫf(αi)

M∑

j=1

eij
(
Tw
i [k]− Tw

j [k]
)
, k ≥ 0,

for i = 1, 2, ...,M (22)

where the superscript “w” refers to “weighted”, αi are the

centralized weighting coefficients in (12) with σ2
vi

= 0,

f(αi) ≥ 0, ǫ is defined for (16) and Tw
i [0] = Ti in (3). The

time evolution of (22) can be written as

T
w[k] = W

k
T

w[0], k ≥ 1 (23)

with W defined as

W = I− ǫΓL (24)

and Γ = diag(f(α1), f(α2), . . . , f(αM )). We will now show

that there exist a function f such that (23) (unquantized,

distributed) converges to (15) (unquantized, centralized). First

we prove two propositions.

Proposition 1 : Let W be a matrix defined in (24) with

0 < ǫ < 1/∆max. Then W is a non-negative matrix (i.e.,

W ≥ 0) if Γ ≤ 1.
P roof : Note that from the definition of the Laplacian

matrix (L) defined in section II-B, (24) can be expressed as

W = I−ǫΓD+ǫΓE. Now, by definition Γ ≥ 0, and so ǫΓE is

also a non-negative matrix. The entries of the diagonal matrix

5A connected network is any network where there is a path (i.e., over one
or more links) between every pair of SNs in the network.

(I− ǫΓD) have to be non-negative, ∀i (i.e., 1− ǫf(αi)∆i ≥
0, ∀i). This can be achieved with 1 − f(αi)∆i

∆max
≥ 0 and since

f(αi) ≤ 1, ∀i (i.e., Γ ≤ 1) =⇒ 1 − f(αi)∆i

∆max
≥ 0. Then

Γ ≤ 1 =⇒ W ≥ 0.

Proposition 2 : Let W be a matrix defined in (24) with

0 < ǫ < 1/∆max, Γ ≤ 1 and assuming a connected graph G,

then

lim
k→∞

W
k
T

w[0] =

M∑

i=1

1

f(αi)















M∑

i=1

1
f(αi)

Tw
i [0]

M∑

i=1

1
f(αi)

Tw
i [0]

...
M∑

i=1

1
f(αi)

Tw
i [0]















M×1

. (25)

Proof : The proof is given in Appendix A.

Now, the convergence of (25) (with Tw
i [0] = Ti) to (15) up

to a positive scaling can be only achieved if f(αi) = 1
αi

.

It is worth mentioning that the condition (f(αi) ≤ 1, ∀i)
does not affect the optimality of the fusion rule defined in

(15) for the structure considered in (14) and the condition

can be satisfied by scaling the centralized weighting vector

(α) by a positive constant c. Clearly, the distributed system

(22) achieves the performance of the unquantized centralized

approach in section III-A2.

We have now stated the necessary and sufficient conditions

for the time evolution (22) to converge to the weighted

centralized optimum linear fusion rule (15). The exchange of

information between SNs is assumed error free and the band-

width between two connected SNs is considered unlimited. In

the next section, we relax these assumptions and provide a

quantized distributed weighted linear fusion rule framework

that operates over limited bandwidth fading channels.

IV. DISTRIBUTED DETECTION VIA TWO-STEP QUANTIZED

DISTRIBUTED WEIGHTED FUSION RULE OVER FADING

COMMUNICATION LINKS

Now, in section IV-A we develop a consensus-based

quantized distributed weighted linear fusion framework.

Next, in Section IV-B, using the probability of de-

tection and the probability of false alarm as metrics,

we analyze performance and give a proof that the

quantized distributed weighted linear fusion rule algo-

rithm does not converge across the SNs. Finally, in Section

IV-C, based on the framework provided in Section IV-A, we

propose a new two-step quantized distributed weighted fusion

algorithm.

A. Quantized distributed weighted fusion rule

Here we propose a scheme, where each SN encodes the

data (using a simple uniform quantizer with qi bits) prior to

information exchange with its neighbors. We also propose to

establish a link between any two SNs i and j based on the

(known) link SNR at node j, i.e.

if SNRij < Υ, eij = eji = 0

if SNRij ≥ Υ, eij = eji = 1.

}

(26)
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Now eij is defined in (5), Υ is a (link) SNR threshold

parameter (see later) and SNRij is the received signal-to-

noise ratio (at SN j) defined as:

SNRij =
ptijh

2
ij

ζ0d
γ
ij

. (27)

Here ptij denotes the ith to jth SN transmit power, hij is the

flat-fading coefficient6 between the ith and jth SN, ζ0 is the

variance of the AWGN at each receiving SN (assumed to be

the same for simplicity), γ is the path loss coefficient and dij
is the physical distance between SN i and j (assumed to be

known).

The thresholding operation (26) defines the communication

topology. There are different approaches taken in the literature

in order to define the topology of the network. In [36] a

simplified relaxed (centralized) solution was presented, where

the energy minimization problem was formulated as a convex-

concave fractional programming. Another approach was fol-

lowed in [37], where a distributed algorithm to decide which

subset of communication links provides the optimum power

consumption and the best network lifetime (i.e., minimizing

simultaneously both the total power consumption and the

maximum power consumption per SN) was developed. While

both ([36] and [37]) improve the total power consumption

and/or the whole network lifetime, they also assume that the

exchange of information among SNs is ideal. But here we

propose to quantize with qi bits at SN i before transmitting

to SN j and to satisfy the capacity constraint between SNs i
and j we require:

qi ≤
1

2
log2 (1 + Υ) bits/sample (28)

where we let qi = q, ∀i. Now, Υ establishes a relationship

between the number of bits that each SN has to transmit

to its neighbors and also the topology of the network that

defines the connections between the SNs (see (26)-(28)). A

large Υ means fewer communication links (see (26)) resulting

in slower information diffusion across the network. However,

this will be counterbalanced by an increase in the number

of bits that each SN can transmit to its neighbors (see (28)).

As a consequence, the quantization noise variance (30) be-

comes negligible. Alternatively, a small Υ establishes a more

connected graph and dictates a faster information diffusion

across the network. However, this allows less transmission

bits per iteration resulting in an increase in the quantization

noise variance. It is now clear that Υ establishes a relationship

between transmission bits and the graph connectivity. With

quantization, the time evolution of (22) (by taking f(αi) =
1
αi

)

6We assume that the channel coefficients are varying slowly enough to be
considered constant for the time interval necessary for the network to converge
within a prescribed accuracy. This assumption is reasonable as our proposed
algorithm converges rapidly.

now becomes:

T̄w
i [k + 1]= T̄w

i [k]−
ǫ

αi

M∑

j=1

eij
(
T̄w
i [k]−[T̄w

j [k]]Q
)

= T̄w
i [k]−

ǫ

αi

M∑

j=1

eij
(
T̄w
i [k]−T̄w

j [k]−bj [k]
)
, k≥0,

for i = 1, 2, · · · ,M (29)

with T̄w
i [0] = Ti in (3). (Note that the bar “ − ” dif-

ferentiates from (22) where no quantization is used). Now

[T̄w
j [k]]Q = T̄w

j [k] + bj [k] represents quantization and bj [k]
is the quantization noise independent of wi (n) in (1) and (2),

j = 1, 2, · · · M , ∀i and ∀n. Assuming T̄w
j [k] ∈ [0, 2U ] and

uniform quantization then:

Var {bj [k]} = σ2
bj

=
U2

3× 22q
(30)

and we assume E {bj [k]} = 0 since the quantization noise

is bipolar (i.e., it may take positive or negative values).

We also assume that the ith SN is capable to store its

own soft information at the kth iteration and commu-

nicate a quantized version to its neighbors. In the next

(k+1)th iteration, every SN can update the test statistic (i.e.,

T̄w
i [k + 1])) by using its own soft information and the

quantized information received from other neighbors (i.e.,

it does not have access to their soft information).

Now, the power consumed by the whole network at a single

iteration can be given as:

Pthroughout =

M∑

i=1

M∑

j=1

eijp
t
ij . (31)

It is clear that establishing fewer communication links through

(26) reduces Pthroughout and simultaneously imposes a slower

information diffusion across the WSN. The number of bits that

each SN can transmit to its neighbors will increase (see (28)).

As a consequence, the quantization noise becomes negligible

(see (30)). Alternatively, a smaller Υ (smaller quantization

bits) dictates a more connected WSN and an increase in

Pthroughout value. This results in an increase of quantization

noise level that will tend to poor the detection performance.

It is now clear that Υ also establishes a trade-off between the

quantization noise effect and the WSN total power7 consump-

tion (PT ). In the simulation results section we will investigate

the effect of the thresholding operation (26) on the PT value

as well as on the system detection performance. Therefore,

the goal is to find an Υopt such that PT and the detection

performance are both improved. Next, we analyze the time

evolution of (29) by using the probability of detection and the

probability of false alarm as metrics.

B. Performance Analysis

Now we analyze the detection performance of the proposed

distributed quantized (weighted) fusion rule (via the time evo-

lution of (29)). Defining ψ[k] = [ψ1[k], ψ2[k], . . . , ψM [k]]
T

7The total power consumption is defined as PT = PthroughoutKT , where
KT is the total number of iterations to run the time evolution (29) and (39)
(i.e., KT = K1 +K2) (see later section IV-C for details).
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with ψi[k] =
1
αi

M∑

j=1

eijbj [k] and so (29) can be written as:

T̄
w
[k] = W

k
T̄

w
[0] + ǫ

k∑

z=1

W
z−1ψ[k − z], k ≥ 1 (32)

where T̄
w
[k] is defined similarly to T

eq[k] in (17). The
decision strategy for the ith SN at the kth iteration is again
given in (18) (replacing T eq

i [k] by T̄w
i [k]), and the following

also hold:

E
{
T̄

w
i [k]|Hp

}

p={0,1}
=

(

W
k
E
{
T̄

w
[0]|Hp

}

)

i

(33)

Var
{
T̄

w
i [k]|Hp

}

p={0,1}
=

(

W
kCov

{
T̄

w
[0]|Hp

}
(Wk)T

︸ ︷︷ ︸

(A)

)

ii

+ ǫ
2

(
k∑

z=1

W
z−1Cov {ψ[k − z]} (Wz−1)T

︸ ︷︷ ︸

(B)

)

ii

(34)

where Cov{ψ[k−z]} = U2

3 diag
(

|∆1|
22q ,

|∆2|
22q , · · · ,

|∆M |
22q

)

.

Now, the detection performance for the ith SN at the kth

iteration can be evaluated using (21) (replacing T eq
i [k] by

T̄w
i [k]) by substituting the expressions from (33) and (34).

Note that as the dynamic system (32) evolves, the term

(B) in (34) accumulates. Next we show how the detection

performance for the ith SN at the kth iteration evolves by

analyzing the variance term (Var
{
T̄w
i [k]

}
) in (34).

Proposition 3: Assume that λmax (Γ) ≤ 1
ǫλmax(L)(M−1) ,

where λmax (Γ) and λmax (L) are the maximum eigenvalues

associated to Γ and L respectively. From (34), the “scaled

total variance”

1
M−1

M∑

i=1

Var
{
T̄w
i [k]

}

≤ Varmax
k

(
1

M−1
+λk2(W)

)

+ǫ2σ2
max

(
k

M−1
+
1−λk2(W)

1−λ2(W)

)

(35)

where Varmax
k = max (Var

{
T̄w
1 [k]

}
, · · · ,Var

{
T̄w
M [k]

}
),

σ2
max = max(Var {ψ1[k]} ,Var {ψ2[k]} , · · · ,Var {ψM [k]})

and λi(W), i = 1, · · · ,M are the eigenvalues of W sat-

isfying λM ≤ λM−1 ≤ · · · < λ1 = 1.

Proof : The proof can be found in Appendix B.

As k becomes large, it is clear that the second term of (35)

grows and the performance of the distributed algorithm using

quantized distributed weighted linear fusion does not approach

the performance of the centralized quantized detector [10] (i.e.,

limk→∞ P i
d[k] 6= Pd in (13) of [10], ∀i).

Now, it is also clear that k establishes a trade-off between

the local SNs test statistic improvement and the quantization

error degradation. There is a finite optimum k = K1 to

stop the SNs collaboration (see later), but after that the

quantization error overcomes the improvement gained from

this collaboration. So, using this framework (i.e., the consensus

algorithm with quantization matched to the channel capacity)

we will now propose a two-step approach (still using quantized

test statistics shared among SNs) that will perform comparable

to the optimum unquantized centralized detector in section

III-A2 (i.e., when using a FC and no quantization). And what

is more important, it converges across the network in a finite

number of iterations.

C. Proposed two-step quantized distributed weighted fusion

rule algorithm

(i) FIRST STEP: Run the quantized consensus algorithm in

(32) to improve the local version of the test statistic at each

SN. But then terminate the algorithm at k = K1 (where the

optimum value of K1 is found later from simulation results

and a sub-optimum solution to it is also proposed). We now

have
{
T̄w
i [K1]

}M

i=1
from (32) and we will use this to generate

a binary indicator random variable Ii[0] as follows

if T̄w
i [K1] < Λ1, Ii[0] = 0

if T̄w
i [K1] ≥ Λ1, Ii[0] = 1

}

(36)

where Λ1 is a local (first step) detection threshold that is the

same for all M SNs. We will now propose (for performance

comparison purposes) two alternative second step decision

rules:

1)

if T̄w
f [K1] 6=M, decide H0

if T̄w
f [K1] =M, decide H1

}

(37)

2)

if T̄w
f [K1] = 0, decide H0

if T̄w
f [K1] 6= 0, decide H1

}

(38)

where T̄w
f [K1] =

M∑

i=1

Ii[0] both in 1) and 2). But the problem

is now how to evaluate T̄w
f [K1] in a distributed manner across

SNs. This will be explained in the second step.

(ii) SECOND STEP:

1) Second step defined in (37): When the local individual

SNs unanimously decide on the intruder presence, so decides

this (global) decision second step (i.e., intruder is present).

Otherwise, it decides that the intruder is not present. Here

we will use [38] to show how to effectively evaluate (37) by

first sharing
{
Ii[0]

}M

i=1
and then iteratively updating across

the SNs as follows:

Ii[k+1] = Ii[k]
∧
(
∧

j∈∆i

Ij [k]

)

, k = 0, 1, 2, · · · ,K2−1,

for i = 1, 2, · · · ,M (39)

where K2 is the diameter of network8,“
∧

” denotes the logical

“and” operation and ∆i is defined for (5). Note that no

quantization is needed and all Ii[K2] converge to either 1 or

0. So now we can easily show:

If Ii[K2] = 0, ∀i⇒ T̄w
f [K1] 6=M, decide H0

If Ii[K2] = 1, ∀i⇒ T̄w
f [K1] =M, decide H1.

}

(40)

and so Ii[K2] (at any arbitrary ith SN) can be used to

implement the decision rule (37).

8The geodesic distance between two nodes in a (connected) graph is the
number of the edges (i.e., links) in the shortest path connecting these two
nodes. The diameter of a graph is the maximum geodesic distance taken over
all possible pairs of nodes in the graph.
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2) Alternative second step defined in (38): Now, this al-

ternative second step (global) decision fusion rule decides on

the presence of the intruder if at least any arbitrary local SNs

(at iteration k = K1) has decided so. Again, T̄w
f [K1] can be

evaluated in a distributer manner by first sharing
{
Ii[0]

}M

i=1
and then iteratively updating across the SNs using (39) (but

now the “and” logical operation “
∧

” is replaced with the

“or” logical operation “
∨
”). Like before, all Ii[K2] converge

to either 1 or 0 and we can easily show:

If Ii[K2] = 0, ∀i⇒ T̄w
f [K1] = 0, decide H0

If Ii[K2] = 1, ∀i⇒ T̄w
f [K1] 6= 0, decide H1.

}

(41)

and so Ii[K2] (at any arbitrary SN) can be used to implement

the decision rule (38). Overall, the proposed two-step fully

distributed algorithm requires (KT = K1 +K2) iterations in

total. Now, the two-step algorithm (with second step decision

rule (38) can be summarized in Algorithm1.

Algorithm1: Distributed Detection via Two-Step
Consensus Algorithm

STEP 1: Choose Υ and evaluate T̄w
i [0] = Ti, ∀i in (3);

STEP 2: Choose an approximation model ((42) or (43)) to estimate

K1 and compute T̄w
i [k], ∀i using (32) with k = K1;

STEP 3: Generate the binary indicator random variable at each SN:

if T̄w
i [K1] < Λ1, Ii[0] = 0

if T̄w
i [K1] ≥ Λ1, Ii[0] = 1.

STEP 4: Run (39) with Ii[0] generated in step 3 for K2 iterations
to effectively perform the final test:

if T̄w
f
[K1] = 0, decide H0

if T̄w
f
[K1] 6= 0, decide H1

where T̄w
f
[K1] =

M
∑

i=1
Ii[0].

Next, in the simulation results, we will show that the first

step spatial collaboration among SNs is crucial for the system

detection performance and also for the network total power

consumption. We will also show via simulations that there is

an optimum K1 (for both decision fusion (37) and (38)) such

that the system detection performance is maximized. Then,

we propose a sub-optimum but simple solution to find this

optimum K1.

V. SIMULATIONS RESULTS

Here we will analyze the performance of our proposed two-

step quantized (weighted) fusion rule algorithm for distributed

detection deployment. First we have a WSN with M SNs

with arbitrary SN geometry, where the distances dij in (27)

between SNs i and j are assumed to be known. The other

parameters in (27) are ptij = 300, γ = 2, ζ0 = 0.1 and h2ij
is an exponential random variable (r.v.) with mean µh2

ij
= 30.

Using the r.v. SNRij in (27) in (26), we then construct two

example topologies for different values of Υ (see Fig. 4).

These topologies will be used later for Fig. 15 and Fig. 16.

To provide results of more general validity, we also report the

average performance where the average is carried out over 500

channel realizations unless otherwise stated. We now generate

the test statistics T̄w
i [K1] in (36), via (32) for k = K1.

As previously explained, any Ii[K2] in (40) or (41) can be

used to decide either H0 or H1, and this will define the new

global detection and false alarm probabilities (i.e., P g
d and

P g
fa respectively). Here we use 105 Monte-Carlo simulations.

Finally, ξa = 10 log10

(

1
M

M∑

i=1

ξi

)

= -9.5 dB unless otherwise

stated, where ξi=
N∑

n=1
s2i (n)/Nσ

2
i . We will also refer to “equal

weight” combining in (15) (i.e., αi = 1, ∀i) and use this as

a benchmark. Finally, we choose Li with equality in (6). The

detection performance of the proposed two-step algorithm is

also compared with the centralized soft Likelihod Ratio Test

(LRT) based fusion rule in [11].

A. Validity of quantization noise assumption for low bit rate

Before we investigate the performance of the proposed

two-step detection algorithm, we evaluate via simulations the

mismatch between the assumed uniform quantization and the

actual quantization for low bit rate. In Fig. 3, we show the

probability distribution function (PDF) of the quantization

error for q = 2 bits and q = 3 bits. The quantization error

variance (σ2
e ) versus the number of quantization bits (q) is also

plotted. In the case of q = 2 bits, the uniform (quantization
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Fig. 3. Quantization error mismatch: (left/middle) probability distribution
function (PDF) Pe(λ) for q = 2 bits/ q = 3 bits; (right) quantization error
variance (σ2

e ) mismatch versus number of quantization bits.

error) PDF is an approximation. However, in the case of q = 3
bits, this approximation is quite accurate. As a result, we

conclude that the assumption of a uniform (quantization error)

PDF is a valid assumption (or at least for the simulation set-up

considered in this paper).

B. Impact of channel estimation on the network density

Now, we investigate the channel estimation error effect on

the network density (ρ) versus the SNR threshold (Υ). We

model the channel estimation error as a Gaussian random

variable (i.e., ĥij = hij + eh) where eh ∼ N (0, σ2
eh
) and

ĥij is the estimated flat fading channel coefficient.

In Fig. 4, we plot the network density10 (ρ) versus the

SNR threshold (Υ) for different values of the estimation error

variance (σ2
eh

). For small σ2
eh

, the network density is shown to

be robust against the channel estimation error. That is not the

case for relatively large σ2
eh

where a performance mismatch

is observed.
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Fig. 4. Averaged (over 10000 ĥ2
ij realizations) network density (ρ) versus Υ

in (26), with U = 3, N = 20, and M = 17.
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Fig. 5. Two different communication topologies (generated via ((26) and
(27)), with σ2

eh
= 0 and the quantization bits following (28): (left) M = 17,

Υ = 20, q = 2 bits; (right) M = 13, Υ = 72, q = 3 bits.

C. Impact of thresholding operation on the system detection

performance and total power consumption

In section IV, we have shown that the link SNR threshold

(Υ) parameter establishes a relation between the number of

bits that each SN has to transmit to its neighbors and the

topology of the network that defines the connections among

them (see definitions (26)-(28)). It is then very important

to investigate the impact of the Υ parameter on the system

(global) detection performance (P g
d ) and on the total power

consumption (PT ).

In Fig. 6 we plot the global probability of detection (P g
d )

versus Υ for different numbers of SNs (M ) and for a fixed

global probability of false alarm (P g
fa) and K1. We observe

that there is an optimum Υ that maximizes P g
d for any arbitrary

M .

Now, to give a more general validity on the results, in Fig.

7 we show the conventional (unquantized) consensus-based

algorithm (22) (with the decision rule (18) by substituting

T eq
i [k] with Tw

i [k]) and the proposed two-step (quantized)

weighted fusion rule summarized in Algorithm1: (upper

plot) the average total power consumption E
[
PT

]
(refer for its

definition to (31) and below) versus the link SNR threshold

(Υ); (middle plot) the global achievable9 probability of de-

tection (P ∗
d ) versus link SNR threshold (Υ); (lower plot) the

9The global achievable probability of detection (P ∗
d

) (for a fixed Υ) is

defined as the best global probability of detection (P
g
d

) with respect to K1.

0 20 40 60 80
0.55

0.6

0.65

0.7

0.75

SNR threshold, (

G
lo

ba
lp

ro
b.

of
de

te
ct

io
n,

P
g d

M=13

M=15

M=17

M = 13

M = 15

M = 17

Fig. 6. Averaged (over 500 h2
ij realizations) global probability of detection

(P g
d
) (using two-step approach) versus Υ in (26), σ2

eh
= 0, with decision

fusion in (40), P
g
fa

= 0.2, U = 2, N = 20, K1 = 10 and αi = 1, ∀i in

(29).
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Fig. 7. Normalized average power consumption (E
[

PT

]

), achievable8

probability of detection (P ∗
d

) and the average communication link density

(ρ) versus Υ in (26), with σ2
eh

= 0, decision fusion in (41), P
g
fa

= 0.1,

U = 3, N = 20, M = 17 and with αi (scaled by M ) in (12).

average network density10 (ρ) versus the link SNR threshold

(Υ). Even-though the comparison made is not fair (i.e., for

the proposed (quantized) two-step weighted fusion rule versus

the (unquantized) conventional consensus-based fusion rule),

clearly our proposed two-step fusion rule algorithm posses

the following: a) it requires much less power budget for all Υ
compared to the (unquantized) conventional consensus-based

algorithm, and b) converges across the WSN much faster and

in a finite number of iterations (KT = K1 + K2), whereas

for the conventional consensus-based, the convergence holds

in limit. Finally, in the lower plot we verify (as expected)

that a smaller/larger Υ dictates a more/less connected WSN

respectively. In the case of the conventional consensus-based

algorithm, the convergence criteria we use here is the relative

absolute difference:
||Tw[k+1]−T

w[k]||
||Tw[k]|| ≤ κ, where κ = 10−7.

The averages are performed over 500 (h2ij) realizations.

10The average network density ρ is defined as: ρ = E

[

M∑

i=1

M∑

j=1
eij

M(M−1)

]

.
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D. Impact of the K1 parameter on the system detection

performance

The first step quantized collaboration establishes a linear

spatial collaboration among M SNs up to K1 iterations for

improving the overall detection performance. We have shown

analytically (see proposition 3 and below) that the RHS of

(35) diverges for k = K1 (when K1 is large) and the detection

performance eventually declines. Next, we investigate (through

simulations) the effect that (K1) has on the global detection

performance (P g
d ) and propose a sub-optimum (but simple)

solution to evaluate K1.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Global prob. of false alarm, P
g
fa

G
lo

ba
l
pr

ob
.
of

de
te

ct
io

n,
P

g d

Centralized optimum linear rule (15)
Proposed weighted two-step, K1 = 100
Proposed weighted two-step, K1 = 200
Proposed weighted two-step, K1 = 350
Proposed weighted two-step, K1 = 500
Proposed weighted two-step, K1 = 800
Centralized LRT-based [11]

K1 = 350
K1 = 200

K1 = 100

K1 = 800
K1 = 500

Upper bound

Fig. 8. Averaged (over 500 h2
ij realizations) ROC for the proposed two-step

weighted algorithm with decision fusion in (40), U = 3, N = 20, M = 17,
K2 = 3, Υ = 30, σ2

eh
= 0 and with αi (scaled by M ) in (12).

1) Optimal numerical solution to K1 : Now, in Fig. 8 we

report the (averaged) receiver operating characteristic (ROC)

against the first step number of iterations (K1) for the proposed

distributed two-step (weighted) algorithm with decision fusion

in (40). As K1 increases then P g
d improves. In Fig. 9 we report
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Fig. 9. Averaged (over 500 h2
ij realizations) ROC against first step iterations

number (K1), with decision fusion in (41), K2 = 2, U = 3, N = 20,
M = 17, Υ = 10, σ2

eh
= 0 and with αi (scaled by M ) in (12).

the same for the proposed two-step (weighted) algorithm

but now with the decision fusion in (41). As expected, the

detection performance improves up to K1 = 150 and after

that it degrades. Then, in Fig. 10 we plot the (averaged) global

detection performance (P g
d ) (for a fixed global probability of

false alarm (P g
fa)) versus first step number of iterations (K1)

for different link SNR thresholds (Υ). We observe that there
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Fig. 10. Averaged (over 500 h2
ij realizations) global probability of detection

(P g
d
) versus first step iterations number (K1), with decision fusion in (41),

P
g
fa

= 0.1, U = 3, N = 20, M = 17, σ2
eh

= 0 and with αi (scaled by

M ) in (12).

exists an optimum K1 to run the first step time evolution (29)

such that P g
d is maximized for any arbitrary Υ. We also note

that the best performance is attained for Υ = 20.

Now, selecting the pair (Υ = 20, K1 = 320) (i.e.,

the Υ and K1 that attain the best performance in Fig. 10

with the decision fusion in (41)), in Fig. 11 we examine

the P g
d performance against ξa for the proposed distributed

two-step (weighted) algorithm assuming: (left) ideal channel

estimation; (right) non-ideal channel estimation. Interestingly,

(for the ideal channel case) the proposed two-step (weighted)

algorithm performance (with decision fusion in (41)) attains

its centralized counterpart’s upper bound performance for all

ξa. So, it is now clear that the optimum values of parameters

Υ and K1 are independent of ξa (i.e., the local ξi). This

independence is important as it shows that the algorithm

is robust against the local ξi and allows evaluating these

parameters once at the beginning. We also observe that the

proposed two-step performance with decision fusion (41) is the

same (at low SNR) as that of decision fusion (40), but at high

SNR it outperforms the latter. Now (for the non-ideal case),

we can observe a slight detection performance degradation for

the proposed two-step algorithm. Next, we propose (for the

two-step algorithm with the second step decision rule (41)) a

sub-optimum (but simple) solution to the optimum K1. Note

that the extension with the second step decision fusion rule

(40) is straight forward.

2) Suboptimal solution to K1: Now, through simulation

results shown in Fig. 10, we get an insight on how the

optimum K1 is related to the link SNR threshold (Υ). We also

notice that an increase in Υ is translated into a corresponding

increase in the optimum K1 value (i.e., K1 that corresponds

to the maximum P d
g ). This result is not surprising and can

be explained by the fact that a smaller Υ dictates a more

connected graph (see (26)) and an increase in Υ dictates a

sparse graph (hence more iterations are needed to diffuse the

information across the SNs). Motivated by this fact, we now

relate the first step iterations number (K1) to the link SNR

threshold parameter (Υ) with two fitting models:
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Fig. 11. Averaged (over 500 h2
ij realizations) probability of detection (P

g
d

)

against the signal to noise ratio (ξa) with P
g
fa

= 0.1, U = 3, N = 20,

M = 17, K1 = 320, Υ = 20, ξi = ξ, ∀i in (4) and with αi (scaled by M )
in (12): (left) ideal, σ2

eh
= 0; (right) non-ideal, σ2

eh
6= 0.

(i) Exponential model :

K1 ≈ g(Υ) =

{

A exp (bΥ) type 1

A exp (bΥ) +B exp (cΥ) type 2
(42)

(ii) Power model :

K1 ≈ g(Υ) =

{

AΥb type 1

AΥb + C type 2
(43)

where A, B, C, b and c are the coefficients given in Table I

obtained using Matlab (Nonlinear Least Squares method and

Trust-Region algorithm).

TABLE I
PARAMETERS FOR DIFFERENT FITTING MODELS

Model Type A B C b c RMSE

Exponential Exp 1 173.6 x x 0.03319 x 49.82
Exp 2 188.1 1.561e-014 x 0.03166 0.4584 53.09

Power Pow 1 0.5976 x x 1.89 x 136.27
Pow 2 0.0079 x 2.853 338.9 x 63.65
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Fig. 12. First step iterations number (K1) versus Υ in (26), with U = 3,
N = 20, M = 17 and with αi (scaled by M ) in (12): (left) exponential
fitting model; (right) power fitting model.

Now, in Fig. 12 we plot the first step number of iterations

(K1) versus the link SNR threshold (Υ) for two different

fitting models (i.e., exponential and power model) and then

compare these to the simulations. Clearly, the exponential of

type 1 is the best candidate as it attains the minimum RMSE

(see Table I).

E. Detection Performance Comparison

We now compare the (averaged) global detection perfor-

mance among/with: (a) the two-step (quantized) distributed

weighted fusion rule algorithm with second step in (40) and

(41), (b) the two-step (quantized) distributed equal combining

fusion rule with second step in (40) and (41), (c) the optimum

centralized (quantized) weighted fusion rule proposed in [10],

and (d) the centralized (quantized) equal combining in [10].

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Global prob. of false alarm, P
g
fa

G
lo

b
al

p
ro

b
.
of

d
et

ec
ti
on

,
P

g d

Proposed weighted two-step with (40)

Unquantized eq. comb. (,i = 1) in (17)

Proposed eq. comb. (,i = 1) two-step with (41)

Proposed eq. comb. (,i = 1) two-step with (40)

Proposed weighted two-step with (41)

Centr. opt. linear rule (15)

K1 = 400

K1 = 320

Centr. opt.

K1 = 320

Centr. eq. comb.

Fig. 13. Averaged (over 500 h2
ij realizations) ROC for the proposed

(quantized) two-step weighted fusion rule with U = 3, N = 20, Υ = 20,
M = 17 and with αi (scaled by M ) in (12).
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Fig. 14. ROC for the proposed (quantized) two-step distributed scheme with
Υ = 20 in (26), U = 2, N = 20, K1 = 10 and αi = 1, ∀i in (29).

In Fig. 13 we report the ROC for the two different schemes

(i.e., centralized and distributed two-step). As can be seen,

the distributed two-step algorithm approaches the upper bound

(i.e., the centralized unquantized scheme performance in (15)).

Now, we examine in Fig. 14 the ROC parametrized against

M for the distributed (equal combining) two-step algorithm,

illustrating how P g
d improves as M increases. The ROC

performance11 among different (equal combining) schemes

is illustrated in Fig. 15 and Fig. 16. In Fig. 15 we show

the advantage of our proposed distributed two-step (equal

combining) scheme over only the first step part (at SN

6). Also, if Υ is carefully chosen the distributed two-step

11SN 6 in Fig. 15 and SN 3 in Fig. 17 were chosen for comparison purposes
as they possess the best performances among M SNs for each case.
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(equal combining) scheme performance approaches that of

the (equal combining) centralized detector (i.e., with FC and

no quantization) in (18). Fig. 16 shows the ROC for the

proposed quantized (3 bits) distributed (equal combining) two-

step algorithm against K1 compared to the quantized (2 bits)

centralized (equal combining) scheme in [10]. As expected

(similar to the weighted two-step), there is an optimum K1

that maximizes P g
d and after that P g

d decreases.

Finally, Fig. 17 plots the P g
d performance characterization

against the average SNR (ξa) for 4 different (equal combin-

ing) schemes showing the performance improvement of our

proposed distributed two-step algorithm.

VI. CONCLUSION

In this paper, we propose a fully distributed two-step

consensus-based detection algorithm via SNs sharing with

their neighbors a quantized version of the received energy

test statistic. We relate the communication topology with the

number of bits to be shared among SNs and through numerical

results we show that there is an optimum topology (for a fixed

first step number of iterations (K1)) such that P g
d (the global

probability of detection) is maximized. In addition, we show

that there is an optimum K1 to terminate the first step SN

collaboration (for any arbitrary topology) and after that the P g
d
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Fig. 17. Probability of detection (P
g
d

) versus the signal to noise ratio (ξa)

for M = 13, Υ = 72, U = 2, N = 20, P
g
fa

= 0.1, ξi = ξ.∀i in (4) and

αi = 1, ∀i in (29). The topology used is given in right of Fig. 5.

performance declines. When parameters K1 and Υ (the link

SNR threshold in (26)) are appropriately chosen, the detection

performance of the proposed quantized distributed two-step

algorithm approaches the unquantized centralized optimum

combining scheme performance of (15). Overall, the algorithm

requires a finite number of iterations (K1+K2). For example,

targeting the optimum P g
d (see Fig. 7 (middle plot) at Υ = 20),

our proposed two-step algorithm requires roughly 50% less

power consumption (PT ) than the conventional consensus-

based algorithm. Future work will investigate the analysis of

the problem for time-varying SNs interaction topologies.

APPENDIX A

PROOF OF PROPOSITION 2

Let W ≥ 0 be defined as in (24) with 0 < ǫ < 1/∆max

and Γ ≤ 1. Since we have assumed that the WSN forms

a connected graph, then W is irreducible and also primitive

(i.e., the maximum eigenvalue has multiplicity one). So by the

Perron Frobenius theorem [35], W has unique left and right

eigenvectors corresponding to the maximum eigenvalue12 and

also limk→∞ W
k = vr(vl)T , where vl =

[
vl1, v

l
2, · · · , v

l
M

]T

is the left and vr = [vr1, v
r
2, · · · , v

r
M ]

T
is the right eigenvector

corresponding to the maximum eigenvalue of W. The problem

is now finding these eigenvectors. Consider

Wvr = vr − ǫΓLvr = vr.

Now, the above relation is equivalent to ǫΓLvr = 0. It can

be easily shown that if vr is in the right null space of L (i.e.,

Lvr = 0), it is also true that vr is in the right null space of

(ΓL). Using this fact and the definition of L (i.e., symmetric

real matrix with rows and columns summing to zero), we can

easily show that vr = cr[1, 1, . . . , 1]
T (where cr is a positive

constant (see later)). Similarly, we can find the left eigenvector

(vl) by using the following:

(vl)TW = (vl)T − ǫ(vl)TΓL = (vl)T .

12For a connected graph the maximum eigenvalue of W is unity (i.e., the
zero eigenvalue associated to L has multiplicity one).
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Again, the above relation can be equivalently expressed as

ǫ(vl)TΓL = 0. Using the same analogy (like in the case

of right eigenvector) we can also show that (vl)T is in the

left null space of ΓL if (vl)TΓ = cl[1, 1, . . . , 1]
T (i.e., if

vli =
cl

f(αi)
, ∀i). Choosing cr = 1 and cl =

1
M∑

i=1

1
f(αi)

such that

(vr)Tvl = 1, we can now easily show that:

lim
k→∞

(

W
k
T

w[0]

)

i

=

(

vr(vl)TTw[0]

)

i

=

M∑

i=1

1
f(αi)

Tw
i [0]

M∑

i=1

1
f(αi)

, ∀i. (44)

This concludes the proof.

APPENDIX B

PROOF OF PROPOSITION 3

Let W be defined as in (24) with 0 < ǫ < 1/∆max, Γ ≤ 1
and f(αi) =

1
αi
, ∀i. We complete the main proof as follows:

1) prove that the (ΓL) has both real and positive eigenvalues,

and then 2) prove that the W is a positive semi-definite

matrix if λmax (Γ) ≤ 1
ǫλmax(L)(M−1) , where λmax (Γ) and

λmax (L) are the maximum eigenvalues associated to Γ and

L respectively, and finally 3) derive the upper bound on the

“scaled total variance” at each SN.

Sub−proof 1: Consider the matrix multiplication ΓL (which

gives a non-symmetric matrix) with Γ defined below (24) and

L defined in section II-B. Note that Γ and L are real diagonal

and real symmetric matrices respectively by definition. It is not

difficult to show that the eigenvalues of ΓL are the same as the

eigenvalues of K = Γ
− 1

2
(
ΓL
)
Γ

1
2 . Now, K can be simplified

to
(
Γ

1
2LΓ

1
2
)

(a real symmetric positive semi-definite matrix)

which implies that the eigenvalues of
(
ΓL
)

are real and

positive. This concludes the sub-proof 1.

Sub−proof 2: Now, to ensure that W is positive semi-definite

we require z
T
Wz ≥ 0 for z 6= 0. Decomposing W as:

2W =
(

W +W
T
)

︸ ︷︷ ︸

(symmetric)

+
(

W −W
T
)

︸ ︷︷ ︸

(skew-symmetric)

(45)

then, it can be shown that zTWz ≥ 0 iff
z
T (W+W

T )z
2 ≥ 0

(since
z
T (W−W

T )z
2 = 0). Now, 0 ≤

z
T (W+W

T )z
2 = z

T
Wz

2 +
(zT

Wz)
T

2 = z
T
Wz =⇒ W is positive semi-definite

iff
(

W+W
T

2

)

is so. Now from [39], λi

(

W +W
T
)

≥

0, ∀i =⇒ z
T
Wz ≥ 0 and from (24) we can easily show

that: λi(W+W
T ) = 2− ǫλi

(
ΓL+ (ΓL)T

)
. Now, it is clear

that:

λi
(
ΓL+ (ΓL)T

)
≤

2

ǫ
=⇒ λi

(

W +W
T
)

≥ 0

=⇒ λmax

(
ΓL+ (ΓL)T

)
≤

2

ǫ
=⇒ λi

(

W +W
T
)

≥ 0.

(46)

Using the result in sub-proof 1 and (46), then:

λmax

(
ΓL+ (ΓL)T

)
≤ 2

M∑

i=1

λi (ΓL) ≤ 2 (M − 1)λmax (ΓL)

So, λmax (ΓL) ≤
1

ǫ (M − 1)
=⇒ λi

(

W +W
T
)

≥ 0.

(47)

Because of the structure of Γ and L, then from [35]:

λmax (ΓL) ≤ λmax (Γ)λmax (L) (48)

and from (47) and (48) we can show:

λmax (Γ) ≤
1

ǫλmax (L) (M − 1)
=⇒ λi(W +W

T ) ≥ 0

(49)

and so W is proved to be positive semi-definite.

Sub − proof 3: In [40], for any two M ×M positive semi-

definite matrices G and H, it was shown that:

λM (G)tr(H) ≤ tr(GH) ≤ λ1(G)tr(H) (50)

where λi(G) is the ith largest eigenvalue of G. Using the

condition on λmax (Γ) in (49) and the bound in (50) we get:

1

M−1

M∑

i=1

Var
{
T̄w
i [k]

}
=

1

M−1
tr

(

(WkCov(T̄
w
[k]|Hp)(W

k)T

)

≤
1

M−1

(

Varmaxtr
(

W
k(Wk)T

)

+ ǫ2σ2
maxtr

( k∑

z=1

W
z−1(Wz−1)T

)
)

≤
1

M−1

(

λ1(W)Varmaxtr
(

W
k
)

+ ǫ2σ2
maxλ1(W)tr

( k∑

z=1

W
z−1
)
)

(51)

where tr(.) denotes the trace operator, Varmax =
max(Var

{
T̄w
i [k]

}
, · · · ,Var

{
T̄w
M [k]

}
) and σ2

max =
max(Var {ψ1[k]} , · · · ,Var {ψM [k]}). Now we can show

that:

1

M−1

(

λ1(W)Varmaxtr
(

W
k
)

+ ǫ2σ2
maxλ1(W)tr

( k∑

z=1

W
z−1
)
)

≤ Varmax

(
1

M − 1
+ λk2(W)

)

+ ǫ2σ2
max

(
k

M − 1
+

1− λk2(W)

1− λ2(W)

)

(52)

where λi(W), for i = 1, 2, · · · ,M are the eigenvalues of W
satisfying λM ≤ λM−1 ≤ · · · < λ1 = 1 and we have used
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tr(W) =
M∑

i=1

λi(W) and

k∑

z=1

λ
z
i (W) =







λi(W)− λk+1
i (W)

1− λi(W)
, for i = 2, 3, · · · ,M

k, for i = 1.
(53)

This concludes the proof.
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