
 

1 
 

On the distribution of bids for construction contract auctions 

Construction Management and Economics, 2017, In press  

http://dx.doi.org/10.1080/01446193.2016.1247972 

 

Authors: 

Ballesteros-Pérez, Pablo a   ;   Martin Skitmore b 

 

a Lecturer 

School of Construction Management and Engineering 

Whiteknights 

Reading  

RG6 6AW 

United Kingdom 

Email: p.ballesteros@reading.ac.uk; pabbalpe@hotmail.com 

Phone: +44 (0) 118 378 7186   Fax: +44 (0) 118 931 3856 

Corresponding author 

 

 

b Professor of Construction Economics and Management 

Room S711 

School of Civil Engineering and the Built Environment 

Queensland University of Technology 

Gardens Point. Brisbane Q4001 Australia 

Tel: +61 7 31381059 (w); +61 7 38933170 (A/H); 0450673028 (mob) 

Email: rm.skitmore@qut.edu.au 

http://staff.qut.edu.au/staff/skitmore/ 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Central Archive at the University of Reading

https://core.ac.uk/display/46664355?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1080/01446193.2016.1247972
mailto:rm.skitmore@qut.edu.au
http://staff.qut.edu.au/staff/skitmore/


 

2 
 

On the distribution of bids for construction contract auctions 

 

ABSTRACT 

The statistical distribution representing bid values constitutes an essential part of 

many auction models and has involved a wide range of assumptions, including the 

Uniform, Normal, Lognormal and Weibull densities. From a modelling point of 

view, its goodness is defined by how well it enables the probability of a particular 

bid value to be estimated – a past bid for ex-post analysis and a future bid for ex-ante 

(forecasting) analysis. However, there is no agreement to date of what is the most 

appropriate form and empirical work is sparse.  

Twelve extant construction datasets from four continents over different time 

periods are analysed in this paper for their fit to a variety of candidate statistical 

distributions assuming homogeneity of bidders (ID not known). The results show 

there is no one single fit-all distribution, but that the 3p Log-Normal, Fréchet/2p 

Log-Normal, Normal, Gamma and Gumbel generally rank the best ex-post, and the 

2p Log-Normal, Normal, Gamma and Gumbel the best ex-ante – with ex-ante having 

around three to four times worse fit than ex-post. Final comments focus on the 

results relating to the third and fourth standardised moments of the bids and a post-

hoc rationalisation of the empirical outcome of the analysis. 

 

Keywords: Modelling; Forecasting; Bidding; Tendering; Probability Distribution; 

Fréchet; Log-Normal. 
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Introduction 

The uses of probabilistic models of bids are manifold. For economics, they 

provide the basis for the development of equilibrium theories (to identify optimal 

auction arrangements for example - e.g., Klemperer, 2004), while for business, they 

offer the potential for a sharpened competitive edge through the analysis of 

competitor bidding behaviour (e.g., Ballesteros-Pérez et al., 2016a, 2016b). 

Many advanced theoretical studies obtain distribution-free results, which are 

invariant for a wide range of probability distributions with only mild restrictions 

(such as being twice differentiable) (e.g., Wilson, 1977; Riley and Samuelson, 1981; 

Milgrom and Weber, 1982; McAfee and McMillan, 1987; Hendricks and Porter, 

1992). In more practical applications, the approach is to simply assume bid values 

follow a standard distributional form, such as the Uniform (eg., Vickrey, 1961; 

Cauwelaert and Heynig, 1978;), Normal (eg., Mitchell, 1977; Morrison and Stevens, 

1980), Log-Normal (eg., Klein, 1976; Weverbergh, 1982), Gamma (Friedman, 1956) 

or Weibull (Oren and Rothkopf, 1975), and proceed accordingly without further 

justification. Recent applications in which the bid distribution needs to be assumed 

are abnormal bid detection methods (Ishii, 2009; Ballesteros-Pérez et al., 2015c), in 

order to identify a bid as extremely high or low according to its percentile placement 

in the distribution (Ballesteros-Pérez et al., 2015d). Empirical studies to test these 

assumptions are rare, however, and the methods used to fit distributional forms 

uncertain. 

This is particularly problematic for construction contract auctions, where the 

complex and non-repetitive nature of projects and scarcity of suitable datasets 

available for analysis exacerbates the situation further (Ballesteros-Pérez et al., 

2010). Different studies assume different distributions with no empirical support, 

making the economic models involved of questionable validity. Hence, the main 

purpose of this paper is to help establish the most appropriate distribution form, or 
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forms, for construction contract bids in order to evaluate the validity of existing 

parametric studies and provide a more realistic basis for future work. This is 

undertaken through the analysis of several extant sets of construction contract 

auction bidding data gathered from different parts of the world at different time 

periods. All the probability distributions assumed to date for auction bids are tested 

for their goodness of fit to each dataset by an average measure of the three different 

kinds of errors expected from choosing a particular distribution. The results show 

that, assuming homogeneity of bidders (ID not known), there is no one single fit-all 

distribution, but that the 3p Log-Normal, Fréchet/2p Log-Normal, Normal, Gamma 

and Gumbel generally rank the best ex-post (fit with past data) and the 2p Log-

Normal, Normal, Gamma, Gumbel, Weibull, 3p Log-Normal and Fréchet the best 

ex-ante (accuracy of forecasting future results) – with the ex-ante results having 

around three to four times worse fit than the ex-post results. Final comments focus 

on the results relating to the third and fourth standardised moments (skewness and 

kurtosis) of the bids and a post-hoc rationalisation of the empirical outcome of the 

analysis. 

 

Literature review 

Friedman’s (1956) seminal operations research (OR) paper is generally 

considered to contain the first in a long line of sealed-bid auction bidding models to 

emerge from the literature over the years. Although Friedman’s general approach 

provided the basis for much of what was to follow, his method of empirically 

estimating the individual statistical distributions needed for each bidder has been 

found wanting, especially for construction contract auctions, where (1) each contract 

is different (making the effects of data pooling unpredictable), (2) there are a small 

number of bidders for each contract (the statistical procedures for small samples are 

less well developed than for large samples), (3) different bidders bid for each 
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contract (making the contract-bidder matrix usually over 90% redundant) and (4) the 

bidders may not be bidding independently of each other (Skitmore, 2014). As a 

result, many researchers have resorted to the assumption that all bidders’ bids are 

independently and identically distributed (iid) - known as the symmetrical 

assumption in economics and the homogeneity assumption in construction 

(Skitmore, 1991) - for the purposes of theory development. By disregarding the 

behaviour of individual bidders in this way, the estimation problem is reduced to one 

of determining, or assuming, the collective distributional form involved. Even with 

this simplifying assumption, however, to do this empirically for sealed bid 

construction contract auctions presented an insurmountable task for many years, 

leaving researchers with no option but to make what they considered an appropriate 

assumption concerning the distribution form needed. As can be seen in Table 1, 

which represents just some examples from the first 25 years of the construction (OR) 

discipline, many such assumptions have been made. 

<Insert Table 1 here> 

The recent situation has changed little, with current researchers assuming similar, 

or sometimes more advanced, statistical distributions for modelling the bid 

distribution of single bidders or groups of bidders, such as the Uniform (e.g., 

Ballesteros-Pérez et al., 2013a, 2013b; Mohlin et al., 2015), Normal (e.g., Conti et 

al., 2012; Costantino et al., 2011; European Union, 1999), Gamma (e.g., Skitmore, 

2014; Takano et al., 2014), Log-Normal (e.g., Campo, 2012), 3-parameter Log-

Normal (Skitmore et al., 2001), Weibull (e.g., Skitmore et al., 2007) and Beta 

distributions (Ballesteros-Pérez et al., 2015a, 2014). 

Among the few empirical comparative studies concerning construction bids, they 

almost without exception retain the iid assumption. Of these, McCaffer and Pettitt 

(1976) considered that the Normal distribution was superior to the Uniform, whereas 

Hossein's (1977) results a year later indicated the Gamma distribution offered a 
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generally better fit compared to the Log-Normal and Normal distribution. Other 

work has considered the possibility of outliers and the potential use of truncated or 

censored probability distributions (Skitmore and Lo, 2002; Skitmore, 2001, 2002, 

2004). Their empirical results suggest a censored Normal/Log-Normal distribution is 

preferable to either a truncated Normal/Log-Normal distribution, or a truncated or 

censored Uniform distribution.  

Although there is a substantial body of theoretical literature concerning 

asymmetric auctions that obviates the iid assumption (e.g., Maskin and Riley, 2000), 

it is only relatively recently that Skitmore (1991) has managed to separate individual 

bidders and fit a probability distribution to each bidder, albeit of a composite nature 

(same distributional form, such as Uniform or Normal, but with different parameters 

for each bidder). From this, a three-parameter Log-Normal distribution (Skitmore, 

1991), and later also a two-parameter form of Gamma distribution (Skitmore, 2014), 

were shown to be appropriate for the data involved. It was also shown that the 

parameter estimates were significantly different between bidders, hence challenging 

the tenability of the iid assumption, at least for the data used in that study (Skitmore, 

1991). 

More recently still, Runeson and Skitmore (1999) have questioned the stability of 

the bidders’ probability functions - an assumption implied in the fitting procedure. 

Their main concern is that the bidders’ changing workload situation and the 

interrelated effects of market conditions are not accommodated in the models. Two 

lines of analysis have been used previously to test the significance of this. One, by 

McCaffer (1976), examined the changes in bidding patterns by individual bidders 

prior to winning a contract, based on the assumption that bidders are more likely to 

be “hungry” for work prior to winning than after winning, it is expected that bids 

tendered prior to winning will be lower than those made after winning. Empirical 

analysis by Skitmore and Runeson (2006), however, suggests that this may not be as 
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significant as first thought and is unlikely to be a distorting factor in model building. 

The second line of analysis, by Skitmore (1981a, 1987), examined the changes in 

distributional shape of UK contract bids under the iid assumption in comparison with 

changing macroeconomic circumstances during the 1970s and found what appeared 

to be a general surge in bid range (coefficient of variation) and skewness 

immediately after the 1974 oil crisis, when oil prices quadrupled virtually overnight. 

Again, though, these results have been questioned in a repeat analysis over an 

extended period up to 1991 (Rawlinson and Raftery, 1997). 

Finally, a few multivariate models that include correlation between bidders have 

started to emerge quite recently (Yuan, 2011, 2012) in which bidder heterogeneity 

can be considered, but where parameter estimation still represents a challenging 

issue. 

In summary, while there is a large amount of theoretical work that has been 

conducted on the properties of auctions, there is little empirical support, especially 

relating to construction contract bids. Despite some reservations about their 

statistical nature and influencing factors, the general trend towards modelling over 

the last 25 years suggests that iid assumption may be an oversimplification for 

scenarios where bidder IDs are known. However, a much more common real-world 

situation is that either the identity of the bidder for each bid in a database of 

construction contract auction is not known or the identity of the bidders to take part 

in future action is not known, or both. In this case, there is little alternative to 

modelling the bidders as iid. 

This paper therefore mostly focuses on identifying the statistical distribution(s) 

that best model all bids from the same auction as a whole. Of course, this may result 

in some “noise” being added to the bid distribution due to the heterogeneity of 

bidders (Skitmore, 1988; Lan Oo et al., 2007; Oo et al., 2010). However, as is shown 

later, there is evidence of an overall satisfactory ex-post fit of simple and unimodal 
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distributions, which rules out at least one objection to the iid assumption. The 

remainder of this paper is devoted to the task of analysing the 12 varied datasets of 

construction contract bids from different countries in different time periods and, 

hence, different economic conditions. Firstly, a detailed summary of the datasets is 

provided. The methods of analysis are then presented for the ex-post and ex-ante 

situations, followed by details of the results to show that, although there is no one 

single fit-all distribution, the Fréchet and Log-Normal are the closest in most cases. 

Therefore, despite there being no clear winning distribution, a small number of 

distributions provide a much better model than others, especially for forecasting 

purposes.  

 

Data 

Table 2 summarises the 12 construction datasets used in the analysis. For ease of 

notation, these datasets are identified later as UK51, UK218, UK373, US62, US50, 

HK199, HK259, AU152, AU161, UK272, SP116 and SP51, as shown in the Table 

(the prefix denotes the country of origin whereas the suffix values are the number of 

contract auctions contained in the dataset). The values of all bids received for each 

contract are available in all the datasets and, with the exception of AU152, AU161, 

UK272 and SP51, the identities of the associated bidders. All the values from the 

first ten datasets are converted to approximate pounds sterling equivalence and 

rebased to a common date (1980). This is approximate for UK218 and US50 as no 

dates of individual contracts are available. Datasets SP116 and SP51, on the other 

hand, have been rebased to 2008 Euros. It is not to be expected that these two 

different rebased currencies condition the analyses in any way. Furthermore, datasets 

SP116 and SP51l comprise capped bids (auctions in which the bid is upper limited 

and all bidders can only underbid a previously known maximum price). The 

remaining datasets comprise uncapped bids. 
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<Insert Table 2 here> 

Additional information of the source of the dataset, nature of contract work, time 

period, number of bids and number of contracts is provided in the first columns. 

Furthermore, unweighted averages are provided for the number of bids per contract, 

mean bid, sample standard deviation, skewness and (excess) kurtosis. Only auctions 

with 4 bids are considered in the analysis for two reasons: contracts with at least four 

bids are necessary to calculate the kurtosis values (an additional analysis undertaken 

later). Second, contracts with two or three bids provide a perfect or almost perfect fit, 

respectively, when working with two or more parameter statistical distributions, 

biasing the results. 

As Table 2 indicates, SP116 has by far the highest average value contracts with 

an average mean bid of 37,610,797, while the UK218 is the smallest with an average 

mean bid of 143,382. Also, as expected, the Spanish datasets (SP116 and SP51) 

followed by the Hong Kong datasets (HK199 and HK259) have the highest average 

number of bidders per contract due to the predominant Spanish and Hong Kong 

practice of open tendering in an ongoing highly competitive environment. In terms 

of skewness, it is interesting to note that all datasets except the last one have a 

positive coefficient on average, with the highest being the two Hong Kong datasets 

and the lowest being SP51 which, although negative, is very close to zero. With the 

exception of US50 and SP51, all datasets also have positive average kurtosis 

coefficients (a kurtosis value of zero is expected for the Normal distribution and -1.2 

for the Uniform distribution), with the two Hong Kong datasets again being the 

highest. 

Overall, it appears that none of the datasets stand out as being clearly different 

from the others, with the possible exception of the two Hong Kong datasets with the 

extra numbers of bidders involved and fairly high average skewness and kurtosis 

coefficients. In terms of the moments of the bid distributions, the skewness values do 
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not seem to denote significantly skewed distributions, whereas some excess kurtosis 

values appear to be rather high for the normal distribution to apply. 

As can be seen, the datasets comprise auctions from five countries over four 

continents, with different nature of works, economic sizes and time periods. 

Therefore, it is expected that any common trends will provide representative results 

transferrable to other countries not included here. 

 

Transformations 

Finally, for ease of calculation depending on the specific distribution to be fitted 

later, the original bid values ijx  (value of the bid by contractor i for contract j) are 

either used directly (natural values) (e.g. for the Normal and Uniform distributions), 

transformed to a natural logarithmic scale (ln xij) (e.g. for the Log-Uniform and the 

common 2-parameter log-Normal distributions), or transformed according to the 

expression )ln( )1( jij xmx  (in this case for the 3-parameter log-Normal distribution 

only). The latter transformation follows Skitmore’s (1991) procedure when looking 

for the best composite distributional form for individual bidders, while the analysis 

in this paper concerns the composite distribution of bids for individual auctions 

assuming homogeneous bidders, that is IDs not known. The expression jx )1(  in the 

latter case denotes the lowest bid entered for contract j, with m an arbitrary multiplier 

which Skitmore's (1991) empirical analysis found to be relatively stable with a value 

generally equal to 0.82. However, this multiplier value has been replaced here by 

m=0.812, since a preliminary ex-post analysis indicated that this small change could 

slightly improve (maximise) the overall fit by minimising the average sum of the 

squared residuals per auction, that is, the squared differences between the actual bids 

and the respective 3p log-Normal estimations for each auction, in the twelve datasets 

simultaneously. 
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Methods 

The analysis follows two distinct approaches to fitting the probability distributions to 

the data – the ex-post fit (modelling past bids) and the ex-ante fit (forecasting future 

bids). The iid assumption is followed and no attempt is made here to examine 

censored or truncation distributions. 

 

Ex-post distribution fit (modelling past bids) 

Before undertaking a wide statistical distribution fit analysis such as this is, two 

major decisions must be made. First, to select the candidate statistical distributions to 

be tested and, second, decide how to measure the deviation errors between the actual 

distribution of bid values and each statistical distribution. 

Concerning the candidate statistical distributions, the seemingly endless list of 

distributions is narrowed down to an initial list comprising the Uniform, Normal, 2-

parameter (2p) and 3-parameter (3p) Log-Normal, Gamma and Weibull 

distributions, since they have been extensively used by researchers and practitioners 

alike. To these are added other similar distributions not encountered in the literature 

but good candidates nevertheless, comprising the Gumbel and the Fréchet since, like 

the Weibull, they are also Extreme Value distributions. The log-versions of all (i.e., 

Log-Uniform, Log-Gamma, Log-Fréchet and Log-Gumbel, with the exception of the 

log-Weibull, which is equivalent to the Gumbel distribution) are also added since 

this might partially compensate for the datasets evidencing positive skewness. With 

the exception of the 3p Log-Normal, no three or more-parameter distributions are 

included, as parameter estimation for those more complex distributions involves 

fitting procedures that are quite difficult and time consuming to carry out (even 

requiring iterative calculations). For the massive analysis needed here, which 
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involves fitting 13 distributions to nearly 2000 contract auctions, resorting to 

increasingly complex distributions would not be feasible. Also, as will be seen, the 

difference in fit between the 3p Log-Normal and best 2p distributions is surprisingly 

small. 

Two obvious measures are available to compare the goodness of fit of the 

various distributions. The first, and classical, approach is to employ the p-value but, 

with most values ranging between 0.00 and 0.05, it is hard to distinguish between 

one small value and another. Moreover, p-values depend upon both the magnitude of 

association and the precision of the estimate (the sample size), and yet the sample 

size in most auctions is quite small (between 4 and 10 bids per auction). A better 

alternative is to use the measure from which the p-values are obtained − the sum of 

the squared errors (as in the χ² test). These are the sum of the squared deviations 

between the observed (actual) and estimated (fitted distribution) values, standardised 

to the mean square error (MSE) to remove the effect of the different number of bids 

in the auction. 

One limitation of the MSE is the difficulty in interpreting the closeness of fit 

between the actual and fitted values, since they are expressed in squared terms. Two 

measures are used to counter this limitation. These are the mean absolute percentage 

error (MAPE), which gives the average deviation from the actual bid values divided 

by the estimated values expressed as a percentage; and the mean absolute error 

(MAE), which is analogous to the MAPE but is expressed as an average difference 

instead of a percentage. 

The actual bid and model values for an auction can be represented by a graph, 

with the X- and Y-axes corresponding to the actual bid value and model cumulative 

probability values respectively, the latter increasing from 0 to 1 when the bids have 

been ordered from lowest to highest. The MSE, MAPE and MAE errors are then 

calculated as a function of the differences between the Y-coordinates for each bid. 
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Other methods are available, but the ones used here are simpler, more common and 

considered sufficiently fit for the purpose. 

 

Ex-ante distribution fit (forecasting future bids) 

Fitting a distribution when the bids are known is useful for many purposes, but 

making use of the statistical distribution of bids to anticipate their value in a future 

contract auction, as yet unknown, is also a very important application, although one 

seldom treated in the bidding literature. 

The aim of this second subsection is to reverse the analysis and, instead of using 

the bid values to obtain the distribution parameter values, do this the other way 

around. That is, to estimate the distribution parameter values from another 

forecasting variable and then observe how closely the distribution defined by these 

parameters represents the actual bid values once they occur. 

The first step in this is to choose a variable that can be known prior to the auction 

to derive the distribution parameters. By far the most recurrent forecasting variable 

for construction contract auctions is the “cost estimate”, denoted by bo (Ballesteros-

Pérez et al., 2015d, 2012). The cost estimate is usually calculated by each bidder 

before submitting a bid, but it is not normally shared with the other bidders – often 

for legal as well as commercial reasons - this being the main reason why datasets 

containing cost estimates are very difficult to obtain. Fortunately, in seven out of the 

twelve datasets, cost estimates from either one bidder or the designer’s pre-auction 

estimate of bid prices are available, which allows its use as a forecasting parameter. 

Most of the ex-post distribution parameters in the previous section were 

intentionally estimated by the Method of Moments, i.e., from the mean and standard 

deviation of the bids for each auction. For distributions such the Normal, both the 

sample mean and the standard deviation constitute the best estimates themselves, 

while for distributions such as the Gamma or Gumbel, it is quite easy to estimate 
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their parameters once the mean bid and the bid standard deviation are known. For 

other distributions, such as the Log-Normal, the bid values have to be expressed in 

log values first. For ex-ante applications, therefore, all that is needed is the function 

that connects the cost estimate to the bid mean and standard deviation, a relationship 

that is already well researched in the literature and explained later in the Ex-ante 

prediction subsection of the Results. 

 

Results 

The results for the Log-Gamma, Log-Fréchet and Log-Gumbel are relatively 

poor and not presented here.  

 

Ex-post fit 

The results of the goodness of fit tests are presented in Figure 1. This contains a 

separate table for each of the three error measures. The columns in each table show 

the 9 distributions tested and the rows contain the 12 datasets, including the average 

number of bidders (N) once the auctions containing less than 4 bids have been 

removed. The mean and standard deviation for each of the 9 distributions are given 

at the head of each column, with higher errors indicating a worse distribution fit. 

Therefore, the results with figures closer to zero are considered the best fit for each 

distribution. 

<Insert Figure 1 here> 

Several interpretations can be made from Figure 1. The first is that, as expected, 

the 3p Log-Normal provides the best fit (the phrase “on average” is assumed from 

this point). Immediately following are the Fréchet and the 2p Log-Normal, tying in 

second position for MAE and each occupying second or third position in their MSE 

and MAPE respectively). Close behind are the Normal, Gamma and Gumbel 
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distributions. Meanwhile, the clear losers are the Weibull, Log-Uniform and 

Uniform, with the Weibull result being the most surprising, since it is widely used 

for modelling bid variability (Skitmore et al., 2007). 

The second interpretation is that, despite a tentative ranking of fit, a closer look 

reveals that the error values between the best (3p Log-Normal) and the worst 

(Uniform) distributions are not as wide as might be expected. For example, for the 

MAE measurements, the 3p Log-Normal errs by 6.4%, whereas the Uniform is just a 

little more at 8.1%. This is very little on a scale from 0 to 1 (0% to 100%) and also 

occurs with the MSE and MAPE measurements, although the basis of comparison is 

quite close to zero. A tentative conclusion, therefore, is that despite some 

distributions performing slightly better than others, their differences are not great. 

Another supporting argument is that the standard deviations (second row in each 

vertical block) are also generally high enough to anticipate a high degree of overlap 

between the distributions. That is, a statistical test such as ANOVA might not 

indicate any significant differences in means. 

 

Ex-ante prediction 

The relationship between the cost estimate (forecasting parameter) and each of 

the distribution parameters is summarised graphically in Figure 2 for the US50 

dataset, where the auction cost estimates (noted as bo) are available for the j auctions 

of each dataset1. 

<Insert Figure 2 here> 

As can be seen, there is a strong linear correlation (R2 values very close to 1) 

between the cost estimate (bo) and both the mean bid (bm) and lowest bid (bmin) for 

this dataset, with om bb 0528.1  and obb 9442.0min  , which means that, on average, 

                                                 
1 Note that, strickly speaking, we should use the notation bo j, bm j, bmin j and σj. However, for the sake 

of simplicity, we will just refer to them as bo, bm, bmin and σ as follows. 
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the bid average and the minimum of the bids submitted to the auction within dataset 

US50 were, respectively, around 5.28% above and 5.58% below the cost estimate. 

This latter parameter bmin – previously noted as x(1)j in Skitmore’s (1991) original 

notation – will be used for the 3p Log-Normal parameter estimation. Indeed, these 

two curves assume that the lines have a null intercept, something that greatly 

simplifies calculations in some Bid Tender Forecasting Models (BTFM). Also, there 

is a clear moderate linear correlation between bo and the bid standard deviation (σ), 

with ob0913.0  (which means an average Coefficient of Variation 

CV=σ/bm=0.0913/1.0528= 8.67%) and a lower, but still moderately high, R2 value of 

0.8543. Using the known bo values (either from a single bidder, before applying a 

mark-up, or project designer,) to estimate bm , bmin and   in this way for each 

auction enables the distribution fit to be assessed by the MSE, MAPE and MAE 

results in the same way as before except that cross validation (alternatively termed 

the “leave-one-out” or “deleted residual” method) is used to better simulate the 

forecasting situation. This involves estimating the bm , bmin and   for an auction 

using the data of all the other auctions in the database to construct the regression 

models. With this aim, Table 3 shows, for all the datasets where the cost estimates 

are available, the regression coefficients (assuming a null intercept) between the cost 

estimate bo and the mean bid (bm), the lowest bid (bmin) and the bid standard 

deviation (σ), plus the Coefficient of Variation (CV) calculated as σ/bm. 

<Insert Table 3 here> 

Interestingly, although the intentions of the bidders’ and designers’ cost 

estimates are quite different in principle, with bidders’ estimating their anticipated 

cost of performing the contract, while designers are estimating the value of the 

lowest bid, the results shown in Table 3 are surprisingly similar. Taken together, 

most minimum bids are below the cost estimate itself (as the coefficients are below 1 
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virtually without exception), which is understandable for the designers are known to 

prefer overestimating to underestimating (e.g., Cheung et al., 2008). For the bidders, 

however, this is less clear and highlights the difficulties faced by bidders in winning 

construction auctions. Moreover, countries such as Hong Kong (HK259) and Spain 

(SP51) even have average bids below the cost estimate, indicating very different 

levels of bidding aggressiveness between datasets (and countries) as it is surprising 

how, even though most of the minimum bids are below the cost estimate itself 

countries like Hong Kong (HK259) and Spain (SP51) exacerbate this behaviour by 

exhibiting auction mean bids whose even the average bids are below the cost 

estimate too. Such evidence, despite worth pursuing, does not constitute the main 

aim of this piece of research and will be left for a separate paper on the subject. 

Finally, Figure 3 shows the results of repeating this process for all the seven 

datasets for which cost estimates are available. 

<Insert Figure 3 here> 

Comparing of Figures 1 and 3, it is immediately obvious that the predictive 

ability is around 10 times worse for the MSE measurements, and from 3 to 4 times 

for the MAPE and MAE measurements, due to the estimating of bm , bmin and   

indirectly from the bo values instead of directly from the data. In contrast with the ex-

post results, the best distribution is now the 2p Log-Normal, very closely followed 

by the Normal and then the Gamma and Gumbel distributions, Weibull, 3p Log-

Normal and the Fréchet. The two worst fitting are again the Log-Uniform and 

Uniform distributions. 

 

3rd and 4th moments 

To finish this Results section, one part of the analysis regarding the third and 

fourth moments (skewness and kurtosis) is worthy of comment. As noted earlier, for 

both the ex-post and ex-ante analyses, all the distributions are fitted by the Method of 
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Moments. For the 2-parameter distributions used here, this implies the parameters 

are derived solely from the auction bm and  , i.e., the first and second moments. To 

fully assess the distribution fit with the actual data, the third and fourth moments of 

the actual data are compared with those of the fitted distributions. 

In doing this, the first important consideration concerns two of the four special 

features of construction contract auctions, namely that (1) each contract is different 

(making the effects of data pooling unpredictable), and (2) there are a small number 

of bidders for each contract (the statistical procedures for small samples are less well 

developed than for large samples). The implication of (1) here is that each auction 

has to be treated as a separate entity, so it is necessary to consider the 3rd and 4th 

moments for each auction, and for (2) the number of data points involved in 

calculating the moments are quite small (typically between 4 and 10). Therefore, as 

the small sampling distribution of the 3rd and 4th moments are known to be highly 

variable, the best approach is to focus on their average, rather than individual, 

values. 

A second consideration is the known quadratic relationship between the third and 

the fourth moments, with (excess) Kurtosis = a·Skewness2+b·Skewness+c. 

Importantly, the combination of values of a, b and c are unique for each kind of 

statistical distribution. To utilise this property, a, b and c are first estimated for the 

actual bids by regression analysis, as shown in Figure 4. 

<Insert Figure 4 here> 

Each round point in Figure 4 represents the skewness (X) and kurtosis (Y) values 

for each auction in the dataset (in this case HK259). 

The next step replicates the same operation using each of the candidate 

distributions for generating simulated bid values. The skewness and kurtosis values 

are then calculated for each auction and the best regression quadratic curve for each 

statistical distribution is found for each dataset. 
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Clearly, if the S-K quadratic expression from a statistical distribution (defined by 

its a, b and c values) corresponds exactly with the quadratic expression from the 

actual data, that distribution would be modelling the actual situation perfectly. The 

regression coefficients obtained by doing this for the actual data and all 9 

distributions, along with their respective coefficients of determination (R2), are 

shown at the top of Figure 5. 

<Insert Figure 5 here> 

However, with correlations of this nature (where the R2 values generally vary 

between 0.60 and 0.85), directly comparing the coefficients a, b and c from each 

distribution with the actual a, b and c values seems impractical. That is why a Sub-

Table is provided at the bottom of Figure 5 showing the direct correlation between 

the quadratic expressions from each distribution and the quadratic expression 

obtained from the actual bid values, i.e., comparing the quadratic expressions from 

the Sub-Tables above. These values are also numerically equivalent to obtaining the 

coefficient of determination of the actual S-K points when the quadratic expression 

from each of the statistical distribution is used, but have the advantage of being 

expressed on a 0-to-1 scale. 

In interpreting the Sub-Table at the bottom of Figure 5, it is clear that all the 

distributions closely approximate the actual third and fourth moments, despite being 

fitted from only the first two moments. The only possible exceptions are the Fréchet 

and Gumbel distributions, although their average R2 values are still above 0.98. 

However, a closer look indicates that this difference derives from SP116 and SP51, 

the only Capped Tender datasets (i.e., with upper limited prices), which might be 

having a distorting effect on these Extreme Value distributions. 

Furthermore, despite almost all distributions providing virtually identical results, 

the best (average) fit is again provided by the 2p Log-Normal distribution but also, 

surprisingly, by the Log-Uniform. Overall though, as stated, it can be considered that 
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the four moments of all the distributions provide a close resemblance to those of the 

actual bid distribution, which reinforces the previous conclusion that, despite some 

distributions performing slightly better than others, the differences are very small. 

 

Discussion 

Ex-post and ex-ante compared 

Returning to the differences between the ex-post and ex-ante results, the average 

deviations of the MAE values rise from 6 to 8% in the ex-post analysis, to 22 to 25% 

for the top performing distributions in the ex-ante analysis, due to having to forecast 

the distribution parameters indirectly from the cost estimate. Of interest in this is the 

difference in distribution ranking between the ex-post and ex-ante situations, with ex-

post 3p Log-Normal, Fréchet/2p Log-Normal, Normal, Gamma and Gumbel, and ex-

ante 2p Log-Normal, Normal, Gamma, Gumbel, Weibull, 3p Log-Normal and 

Fréchet. 

One possibility relates to the accuracy of the expression for forecasting the bid 

moments and the consequent parameter estimation by the Method of Moments. The 

top performing Normal and 2p Log-Normal distributions make direct use of the bid 

mean and standard deviation, the former and latter having a strong and moderate 

correlation respectively with the cost estimate. In contrast, the distribution 

parameters of the Gamma and Gumbel distributions have to be calculated indirectly 

from the mean and standard deviation, involving an extra layer of uncertainty, and 

hence they perform slightly worse. The 3p Log-Normal requires three parameters 

(the extra being the lowest bid, bmin), so the prospects of being more inaccurate are 

also higher. On other hand, both the Weibull and the Fréchet make use of two 

parameters. One, commonly termed the “scale” parameter, is quite similar to a 

“location” parameter. Therefore, this “scale/location” parameter also has a strong 

linear relationship with the cost estimate with a null intercept. However, the second 
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parameter from these distributions (the “shape” parameter) has no known 

mathematical relationship connecting it with the cost estimate. Forcing the values to 

coincide with the average of all the highly variable shape parameter values within 

the same database, necessarily results in a significant loss of accuracy. The better 

performance of the Weibull distribution would then be because this variability was 

slightly lower than the Fréchet. Finally, the Uniform and Log-Uniform distributions 

make use of the lowest (bmin) and highest (bmax) bids respectively. However, despite 

the cost estimate being highly correlated with bmin it is less so for bmax, which 

eventually increased the bid deviations. 

The provisional conclusion, therefore, is that the Log-Normal and Normal 

distributions constitute a good alternative for bid forecasting purposes. They are 

certainly not as accurate as they can be when their parameters are calculated ex-post, 

but are still very useful. This raises the further question of how the forecasting 

accuracy of the distributions may be improved. For the method used here, this 

involves improving the expressions connecting the cost estimate (bo) with the 

parameters with lower R2 values, i.e., mainly the bid standard deviation (σ) and the 

highest bid (bmax); also, particularly for the Weibull and Fréchet distributions, by 

finding a mathematical expression for anticipating their shape parameters.  

In short, each distribution makes use of a robust parameter that is highly 

correlated with the cost estimate and another that is weak or even does not have a 

known expression to be forecast. For Bid Tender Forecasting Models to become 

widespread in the future for practical purposes in real auctions, more research is 

needed to improve these “weak” parameters. 

 

The Fréchet and Log-Normal distributions 

Reference to the Fréchet for modelling bids, although not new (eg., Martinez, 

2013), is rare, making its good ex-post fit a surprising and important result. As noted 
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earlier, the Fréchet distribution is an Extreme Value (EV) distribution. EV 

distributions are useful for modelling extreme events, that is, the distribution of 

maxima or minima from other distributions. Normally, the Weibull models the 

minima from semi-bounded distributions (eg., ranging from 0 to +∞) and the Fréchet 

models the maxima from semi-bounded distributions, whereas the Gumbel can 

model the maxima or minima from unbounded distributions (those ranging from -∞ 

to +∞). Most interesting, however, is that the parameters from these distributions are 

somehow “conditioned” (sometimes directly “inherited”) from the original value-

generating distribution. 

The process for calculating the EV distribution parameters from the source 

distribution is not generally easy though, and this is reflected in the Fréchet’s low 

forecasting accuracy in the bidding context. Only a few cases have been studied 

properly. Nevertheless, among these, the distribution of maxima of the Pareto 

distribution is of particular interest. The Pareto distribution is a semi-bounded mono-

parametric distribution, therefore its distribution of maxima is well modelled (under 

mild conditions) by the Fréchet distribution (David and Nagaraja, 2003). For this 

particular distribution of maxima, it is known that the Frechet’s shape parameter has 

the same numerical value as the original Pareto’s shape parameter from which it 

comes (whenever the Fréchet’s scale parameter equals 1). 

On the other hand, it is also well known that the budget items from any 

construction project follow a Pareto distribution once they are ordered from higher to 

lower values (Blackman and Chan, 2013). So, the obvious speculation would be to 

try to “forecast” the Fréchet’s shape parameter by fitting a Pareto distribution to the 

project construction budget. The resulting Fréchet distribution is unlikely to have a 

unity scale parameter, which is why this statistical/mathematical problem is not easy 

to solve. However, this does seem an interesting lead to follow for future research, as 

well as also to improve the mathematical expression that connects the cost estimate 
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with the bid standard deviation (as this would also benefit the Log-Normal, Normal, 

Gamma and Gumbel distributions alike).  

Finally, concerning the Log-Normal distribution, the analysis of the skewness 

and kurtosis values indicates the top performing distribution to be the Log-Normal, 

despite all the other distributions (apart from the Fréchet and the Gumbel in capped 

tenders) having similarly high coefficients of determination. This confirms the 

robustness of the Log-Normal result as among the best options, irrespective of the 

approach. It is also known that the Log-Normal and the Pareto distributions are used 

interchangeably in many applications since they have relatively similar distribution 

shapes (Malevergne et al., 2011). The extreme order statistics of a Log-Normal 

distribution do not have a simple mathematical expression, but they can be closely 

approximated by another Log-Normal distribution (Munro and Wixley, 1970). 

Overall then, assuming that any construction budget can be relatively well 

represented by a Pareto or Log-Normal distribution, whose order statistics can also 

be well modelled by a Fréchet or Log-Normal distribution respectively. The 

parameters of the latter might be inferred in the (near?) future from the parameters 

from the former, bringing some hope for a definitive real breakthrough in Bid Tender 

Forecasting modelling. 

 

Abnormal bid detection 

Another practical application of the results concerns the development of methods 

for detecting abnormally high or low bids. Assuming that an abnormal bidder can 

distort the distribution parameters in an auction, the Log-normal distribution, which 

makes use of the two most relatively robust parameters (mean and standard deviation 

in log bids) identified so far might be the best option available for calculating the 

percentiles to which, especially the extremely highest and lowest bids, correspond. 

This analysis however, should not be directly made with the best-fitting ex-post Log-
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Normal itself, but through comparing the actual bids with the respective order 

statistics from that log-Normal distribution. For instance, the lowest bid in an auction 

with 10 bidders which has been modelled by a log-Normal distribution should be 

compared with the lowest order statistic of that log-normal distribution in order to 

fairly assess the chances that the lowest draw in a distribution with 10 iid draws 

(number of bids submitted) correspond with that (low bid) value. 

Other distribution options, such as the 3-parameter log-Normal (or even the (log-

) Uniform with similar goodness of fit results), despite evidencing a better (or at least 

good) ex-post fit, requires the lowest bid to be used as a location parameter, while 

the lowest bid is highly susceptible to abnormally low bids, so it would not constitute 

a reliable distribution for abnormal bid detection purposes. 

Overall, this just constitutes a first step in the suggested direction and clearly 

much more work needs to be developed before further conclusions can be drawn. 

 

Conclusions 

Selecting an appropriate statistical distribution for representing the variability of 

construction auction bids constitutes an essential pre-requisite for many bidding 

models. The applications of these models are varied in both theoretical (eg., auction 

theory and auction design) and practical settings (eg., bid tender forecasting and 

abnormal bid detection). However, no previous study has undertaken a thorough 

comparison of the goodness of fit of the most recurrent statistical distributions. This 

study has addressed this knowledge gap by comparing nine commonly found 

distributions, with three different goodness of fit measures, ex-post description and 

ex-ante forecasting for twelve construction datasets around the world from different 

time periods and nature of works.  

The most significant results, quite surprisingly, are the small differences in fit 

between the different distributions tested and, in many cases, not significant among 
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the top performers. However, irrespective of the testing approach used, the Log-

Normal distribution stands out as consistently offering the best fit, with its 3-

parameter version providing just a minimum ex-post improvement. 

Another unexpected distribution which currently performs as well as the Log-

Normal when describing past bids ex-post is the Fréchet distribution. Other 

distributions, such as the Gamma and Normal also offer a very good fit, whereas the 

Uniform and Log-Uniform seem to be consistently the worst options. 

However, the study has demonstrated that, to develop more effective tools for 

forecasting future bids, further research is needed into the parameter estimation of 

the distributions involved – particularly bid standard deviation and the Fréchet shape 

parameter – as their ex-ante accuracy is around three to four times less than their ex-

post accuracy. Some guidance connecting the Pareto-distributed construction budget 

and its Fréchet-distributed (or Log-Normal-distributed) order statistics has been 

provided. These connections deserve further attention for their potential to 

eventually help overcome the current main limitation in considering the economic 

cost estimate as the unique forecasting variable for determining the parameters of 

modelling the distribution of auction bids.  

Also of note is that the comparisons made here take advantage of almost optimal 

conditions for fitting the distributions (bid values known for the ex-post analysis and 

all auctions known for ex-ante analysis), whereas the data may be much less 

complete in a real-world situation. As has been demonstrated in this paper, the most 

appropriate distribution depends on the data available. In the same vein, one of the 

early-stated limitations of the present analysis is the iid assumption, making the 

results applicable to situations in which bidder IDs are not known. In this sense, new 

evidence has been found that there might be a relatively stable distribution type that 

is not expected to differ much among bidders. However, it is also acknowledged that 

the mechanisms for such stability are hard to explain when potentially heterogeneity 
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among bidders’ bidding behaviour is neglected. Probably because of this, it has been 

in general difficult to establish a particular single fit-for-all distribution for 

modelling the iid bid distribution in an auction. 

For situations where bidder IDs are known, on the other hand, the fact that 

bidders may behave significantly different to each other would need to be taken into 

account, or at least tested for significance. One thing that is clear from the analysis in 

this paper is that the evidence does not seem to be in favour of the existence of 

multimodal distributions (a possible sign of bidder heterogeneity). The generally 

high level of accuracy found in ex-post distribution fit suggests that the differences 

that do exist in bidding behaviours between bidders may not be significantly 

detrimental in the application of bidding models to construction contract auctions. 
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Modeller Data Form 

(Alexander, 1970) USA oil and mineral tracts – source of data unknown Normal 

(Arps, 1965) USA oil and mineral tracts – source of data unknown Lognormal 

(Beeston, 1982) ‘Large sample’ of UK PSA contracts Pos. skewed 

(Brown, 1986) USA oil and mineral tracts – source of data unknown Lognormal 

(Capen et al., 1971) USA oil and mineral tracts – source of data unknown Lognormal 

(Cauwelaert and Heynig, 

1978) 
Assumed for theoretical purposes Uniform 

(Cauwelaert and Heynig, 

1978) 
“Consistent with work of other researchers” Normal 

(Crawford, 1970) USA oil and mineral tracts – source of data unknown Lognormal 

(Dougherty and Nozaki, 

1975) 
USA oil and mineral tracts – source of data unknown Gamma 

(Emond, 1971) USA oil and mineral tracts – source of data unknown Normal 

(Fine and Hackemar, 1970) “Adequate sample” of UK construction contracts Uniform 

(Friedman, 1956) “Frequently furnishes a good fit” Gamma 

(Grinyer and Whittaker, 1973) 153 UK government construction contracts Uniform 

(Hossein, 1977) 
545 USA civil engineering and 63 mechanical 

engineering contracts 
Gamma 

(Klein, 1976) Assumed for theoretical purposes Lognormal 

(McCaffer, 1976) 183 Belgian building contracts Normal 

(McCaffer, 1976) 16 Belgian bridge contracts Normal 

(McCaffer, 1976) 384 Belgian road contracts Normal 

(McCaffer and Pettitt, 1976) 384 Belgian road contracts Normal 

(Mitchell, 1977) Assumed for theoretical purposes Normal 

(Morrison and Stevens, 1980) Assumed for theoretical purposes Normal 

(Oren and Rothkopf, 1975) Assumed for theoretical purposes Weibull 

(Park, 1966) USA construction projects – source of data unknown Pos. skewed 

(Pelto, 1971) USA oil and mineral tracts – source of data unknown Lognormal 

(Weverbergh, 1982) Assumed for theoretical purposes Lognormal 

(Whittaker, 1970) 153 UK government construction contracts Uniform 

Table 1: Early sample of statistical distributions implemented to model construction bids. 
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Dataset Source Description Period 
Nº 

bids 

Nº 

contracts 

Avg Nº 

bids/contract 

Avg mean 

bid 

Avg st. 

dev. 

Avg 

skew. 

Avg ex. 

kurt. 

UK51 (Skitmore, 1991) London building contracts 1981-82 318 51 6.24 1,770,351 86,753 0.417 0.049 

UK218 (Skitmore, 1986) 
North of England public 

works contracts 
1979-82 1,235 218 5.67 143,382 10,238 0.142 0.208 

UK373 (Skitmore, 1986) London building contracts 1976-77 1,915 373 5.13 828,705 45,438 0.253 0.339 

US62 (Brown, 1986) 
USA Government agency 

building contracts 
1976-84 417 62 6.73 914,019 71,863 0.686 1.142 

US50 
(Shaffer and 

Micheau, 1971) 
USA building contracts 1965-69 235 50 4.70 921,970 62,652 0.185 -0.054 

HK199 (Drew, 1995) 

Primary, secondary schools, 

police, fire stations and 

hostels in Hong Kong 

1981-90 2,531 199 12.72 1,122,132 118,579 0.850 1.164 

HK259 (Fu, 2004) 

Hong Kong Administrative 

Services Department 

contracts 

1991-96 3,445 259 13.30 5,500,889 566,769 0.793 1.150 

AU152 (Runeson, 1987) 

General contractors’ bids for 

New South Wales Public 

Works and Housing 

1972-82 1,316 152 8.66 1,605,075 101,345 0.656 0.933 

AU161 (Runeson, 1987) 

Specialist contractors’ bids 

for New South Wales Public 

Works and Housing 

1972-82 1,010 161 6.27 230,346 27,515 0.432 0.579 

UK272 (Skitmore, 1981b) 
BCIS detailed analyses of 

UK contracts 
1969-79 1,670 272 6.14 835,921 46,048 0.134 0.223 

SP116 
(Ballesteros-Pérez 

et al., 2015b) 

Spanish High speed railway 

contracts 
2008-14 3,300 110 30.00 37,610,797 2,222,114 0.447 0.835 

SP51 
(Ballesteros-Pérez 

et al., 2012) 

Spanish Waste water 

treatment plants and sewer 

systems 

2007-08 761 51 14.93 3,236,328   226,291   -0.084 -0.377 

Table 2: Construction datasets used for the analysis
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Dataset Cost estimates (bo) provider  bm bmin σ CV 

UK51 Single bidder 1.042 0.988 0.045 0.043 

UK218 - - - - - 

UK373 - - - - - 

US62 Project designer 1.097 1.038 0.044 0.040 

US50 Single bidder 1.053 0.944 0.091 0.087 

HK199 - - - - - 

HK259 Project designer 0.957 0.861 0.078 0.082 

AU152 Project designer 1.030 0.943 0.064 0.062 

AU161 Project designer 1.050 0.987 0.069 0.065 

UK272 - - - - - 

SP116 - - - - - 

SP51 Single bidder 0.974 0.875 0.059 0.061 

Table 3: Regression coefficient values between the cost estimate and the mean bid, minimum bid and bid 

standard deviation assuming null intercept, and the coefficient of variation, for seven datasets. 
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Figure 1: Ex-post distribution fit  
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Figure 2: Example of the linear regression relationships between the mean bid, minimum bid and bid standard 

deviation as a function of the cost estimate for US50 (in USD) 
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Figure 3: Ex-ante distribution forecasts 
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Figure 4: Example of Skewness-Kurtosis quadratic regression line calculation for the HK259 dataset 

K = 1,181 S2 + 0,228 S - 0,666

R² = 0,877
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Figure 5: Skewness-Kurtosis quadratic comparisons 

Kurtosis =a*Skewness²+b*Skewness+c ▼

Dataset ►

Distribution ▼ a b c R² a b c R² a b c R²

Actual 1.419 0.075 -1.329 0.768 1.513 -0.035 -1.191 0.658 1.365 -0.009 -0.994 0.712

Uniform 1.631 0.026 -1.634 0.664 1.624 0.022 -1.571 0.637 1.646 0.013 -1.608 0.642

Log-Uniform 1.658 0.049 -1.580 0.624 1.584 -0.032 -1.528 0.647 1.645 -0.014 -1.607 0.633

Normal 1.444 -0.011 -1.001 0.618 1.477 -0.019 -1.075 0.579 1.503 -0.003 -1.173 0.606

Log-Normal (2p) 1.559 -0.034 -1.168 0.634 1.487 0.005 -1.144 0.636 1.487 0.014 -1.106 0.598

Log-Normal (3p) 1.520 -0.031 -1.164 0.645 1.451 0.007 -1.226 0.736 1.476 0.040 -1.197 0.687

Gamma 1.501 0.063 -1.100 0.594 1.509 0.011 -1.102 0.602 1.501 0.014 -1.148 0.610

Weibull 1.441 -0.024 -1.103 0.741 1.516 0.038 -1.157 0.654 1.487 0.016 -1.205 0.667

Fréchet 1.441 0.092 -1.280 0.724 1.412 0.006 -1.146 0.785 1.466 -0.009 -1.227 0.725

Gumbel 1.440 -0.146 -0.948 0.736 1.421 0.028 -1.096 0.707 1.447 -0.004 -1.175 0.701

Dataset ►

Distribution ▼ a b c R² a b c R² a b c R²

Actual 1.155 0.293 -0.936 0.828 2.054 -0.623 -1.633 0.709 1.128 0.547 -0.854 0.881

Uniform 1.651 -0.079 -1.662 0.579 1.899 -0.033 -1.815 0.611 1.500 0.021 -1.306 0.594

Log-Uniform 1.566 -0.013 -1.492 0.654 1.765 -0.004 -1.695 0.617 1.525 0.033 -1.320 0.584

Normal 1.508 0.009 -1.093 0.594 1.573 -0.015 -1.333 0.624 1.438 -0.041 -0.643 0.515

Log-Normal (2p) 1.408 0.048 -1.061 0.673 1.516 0.061 -1.277 0.605 1.444 0.056 -0.666 0.636

Log-Normal (3p) 1.382 0.063 -1.128 0.762 1.506 0.040 -1.373 0.729 1.287 0.228 -0.916 0.825

Gamma 1.560 -0.009 -1.246 0.641 1.589 -0.002 -1.268 0.567 1.447 0.056 -0.698 0.588

Weibull 1.516 0.014 -1.135 0.662 1.427 -0.045 -1.090 0.678 1.408 -0.063 -0.772 0.717

Fréchet 1.263 0.147 -1.080 0.832 1.523 0.066 -1.423 0.726 1.204 0.311 -0.844 0.894

Gumbel 1.407 0.074 -1.064 0.692 1.576 -0.137 -1.159 0.667 1.268 0.283 -0.857 0.799

Dataset ►

Distribution ▼ a b c R² a b c R² a b c R²

Actual 1.181 0.228 -0.666 0.877 1.209 0.134 -0.757 0.840 1.446 -0.018 -1.121 0.758

Uniform 1.535 -0.028 -1.352 0.606 1.672 0.067 -1.467 0.552 1.667 -0.004 -1.638 0.614

Log-Uniform 1.528 0.020 -1.367 0.604 1.568 -0.001 -1.406 0.604 1.608 0.046 -1.591 0.641

Normal 1.419 0.004 -0.654 0.525 1.444 -0.001 -0.748 0.567 1.510 -0.005 -1.110 0.573

Log-Normal (2p) 1.360 0.053 -0.607 0.604 1.428 0.034 -0.857 0.567 1.484 0.009 -1.134 0.637

Log-Normal (3p) 1.273 0.220 -0.842 0.829 1.345 0.129 -0.832 0.706 1.392 0.038 -1.200 0.774

Gamma 1.396 0.021 -0.649 0.567 1.455 0.001 -0.826 0.608 1.537 0.052 -1.206 0.602

Weibull 1.415 -0.169 -0.777 0.678 1.408 -0.077 -0.901 0.687 1.498 -0.032 -1.149 0.610

Fréchet 1.200 0.355 -0.951 0.886 1.314 0.094 -0.944 0.844 1.358 0.055 -1.152 0.793

Gumbel 1.322 0.175 -0.828 0.829 1.330 0.146 -0.985 0.758 1.416 0.098 -1.174 0.724

Dataset ►

Distribution ▼ a b c R² a b c R² a b c R²

Actual 1.287 0.050 -0.860 0.642 1.522 -0.399 -0.440 0.754 1.792 -0.096 -1.052 0.469

Uniform 1.604 0.013 -1.579 0.647 1.332 -0.010 -1.223 0.337 1.431 -0.070 -1.313 0.629

Log-Uniform 1.599 0.013 -1.528 0.627 1.455 0.039 -1.235 0.368 1.549 -0.109 -1.290 0.585

Normal 1.511 -0.014 -1.096 0.594 1.649 0.066 -0.331 0.410 1.518 -0.036 -0.637 0.491

Log-Normal (2p) 1.466 0.004 -0.999 0.594 1.569 -0.020 -0.299 0.606 1.531 0.048 -0.683 0.480

Log-Normal (3p) 1.452 0.010 -1.120 0.688 1.286 0.297 -0.478 0.850 1.481 0.083 -0.753 0.691

Gamma 1.505 -0.049 -1.089 0.615 1.739 -0.032 -0.350 0.492 1.369 0.154 -0.629 0.506

Weibull 1.440 -0.025 -1.101 0.681 1.424 -0.354 -0.633 0.866 1.481 -0.061 -0.797 0.709

Fréchet 1.398 0.021 -1.142 0.749 1.206 0.702 -0.934 0.936 1.196 0.521 -0.973 0.843

Gumbel 1.432 0.033 -1.150 0.728 1.433 0.227 -0.645 0.882 1.231 0.414 -0.976 0.747

R² between distributions and actual quadratic regression expression ▼

Distribution ▼ UK51 UK218 UK373 US62 US50 HK199 HK259 AU152 AU161 UK272 SP116 SP51 Average

Actual 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Uniform 0.998 1.000 1.000 0.986 0.987 0.970 0.993 0.999 0.999 0.999 0.989 0.996 0.993

Log-Uniform 0.998 1.000 1.000 0.990 0.987 0.971 0.995 0.998 0.999 1.000 0.987 0.998 0.994

Normal 0.999 1.000 1.000 0.990 0.987 0.964 0.995 0.998 1.000 0.999 0.986 0.999 0.993

Log-Normal (2p) 0.999 1.000 1.000 0.993 0.982 0.973 0.997 0.998 1.000 1.000 0.989 0.998 0.994

Log-Normal (3p) 0.998 0.999 1.000 0.990 0.984 0.985 0.998 1.000 0.999 0.999 0.952 0.996 0.992

Gamma 0.999 0.999 1.000 0.990 0.987 0.973 0.995 0.997 0.999 0.999 0.990 0.991 0.993

Weibull 0.996 0.999 1.000 0.990 0.990 0.963 0.986 0.996 1.000 0.999 0.994 0.993 0.992

Fréchet 0.998 1.000 1.000 0.992 0.981 0.989 0.997 0.996 0.999 1.000 0.875 0.939 0.980

Gumbel 0.994 0.999 1.000 0.993 0.990 0.990 0.999 0.999 0.998 1.000 0.959 0.932 0.988

HK259 AU152 AU161

UK272 SP116 SP51

UK51 UK218 UK218

US62 US50 HK199


