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MULTILEVEL ENSEMBLE TRANSFORM PARTICLE FILTERING∗

A. GREGORY† , C. J. COTTER† , AND S. REICH‡

Abstract. This paper extends the multilevel Monte Carlo variance reduction technique to
nonlinear filtering. In particular, multilevel Monte Carlo is applied to a certain variant of the particle
filter, the ensemble transform particle filter (EPTF). A key aspect is the use of optimal transport
methods to re-establish correlation between coarse and fine ensembles after resampling; this controls
the variance of the estimator. Numerical examples present a proof of concept of the effectiveness
of the proposed method, demonstrating significant computational cost reductions (relative to the
single-level ETPF counterpart) in the propagation of ensembles.
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1. Introduction. Data assimilation is the process of incorporating observed
data into model forecasts. In data assimilation, one is interested in computing statis-
tics Eη[X ] of solutions X to random dynamical systems with respect to a posterior
measure (η) given partial observations of the system. In particle filtering [7, 4], this is
done by using an empirical ensemble representing the posterior distribution η at any
one time. The propagation in time of the members (particles) of this ensemble can
be computationally expensive, especially in high dimensional systems.

Recently, the multilevel Monte Carlo (MLMC) method has been developed for
achieving significant cost reductions in Monte Carlo simulations [9]. It has been ap-
plied to areas such as Markov chain Monte Carlo [13] and quasi–Monte Carlo [10]
to return computational cost reductions from existing techniques. It has also been
applied to uncertainty quantification within PDEs [6]. The idea is to consider a hier-
archy of discretized models, balancing numerical error in cheap/coarse models against
Monte Carlo variance in expensive/fine models. It is desirable to adapt MLMC to
sequential Monte Carlo methods such as particle filters, and some first steps have been
taken in this direction. First, the authors of [11] have developed a multilevel ensemble
Kalman filter (EnKF), using MLMC estimators to calculate the mean and covariance
of the posterior, in the case where the underlying distributions are Gaussian and the
model is linear. However, for non-Gaussian distributions and nonlinear models, the
EnKF is biased. The method does, however, converge to a “mean-field limit” [14].
Second, the authors of [3] proposed a multilevel sequential Monte Carlo method for
Bayesian inference problems to give significant computational cost reductions from
standard techniques. Our goal in this paper is to take a step further by applying
MLMC to nonlinear filtering problems.

In general, MLMC works by computing statistics from pairs of coarser and finer
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correlated ensembles. For Monte Carlo simulation of SDEs, this correlation is achieved
by using the same initial conditions and Brownian paths for each coarse/fine pair of
ensemble members. The key challenge in applying MLMC to particle filtering is in
maintaining this correlation after resampling. Giles [8] suggested that correlating
coarse and fine ensembles could be achieved by minimizing the Wasserstein distance
between the two ensembles. This can be formulated as a optimal transportation
problem [20].

In this paper, we adapt the MLMC framework to the ensemble transform par-
ticle filter (ETPF) [19]. The ETPF is an efficient and effective nonlinear filter that
uses optimal transportation transformations [22] instead of random resampling. In
our multilevel ETPF (MLETPF) the coupling between coarse and fine ensembles is
also maintained using optimal transportation. The sole aim of introducing MLMC
to the ETPF is to reduce the computational cost of the propagation of particles.
This is only a benefit if the computational cost dominates the optimal transportation
transformation cost; while direct solvers for optimal transportation problems with
one dimensional state space scale as O

(
N log(N)

)
, solvers for problems with more

than one dimension scale as O
(
N3log(N)

)
with the ensemble size. To address this,

a technique commonly used in the aforementioned EnKF known as localization can
be used to reduce this optimal transportation cost significantly [5]. Our proposed
MLETPF can return significant reductions in the overall computational cost of the
ETPF where the particle propagation cost dominates. It will also return significant
reductions in cases where optimal transportation computational cost dominates if the
localized ETPF is used.

This paper proceeds as follows. Section 2 provides a background of the MLMC
method, and section 3 describes the basic particle filtering framework together with
the ETPF scheme. Then the proposed MLETPF method is presented in section 4,
along with numerical examples demonstrating the effectiveness of the method. Finally,
section 5 provides a summary and outlook.

2. The multilevel Monte Carlo method. The multilevel Monte Carlo esti-
mator can be viewed as a variance reduction technique for a standard Monte Carlo
estimator. Suppose one wishes to compute an approximation of E[XL], where XL is
a numerical approximation of a random variable X (with discretization accuracy pa-
rameter1 hL ∝ M−L). The multilevel Monte Carlo (MLMC) method introduced in [9]
considered the case where X is the solution to an SDE at time T > 0; the discretized
solutions XL are obtained from a given numerical method with stepsize hL. This
paper will instead consider X to be a solution, at time T > 0, to a general random
dynamical system, with stochastic forcing and/or random initial conditions (drawn
from a distribution π0). In the simplest case let X i

L, i = 1, . . . , N , be N ≥ 1 inde-
pendent and identically distributed (i.i.d.) samples of XL. The standard, unbiased,
Monte Carlo estimator for E[XL] is then

(2.1) X̄MC
L =

1

N

N∑
i=1

X i
L.

Using a telescoping sum of expectations,

(2.2) E[XL] = E[X0] +

L∑
l=1

E[Xl]− E[Xl−1],

1An example is the time stepsize.
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MULTILEVEL ENSEMBLE TRANSFORM PARTICLE FILTERING A1319

one can define the MLMC approximation to E[XL] as a sum of independent Monte

Carlo estimators, X̄L =
∑L

l=0 X̂l, where

(2.3) X̂l =

{∑N0

i=1
1
N0

X i
0, l = 0,∑Nl

i=1
1
Nl

(
X i

l −X i
l−1

)
, l > 0,

leading to

(2.4) X̄L =
1

N0

N0∑
i=1

X i
0 +

L∑
l=1

(
1

Nl

Nl∑
i=1

(X i
l −X i

l−1)

)
.

Here Nl, l = 0, . . . , L, are Monte Carlo sample sizes, of i.i.d. draws from Xl, Xl−1,
respectively, for each of the L+ 1 estimators. We have

(2.5) E[X̂l] =

{
E[X0], l = 0,

E[Xl]− E[Xl−1], l > 0,

and hence the MLMC estimator is an unbiased approximation of E[XL]. We will call
the estimators, X̂l, l > 0, “multilevel difference estimators.” The important thing to
note here is that the fine (level l) and coarse (level l − 1) samples in each difference
estimator must be positively correlated for each i in each of the L + 1 multilevel
difference estimators. This can be achieved by using the same random system input
(e.g., initial conditions/stochastic forcing) for each i on both levels. On the other
hand, the samples in different difference estimators must be uncorrelated.

For fixed T , the discretization bias (away from E[X ]) of the overall estimator
is O(hα

L) [9], where α is the global discretization bias (i.e., |E[XL]− E[X ]|) of the
numerical method used to simulate Xl, l ≥ 0. One notes from [9] that

(2.6) |E[Xl]− E[Xl−1]| ≤ (M − 1)chα
l ,

where c is a positive constant, and that (M − 1)−1|E[XL]− E[XL−1]| can be used
as an estimate for the overall discretization bias,

∣∣X̄L − E[X ]
∣∣. As each estimator

in (2.4) is independent of one another, the overall variance is given by the sum of
the variances of each individual estimator. Given that there is a positive correlation
between Xl and Xl−1, one can then expect that the sample variance of Xl − Xl−1,
denoted by

(2.7) Vl = V[Xl −Xl−1] = V[Xl] + V[Xl−1]− 2Cov[Xl, Xl−1],

decays at a rate proportional to l, so that Vl = O(hβ
l ), β > 0. The covariance in the

last term in (2.6) is taken over the joint probability distribution of Xl and Xl−1. One
can then trade off variance in fine/expensive estimators against discretization error in
coarse/cheap estimators with lower variance by setting a decreasing sequence of Monte
Carlo estimator sample sizes, N0 > N1 > · · · > NL. The overall computational cost
of the MLMC estimator is

(2.8) CML =

L∑
l=0

h−γ
l NlT,

where h−γ
l defines the computational cost of propagating one single sample (of Xl)

through a discretized system. On the other hand, the cost of the standard Monte
Carlo estimator in (2.1) is

(2.9) CMC = h−γ
L NT.
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A1320 A. GREGORY, C. J. COTTER, AND S. REICH

One can choose the continuous variables Nl, l = 0, . . . , L, at a rate that minimizes
the variance of the MLMC estimator for a fixed computational cost, Nl ∝

√
Vlh

γ
l . In

particular, by following a formula given in [9, 6], one can find optimal values of Nl,
as well as the finest level L, and in doing so achieve a computational cost reduction
relative to the standard Monte Carlo counterpart (2.1), with the same bound mean
square error. Giles [9] proved the following result.

Theorem 2.1. If the mean square error of X̄L is bounded by O(ε2), one can
optimally choose L and Nl to allow the computational cost of the MLMC estimator
to be bounded by

(2.10) CML ≤

⎧⎪⎨
⎪⎩
c1ε

−2, γ < β,

c2ε
−2log(ε)2, γ = β,

c3ε
−2− (γ−β)

α , γ > β,

where c1, c2, c3, γ, β are positive constants and α ≥ 1
2min(γ, β).

For X̄MC
L to have a mean square error of O(ε2), a sample size N of O(ε−2) is

required, as well as a discretization bias given by hL = O(ε
1
α ). Thus any of the

computational costs in Theorem 2.1 are less than CMC (O(ε−2− γ
α )). The MLMC

approach in principle is very simple to implement and can be very effective as long as
one can satisfy the two constraints, α ≥ 1

2min(γ, β) and β > 0. More detail on this
method can be found in a generalized explanation, and related theorems, in [6].

3. Particle filtering. This section will outline the standard particle filtering
methodology. In this context, one is interested in computing statistics of a random
process Xt, conditioned on observations of a single realization of X , denoted by X ′,
and referred to as the reference solution. The observations are random variables of
the form

(3.1) Ytk = H(X ′
tk
) + φ

at times t ∈ (t1, . . . , tNy ), where H : Rd → Ry is an observation operator, and φ
is a random variable representing measurement error. For simplicity, we choose φ ∼
N(0, R), whereR is a y × y covariance matrix, and we will takeH to be the identity (so
that y = d). We defineXL,tk to be a numerical discretization ofXtk with discretization
accuracy parameter hL. Our aim here is to sequentially approximate EηL,tk

[XL,tk ],
the expectation of XL,tk with respect to the measure ηL,tk , where ηL,tk is the posterior
of XL,t given the observations Yt1,...,tk . Let p(y|x) be the likelihood function of y given
x and q(x) be the prior of x. Then, for any k ∈ [1, Ny], using importance sampling
[7], one can draw N i.i.d. samples from the empirical approximation of the prior of
XL,tk ,

(3.2) q̂(XL,tk) =

N∑
i=1

w̃L(X
i
L,tk−1

)δ(XL,tk −X i
L,tk

),

and denote the normalized importance weights of sample i ∈ [1, N ] to be

(3.3) w̃L(X
i
L,tk) =

wL(X
i
L,tk

)∑N
j=1 wL(X

j
L,tk

)
,

where

(3.4) wL(X
i
L,tk) = p(Ytk |X i

L,tk)w̃L(X
i
L,tk−1

).
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MULTILEVEL ENSEMBLE TRANSFORM PARTICLE FILTERING A1321

Thus, the filter weights are defined iteratively, starting from w̃L(X
i
L,t0

) = 1
N . As the

observations are given by a Gaussian distribution, the likelihood is

(3.5) p(Ytk |X i
L,tk

) =
1√

2π|R|y/2
e−

1
2

(
H(Xi

L,tk
)−Ytk

)T
R−1
(
H(Xi

L,tk
)−Ytk

)
.

Finally, an estimator for the expectation of XL,tk with respect to the posterior ηL,tk

is

(3.6) X̄L,tk =

N∑
i=1

w̃L(X
i
L,tk)X

i
L,tk .

This estimator, despite being biased by O(N−1) due to the normalized importance
weights in a single importance sampling update, is consistent with EηL,tk

[XL,tk ]. This
is to say, as N → ∞, the estimator converges in probability to EηL,tk

[XL,tk ].
Typically, importance weights become degenerate as k increases [4]. In this case,

it is necessary to duplicate higher weighted particles while removing lower weighted
particles; this is known as resampling. Resampling resembles an unbiased transfor-
mation from the weighted ensemble,

{
X i

l,tk
, w̃l(X

i
l,tk

)
}
i=1,...,N

to an evenly weighted

ensemble of resampled particles
{
X̃ i

l,tk

}
i=1,...,N

. The scheme outlined above is known

as the sequential importance resampling (SIR) method. For more information on
this, see [7]. The ETPF, the subject of this paper, uses optimal transportation [22]
to implement this transformation, which we describe next.

3.1. Ensemble transform particle filters. ETPFs are a variant of linear en-
semble transform filters (LETFs) [19]. They present an alternative to the resampling
step that takes place in the standard SIR methodology, replacing it with a linear
transformation. The goal is to obtain a transformed set of evenly weighted particles,{
X̃ i

L,tk

}
i=1,...,N

, from the weighted set of particles
{
X i

L,tk

}
i=1,...,N

, with importance

weights
{
w̃L(X

i
L,tk

)
}
i=1,...,N

, defining an empirical approximation to the posterior

distribution ηL,tk . This can be done with the following linear transformation:

(3.7) X̃j
L,tk

=

N∑
i=1

Pi,jX
i
L,tk

for i = 1, . . . , N and j = 1, . . . , N with nonzero entries for Pi,j . Here
∑N

i=1 Pi,j = 1.
Let ZL,tk denote the discrete random variable with samples X i

L,tk
and associated

probability vector w̃L(X
i
L,tk

), i = 1, . . . , N . Then take Z̃L,tk to be the discrete random

variable with samples X i
L,tk

, i = 1, . . . , N , all with equal probability. For the ETPF,

one creates a coupling between ZL,tk and Z̃L,tk , denoted by the matrix Ti,j , of size
N × N , with nonnegative entries. The coupling defines the linear transformation
matrix in (3.7) as Pi,j = NTi,j. This coupling can be found by solving a linear
transport problem by minimizing the expected Euclidean distance between ZL,tk and

Z̃L,tk , subject to the constraints

(3.8)

N∑
i=1

Ti,j =
1

N
,

N∑
j=1

Ti,j = w̃L(X
i
L,tk).
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A1322 A. GREGORY, C. J. COTTER, AND S. REICH

This is in fact equivalent to maximizing the covariance between the two ensembles
since

EZL,tk
,Z̃L,tk

[‖zL,tk − z̃L,tk‖2] = EZL,tk
[‖zL,tk‖2] + EZ̃L,tk

[‖z̃L,tk‖2]
· · · − 2EZL,tk

[zL,tk ]
T
EZ̃L,tk

[z̃L,tk ]− 2Tr
(
CovZL,tk

,Z̃L,tk
[zL,tk , z̃L,tk ]

)
.

(3.9)

In a univariate case, we define an optimal coupling matrix, Ti,j, as one which minimizes
the cost function,

(3.10)

N∑
i=1

N∑
j=1

Ti,j(X
i
L,tk

−Xj
L,tk

)2.

Theoretical analysis of the above transformation is given in [19]. Once the transformed
particles in (3.7) are found, the posterior mean is now estimated by,

(3.11) X̄L,tk =
1

N

N∑
j=1

X̃j
L,tk

.

It is important to note that this linear transformation, which is deterministic, will give
the same estimator as in (3.6) and thus does not add considerable extra variance to
the estimator from random resampling. This is a consistent estimator for the previous
posterior mean estimator

(∑N
i=1 w̃L(X

i
L,tk

)X i
L,tk

)
since

X̄L,tk =
1

N

N∑
j=1

X̃j
L,tk

=
1

N

N∑
j=1

N∑
i=1

Ti,jNX i
L,tk =

N∑
j=1

N∑
i=1

Ti,jX
i
L,tk

=
N∑
i=1

w̃L(X
i
L,tK )X i

L,tk
.(3.12)

In the univariate case, the matrix Ti,j can easily be found by an O
(
N log(N)

)
algorithm in [20]. This will become an important observation when discussing local-
ization in the next section. The above constraints lead to a maximum of 2N − 1
nonzero elements in Ti,j, leading to a very sparse matrix calculation, and thus the
ensemble transformation process can be achieved in an O(N) computational cost.
The O

(
N log(N)

)
computational cost comes from the fact that one has to sort the

univariate particles prior to the algorithm. In our numerical experiments at the end
of this paper, this sorting was a negligible part of the ensemble transform computa-
tional cost. This allows one to be able to carry the ensemble transform out on every
assimilation step without the computational expense of this being of a higher order
of magnitude than the propagation of the particles in between assimilation steps, but
more analysis will cover this observation in the next section.

In the multivariate case, the same linear transport problem prevails; however, one
is required to minimize the cost function,

(3.13)
N∑
i=1

N∑
j=1

Ti,j

∥∥∥X i
L,tk

−Xj
L,tk

∥∥∥2,
whose minimum defines the Wasserstein distance between ZL,tk and Z̃L,tk . This
can be solved in an O

(
N3log(N)

)
computational cost, using algorithms such as the
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MULTILEVEL ENSEMBLE TRANSFORM PARTICLE FILTERING A1323

FastEMD algorithm [16]. However, this means that with many systems this optimal
transportation computational cost will dominate over model costs of the system, and
thus the scheme is not efficient. The model costs of the particle filter are defined to
be the computational cost needed to propagate the N particles through the system
in between assimilation steps and is given in (2.9) (determined by a constant γ).
Thankfully, a technique called localization can aid this problem, and it can also provide
a pivotal change to the scheme when applying it to high dimensional systems.

3.1.1. Localization. Localization, a scheme frequently used in the EnKF for
high dimensional systems, can also be applied to the ETPF [5]. In the simplest form,
localization applied to the ETPF means that one can reduce the computational cost
of designing a multivariate coupling to d times the cost of designing a univariate cou-
pling. Localization allows one to construct an individual transformation in (3.7) for
each of the d components of a multivariate XL,tk . A simple definition for the local-
ization matrix C [5] that describes the spatial correlation structure of the ensemble{
XL,tk

}
i=1,...,N

could be

(3.14) Cm,n =

{
1− 1

2

( sm,n

rloc,c

)
,
( sm,n

rloc,c

) ≤ 2,

0 otherwise.

Here m,n = 1, . . . , d are the indices of the spatial components of XL,tk ,

(3.15) sm,n = min
{|m− n−N |, |m− n|, |m− n+N |},

and rloc,c is a constant. The above form for Cm,n explicitly takes spatial-periodicity
into account. One can now decompose the linear transport problem in (3.13) into d
separate linear transport problems, to find a coupling matrix Ti,j(m), i = 1, . . . , N ,
j = 1, . . . , N , for each componentm = 1, . . . , d. The objective of these linear transport
problems is minimizing the cost function

(3.16)
N∑
i=1

N∑
j=1

Ti,j(m)
∥∥∥X i

L,tk
−Xj

L,tk

∥∥∥2
m
,

where

(3.17)
∥∥∥X i

L,tk −Xj
L,tk

∥∥∥2
m

=

d∑
n=1

Cm,n

(
X i

L,tk(n)−Xj
L,tk

(n)
)2
,

subject to the constraints

(3.18)
N∑
i=1

Ti,j(m) =
1

N
,

N∑
j=1

Ti,j(m) = w̃L(X
i
L,tk

).

HereX i
L,tk

(m) is themth component ofX i
L,tk

. Then one can define the approximation
of the marginal posterior mean for each m = 1, . . . , N as

(3.19) X̄L,tk(m) =
1

N

N∑
j=1

X̃j
L,tk

(m),

where the transformed components are given by

(3.20) X̃j
L,tk

(m) =

N∑
i=1

Pi,j(m)X i
L,tk(m),
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A1324 A. GREGORY, C. J. COTTER, AND S. REICH

and Pi,j(m) = Ti,j(m)N . Note that the cost functions in (3.17) do not achieve the
minimum of (3.13). When rloc,c = 0, exhibiting the most computationally efficient
scenario, one has the interesting case where d univariate linear transport problems
need to be solved, thus transforming all components individually. One can simply
use the univariate algorithm in [20], mentioned in the previous section, with a com-
putational cost of O

(
N log(N)

)
, for each linear transport problem, to get an overall

O
(
dN log(N)

)
computational cost. In practice, when rloc,c = 0, one can also reorder

each of the transformed sets of components into the rank structure of the original
ensemble. This preserves the copula structure [21] of the original ensemble.

If the model costs of a system are less than that of the multivariate optimal trans-
portation, using rloc,c = 0 is the only case in which the model costs can return to
being the dominative cost in the ETPF estimator. Despite this, it is very reasonable
to imagine that this model cost will dominate that of the optimal transportation in
some systems, especially for high dimensional PDEs (i.e., where γ is high). Local-
ization does have an effect on the performance of the ETPF by adding bias into the
posterior mean approximation stemming from the fact that one is generating deter-
ministic couplings Ti,j that are minimizing different (simplified) cost functions to the
full, multivariate one in (3.13). This bias is thus caused by the decay in correlation be-
tween the components. Despite this, numerical experiments conducted in [5] find the
localized ETPF to be effective even in the chaotic, highly nonlinear Lorenz equations.

Localization is also needed in the likelihood evaluation of multivariate particles
in the ETPF. Although this is not critical to the aim of this paper, only briefly
covered here, it is essential for the ETPF to be able to successfully filter high dimen-
sional systems due to the curse of dimensionality. Standard sequential Monte Carlo
(SMC) methods fail to track high dimensional systems due to exponentially degener-
ate importance weights. However, while there have only been some suggestions for a
solution to this problem in SMCs, such as in [18], one can alter the above localization
scheme in the ETPF to solve this problem swiftly [5]. It is also needed to reduce the
computational cost of likelihood evaluations when the dimension of the state space
is greater than the sample size (d > N). For each component (m = 1, . . . , d) in the
particles

{
X i

L,tk

}
i=1,...,N

, generate an separate importance weight given by

(3.21) wL(X
i
L,tk

(m)) ∝ 1√
2π|R|y/2

e−
1
2

(
H(Xi

L,tk
)−Ytk

)T
(C̃m)R−1

(
H(Xi

L,tk
)−Ytk

)
,

where

(3.22) (C̃m)n,n =

{
1− 1

2

( sm,n

rloc,R

)
,
( sm,n

rloc,R

) ≤ 2,

0 otherwise

for n = 1, . . . , N (C̃m is diagonal) and the value of rloc,R can be independent of
rloc,c. Of course, H should be a local operator; see [1] for details of the use of
localization within the EnKF. These weights are then used in the constraints in the
linear transport problems for each individual component transformation in (3.18).
The two “radii” of localization, rloc,c and rloc,R, will henceforth be referred to as the
particular settings of localization used.

4. Multilevel ensemble transform particle filter (MLETPF). The pro-
posed MLETPF framework is demonstrated in this section. It creates an estimator
consistent with the standard ETPF estimator in (3.6), for the same discretization
accuracy level, L. The term “single level” estimator will henceforth be a reference
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MULTILEVEL ENSEMBLE TRANSFORM PARTICLE FILTERING A1325

to the corresponding standard ETPF estimator, conditioned on the same observa-
tions, with the same discretization level L and variance as the proposed MLETPF
estimator. The general premise of the MLETPF is to run L + 1 independent ETPF
estimators, with Nl samples, forward in time (and space), in the coupled multilevel
framework. When updating the weights of each particle in each estimator, the same
method as the ETPF holds for each of the L + 1 estimators. Thus, we define the
MLETPF estimator of EηL,tk

[XL,tk ] as the following, where the importance weights
w̃l(Xl,tk) target ηl,tk , the posterior of each d-dimensional discretization Xl,tk , given
the observations Yt1,...,tk , k ∈ [1, Ny]:
(4.1)

X̄L,tk =

(
N0∑
i=1

w̃0(X
i
0,tk)X

i
0,tk

)
+

L∑
l=1

(
Nl∑
i=1

(
w̃l(X

i
l,tk)X

i
l,tk − w̃l−1(X

i
l−1,tk)X

i
l−1,tk

))
.

We assume here that h0 ≤ Δt, where Δt = tk+1 − tk for all k ∈ [1, Ny − 1], so that all
of the L+1 estimators are conditioned on the same observations. This does mean that
one has to set a bound on the frequency of the data assimilation, given the time-step
of the minimum level, h0. We note that it is possible to adjust the framework here
slightly to incorporate frequent observations only available on finer levels at certain
times. This could be done by only updating the weights for finer ensembles at those
observations and then proceeding with the ensemble transform stages when both the
coarse and the fine levels in each difference estimator have had an importance weight
update.

One notes that as the standard ETPF estimator for each level of discretization,
l ≥ 0, is consistent with Eηl,tk

[Xl,tk ], the above estimator is consistent with the
EηL,tk

[XL,tk ], given the linearity of expectation shown in (2.2). Here each of the
particles from the fine and coarse ensembles in each of the multilevel difference es-
timators are positively correlated in between assimilation steps, as in the standard
MLMC method. This correlation is required for the variance of each difference esti-
mator to decay with l → ∞, as discussed in the opening section. However, now in the
ETPF context, when one comes to transform the fine and coarse ensembles in each
multilevel difference estimator, the two ensembles cannot be transformed indepen-
dently of one another, and they need to have a positive correlation imparted between
them ready for the next phase of particle propagation, especially if the transforma-
tions are happening frequently. If the random input to the system is simply a random
initial condition, in a system with no stochastic forcing, these particles from the fine
and coarse ensembles will certainly diverge instantly if they are not positively corre-
lated after the ensemble transformations. In this paper, this positive correlation is
achieved using a multilevel coupling step after the standard ensemble transform stage.
This requires one to first carry out the ensemble transform (3.7) on the coarse and fine
ensembles,

{
X i

l−1,tk

}
i=1,...,Nl

,
{
X i

l,tk

}
i=1,...,Nl

, with weights
{
wl−1(X

i
l−1,tk

)
}
i=1,...,Nl

,{
wl(X

i
l,tk

)
}
i=1,...,Nl

, respectively, to get evenly weighted particles,
{
X̃ i

l−1,tk

}
i=1,...,Nl

and
{
X̃ i

l,tk

}
i=1,...,Nl

. If localization is needed, one can implement this with the re-

quired parameters on both ensemble transforms, as in the last section. It is very
important that the same localization settings are used on all estimators, so that the
overall MLETPF estimator is consistent with the single level ETPF estimator with
the same localization settings. The key point is that the fine and coarse ensembles
from each discretization level will have the same systematic localization bias as one
another. This means, such as with the discretization bias, that the localization biases
can cancel each other out in the telescoping sum of estimators (4.1), leaving only the
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A1326 A. GREGORY, C. J. COTTER, AND S. REICH

systematic localization bias of the finest level equal to that of the localized single level
estimator. At this point, one notes that (4.1) becomes

(4.2) X̄L,tk =

(
1

N0

N0∑
i=1

X̃ i
0,tk

)
+

L∑
l=1

(
1

Nl

Nl∑
i=1

(
X̃ i

l,tk − X̃ i
l−1,tk

))
.

Now one needs to positively couple the fine and coarse ensembles of transformed
particles from each estimator above. We propose building another coupling between

X̃l,tk and X̃l−1,tk , denoted by T
F/C
i,j , that minimizes the cost function

(4.3)

Nl∑
i=1

Nl∑
j=1

T
F/C
i,j

∥∥∥X̃ i
l,tk − X̃j

l−1,tk

∥∥∥2,
with constraints

(4.4)
N∑
i=1

T
F/C
i,j =

1

Nl
,

N∑
j=1

T
F/C
i,j =

1

Nl
.

This is an assignment problem, and in the multivariate case it can be solved by
the Hungarian algorithm [15] with a computational cost equal to the multivariate
linear transport problem algorithms discussed previously, and hence it is the same
order of magnitude as the corresponding ensemble transform stage in the standard
ETPF method. In the univariate case, one can simply use the cheap algorithm in
[20], exactly like the ensemble transform stage. One notes that the above assignment
problem returns a coupling with one element in each row and column ( 1

Nl
), resulting in

particles simply being reordered and not transformed. This therefore returns exactly
the same transformed particles in each ensemble. The reordering can be seen as

finding the transformation matrix P
F/C
i,j = T

F/C
i,j Nl and then applying the standard

ensemble transform in (3.7) to both the fine and the coarse transformed ensembles to

get new ensembles of
{ ˜̃X i

l,tk

}
i=1,...,Nl

and
{ ˜̃X i

l−1,tk

}
i=1,...,Nl

which are now positively

correlated. Each multilevel difference estimator can now be estimated by

(4.5) X̂l,tk =
1

Nl

Nl∑
j=1

( ˜̃Xj
l,tk

− ˜̃Xj
l−1,tk

)
.

Using a calculation similar to (3.12), we now show that the estimator in (4.5) is
consistent with the term

(4.6)

(
Nl∑
i=1

(
w̃l(X

i
l,tk

)X i
l,tk

− w̃l−1(X
i
l−1,tk

)X i
l−1,tk

))

from (4.1). Let TF
i,j and TC

i,j (i, j = 1, . . . , N) be the coupling matrices used for the
ensemble transform on the finer and coarse ensembles, respectively; then

X̂l,tk =
1

Nl

Nl∑
j=1

( ˜̃Xj
l,tk

− ˜̃Xj
l−1,tk

)
=

Nl∑
j=1

Nl∑
i=1

T
F/C
i,j

(
X̃ i

l,tk
− X̃ i

l−1,tk

)

=
1

Nl

Nl∑
i=1

Nl∑
j=1

Nl

(
TF
i,jX

j
l,tk

− TC
i,jX

j
l−1,tk

)
=

Nl∑
j=1

(
w̃l(X

j
l,tk

)Xj
l,tk

− w̃l−1(X
j
l−1,tk

)Xj
l−1,tk

)
.

(4.7)
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MULTILEVEL ENSEMBLE TRANSFORM PARTICLE FILTERING A1327

The estimator in (4.2) can therefore be written as

(4.8) X̄L,tk =

(
1

N0

N0∑
i=1

˜̃X i
0,tk

)
+

L∑
l=1

(
1

Nl

Nl∑
i=1

( ˜̃X i
l,tk − ˜̃X i

l−1,tk

))
,

with covariance

(4.9) Cov[X̄L,tk ] =

L∑
l=0

Vl

Nl
,

where

(4.10) Vl =

{
Cov[ ˜̃X0,tk ], l = 0,

Cov[ ˜̃Xl,tk − ˜̃Xl−1,tk ], l > 0,

due to the fact that each estimator in (4.8) is independent. The above estimator
is consistent with the single level (localized, with the same settings as used in the
MLETPF) ETPF estimator due to (4.7) and (4.1). Therefore, in the absence of
localization, it is also consistent with EηL,tk

[XL,tk ].

The multilevel coupling T
F/C
i,j minimizes the expected distance between the two

transformed ensembles, which maximizes the covariance between them via (3.9) and
then finally minimizes Vl. The multilevel coupling procedure above minimizes Vl in
each multilevel difference estimator; we also ensure that pairs of particles in the coarse
and fine ensembles are positively coupled in between assimilation steps (by using the
same random input). The aim of this is to make the covariance Vl decrease at an

asymptotic rate O(hβ
l ) (β > 0) required for the variance reduction of the multilevel

framework to work. This is because the fine and coarse ensembles are coupled both
in between assimilation steps and during them via the coupling. This will be demon-
strated in numerical experiments later in the paper. Designing this coupling between
both transformed ensembles X̃l−1,tk and X̃l,tk is the key to the proposed MLETPF
method, and it enforces correlation amongst both transformed ensembles while re-
maining consistent with the single level ETPF estimator. Most importantly, it also
suits the ETPF method since the coupling can be generated simply and cheaply when
using the rloc,c = 0 localization that can be used freely in the ETPF. This will be
shown later.

4.1. Algorithm. In this section, we present an algorithm to implement the
MLETPF in practice. In this paper, a predefined recurrence relation for the decay of
Nl as l → ∞ will be set (Nl+1 = f(Nl)), and these sample sizes will be kept fixed
throughout the filtering process. The finest discretization level L > 0 will be kept
arbitrary for now. The algorithm is now presented:

1. Start at t0 (thus k = 0) and with l = 0. Choose N0.
2. Calculate Nl = �f(Nl−1)� if l > 0. Sample

{
X i

0,t0

}
i=1,...,N0

∼ π0 if l = 0 or{
X i

l,t0
, X i

l−1,t0

}
i=1,...,Nl

∼ π0, where X i
l,t0

= X i
l−1,t0

if l > 0, at time t0.

3. Propagate all samples forward according to system dynamics until time tk+1.
If l > 0, the fine and coarse pairs of samples in each estimator must be coupled by
using the same random input.

4. Derive the normalized importance weights for Xl,tk+1
:

(4.11) w̃l(X
i
l,tk+1

) =
wl(X

i
l,tk+1

)∑Nl

j=1 wl(X
j
l,tk+1

)
.
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A1328 A. GREGORY, C. J. COTTER, AND S. REICH

5. Transform
{
X i

l,tk
, w̃l(X

i
l,tk

)
}
i=1,...,Nl

and
{
X i

l−1,tk
, w̃l−1(X

i
l−1,tk

)
}
i=1,...,Nl

into the evenly weighted ensembles,
{
X̃ i

l,tk

}
i=1,...,Nl

and
{
X̃ i

l−1,tk

}
i=1,...,Nl

, using the

linear transformation in (3.7). Couple them using the multilevel coupling matrix

T
F/C
i,j to produce reordered ensembles

{ ˜̃X i
l,tk

}
i=1,...,Nl

and
{ ˜̃X i

l−1,tk

}
i=1,...,Nl

.

6. Move on to step 7 if l = L, or if not, iterate l+ = 1 and then repeat steps
2–6 for k = 0 or steps 3–6 for k > 0.

7. Iterate k+=1. Start again from step 3 with l = 0. The MLETPF approxi-
mation of EηL,tk

[XL,tk ] is given by (4.8).

4.2. Computational cost of the MLETPF and ETPF. As previously noted,
in a multidimensional case, it is computationally expensive to generate the cou-
pling matrices needed to couple the fine and coarse transformed particles. Local-
ization is used to reduce the computational cost of the ensemble transforms down to
O
(
dN log(N)

)
when rloc,c = 0 in the standard and multilevel ETPF methods, and

this too can also reduce the computational cost of generating the multilevel coupling

T
F/C
i,j . When localization is used along with rloc,c = 0, one can break the multivariate

coupling T
F/C
i,j down into d separate univariate couplings. As the components are

transformed individually, one can simply find a coupling T
F/C
i,j (m) for each individual

component m in the transformed coarse and fine ensembles with the cost function,

(4.12)

Nl∑
i=1

Nl∑
j=1

T
F/C
i,j (m)

(
X̃ i

l,tk(m)− X̃j
l−1,tk

(m))
)2
,

and the same constraints as in (4.4). Each of these couplings can again be found
using the cheap, O

(
Nllog(Nl)

)
(for each l) univariate algorithm in [20]. One can then

reorder/transform each component of the fine and coarse ensembles separately using
the same methodology as in the previous section. This performs a role similar to
resampling Nl particles from F−1

f,m(u) and F−1
c,m(u), where F−1

f,m/F−1
c,m are the marginal

(empirical) inverse cumulative distribution functions of X̃l,tk(m) and X̃l−1,tk(m), re-
spectively. Here the same uniform variate u ∈ [0, 1] is used for each pair of Nl samples.
If localization is carried out along with rloc,c > 0, the computational cost of the opti-
mal transport in the standard ETPF and thus the multilevel coupling, minimizing the
full multivariate cost function in (4.3), in the MLETPF will rise to O

(
dN3

l log(Nl)
)
.

This is because d different localized, but still multivariate, optimal transportation
problems will have to be solved. Therefore, in this scenario, the model costs are likely
to be dwarfed by these optimal transportation costs, which are fixed by definition. In
this case there is no justification for implementing the multilevel framework, as it only
aims to reduce model cost and not the optimal transportation computational expense.
However, to consider the case where model cost does dominate that of the multivari-
ate optimal transportation, the full multivariate coupling will be demonstrated in the
numerical experiments at the conclusion of this paper.

The paper now looks at the overall computational cost of the ETPF and MLETPF
estimators when localized, with rloc,c = 0. In this case, as explained above, one
can reduce the computational expense of not only the ensemble transform stage,
but the multilevel coupling stage as well, in the MLETPF scheme from a poten-
tial O

(
N3

l log(Nl)
)
to O

(
dNllog(Nl)

)
for each multilevel difference estimator. This

is enough, with suitable assumptions, to expect that the model computational cost
bounds for the standard MLMC method in Theorem 2.1 are of the same order of mag-
nitude as that of the entire MLETPF, including the ensemble transform and coupling
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MULTILEVEL ENSEMBLE TRANSFORM PARTICLE FILTERING A1329

stages, as one can simply “hide” the optimal transportation costs behind the particle
propagation costs. This follows from the next proposition.

Proposition 4.1. If Δt ≥ h0 is constant, and one can bound the computational
cost of all Ny ensemble transform/multilevel coupling stages (with the last term being
the cost associated to the sort prior to the algorithm) of the MLETPF by

(4.13) CET ≤
L∑

l=0

(
dc1NlNy + de1Nllog(Nl)Ny

)
,

where c1 is a positive constant, then the total computational cost of the MLETPF is
bounded by

(4.14) CMLETPF ≤
L∑

l=0

(
c2NlCl,dtNy + de1Nllog(Nl)Ny

)
,

where Cl,d is the cost of propagation of one particle on level l (dependent on d), e1 is
a positive constant, and c2 is a positive constant.

Proof. Let the total computational cost of the MLETPF be given by the sum of
the model cost and the ensemble transform cost (including the localized likelihood
evaluation in (3.21), which scales at O(Nl) due to the sparse diagonal d × d matrix
C̃, with rloc,R assumed constant (rloc,R = O(1)) and  d):

(4.15) CMLETPF = CET + CMODEL.

Then bounding CET as in the claim and using the model cost in (2.8),

CMLETPF ≤
L∑

l=0

(
Nl(dc1Ny + Cl,dc3tNy) + de1Nllog(Nl)Ny

)

≤
L∑

l=0

(
Nl(dc4tNy + Cl,dc3tNy) + de1Nllog(Nl)Ny

)

≤
L∑

l=0

(
c2NlCl,dtNy + de1Nllog(Nl)Ny

)
.

(4.16)

Here we assume that Cl,d will grow at least linearly with d, c4 = c1
Δt and that c3 is a

positive constant.

The last term of each of the expressions above comes from the sorting of the
univariate particles in the cheap algorithm. Although this computational cost scales
at O

(
Nllog(Nl)

)
, the constant e1 is typically very small with respect to the other

constants in the cost expression; furthermore, this scaling is a worst case estimate, but
in many cases it would not be reached. Therefore, assuming that this part is less than
the remainder of the localized ensemble transform cost, one can bound the overall cost
of the MLETPF by the model cost and keep the corresponding reductions outlined in
Theorem 2.1. However, even if this sorting cost does dominate the ensemble transform
cost, one still expects to recover computational cost reductions relative to the single
level estimator for a fixed error. Despite the model cost in this case not necessarily
being the highest computational expense in the localized MLETPF, with the cost of
the sorting/ensemble transform dominating, it is important to note that for a fixed
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A1330 A. GREGORY, C. J. COTTER, AND S. REICH

error bound this sorting cost/ensemble transform will still typically be less than the
model computational cost of the single level ETPF. The reductions in Theorem
2.1 would then be a slight underestimation; however, there would still be evident
reductions of computational cost relative to the single level ETPF. This is indeed the
case for the numerical examples in the next section, as we show there.

4.3. Numerical examples. Numerical examples of the MLETPF method, ap-
plied to classical data assimilation problems, are given in this section. Three prob-
lems will be studied: the multivariate, chaotic stochastic Lorenz-63 equations; the
univariate but nonlinear double-well OU process; and the high dimensional stochas-
tic Lorenz-96 equations. The algorithm above will be used to generate experimental
MLETPF estimators (that are compared against the single level ETPF estimators)
for the last two of the three problems above, along with varying levels of prede-
fined accuracy. This predefined level of accuracy, O(ε), will determine L (the finest
level/overall numerical discretization bias), the fixed sample sizes for each estimator
in the MLETPF method (Nl), and the fixed overall sample size in the corresponding
single level ETPF estimator required to achieve the order of magnitude of this error
in both estimators. This follows from the standard Monte Carlo approximation error
decomposition given by the central limit theorem, as in [9]. One can then compare the
computational cost, given as the number of operations, for both the single level and
the multilevel estimators, which should be in line with Theorem 2.1 given the same
predefined error. The error is not bounded exactly due to variations in the variance
at each assimilation step, but a proof of concept from a practitioner’s viewpoint can
be established.

The error in the estimators will be estimated by the time-averaged root mean
square error (RMSE), given by

(4.17) RMSE =

√√√√ 1

Ny

Ny∑
k=1

∥∥∥X̄L,tk − Eηtk
[Xtk ]

∥∥∥2,
where ηtk is the posterior distribution of Xtk given the observations Yt1,...,tk . An ap-
proximation of Eηtk

[Xtk ] will be used in the RMSE calculations above, by computing
a standard ETPF estimator for it, of which the numerical discretization bias and sam-
ple size produce an estimator with an error orders less than any ε used in the following
experiments. In cases where localization is used in the single level and multilevel esti-
mators for the problems above, the estimators are inconsistent with EηL,tk

[XL,tk ], but
they are crucially consistent with each other when the same localization settings are
used. The ETPF approximation of Eηtk

[Xtk ] will use the same localization settings
to correctly compare the ETPF and MLETPF estimators like for like.

The recurrence relation for Nl, l ≥ 1, given N0 (dependent on ε), used in both
numerical experiments will be set to Nl+1 =

⌈
NlM

−3/2
⌉
; however, the optimality of

this depends on the relative value of β with respect to γ [9]. This is only optimal
for β > γ, (β + γ) = 3; this is the case in the numerical examples below. One notes
that for an RMSE of O(ε) one requires that Nl = O(ε−2), and that N = O(ε−2) for
the single level ETPF. Also, the discretization bias of the multilevel and single level
ETPF estimators from Eηtk

[Xtk ] should be O(ε). Thus, for a numerical scheme that
has a global discretization bias of O(tNyh

α
L), one requires that

(4.18) L =

⌈
log
(
(tαNy

d)/ε
)

αlog(M)

⌉
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MULTILEVEL ENSEMBLE TRANSFORM PARTICLE FILTERING A1331

for the sum of the multilevel and single level ETPF estimator components’ bias to be of
O(ε). One could also use the maximum among all components’ biases to be a suitable
measure here. The sample covariances of the independent ETPF estimators will also
be measured by a sum among all components, Tr(Vl), the trace of the covariance
matrix.

For the single level ETPF, using the above analysis, one can see how requiring
hL = O(ε) and N = O(ε−2), the model cost in (2.9) will be O(ε−3), dominating the
localized (with rloc,c = 0) ensemble transform cost O

(
dN log(N)

)
, which is equivalent

to O
(
dε−2log(ε−2)

)
; this supports the point made in the previous section. This is also

greater than the localized ensemble transform cost of the MLETPF, O
(
dNllog(Nl)

)
,

again equivalent to O
(
dε−2log(ε−2)

)
. Thus the computational cost reductions of the

MLETPF, even if the sorting cost of the localized ensemble transform dominates, is
apparent in these cases. The computational cost for these numerical examples is de-
fined as the theoretical number of operations needed to compute each approximation,
including the ensemble transform stage and the multilevel coupling for the MLETPF.
This is computed simply by inserting a step-counter into the numerical implementa-
tion (functions, etc.) in the Python code used for these experiments. Finally, M = 2
is used for each numerical example.

4.3.1. Stochastic Lorenz-63 equations. The simple 3-component chaotic non-
linear system in X = (x, y, z),

(4.19)
dX

dt
=

⎧⎪⎨
⎪⎩
σ(y − x) + φdW

dt ,

x(ρ− z)− y + φdW
dt ,

xy − βz + φdW
dt ,

with ρ = 28, σ = 10, β = 8/3, φ = 0.4, will be used to demonstrate the effect of

the multivariate multilevel coupling, T
F/C
i,j , without localization and thus with cost

function in (4.3). The localized coupling will also be used as a comparison. Here
the Brownian motion W will be the same for each component to keep the strong
nonlinearity in the equations. Computational cost against accuracy comparisons with
the standard ETPF method will not be investigated here given the low model cost of
this test problem, and thus the dominating effects of the multilevel coupling and/or the
ensemble transform stage in both the ETPF and the MLETPF will make the model
cost reductions of the multilevel framework unnoticeable. The MLETPF estimator
with N0 = 500, and L = 5, using the full multivariate cost function in (4.3) to find

the multilevel couplings T
F/C
i,j in the aforementioned algorithm, is used to compute

an approximation to EηL,tk
[XL,tk ], with X as above, for k ∈ [1, 5120], with h0 =

M−7 = Δt, and thus tNy = 40. Here XL is the solution to the above Lorenz-63
equations using the forward Euler numerical scheme. The reason that we choose the
minimum level to be equivalent to l = 7 is for stability when using the Euler method.
Using different numerical methods, with greater stability at greater time-steps, and
thus lower levels, would be able to decrease this minimum level. The observations
are given by a measurement error with R = 2I, where I is the 3 × 3 identity matrix
and weights are thus based on observations of all components x, y, and z. Figure 1
shows the mean estimates of Tr(Vl) (l ∈ [1, 5]) over all assimilation steps k ∈ [1, Ny].
The asymptotic decay of the above estimates show importantly that the multilevel
coupling, with the multivariate cost function, successfully produces the variance decay,
Tr(Vl) = O(hβ

l ); in this case, β ≈ 1. The figure also shows the value of β (variance
decay) for the case where rloc,c = 0 localization for the coupling. Localization being
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A1332 A. GREGORY, C. J. COTTER, AND S. REICH

used in a problem such as the strongly nonlinear Lorenz 63 system is dangerous due
to the decay in correlations between components, but with the parameters above, it
is used simply to compare the rates of variance decay with the nonlocalized case. One
recovers β ≈ 2 in the localized case; this shows that refining the optimal transport
down to the one dimensional localization case is beneficial for variance reduction but
comes with the sacrifice of inconsistency of the reference “single level” estimator.

z
z

Fig. 1. Mean, over all assimilation steps, k ∈ [1, Ny], of the estimates of Tr(Vl), with l ∈ [1, 5]
for the stochastic Lorenz-63 equations. Both the nonlocalized and the rloc,c = 0 localized cases are
shown.

4.3.2. Double-well OU process. This is a univariate test problem that demon-
strates the cost effective, consistent, MLETPF estimator of EηL,tk

[XL,tk ], whereXL,tk

is a numerical discretized solution to the double-well, nonlinear OU process,

(4.20) dXtk = −V ′(Xtk)dt+ ξdWtk ,

k ∈ [1, Ny], and Wtk is a standard Brownian motion. Here V (Xtk) =
1
4X

4
tk

− 1
2X

2
tk
.

This example uses hl = 2−4−l, but it is arbitrarily chosen. The stochastic forcing
is set to ξ = 0.5. The observations and assimilation times were given by R = 0.6,
tNy = 50, where Δt = h0, and so Ny = 800. The numerical discretizations of Xtk are
computed by the Euler–Maruyama numerical scheme. The parameters above produce
a stable numerical solution for a single realization of the above system when using this
scheme for the time frame above. A very accurate simulation (N0 = 10000, L = 7) of
the MLETPF estimator is run to demonstrate the mean asymptotic decay of Vl and
|X̂l,tk | (l ∈ [1, 7]) over all assimilation steps. These are shown in Figure 2. The values
of α ≈ 1, β ≈ 2 are as expected given the Euler–Maruyama global discretization bias
of O(hl) and the additive noise in the OU process contributing to the variance.

Figure 3 shows the computational cost against the accuracy (RMSE) for the
MLETPF and the single level ETPF estimators over varying values of ε. Here one
sets N0 = ε−2 for the MLETPF and N = ε−2 for the single level ETPF estimator.
One can clearly see the expected orders of growth for the computational cost of the
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MULTILEVEL ENSEMBLE TRANSFORM PARTICLE FILTERING A1333

Fig. 2. Mean, over all assimilation steps, k ∈ [1, Ny ], of the estimates of Vl (variance) and

|X̂l,tk | (expectation) with l ∈ [1, 7] for the double-well OU process.

Fig. 3. Computational cost (number of operations) against the time-averaged RMSE of the
ETPF and MLETPF estimators for the double-well OU process. Reference lines show the orders of
decay of RMSE−2 and RMSE−3.

standard ETPF (O(ε−3), as γ = 1 and α = 1) and the MLETPF (O(ε−2), given that
γ < β) that were shown in Theorem 2.1 for the predefined RMSE of O(ε).

4.3.3. The stochastic Lorenz-96 equations. The final numerical test for the
MLETPF method in this paper is the high dimensional (d = 40 in this case) stochastic
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Lorenz-96 equations, given by

(4.21)
dXj

dt
= −

(
X(j − 1)X(j + 1)−X(j − 2)X(j − 1)

)
3ΔX

−X(j) + F + σ2 dWj

dt
,

with j ∈ [1, Nx], Nx = 40, NxΔx = 10, and thus ΔX = 0.25; dWj/dt are 40 i.i.d.
Brownian motions. Here F is a constant forcing (F = 8) and σ2 = 0.4. Periodic
boundary conditions are used, so that X(−1) = X(Nx). The observations were given
by a measurement error of R = 6I, where I is the 40 × 40 identity matrix and
assimilation times were set to tNy = 100, where Δt = h0, meaning that Ny = 1600
as hl = 2−4−l (again simply arbitrary). The Euler–Maruyama method is used to find
Xl,tk once again here. In this numerical example, the ETPF and MLETPF estimators
use rloc,R = 1. The localization setting of rloc,c = 0 is used for both the multilevel
and the single level ETPF estimators here due to the model cost, Cl,d, being simply
equal to h−1

l d and thus much lower than that of high optimal transportation costs in
multiple dimensions.

Once again, a very accurate simulation (N0 = 1000, L = 10) of the MLETPF was

generated to demonstrate the mean asymptotic decays of
∑40

i=1 |X̂l,tk(i)| and Tr(Vl)
(l ∈ [1, 10]) over all assimilation steps, and these are shown in Figure 4. They follow
the same, expected values of α ≈ 1, β ≈ 2, as with the last example.

Fig. 4. Mean, over all assimilation steps, k ∈ [1, Ny ], of the estimates of Tr(Vl) (variance)

and
∑40

i=1 |X̂l,tk (i)| (expectation) with l ∈ [1, 10] for the stochastic Lorenz-96 equations.

Next, the stability of the MLETPF is considered. Since Nl is fixed and does
not change to bound error over time, we can look at the errors from the reference
solution, X ′

tk
, compared to the observational errors, to study the stability of the

MLETPF estimator over time and check that the errors do not increase. One expects
that, for a successful particle filter, the errors from the estimator should be less than
the observational errors and remain stable. Figure 5 shows this expected behavior,
where the cumulative time-averaged RMSE values from X ′

tk , of both the observations
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MULTILEVEL ENSEMBLE TRANSFORM PARTICLE FILTERING A1335

Fig. 5. The cumulative time-averaged RMSE of the observations and MLETPF estimator away
from the reference solution, X′

tk
, for the stochastic Lorenz-96 equations.

and the MLETPF estimator (using arbitrary values of N0 = 1000 and L = 10) are
shown. For k ∈ [1, Ny], these are defined to be

(4.22)

√√√√1

k

k∑
i=1

∥∥Yti −X ′
ti

∥∥2
for the observations and

(4.23)

√√√√1

k

k∑
i=1

∥∥X̄L,ti −X ′
ti

∥∥2
for the MLETPF estimator. To demonstrate the stability of the variance of the
particle filter, cumulative time-averaged RMSE values for the second moments of
X̄L,tk and Ytk are shown in Figure 6. Finally, to compare the MLETPF with its
standard counterpart for this set of equations, Figure 7 shows the computational cost
against the accuracy (RMSE) for the standard ETPF and the MLETPF estimators
over varying values of ε. Once again, one sets N0 = ε−2 for the MLETPF and N =
ε−2 for the single level ETPF estimator. This follows the successful cost reductions
achieved in the last example, defined in Theorem 2.1.

5. Summary and outlook. This paper has demonstrated a proof of concept for
the application of MLMC to nonlinear filtering. The ETPF, coupled with localization,
allows one to simply and cheaply carry out a multilevel coupling between each fine and
coarse ensemble in each independent Monte Carlo estimator in the MLMC framework.
A recent study has also proposed a framework to apply MLMC to nonlinear filtering
with a modified random resampling step in the standard particle filtering method-
ology to couple particles from coarse and fine levels [12]. In contrast, the coupling
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A1336 A. GREGORY, C. J. COTTER, AND S. REICH

Fig. 6. The cumulative time-averaged RMSE of the second moment of the observations and
MLETPF estimator away from the second moment of the reference solution, (X′

tk
)2, for the sto-

chastic Lorenz-96 equations.

Fig. 7. Computational cost (number of operations) against the time-averaged RMSE of the
ETPF and MLETPF estimators for the stochastic Lorenz-96 equations. Reference lines show the
orders of decay of RMSE−2 and RMSE−3.

in the present paper is designed to minimize the Wasserstein distance between the
distributions of these transformed ensembles (in the standard ETPF methodology),
originally suggested in [8]. It has been shown through numerical experiments that one
can restore positive correlation between fine and coarse ensembles which might have
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MULTILEVEL ENSEMBLE TRANSFORM PARTICLE FILTERING A1337

been lost if they had been transformed independently of one another. This in turn
satisfies the necessary constraints on the sample variance of each independent multi-
level estimator, allowing the proposed MLETPF method to reduce the computational
cost of the propagation of particles in the localized ETPF method.

In general, localization with rloc,c = 0 makes the computational cost of this cou-
pling and the ensemble transform in the MLETPF cheap enough that the multilevel
framework can return overall computational cost reductions from the standard ETPF
methods; this is the aim of the paper. It must be noted that although this paper has
only touched on the case where the very crude rloc,c = 0 localization is considered,
due to small model cost test problems, this method could also be applied to high
dimensional systems where the model cost dominates that of the multivariate optimal
transportation. One can do this without any crude constraints on rloc,c using the full
multivariate coupling methodology presented in this paper and demonstrated numer-
ically. However, whether the variance decay of Vl from such a multivariate coupling
would hold, producing equally strong results, in the limit of d � N is unknown, and
thus the issue of how one would adjust this coupling to be used alongside other values
of rloc,c to reduce the dimensionality of these multivariate couplings remains to be
explored.

Iterative and approximate schemes for solving discrete optimal transportation
problems have been an area of rapid research in the last few years [17], and this offers
the chance to improve the multilevel coupling in the proposed method by reducing
computational cost. This could be done by trading off between the optimality and
computational cost of the coupling for each l, e.g., more expensive/optimal couplings
for greater l with lower sample sizes Nl.

The form of the coupling used in this paper is simple to implement and has the
potential to be used in plenty of applications, in and outside of data assimilation,
whenever one wishes to establish consistent correlation between two distributions
for variance reduction. Considering an extension for the multidimensional example
presented in this paper, one could also apply a spatial multilevel framework, setting
the spatial resolution (ΔXl) to be dependent on the level of discretization, as done in
[6, 2] to gain even more significant cost reductions.
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