
A comparison of the equivalent weights particle filter and

the local ensemble transform Kalman filter in application

to the barotropic vorticity equation

By PHILIP A. BROWNE*, Department of Meteorology, University of Reading, RG6 6AY, Reading, UK

(Manuscript received 20 November 2015; in final form 2 October 2016)

ABSTRACT

Data assimilation methods that work in high-dimensional systems are crucial to many areas of the geosciences:

meteorology, oceanography, climate science and so on. The equivalent weights particle filter (EWPF) has been

designed for, and recently shown to scale to, problems that are of use to these communities. This article

performs a systematic comparison of the EWPF with the established and widely used local ensemble transform

Kalman filter (LETKF). Both methods are applied to the barotropic vorticity equation for different networks

of observations. In all cases, it was found that the LETKF produced lower root mean�squared errors than the

EWPF. The performance of the EWPF is shown to depend strongly on the form of nudging used, and a

nudging term based on the local ensemble transform Kalman smoother is shown to improve the performance

of the filter. This indicates that the EWPF must be considered as a truly two-stage filter and not only by its

final step which avoids weight collapse.

Keywords: equivalent weights particle filter, non-linear data assimilation, EMPIRE, LETKF, nudging,

LETKS relaxation

1. Introduction

1.1. Data assimilation and Bayes’ theorem

When making a prediction based on a dynamical model of

a system, it is necessary to initialise that model. This could

be done simply by guessing the initial conditions of such a

model or, as is more common, confronting the model with

observations of the system.

Such observations necessarily have errors associated with

them and also tend to be incomplete. That is, they are not

direct observations of every component of the model. The

mathematical formulation of how to rigorously incorporate

such observations into the model is Bayes’ theorem (Bayes

and Price, 1763; Jazwinski, 1970):

pðx j yÞ ¼ pðxÞpðy j xÞ
pðyÞ

: (1)

In this equation, x represents the model state and y the

observations. Hence, the posterior probability density func-

tion (pdf) p(x j y) is given as the product of the likelihood

p(y j x) with the prior p(x) and normalised by the pdf of

the observations p(y). Different approximations of Bayes’

theorem lead to different methods of data assimilation. For

instance, if one reduces the problem to finding a local mode

of the posterior pdf, this becomes an inverse problem which

can be solved by variational techniques: the famous 3DVar

and 4DVar methods (see e.g. Le Dimet and Talagrand 1986;

Dashti et al. 2013).

1.2. Particle filters

A particle filter is a Monte Carlo approach to computing

the posterior via Bayes’ theorem [see e.g. Doucet et al. (2001)

or van Leeuwen (2009)] in the context of a dynamically

evolving system.

Without loss of generality, suppose that we have the prior

pdf, p(xk), at timestep k written as a finite sum of delta

functions (formally distributions),

pðxkÞ ¼
XNe

i¼1

wk
i dðxk � xk

i Þ (2)

where d(x) is the standard Dirac delta function. The set of

state vectors xk
i ; i ¼ 1; . . . ;Ne is known as the ensemble, and
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each state vector is referred to interchangeably as a particle

or ensemble member. Note that in this notation the prior is

arbitrary: it may depend on any data that have previously

been assimilated and may have been evolved from a known

probability density at a previous time. This information

will be encoded into the weights wk
i . As p(xk) is a pdf,R

pðxkÞdxk ¼ 1, which implies
PNe

i¼1 wk
i ¼ 1, and p(xk) ] 0

implies wk
i � 0.

We have a model for the dynamics of the state which is

Markovian:

xkþ1 ¼ f ðxkÞ þ bk (3)

where f is a deterministic model and bk is a stochastic

model error term. To evolve the prior in time, we note that

from the definition of conditional probability,

pðxkþ1Þ ¼
Z

pðxkþ1 j xkÞpðxkÞdxk: (4)

Now following Gordon et al. (1993), p(xk�1 j xk) is a

Markov model defined by the statistics of bk that are

assumed known:

pðxkþ1 j xkÞ ¼
Z

pðxkþ1 j xk; bkÞpðbk j xkÞdbk: (5)

As bk is independent of the state xk, p(bk j xk)�p(bk) and
we have

pðxkþ1 j xkÞ ¼
Z

pðbkÞd xkþ1 � ½ f ðxkÞ þ bk�
� �

dbk: (6)

Substituting eq. (2) and eq. (6) into eq. (4), we obtain

pðxkþ1Þ ¼
ZZ

pðbkÞd xkþ1 � ½ f ðxkÞ þ bk�
� �

dbk

�
XNe

i¼1

wk
i dðxk � xk

i Þdxk:

(7)

Integrating over xk, this reduces to

pðxkþ1Þ ¼
XNe

i¼1

wk
i

Z
pðbkÞd xkþ1 � ½ f ðxk

i Þ þ bk�
� �

dbk: (8)

Now for each ensemble member i, we make a single draw

from p(bk), bk
i (i.e. pðbkÞ ¼ dðbk � bk

i Þ) so that

pðxkþ1Þ ¼
XNe

i¼1

wk
i d xkþ1 � ½ f ðxk

i Þ þ bk
i �

� �

¼
XNe

i¼1

wk
i dðxkþ1 � xkþ1

i Þ; (9)

that is, wkþ1
i ¼ wk

i .

Now, we suppose some observations of the system, y,

at timestep n. What we desire is a representation of the

posterior pdf at timestep n, p(xn j y). To do this, we can use

the weighted delta function representation of the prior in

combination with Bayes’ theorem (1):

pðxn j yÞ ¼
XNe

i¼1

wn
i pðy j xn

i Þ
pðyÞ

dðxn � xn
i Þ: (10)

Hence, the weights in the posterior pdf are the normalised

product of the prior weights and the pointwise evaluation of

the likelihood. For any subsequent timesteps, the posterior

is used as the prior in a recursive manner.

Filter degeneracy, or weight collapse, is the scenario in

which wk
j � 1 for some j � 1,. . .,Ne. Hence, wk

i � 0 8i 6¼ j.

In this case, the first-order moment of the posterior pdf,

�xk, will be simply xk
j . All higher order moments will be

computed to be approximately 0.

Snyder et al. (2008) showed that, in the case of using

a naive particle filter such as the sequential importance

resampling (SIR) filter (Gordon et al., 1993), to avoid filter

degeneracy the number of ensemble members must be

chosen such that Ne / expðN2
s Þ where Nt is a measure of

the dimension of the system. Ades and van Leeuwen (2013)

showed that this dimension of the system is actually the

number of independent observations.

Simply increasing the number of ensemble members is,

for most geophysical applications, infeasible. Ne will be

determined by the size of the supercomputer available. For

operational numerical weather prediction (NWP) methods,

Ne may typically be around 50. For instance, simply for

forecasting, the Canadian NWP ensemble forecast uses

Ne�20, the European Centre for Medium-Range Weather

Forecasts has Ne�51 and the UK Met Office has Ne�46.

Therefore, it is clear that for a particle filter to represent

the posterior pdf successfully, the case that wk
j � 1 for some

j � 1, . . ., Ne should be avoided. The equivalent weights par-

ticle filter (EWPF) (van Leeuwen, 2010) that we shall discuss

in Section 2 is designed specifically so that wk
i � 1=Ne for all

i � 1, . . ., Ne. It does this in a two-stage process. Firstly, the

particles are nudged towards the observations. Secondly, an

‘equivalent weights step’ is made to avoid filter degeneracy.

1.3. Ensemble Kalman filters

The Ensemble Kalman filter (EnKF) is a method of data

assimilation that attempts to solve Bayes’ theorem when

assuming that the posterior pdf is Gaussian [see e.g.

(Evensen 1994; Burgers et al. 1998; Evensen 2007)]. In that

case, the posterior can be characterised by its first two

moments: mean and covariance. The prior pdf, or more

precisely the covariance of the prior, is represented by an

ensemble of model states. Instead of propagating the full

covariance matrix of the prior by a numerical model [as

in the Kalman filter (Kalman, 1960)], only the ensemble

members are propagated by the model.
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If the dimension of the model state, Nx, is much greater

than the number of ensemble members used, Ne, then the

EnKF is much more computationally efficient than the

Kalman filter.

Defining Xk to be the scaled matrix of perturbations of

each ensemble member from the ensemble mean at time k,

then the update equation of the EnKF can be written as

xa
k ¼ x

f
k þ XkX T

k HT ðHXkX T
k HT þ RÞ�1ðy�Hx

f
kÞ: (11)

Here,xf
k refers to the forecast of the ensemblemember at timek

and xa
k the resulting analysis ensemble member at time kwhich

has been influenced by the observations. H is the observation

operator that maps the model state into observation space,

and R is the observation error covariance matrix.

There are many different flavours of ensemble Kalman

filter, each of which is a different way to numerically com-

pute the update equation. For a discussion on the different

kinds see, for example, Tippett et al. (2003) and Lei et al.

(2010). In this article, we shall consider implementing the

EnKF by means of the local ensemble transform Kalman

filter (LETKF) and shall discuss this in detail in Section 3.

1.4. Motivation for this investigation

We have seen that if we are trying to use a particle filter

to recover the posterior pdf via a numerical implementation

of Bayes’ theorem, then it makes sense to ensure that the

weights of each particle are approximately equal. Or at

least, it pays to ensure that each particle has non-negligible

weight, specifically when higher order moments of the

posterior pdf are required.

Until now, there has been no systematic comparison of

the EWPF and an ensemble Kalman filter using a non-

trivial model of fluid dynamics. This is a necessary study to

see if anything is gained by not making the assumptions of

Gaussianity that are made by the EnKF method. Previous

investigations of the EWPF have focused on tuning the free

parameters in the system to give appropriate rank histograms.

In this study, we shall investigate themethod’s ability to appro-

priately constrain the system in idealised twin experiments.

To this end, the system we shall consider is the equations

of fluid dynamics under the barotropic vorticity (BV)

assumptions. This is perhaps the model most well studied

for the EWPF. As a system of one prognostic variable on a

two-dimensional grid, it is easily understood and affordable

to experiment with. We also know the parameter regimes in

which the EWPF will perform well.

The remainder of this article is organised as follows. In

Section 2, we discuss the use of proposal densities within

particle filters before introducing the EWPF. In Section 3, we

discuss the LETKF. In Section 4, we discuss the BV model

which we consider. In Section 5, we define the experimental

setup which we use and performance measures. In Section 6,

we show the numerical results that are discussed in detail in

Section 7. Finally in Section 8, we finish with some con-

clusions and discuss the implications for full-scale NWP.

2. Particle filters using proposal densities

In this section, we briefly summarise the use of a proposal

density within a particle filter, before going on to discuss the

specific choices of these made in the EWPF.

2.1. Proposal densities

A key observation that has advanced the field of particle

filters is the freedom to rewrite the transition density as

pðxkþ1 j xkÞ ¼ pðxkþ1 j xkÞqðxkþ1 j xk; yÞ
qðxkþ1 j xk; yÞ

; (12)

which holds so long as the support of q(xk�1 j xk,y) is larger
than that of p(xk�1 j xk). Now, we are also free to change

the dynamics of the system such that

xkþ1 ¼ f ðxkÞ þ gðxk; yÞ þ bk (13)

as in the study by van Leeuwen (2010). As in Section 1.2,

we assume that, without loss of generality, we have a delta

function representation for the prior at timestep k given by

eq. (2). Then, in a manner similar to the marginal particle

filter (Klaas et al., 2005),

pðxkþ1Þ ¼
Z

pðxkþ1 j xkÞqðxkþ1 j xk; yÞ
qðxkþ1 j xk; yÞ

pðxkÞdxk (14)

¼
Z

pðxkþ1 j xkÞqðxkþ1 j xk; yÞ
qðxkþ1 j xk; yÞ

XNe

i¼1

wk
i dðxk � xk

i Þdxk (15)

¼
XNe

i¼1

wk
i

pðxkþ1 j xk
i Þqðxkþ1 j xk

i ; yÞ
qðxkþ1 j xk

i ; yÞ
: (16)

We can write the transition density pðxkþ1 j xk
i Þ and

proposal density qðxkþ1 j xk
i ; yÞ in terms of bk:

pðxkþ1Þ ¼
XNe

i¼1

wk
i

Z
pðbkÞqðbkÞ

qðbkÞ
�

d xkþ1 � ½ f ðxk
i Þ þ gðxk

i Þ þ bk�
� �

dbk:

(17)

Now, similarly to before, drawing a single sample bk
i

for each ensemble member, but now from the distribution

q(bk), gives

pðxkþ1Þ ¼
XNe

i¼1

wk
i

pðbk
i Þ

qðbk
i Þ

d xkþ1 � ½f ðxk
i Þ þ gðxk

i Þ þ bk
i �

� �
(18)

¼
XNe

i¼1

wk
i

pðbk
i Þ

qðbk
i Þ

dðxkþ1 � xkþ1
i Þ (19)

COMPARISON OF EWPF AND LETKF 3



¼
XNe

i¼1

wk
i

pðxkþ1
i j xk

i Þ
qðxkþ1

i j xk
i ; yÞ

dðxkþ1 � xkþ1
i Þ: (20)

That is,

pðxkþ1Þ ¼
XNe

i¼1

wkþ1
i dðxkþ1 � xkþ1

i Þ; (21)

where

wkþ1
i ¼ wk

i

pðxkþ1
i j xk

i Þ
qðxkþ1

i j xk
i ; yÞ

: (22)

To find the delta function representation of the posterior,

it is the case of combining this derivation with Bayes’

theorem to arrive at the same equation as in eq. (10).

The use of proposal densities is the basis of particle filters

such as the implicit particle filter (Chorin and Tu, 2009)

and the EWPF, and more recently the implicit equal

weights filter (Zhu et al., 2016). The goal is to choose the

proposal density in such a way that the weights wk
i do not

degenerate.

2.2. The equivalent weights particle filter

The EWPF is a fully non-linear data assimilation method

that is non-degenerate by construction. For a comprehen-

sive overview of the EWPF see van Leeuwen (2010) and

Ades and van Leeuwen (2013).

A key feature of the EWPF is that it chooses the

proposal density q(xk�1jxk,y) equal to p(bk) but with new

mean g(xk,y). It proceeds in a two-stage process with one

form of g(xk,y) for the timesteps that have no observations

and a different form of g(xk,y) when there are observations

to be assimilated.

For each model timestep k�1 before an observation

time n, the model state of each ensemble member, xk
i , is

updated via the equation

gðxk
i ; yÞ ¼ Aðyn �Hðxk

i ÞÞ; (23)

where yn is the next observation in time,H is the observation

operator that maps the model state onto observation space

and A is a relaxation term. In this work, we consider

A ¼ rðkÞQHT R�1; (24)

where the matrices Q and R correspond to the model evo-

lution error covariance and observation error covariance

matrices, respectively. s(k) is a function of time between

observations; in this article, s(k) increases linearly from

0 to a maximum (s) at observation time. Equations (23)

and (24) together make up what we will refer to as the

nudging stage of the EWPF. This process is iterated until

k�1�n�1.

In this work, we consider only unbiased Gaussian model

error [i.e. bk
i �Nð0;QÞ]. To obtain a formula for the un-

normalised weights at timestep k�1, we can use this

Gaussian form in eq. (22). Taking logarithms leads to a

formula for the weights of the particles (van Leeuwen, 2010;

Ades and van Leeuwen, 2015) as

� logðwkþ1
i Þ ¼ � logðwk

i Þ

þ 1

2
ðxkþ1

i � f ðxk
i ÞÞ

T
Q�1ðxkþ1

i � f ðxk
i ÞÞ

� 1

2
ðbk

i Þ
T

Q�1ðbk
i Þ:

(25)

The second stage of the equivalent weights filter involves

updating each ensemble member at the observation time n

using the term

gðxn�1
i ; yÞ ¼ aiQHT ðHQHT þ RÞ�1ðyn �Hðf ðxn�1

i ÞÞÞ; (26)

where ai are scalars computed so as to make the weights

of the particles equal. This is done for a given proportion

(0Bk51) of the ensemble which can make the desired

weight. The remaining ensemble members are resampled

using stochastic universal sampling (Baker, 1987; van

Leeuwen, 2010).

It is important to realise that the covariance of the prior

ensemble is never explicitly computed in the EWPF but

implicitly, via the EWPF approximation to Bayes’ theorem:

increasing the spread in the prior will increase the spread in

the posterior. Instead, the covariance of the error in the

model evolution Q is crucial.

3. Local ensemble transform Kalman filter

The LETKF is an implementation of the ensemble Kalman

filter which computes in observation space (Bishop et al.,

2001; Wang et al., 2004; Hunt et al., 2007). As with all

ensemble Kalman filters, the pdfs are assumed Gaussian.

Formally, the LETKF update equation for ensemble

member i at the observation timestep n can be written as

xn
i ¼ �xn

f þ X n
f W n

i ; (27)

where �xn
f is the mean of the forecast ensemble at timestep

n, X n
f is the ensemble of forecast perturbations and W n

i

is the column of a weighting matrix corresponding to

ensemble member i. Full details of this is given in Hunt

et al. (2007). This can be extended through time (Posselt and

Bishop, 2012) such that for kBn, we get the local ensemble

transform Kalman smoother (LETKS) update equation

xk
i ¼ �xk

f þ X k
f W n

i : (28)

As typically the number of ensemble members will be

much fewer than the dimension of the model state, spurious

correlations will occur within the ensemble. These spurious
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correlations lead to information from an observation

inappropriately affecting the analysis at points far away

from the observation. To counteract this, the LETKF

effectively considers each point in the state vector sepa-

rately and weights the observation error covariance by a

factor depending on the distance of the observation from

the point in the state vector.

For each point in the state vector, the inverse of the

observation error covariance matrix, R�1 (also known as

the precision matrix), is weighted by a function w so that

R̂�1
ij ¼ R�1

ij wðdðiÞÞ�1
wðdðjÞÞ�1

:

The weighting of the observation error covariance matrix

R is given by the function

wðdÞ�1 ¼ expð� d2

4‘2Þ; if d
‘
B4

0; otherwise

�
(29)

where d is the distance between the point in the state vector

and the observation and l is a predefined localisation length

scale.

In the case of a diagonal R matrix, then

R̂�1
jj ¼ R�1

jj wðdðjÞÞ�2
:

The weighting w(d) is a smoothly decaying function

which cuts off when d
‘
¼ 4, that is, w(d)�2�e�8:0.0003.

This means that the computations are speeded up by

ignoring all the observations which have a precision less

than 0.0003 of what they were originally.

Inflation is typically also required for the LETKF in

large systems (Anderson and Anderson, 1999). That is, the

ensemble perturbation matrices are multiplied by a factor

of (1�r) in order to increase the spread in the ensemble

that is too small because of undersampling, that is, Xf 0

(1�r) Xf in eq. (27).

4. Barotropic vorticity model

In this section, we consider the model which we investigate.

We start with the Navier�Stokes equations and assume

incompressible flow, no viscosity, no vertical flow and that

flow is barotropic [i.e. r�r(p)]. We define vorticity q to be

the curl of the velocity field. This results in the following

partial differential equation in q [see e.g. Krishnamurti

et al. (2006)], known as the BV model,

@q

@t
þ u

@q

@x
þ v

@q

@y
¼ 0;

where u is the component of velocity in the x direction and

v is the component of velocity in the y direction. The domain

we consider is periodic in both x and y and so the compu-

tation of this can be made highly efficient by the use of a fast

Fourier transform (FFT). In order to solve this equation, it is

sufficient to treat vorticity q as the only prognostic variable.

The curl operator can be inverted in order to derive the

velocity field u from the vorticity. We use a 512�512 grid,

making Nx�218, a 262,144 dimensional problem. Timestep-

ping is achieved by a leapfrog scheme with dt�0.04 (roughly

equivalent to a 15-minute timestep of a 22-km resolution

atmosphericmodel). The decorrelation timescale of this system

is approximately 42 timesteps or 1.68 time units.

There are a number of good reasons for investigating

this model. For example, it exhibits strong non-linear

behaviour, develops cyclonic activity and generates fronts.

All of which are typical of the highly chaotic regimes

occurring in many meteorological examples. Turbulence in

the model is prototypical: energy is transferred downscale

due to the presence of non-linear advection (see Fig. 2a for

a plot of a typical vorticity field from the model). Note that

it was the BV model that was used for some of the earliest

numerical weather predictions (Charney et al., 1950).

Note that thismodel has no balances that can be destroyed

by data assimilation, something which should be considered

in other studies of this kind. A further advantage for this first

study is that we do not have to worry about bounded

variables when applying the LETKF.

Also for this model we know the parameter regimes and

model error covariance structure for which the EWPF per-

forms well. Ades and van Leeuwen (2015) first applied the

EWPF to theBVmodel, albeit at a lower resolution, and in this

article, we employ similar parameters in the EWPF such as the

nudging strengths(k) anduse the samemodel error covariance

matrix Q. The Ades and van Leeuwen (2015) study concen-

trated on using rank histograms as the performance diagnostic

of the EWPF, whereas in this article we consider performance

in terms of root meansquared errors (RMSE).

5. Experimental setup

In this section, we discuss the two experiments we shall run.

All of the experiments were carried out using the EMPIRE

data assimilation codes (Browne and Wilson, 2015) on

ARCHER, the UK national supercomputer.

5.1. Model error covariance matrix

For ensemble methods in the NWP setting, obtaining spread

in the ensemble is a key feature in the performance of

both the analysis and the forecast. In NWP applications,

this is typically achieved by employing a stochastic physics

approach (Baker et al., 2014) or using a stochastic kinetic

energy backscattering (Tennant et al., 2011) to add random-

ness at a scale which allows the model to remain stable. For

the EWPF (or indeed any particle filter that uses a proposal

density), we must specify (possibly implicitly) the model

error covariance matrix. Understanding and specifying the
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covariances ofmodel error in a practical model is a challenge

to which much more research must be dedicated.

The model error covariance matrix used in this article is

the same as that used in Ades and van Leeuwen (2015).

That is, Q is a second-order autoregressive matrix based

on the distance between two grid points, scaled so that the

model error has a reasonable magnitude in comparison

with the deterministic model step.

5.2. Initial ensemble

The initial ensemble is created by perturbing around a

reference state. Thus, for each ensemble member xi and the

true state xt,

fxig; xt�Nðxr;BÞ 8i 2 f1; . . . ;Neg: (30)

The background error covariance matrix B is chosen pro-

portional toQ such that B�202Q. The reference state xr is a

random state which is different for each experiment.

5.3. Truth run for twin experiments

The instance of the model that is considered the truth is

propagated forward using a stochastic version of the model

where

xkþ1
t ¼ f ðxk

t Þ þ bk
t where bk

t �Nð0;QÞ:

5.4. Observing networks

We shall show results from experiments with three different

observing networks that make direct observations of vorti-

city. The first is regular observations throughout the domain

as considered byAdes and van Leeuwen (2015), the second is

a block of dense observations and the third is a set of strips

that could be thought of as analogous to satellite tracks.

The details of the observing networks are shown below and

visualised in Fig. 1.

ON1: Every other point in the x and y directions observed

ON2: Only those points such that (x,y) � [0,0.5]�[0,0.5]

are observed

ON3: Only those points such that (x,y) � [0,1]�
([0,0.0675] @ [0.25,0.3175] @ [0.5,0.5675] @

[0.75,0.8175]) are observed

In each case, we have Ny�Nx/4�65 536. The observa-

tion errors are uncorrelated, with a homogeneous variance

such that R�0.052I. Observations occur every 50 model

timesteps. These observations are quite accurate when

you consider that the vorticity typically lies in the interval

(�4, 4) (see Fig. 2a).

5.5. Comparison runs

For comparison and analysis purposes, we will run a

number of different ensembles as well as the LETKF and

the EWPF. We detail these subsequently.

5.5.1. Stochastic ensemble.Eachensemblemember is propa-

gated forward using a stochastic version of the model. That is,

xkþ1
i ¼ f ðxk

i Þ þ bk
i where bk

i �Nð0;QÞ:

5.5.2. Simple nudging. For each timestep, the nudging

terms of theEWPFare used to propagate themodel forward.

That is, eqs. (13), (23) and (24) are used to update the model

state. The weights of the particles are disregarded, and the

ensemble is treated as if it was equally weighted.

5.5.3. Nudging with an LETKS relaxation. The model is

propagated forward in time stochastically until the timestep

before the observations. During this stage, no relaxation

Observing network 1 (ON1) ⇓

y

x

(a) Observing network  2 (ON2) ⇓

y

x

(b) Observing network 3 (ON3) ⇓

y

x

(c)

Fig. 1. Observing network diagrams.
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term is used (i.e. g(xk,y)�0). At the timestep before the

observations, the relaxation term that is used comes from the

LETKS. That is, term in eq. (23) is the increment that would

be applied by the LETKS. At the observation timestep,

the ensemble is propagated using the stochastic model.

The weights of the particles are disregarded, and the

ensemble is treated as if it was equally weighted.

This can be written in equation form, so that at each

iteration k before the observation time n, the update for

each ensemble member i is given by

xkþ1
i ¼ f ðxk

i Þ þ bk
i for k 2 f0; . . . ; n� 3g [ fn� 1g

f ðxk
i Þ þ gi þ bk

i for k ¼ n� 2

�
;

(31)

–4 –3 –2 –1 0 1 2 3 4

P.A. BROWNE

True model state ⇓ Observations from ON1 ⇓

Observations from ON2 ⇓ Observations from ON3 ⇓

(a) (b)

(c) (d)

Fig. 2. Plots of vorticity for the true state and the resulting observations using the different networks at the 6th analysis time, for a particular

random seed.
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where gi is the increment arising from the LETKS for

ensemble member i.

5.5.4. The EWPF with an LETKS relaxation. Similarly

to nudging with the LETKS relaxation, the model is

propagated forward in time stochastically until the timestep

before the observations. At the timestep before the observa-

tions, the relaxation that is used comes from the LETKS. At

the observation timestep, the equivalent weights step (26) of

the EWPF is used. The weights are calculated using eq. (22)

which in this case with Gaussian model error remains, given

explicitly by eq. (25). We employ k�0.75, 0.25 and 0.5

for observation networks 1, 2 and 3, respectively. This is

discussed in Section 7.3.

5.6. Assimilation experiments

Observations occur every 50 timesteps for the first 500

model timesteps. After that, a forecast is made from each

ensemble member for a further 500 timesteps.

For each observing network, we run five different

experiments:

� The EWPF
� The LETKF
� Simple nudging
� Nudging with an LETKS relaxation
� The EWPF with an LETKS relaxation

Tables 1 and 2 list the parameter choices used for the

different methods for the different observational networks.

They were chosen by performing a parameter sweep across

the various free parameters and selecting those that gave

the lowest RMSEs (shown in Fig. A1).

All of these experiments are repeated 11 times. In each of

the 11 experiments, the initial reference state, xr, is different,

as is the random seed used. For reference, we also run a

stochastically forced ensemble from each of the different

reference states. As no data is assimilated here, these runs are

independent of the observing network.

We choose to run 48 ensemble members for each method.

This is for two reasons: there are 24 processors per node

on ARCHER so this is computationally convenient, and

48 is of the order of the number of ensemble members that

operational NWP centres are currently using.

6. Results

6.1. Root mean�squared errors

Figures 3 to 5 show RMSE for the different assimilation

methods on the three separate observing networks. For-

mally, the RMSE we show is the square root of the spatial

average of the square of the difference from the ensemble

mean and the truth. Each line of the similar colour refers to a

distinct experiment with a different stochastic forcing and

initial reference state. Values are shown only for the initial

ensemble, 10 analysis times (recall that each analysis time is

separated by 50model time steps) and 10 subsequent forecast

times that are again separated by 50 model timesteps.

In brown, for reference, is plotted the RMSE from the

stochastically forced ensemble; in black, the total RMSE;

in blue, the unobserved variables; and in red, the observed

variables.

The RMSE, as defined previously, is a measure of the

similarity of the ensemble mean to the truth. If the pos-

terior is a multimodal distribution, then the ensemble mean

may be far from a realistic, or accurate, state. EnKF

methods, by their Gaussian assumptions that they make,

naturally assume a unimodal posterior. Particle filters on

the contrary do not make such an assumption. In this

article, we do not investigate the effect of using a different

error measure.

Figure 3 is markedly different from Figs. 4 and 5 � in this

case, the unobserved variables behave as if they are also

observed. This is because each unobserved variable is either

directly adjacent to two observed variables or diagonally

adjacent to four observed variables. Contrast this with the

observing networks 2 and 3 where an unobserved variable

could be a maximum of 181 or 48 grid points, respectively,

away from an observed variable.

6.2. Trajectories of individual grid points

In Fig. 6, we show the evolution of the vorticity at a given

grid point for a single experiment. Every model timestep is

shown for each of the ensemble members for the different

methods.

7. Discussion

It is clear from the results presented that the EWPF with

simple nudging, as implemented by Ades and van Leeuwen

Table 1. Parameter values used in the LETKF

Observation network 1 2 3

Localisation length scale, l 0.005 0.02 0.007

Inflation factor, r 0.01 0.01 0.01

Table 2. Parameter values used in the EWPF

Observation network 1 2 3

Keep proportion, k 1.0 1.0 1.0

Nudging factor, s 0.7 0.5 0.7
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(2015), is not competitive with the LETKF in terms of

RMSEs. This is similar to the results noted in Browne and

van Leeuwen (2015) in that the EWPF gives RMSEs higher

than the error in the observations.

In this section, we shall discuss different aspects of the

results, in an attempt to give some intuition as to why they

occur.

7.1. RMSEs from the EWPF are controlled by the

nudging term

Consider the differences between RMSE plots for the simple

nudging and the EWPF. They are qualitatively similar

[Figs. 3�5, (a) vs. (c)]. Further, when we use a different type

of nudging [Figs. 3�5, (d) vs. (e)], the results are again similar.

EWPF ⇓

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

Analysis/forecast time

R
M

S
E

LETKF ⇓

0 5 10 15 20

Analysis/forecast time 

R
M

S
E

Simple nudging ⇓

0 5 10 15 20

Analysis/forecast time

R
M

S
E

LETKS nudging ⇓

0 5 10 15 20

Analysis/forecast time

R
M

S
E

EWPF with LETKS nudging ⇓

0 5 10 15 20

Analysis/forecast time

R
M

S
E Observed

Unobserved

Total

Stochastic

(a)

(c)

(e)

(d)

(b)

Fig. 3. Observing network 1, every other gridpoint. The total and unobserved RMSEs are almost exactly underneath the observed

RMSE plots. This is due to the widespread information from the observations effectively constraining the whole system.
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This is due to the two-stage nature of the EWPF. The

first stage is a relaxation towards the observations (23),

followed by a stage at observation time which ensures

against filter degeneracy (26). In the second stage, we are

not choosing the values of ai to give a best estimate in

some sense (e.g. compare with the best linear unbiased

estimator) but instead they are chosen so that the weights

remain equal. Hence, most of the movement of the
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Fig. 4. Observing network 2, block of dense observations.
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particles towards the observations happens in the first,

relaxation, stage.

This is shown strongly in Fig. 6; the simple nudging and

the EWPF are qualitatively similar. Also in Fig. 6, it can be

seen that the LETKS nudging and the EWPF�LETKS also

follow similar trajectories. This shows that the equivalent

weights step of the EWPF is notmoving the particles very far

in state space in order to ensure the weights remain equal.
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Fig. 5. Observing network 3, tracks of observations.
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7.2. Simple nudging is insufficient to get close

to the observations

Figures 3c, 4c, and 5c show that, with simple nudging,

the RMSEs are much larger than the observation error

standard deviation. This is due to the choice of nudging

equation used (24).

The goal of nudging is to bring the particles closer to the

observations, or equivalently, to the area of high probability

in the posterior distribution. In this section, we shall discuss

the properties that this nudging term should have.

Let the nudging term be denoted as A(x,y) and written

as a product of operators

Aðx; yÞ ¼ As � Am � Aw � AI

where AI is the innovation, Aw is the innovation

weighting, Am is the mapping from observation space

to state space and As is the operator to spread the

information from observation space throughout state

space.

Observed gridpoint at (0.75, 0.03)
for the DA methods ⇓(a) (b)

(c) (d)
Observed gridpoint at (0.75, 0.03)

for the nudging techniques ⇓
Unobserved gridpoint at (0.25, 0.91)

for the nudging techniques ⇓

Unobserved gridpoint at (0.25, 0.91)
for the DA methods ⇓
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LETKF Simple nudging LETKS nudging
EWPF-LETKS

Fig. 6. Trajectories of two different points in the domain when using the different assimilation methods with observing network 3 for a

single experiment.
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The innovation should have the form

AI ¼ y�Hðf ðxÞÞ;

where f takes the state at the current time and propagates it

forward to the corresponding observation time. With this,

the innovation is exactly the discrepancy in observation

space that we wish to reduce; however, it is valid only at the

observation time.

Consider now the innovation weighting Aw. When the

observations are perfect, we wish to trust them completely,

and hence, we should nudge precisely to the observations.

When they are poor, we should distrust them and nudge

much less strongly to the observations. Hence,

R! 0) Aw ! I & R!1) Aw ! 0:

Hence with

Aw ¼ ðI þ RÞ�1
;

the appropriate limits are obtained.

Am�HT is a way to map the scaled innovations into

state space.

The term As should compute what increment at the

current time would lead to such an increment at observa-

tion time. Hence, As�MT, the adjoint of the forward

model.

Thus to nudge consistently,

Aðx; yÞ ¼ As � Am � Aw � AI

¼MT HTðI þ RÞ�1½y�Hðf ðxÞÞ� (32)

Now let us compare this to the simple nudging term in

eq. (23), working through the terms from right to left.

AI ¼ y�Hðf ðxÞÞ 6¼ y�HðxÞ (33)

In the simple nudging term, the innovations used compare

the observations with the model equivalent at the current

time. This ignores the model’s evolution in the intervening

time, and thus, the more the model evolves, the larger this

discrepancy. This discrepancy occurs even with linear model

evolution. In Fig. 6, this can be seen by considering the

evolution of the simple nudging ensemble between times

0 and 1. The model is forced to be close to the observation

too early due to this time discrepancy in the innovation.

Aw ¼ ðI þ RÞ�1 6¼ R�1

For the form of observation error covariance matrix R

used in this study, this is not an issue. To see this, we have

to consider Aw �s R, and note that we have R�gI. Then,

I�R�I�gI�(1�g)I, and hence, I þ R ¼ ð1þcÞ
c R. Thus,

the coefficient ð1þcÞ
c can be subsumed into the nudging

coefficient s.
With simple nudging Am is consistent.

Finally, the termAs�MT"Q. Themodel error covariance

matrix is clearly not a good approximation to the adjoint of

the model. Hence, the information from the observations is

not propagated backwards in time consistently.

All of these factors serve to make simple nudging in-

effective at bringing the ensemble close to the observations.

7.3. LETKS as a relaxation in the EWPF

Given the theory described in Section 7.2, it is reasonable

to believe that the ensemble Kalman smoother (EnKS) may

provide better information with which to nudge.

As with the EnKF, there are many flavours of EnKS.

Here we have used the LETKS simply because of its

availability within EMPIRE.

Using the notation of the EnKF introduced in Section

1.3, we can write the EnKS analysis equation as

xa
‘ ¼ x

f
‘ þ X

f
‘ X

fT
k HT ðHX

f
k X

fT
k HT þ RÞ�1ðy�Hx

f
kÞ: (34)

Hence, the nudging term that comes from the EnKS is

gðxk; yÞ ¼ X
f
‘ X

fT
k HT ðHX

f
k X

fT
k HT þ RÞ�1ðy�Hx

f
kÞ:

Comparing with eq. (32), we can see that the innovations

are correct. The observation error covariance matrix is

regularised with HX
f
k X

fT
k HT instead of the identity, but the

same limits are reached as R 0 0 and R 0�. The main

difference is that now the information is brought back-

wards in time via the temporal cross-covariances of the

state at the current time and the forecasted state at the

observation time. Hence using this method there is no need

for the model adjoint.

Comparing Figs. 3�5, (c) versus (d) it can be seen that

LETKS nudging provides a decrease in RMSE when

compared with the simple nudging. Moreover, comparing

the trajectories shown in Fig. 6c and d, it can be seen that

the LETKS nudging follows the evolution of the truth much

more closely than the simple nudging. This is especially

noticeable at the timesteps between observations, likely due

to the time discrepancy of the innovations that simple

nudging makes [see eq. (33)].

There are immediate extra computational expenses in-

volved with using the LETKS as a nudging term. Firstly,

the model has to be propagated forward to the observation

time in order to find the appropriate innovations. Secondly,

the LETKF has to be used to calculate the nudging terms,

thus adding a large amount to the computational cost.

Moreover, consider the difference in the weight calcula-

tions caused by using the LETKS and not the simple

nudging given in eqs. (23) and (24). Writing the update

equation in the form

xkþ1
i ¼ f ðxk

i Þ þ gi þ bi (35)
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where gi is the nudging increment and bi is a random term.

The weight update has the form (van Leeuwen, 2010; Ades

and van Leeuwen, 2015):

� logðwkþ1
i Þ ¼ � logðwk

i Þ þ
1

2
ðgi þ biÞ

T
Q�1ðgi þ biÞ

� 1

2
bT

i Q�1bi: (36)

When bi�Nð0;QÞ, bi ¼ Q
1
2gi where gi�Nð0; IÞ. Hence

the final term

bT
i Q�1bi ¼ gT

i Q
T
2 Q�1Q

1
2gi ¼ gT

i gi (37)

can be calculated without a linear solve with Q. Similarly, if

the nudging term gi is pre-multiplied by Q (or Q
1
2) then Q�1

cancels in the calculation of the weights. This is the case for

the simple nudging used as given in eq. (23).

Hence, using the LETKS to compute a nudging term for

use in a particle filter, we cannot avoid computing withQ�1

to find the appropriate weights for each ensemble member.

This may prove to be prohibitive for large models, or must

be a key consideration in the choice of Q matrix used. In

the application to the BV model shown in this article, Q is

computed in spectral space using the FFT, hence apply-

ing any power of Q to a vector is effectively the same

computational cost.

Furthermore, in order to compute the LETKS nudging

term, EnKF-like arguments are adopted. That is, when

computing the analysis update, the posterior pdf is assumed

Gaussian. Linear model evolution is assumed so that the

updates can be propagated backwards in time. Having

made this Gaussian assumption at the timestep before the

observations will limit the benefits of using the fully non-

linear particle filter which does not make any such assump-

tions on the distribution of the posterior. Indeed, considering

the evolution of the EWPF with the LETKS nudging and

comparing with that of the LETKF (Fig. 6a and b), they are

markedly similar. Hence, the extra expense of the EWPF

over the LETKF may not be justified.

The choice of k when we use the LETKS as a relaxation

within the EWPF is a complicated and not fully unders-

tood process. Figures B1�B4 in the Appendix show the

behaviour of the analysis as you vary k for each different

observation network. What is clear is that the optimal k

is problem dependent. Further, it can be seen that k�1

performs poorly in all cases. One conjecture for this is that

using the LETKS as a relaxation gives a large change to

some ensemble members. Making a large change to the

position of any ensemble member must be paid for in the

weights of that particle: its weight decreases. Keeping k�1

forces all ensemble members to degrade their positions in

order to achieve a weight equal to that of the worst particle.

This process could then move all the other ensemble mem-

bers away from the truth � thus increasing the RMSE.

Further investigations on this matter are warranted.

8. Conclusions

Both the LETKF and the EWPF were used in data assi-

milation experiments with the BV model. Typical values for

the parameters in the methods were used for three different

set of observations.

In all cases, the LETKF was found to give RMSEs

that were substantially smaller than those achieved by the

EWPF. Notably, the EWPF gives RMSEs much larger

than that of the observation error standard deviations.

The efficacy of the EWPF to minimise the RMSE was

shown to be controlled by the nudging stage of the method.

Experiments with both simple nudging and using the

LETKS as a relaxation showed that the resulting particle

filter followed those trajectories closely. An analysis of

the relaxation term used in the simple nudging procedure

showed why such a method does not bring the ensemble

mean close to the truth. This same analysis motivated the

use of the LETKS relaxation and this was numerically

shown to lead to improvements in RMSE.

The model investigated had a state dimension of

Nx�262 144 and assimilated Ny�65 536 observations at

each analysis. In such a high-dimensional system, it is a

challenge to ascertain if the posterior is non-Gaussian.

Without such knowledge it appears that the LETKF is a

better method of data assimilation in terms of efficiency

and accuracy.

Finally, note that all these experiments were conducted

with an ensemble size of Ne�48. This ensemble size is

representative of what can typically be run operationally.

In the future, if much larger ensembles are affordable, then

the results presented here may be different when the data

assimilation methods are tuned to a significantly larger

ensemble size.
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10. Appendix

Appendix A: EWPF parameter sensitivity
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Fig. A1. Performance of the EWPF under different parameters.
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Appendix B: EWPF with LETKS relaxation
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Fig. B1. Performance of the EWPF with the LETKS relaxation

when k�1.0.
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Fig. B3. Performance of the EWPF with the LETKS relaxation

when k�0.50.
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Fig. B4. Performance of the EWPF with the LETKS relaxation

when k�0.25.
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