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Three-dimensional numerical simulations of free
convection in a layered porous enclosure
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Abstract

Three-dimensional numerical simulations are carried out for the study of free

convection in a layered porous enclosure heated from below and cooled from the

top. The system is defined as a cubic porous enclosure comprising three layers,

of which the external ones share constant physical properties and the internal

layer is allowed to vary in both permeability and thermal conductivity. The

model is based on Darcy’s law and the Boussinesq approximation. A parametric

study to evaluate the sensitivity of the Nusselt number to a decrease in the

permeability of the internal layer shows that strong permeability contrasts are

required to observe an appreciable drop in the Nusselt number. If additionally

the thickness of the internal layer is increased, a further decrease in the Nusselt

number is observed as long as the convective modes remain the same, if the

convective modes change the Nusselt number may increase. Decreasing the

thermal conductivity of the middle layer causes first an increment in the Nusselt

number and then a drop. On the other hand, the Nusselt number decreases in

an approximately linear trend when the thermal conductivity of the layer is

increased.
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Nomenclature1

β Thermal expansion coefficient2

ψ Vector potential3

u Dimensionless velocity4

η Thermal diffusivity5

µ Viscosity6

ρ0 Density of reference7

θ Dimensionless temperature8

g Gravitational constant9

k Permeability10

L Characteristic length11

Nu Nusselt number12

P Dimensionless pressure13

Ra Darcy-Rayleigh number14

Rac Critical Rayleigh number15

T Dimensional temperature16

t Dimensionless time17

x, y, z Dimensionless coordinates18
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1. Introduction19

The problem of free convection in layered porous media has been of great20

interest in research due to the its presence in both nature and engineering pro-21

cesses. Geothermal reservoir and ground water modeling are examples of the22

application fields of this topic. Thermal gradients in fractured-porous media can23

drive convective flow [1], and create thermal anomalies of interest in geothermal24

applications [2, 3, 4]. The study of convective heat transfer in layered porous25

media is particularly important, since the presence of high (or low) permeability26

strata is a geological feature commonly found in hydrothermal systems. In this27

paper we present 3D steady-state numerical simulations of free convection in a28

three-layer porous enclosure.29

Early work on the onset of convection in layered porous media is that by30

McKibbin and O’Sullivan [5, 6]. They studied two and three-layer systems con-31

sidering constant thermal conductivity in a two-dimensional cell. They defined32

a Rayleigh number referred to the physical properties of the bottom layer and33

the total thickness and temperature drop of the enclosure. From linear stability34

analysis they calculated critical values (Rac) as a function of the permeability35

ratio. They found that considerably high permeability ratios between layers36

(∼ 20) are required to observe convective modes different from those for a ho-37

mogeneous porous medium, these convective modes are characterized by some38

degree of confinement of convection in the high-permeability layers. Richard39

and Gounot [7] studied the onset of convection in a layered porous medium con-40

sidering both anisotropic and isotropic layers as regards the permeability and41

thermal conductivity. As a particular case study, they calculated numerically42

Rac for the onset of convection for a two-layer porous medium with isotropic43

layers and showed that the stability of the system increases when the perme-44

ability of the upper layer is decreased, their definition of Ra was based on a45

weighted average of permeability and thermal conductivity on the thickness of46

the layers. The magnitude of this increase was in turn dependent on the relative47

thickness of the layers. In a similar two-layer model Rosenberg and Spera [8]48
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reported an asymptotical increase in the Nusselt number as the permeability49

ratio of the top to the bottom layers was increased, they observed confinement50

of convection for a permeability ratio of the top to the bottom layers of 10 and51

Ra = 35 which was defined with respect to the bottom layer of the system.52

Mckibbin and Tyvand [9] investigated the conditions under which thermal con-53

vection in a layered porous medium can be comparable to that for an anisotropic54

porous medium. They pointed out that a multilayer system can be modeled by55

an analog anisotropic system when there is no confinement of convection in the56

layered system.57

The problem of porous layers separated by conductive impermeable inter-58

faces has also been investigated. Jang and Tsai [10] studied the onset of con-59

vection in a two-layer system separated by a conductive interface. They defined60

an overall Rayleigh number considering the total thickness of the arrangement61

of layers and found that the presence of the impermeable layer increases con-62

siderably the stability of the system, being the most stable those cases with63

the impermeable layer located in the middle of porous cell. More recently Rees64

and Genç [11] studied multilayer systems separated impermeable interfaces of65

negligible thickness and observed that Rac, defined locally in each layer, tends66

asymptotically to 12 as the number of sublayers is increased. Patil and Rees67

[12] extended the study to consider finite thickness of the conductive interfaces68

so that the conductivity had an impact on the behaviour of the system. They69

reported that Rac and the associated wave number decreased when the thermal70

conductivity of the solid interfaces was decreased. Hewitt et al. [13] deter-71

mined statistical steady-state convection at high Ra in a 2D periodic porous72

enclosure. Their model consists of a thin low permeability layer sandwiched by73

two high permeability layers. Regarding the convective modes, they found that74

for a given Ra and permeability ratio, an increase in the thickness leads to an75

ordered array of cells with stratification of the flow. On the other hand, they76

noted that the Nusselt number as a function of thickness of the low permeability77

layer experiences first a small increase for small thickness and then it decreases78

for larger thickness.79
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Although the scope of this work is layered porous media, it is important to80

mention the work by Nield and Kustnetzov [14, 15] who investigated the effect81

of weak and moderate vertical and horizontal heterogeneities. They defined82

a Rayleigh number based on the mean properties of the porous enclosure and83

found that these heterogeneities lead to a decrease in Rac for all combinations of84

horizontal and vertical heterogeneities and all combinations of permeability and85

conductivity heterogeneities. Vertical heterogeneity proved to have greater in-86

fluence than horizontal heterogeneity, presumably due to the influence of gravity.87

Likewise, Capone [16] found that an increase in the permeability in the upward88

direction is destabilizing whereas an increase in the downward direction is sta-89

bilizing. Nield and Kuznetsov [17] reported that horizontal variations in both90

permeability and thermal diffusivity lead to slight destabilization in comparison91

with vertical variations.92

The aim of this study is to obtain 3D steady-state numerical solutions of93

free convection in a three-layer porous enclosure. The steady-state solutions are94

obtained from the simulation of the transient problem applying a convergence95

criterion. A parametric study is carried out to evaluate the Nusselt number as a96

function of the permeability, thermal conductivity, and thickness of the internal97

layer of the system.98

2. Problem formulation99

The porous enclosure consists of a three-layer system, of which the exter-100

nal layers have the same and constant physical properties and the internal may101

differ as regards the permeability and thermal conductivity (Figure 1). It is102

assumed that the porous medium is isotropic within each layer. Fluid flow is103

governed by Darcy’s law and buoyancy effects are described by the Boussinesq104

approximation. Local thermal equilibrium and negligible viscous heat genera-105

tion are additional assumptions in this problem. From these considerations the106

momentum equation can be written in the following form (we use bar notation107

to denote dimensional variables and operators):108
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Figure 1: Schematic model of a layered porous enclosure heated from below and cooled from

the top with adiabatic lateral boundaries. The external layers (PM1) have constant proper-

ties, whereas the properties of PM2 are allowed to vary.

ū = −k(z)

µ

(
∇̄P̄ − ρ0gβ(T̄ − T̄0)k̂

)
(1)

Where the permeability is defined as k(z) = f(z)k1, with k1 the permeability109

referred to that for the top and bottom layers, and f(z) is a dimensionless110

smooth function, which in this case will be defined as a hyperbolic tangent111

function to represent layers. The energy equation is as follows112

∂T̄

∂t̄
+ ū · ∇̄T̄ = ∇̄ · (η(z)∇̄T̄ ) (2)

Likewise, the thermal diffusivity is defined as η(z) = g(z)η1, with η1 referred113

to PM1 and g(z) a smooth function to represent layers. The condition of114

incompressibility of the fluid is also invoked:115

∇̄ · ū = 0 (3)

Dimensionless variables are defined as follows:

x =
x̄

L
y =

ȳ

L
z =

z̄

L
P =

k1
µη1

P̄
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u =
L

η1
(ū, v̄, w̄) θ =

T̄ − T̄0
T̄0 − T̄c

t =
t̄η1
L2

Ra =
Lk1gβρ0
η1µ

(T̄0 − T̄c)

116

Where Ra is the Darcy-Rayleigh number and L the characteristic length.117

The dimensionless problem is then as follows, momentum equation:118

1

f(z)
u +∇P = Raθk̂ (4)

The dimensionless energy equation is as follows:119

∂θ

∂t
+ u · ∇θ = ∇ · (g(z)∇θ) (5)

A global Nusselt number is defined to quantify the heat transfer through the

upper surface z = 1:

Nu =

∫ ∣∣∣∣∂θ∂z
∣∣∣∣
z=1

dA (6)

2.1. Boundary conditions and initial conditions120

As initial condition both dimensionless temperature and velocity are set to121

zero. The lateral walls of the enclosure are adiabatic and the bottom and top122

boundaries have specified temperatures, so that the boundary conditions for the123

energy equation can be written as124

∂θ

∂x
= 0, for x = 0 and x = 1

∂θ

∂y
= 0, for y = 0 and y = 1

θ = 1, for z = 0 and θ = 0, for z = 1 for t > 0

Regarding the momentum equation impermeable boundary conditions are125

assumed. The implementation of these boundary conditions is described in the126

following section.127
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3. Numerical solution128

The numerical implementation was carried out following the vector potential129

approach. Pressure is eliminated from the momentum equation (Eq. 4) by130

taking the curl:131

∇×
(

1

f(z)
u

)
= Ra∇× θk̂ (7)

This equation is then written in terms of a vector potential ψ, such that132

u = ∇× ψ and ∇ · ψ = 0 . The components of the momentum equation turn133

out:134


∇2ψ1 = −Ra ∂θ∂y −

f ′(z)
f2(z)v

∇2ψ2 = Ra ∂θ∂x + f ′(z)
f2(z)u

∇2ψ3 = 0.

(8)

The corresponding boundary conditions are:

∂ψ1

∂x
= ψ2 = ψ3 = 0, for x = 0 and x = 1

∂ψ2

∂y
= ψ1 = ψ3 = 0, for y = 0 and y = 1

∂ψ3

∂z
= ψ1 = ψ2 = 0, for z = 0 and z = 1

The system can be further simplified noticing that ψ3 = 0. The problem135

given by Equations 5 and 8 with the corresponding boundary conditions was136

discretized following the Finite Volume numerical method [18]. The numerical137

algorithm was based on a fixed point iteration and was implemented in Fortran138

with parallel computing in OpenMP (more details of the numerical model can be139

founded in our previous work [19]). Steady state solutions were determined from140

long simulation times using a convergence criterion based on the evaluation of141

the change in the temperature field during the last 2.2×103 successive iterations142

which proved to be long enough, convergence was defined when the average143

maximum change in the matrix of temperature was less than 5× 10−7. A time144
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step ∆t = 2 × 10−5 and a uniform mesh size ∆x = ∆y = ∆z = 100−1 were145

employed in all the simulations.146

4. Numerical results and discussion147

4.1. Validation148

The validation of our model for the homogeneous case was presented in a149

previous work [19]. A validation for the layered model is presented here con-150

sidering the results reported by McKibbin and O’Sullivan [5]. For a three-layer151

porous enclosure with a thickness of the middle layer h = 0.2 the authors re-152

ported a Rac ' 300 for a wave number n = 4 and a permeability contrast153

k2/k1 = 0.01. For these conditions a convective mode composed by four convec-154

tive rolls confined in the top and bottom layers was reported. A simulation was155

carried out with our 3D model for the same thickness, Rayleigh number and156

permeability ratio. The result was consistent with that reported in the referred157

work. The steady-state temperature and velocity fields are shown in Figure 2158

and the stream lines of a 2D section in Figure 3.159

Figure 2: Steady-state temperature and velocity fields for k2/k1 = 0.01, h = 0.2, and Ra =

300. The corresponding Nusselt number for this result was Nu = 1.43.

4.2. Nu vs permeability ratio and internal layer thickness160

Let us discuss first the effect of the permeability ratio and internal layer161

thickness on the Nusselt number. All the simulations were carried out consider-162
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Figure 3: Streamlines calculated at the section x = 0.5 of Figure 2.

ing a constant Ra = 200 and three thicknesses were evaluated, h = 0.1, h = 0.15163

and h = 0.2. Jang and Tsai [10] reported critical Rayleigh numbers between164

141 and 213 in this range of thicknesses and considering impermeable internal165

layer, so that Ra = 200 was considered to be large enough to observe convection166

in the cases analyzed here. Figure 4 shows the steady-state Nusselt number for167

the three thicknesses analyzed. It can be observed that for relatively low per-168

meability ratio there is a very small change in the Nusselt number, significant169

differences are observed only around k2/k1 = 0.6. Furthermore, there is first a170

slight increase in Nu when the permeability ratio is decreased from 1. Secondly,171

for high permeability contrast Nu is not necessarily inversely proportional to h172

as it can be seen at k2/k1 = 0.2, a similar behaviour was reported by Hewitt et173

al. [13] in the context of thin layers and high Ra. In this study however, the174

reason for this behaviour is that the convective modes attained in each thickness175

is not necessarily the same.176

All the convective modes observed in these simulations were characterized177

by 2D cells. Figure 5 shows streamlines calculated at different cross sections178

perpendicular to the axis of the convective cells. For k2/k1 = 0.01 it is observed179

confinement of convection for h = 0.1 and h = 0.15. When the thickness is180

increased to h = 0.2 however, the system becomes conductive, as shown by181
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Figure 4: Nusselt number vs permeability ratio for three different internal layer thicknesses.

the Nusselt number Nu = 1.0 (Figure 4). k2/k1 = 0.1 shows that h = 0.1182

remains essentially as confined convection, whereas h = 0.15 and h = 0.2 present183

convection throughout the entire enclosure (Figure 6), this convective mode184

enhances the heat transfer as shown by a larger Nusselt number of these cases185

in comparison with h = 0.1. The same is true for k2/k1 = 0.2, although186

in this case there is no confinement, h = 0.1 presents a four-cell convective187

mode that reduces the convective heat transfer in the system in comparison188

with h = 0.15 and h = 0.2, both characterized by two cells partially confined189

in the top and bottom layers. For the case k2/k1 = 0.3 the Nusselt number190

was almost the same (Figure 4), despite the convective mode, Figure 7 shows191

the convective modes for h = 0.1 and h = 0.2. For this permeability ratio,192

the orientation of the convective cells was not coincident as shown in the case193

h = 0.15, which convective cell was oriented in the y-axis direction. In summary,194

a strong permeability contrast is required (k2/k1 < 0.5) to notice a considerable195

impact on the Nusselt number of the enclosure. Likewise, both thickness and196

convective mode are important to determine how the Nusselt number is affected.197
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Figure 5: Stream lines at the cross section x = 0.5 and y = 0.5 for high permeability contrast.

The corresponding Nusselt numbers are shown in Figure 4.
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a) b)

Figure 6: Steady-state solutions for k2/k1 = 0.1 and a) h = 0.1 and b) h = 0.2

4.3. Nu vs conductivity ratio198

The evaluation of the conductivity ratio was carried out considering a con-199

stant thickness h = 0.1 and Ra = 200 for two permeability ratios. No attempt200

is made here to follow a model for the relation between thermal conductivity201

and permeability, a presentation of such models can be referred to Bear [20].202

Steady state Nusselt numbers of the studied cases are presented in Figure 8.203

4.3.1. Internal layer with low thermal conductivity (η2/η1 < 1)204

Let us discuss first the case η2/η1 < 1, in which the internal layer acts as a205

low thermal conductivity layer. In this case, in both permeability ratios, a slight206

a) b)

Figure 7: Steady state solutions for k2/k1 = 0.3 and a) h = 0.1 and b) h = 0.2
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Figure 8: Nusselt number vs conductivity ratio for a constant thickness h = 0.1 and Ra = 200.

increase in Nu was observed first as the thermal conductivity of the layer was207

decreased and subsequently Nu decreases. This behaviour can be understood as208

a destabilizing effect of decreasing the thermal conductivity, a further reduction209

in η2 leads to a drop in Nu as the isolating effect of the layer becomes more210

important. Regarding the permeability ratio k2/k1 = 0.5, a high sensitivity to211

the thermal diffusivity ratio was observed for η2/η1 < 0.5, for these values the212

layer behaves more effectively as a barrier for the heat flux. The convective213
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Figure 9: Stream lines for k2/k1 = 0.5 and a) η2/η1 = 0.2, b) η2/η1 = 1.0.
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a) b)

Figure 10: Steady-state solutions for k2/k1 = 0.5 and a) η2/η1 = 0.2, b) η2/η1 = 1.0.

modes for this permeability ratio were characterized by two main convective214

cells with secondary internal cells separated by the middle layer. Stream lines215

are shown in Figure 9 and the corresponding temperature and velocity fields in216

Figure 10.217

On the contrary, for a weak permeability contrast (k2/k1 = 0.9) there was218

in general a low sensitivity to η2/η1. Since the system is close to the homo-219

geneous case with Ra = 200 the convective effects dominate the system and220

consequently decreasing the thermal conductivity of the layer has little impact.221

The convective modes of this series were also characterized by 2D velocity dis-222

tributions consisting of two convective cells. Stream lines of two examples are223

shown in Figure 11 and 3D temperature field in Figure 12, respectively.224

4.3.2. Internal layer with high thermal conductivity (η2/η1 > 1)225

On the other hand, the overall effect of increasing the thermal conductivity of226

the internal layer (η2/η1 > 1) was the attenuation of convection in the system. A227

constant decrease in Nu was observed in both permeability ratios that followed228

an approximately linear trend (Figure 8). Additionally, the correlation between229

Nu and η2/η1 displayed a weak dependence on the permeability ratio for the230

values analyzed. Two convective modes were observed in both permeability231

ratios, for k2/k1 = 0.5 the multiple cell convective mode shown in Figure 9232
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Figure 11: Stream lines for k2/k1 = 0.9 and a) η2/η1 = 0.3, b) η2/η1 = 1.0.

remains until η2/η1 = 1.5. Likewise, for k2/k1 = 0.9 the two cell regime remains233

until η2/η1 = 1.8, at these thermal diffusivity ratios the convection becomes234

single cell as shown in Figures 13 and 14.235

5. Conclusion236

Three-dimensional numerical simulations of free convection were carried out237

in a porous enclosure consisting of three layers of which the internal one was238

allowed to vary in permeability, thickness and thermal conductivity. The para-239

metric study to evaluate the effect of decreasing the permeability of the internal240

a) b)

Figure 12: Steady-state solutions for k2/k1 = 0.9 and a) η2/η1 = 0.3, b) η2/η1 = 1.0.
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Figure 13: Stream lines for a) k2/k1 = 0.5 and η2/η1 = 1.6 and b) k2/k1 = 0.9 and η2/η1 =

1.8.

layer on the Nusselt number showed that permeability ratios lower than 0.6241

are required to observe an appreciable drop in Nu. In agreement with this242

behaviour increasing the thickness of the middle layer had little impact on Nu243

in the range 0.6 & k2/k1 < 1. The steady-state convective modes attained in244

this parametric study were all characterized by two-dimensional velocity distri-245

butions. The three thicknesses analyzed displayed the same convective modes246

until k2/k1 = 0.4, in this range of permeability ratios the Nusselt number was,247

as expected, inversely proportional to h. For permeability ratios between 0.1248

a) b)

Figure 14: Steady-state solutions for a) k2/k1 = 0.5 and η2/η1 = 1.6 and b) k2/k1 = 0.9 and

η2/η1 = 1.8.
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and 0.3 the convective modes attained by h = 0.1 were different to those for249

h = 0.15 and h = 0.2. The thickness h = 0.1 developed four convective rolls250

partially of fully confined in the top and bottom layers, whereas h = 0.15 and251

h = 0.2 were characterized by a single cell with two secondary internal cells,252

this convective mode turned out to enhance the convective heat transfer of the253

porous enclosure and consequently the Nusselt number was higher in these cases254

than that for the thinest layer h = 0.1. The inverse proportionality relation of255

Nu with h was recovered at the highest permeability contrast k2/k1 = 0.01 for256

which the convection of h = 0.1 and h = 0.15 was confined convective rolls and257

h = 0.2 led to a conductive solution.258

A slight enhancement of the heat transfer in the enclosure was produced259

when the thermal diffusivity of the middle layer was decreased up to moderate260

values. The porous enclosure with a weak permeability contrast k2/k1 = 0.9261

presented a low sensitivity to the decrease, which indicates the dominance of262

convection in the system. Regarding the permeability ratio k2/k1 = 0.5, after263

the slight increase in Nu referred above, the system experienced a monotonic264

decrease in Nu as the thermal diffusivity of the middle layer was further de-265

creased. At this permeability ratio the layer acted more effectively as a barrier266

for the heat flux. On the other hand, increasing the thermal diffusivity of267

the middle layer had a more consistent effect in the two permeability ratios268

analyzed, which was an approximately linear decrease in Nu. Two different269

convective modes were observed in this case: a dual-cell regime at moderate270

thermal diffusivity ratios and a single-cell regime at high ratios. However, the271

transition between these convective modes also appeared to be dependent on272

the permeability contrast.273

This work has permitted us to qualitatively characterize important features274

of 3D convection in a layered porous medium. Extension of such an approach275

to real systems, such as geothermal reservoirs, would require definition of a276

parameter space reflecting robust models of the co-variance of thermal con-277

ductivity and permeability. No unique model of such co-variance exists how-278

ever, as thermal conductivity is largely controlled by mineralogical composition,279

18



whereas permeability is principally controlled by independent physical phenom-280

ena. Case-specific parameterization would therefore be required in all instances281

for real natural domains.282
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y Tecnoloǵıa (CONACYT) and Cluff Geothermal Ltd.285

19



References286

[1] T. Graf, R. Therrien, Stable-unstable flow of geothermal fluids in fractured287

rock, Geofluids 9 (2009) 138–152.288

[2] H. Gvirtzman, G. Garven, G. Gvirtzman, Thermal anomalies associated289

with forced and free ground-water convection in the dead sea rift valley,290

Geological Society of America Bulletin 109 (1997) 1167–1176.291

[3] L. Guillou-Frottier, C. Carre, B. Bourgine, V. Bouchot, A. Genter, Struc-292

ture of hydrothermal convection in the upper rhine graben as inferred from293

corrected temperature data and basin-scale numerical models, Journal of294

Volcanology and Geothermal Research 256 (2013) 29–49.295

[4] A. Souche, M. Dabrowski, T. B. Andersen, Modeling thermal convection296

in supradetachment basins: example from western Norway, Geofluids 14297

(2014) 58–74.298

[5] R. McKibbin, M. J. O’Sullivan, Onset of convection in a layered porous-299

medium heated from below, Journal of Fluid Mechanics 96 (1980) 375–393.300

[6] R. McKibbin, M. J. O’Sullivan, Heat-transfer in a layered porous-medium301

heated from below, Journal of Fluid Mechanics 111 (1981) 141–173.302

[7] J. Richard, J. Gounot, Criterion for the onset of natural-convection in303

stratified porous layers, International Journal of Heat and Mass Transfer304

24 (1981) 1325–1334.305

[8] N. D. Rosenberg, F. J. Spera, Role of anisotropic and or layered perme-306

ability in hydrothermal convection, Geophysical Research Letters 17 (1990)307

235–238.308

[9] R. McKibbin, P. A. Tyvand, Anisotropic modeling of thermal-convection309

in multilayered porous-media, Journal of Fluid Mechanics 118 (1982) 315–310

339.311

20



[10] J. Y. Jang, W. L. Tsai, Thermal-instability of 2 horizontal porous lay-312

ers with a conductive partition, International Journal of Heat and Mass313

Transfer 31 (1988) 993–1003.314

[11] D. A. S. Rees, G. Genç, The onset of convection in porous layers with315

multiple horizontal partitions, International Journal of Heat and Mass316

Transfer 54 (2011) 3081–3089.317

[12] P. M. Patil, D. A. S. Rees, The onset of convection in a porous layer with318

multiple horizontal solid partitions, International Journal of Heat and Mass319

Transfer 68 (2014) 234–246.320

[13] D. R. Hewitt, J. A. Neufeld, J. R. Lister, High Rayleigh number convection321

in a porous medium containing a thin low-permeability layer, Journal of322

Fluid Mechanics 756 (2014) 844–869.323

[14] D. A. Nield, A. V. Kuznetsov, The effects of combined horizontal and324

vertical heterogeneity on the onset of convection in a porous medium, In-325

ternational Journal of Heat and Mass Transfer 50 (2007) 1909–1915.326

[15] D. A. Nield, A. V. Kuznetsov, The effects of combined horizontal and verti-327

cal heterogeneity on the onset of convection in a porous medium: Moderate328

heterogeneity, International Journal of Heat and Mass Transfer 51 (2008)329

2361–2367.330

[16] F. Capone, M. Gentile, A. Hill, Convection problems in anisotropic porous331

media with nonhomogeneous porosity and thermal diffusivity, Acta Appli-332

candae Mathematicae 122 (2012) 85–91.333

[17] D. A. Nield, A. V. Kuznetsov, Onset of convection with internal heating334

in a weakly heterogeneous porous medium, Transport in Porous Media 98335

(2013) 543–552.336

[18] H. K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid337

Dynamics, The Finite Volume Method, Prentice Hall, 1995.338

21



[19] F. J. Guerrero-Mart́ınez, P. L. Younger, K. Nader, Three-dimensional nu-339

merical modeling of free convection in sloping porous enclosures, Interna-340

tional Journal of Heat and Mass Transfer 98 (2016) 257–267.341

[20] J. Bear, Hydraulics of groundwater, McGraw-Hill, 1979.342

22




