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Lifecycle Environmental Performance of Materials Specifications: A 

BIM Enhanced Comparative Assessment 

 

Abstract 

The study aimed at evaluating the extent to which different building materials specifications 

affect building lifecycle environmental performance, using a Building Information Modelling 

(BIM) enhanced lifecycle assessment (LCA) methodology. A combination of Revit 

Architecture which is a BIM based design and analysis tool, an energy simulation tool known 

as Green Building Studio (GBS) and LCA tool known as ATHENA Impact Estimator were 

used for the assessment. The LCA was carried out on a life case study of a 2100m2 one-storey 

school building as well as its variability analysis, by varying materials specifications in terms 

of whole building materials. The lifecycle performance of the buildings was primarily 

evaluated in terms of its Global Warming Potential (GWP) and Health Impacts. 

 

The findings of the study show that irrespective of materials used, buildings that are based on 

renewable energy perform better than those based on fossil fuels over its lifecycle. In terms of 

building materials, both environmental and health preference of buildings congruently range 

from timber, brick/block, steel, to Insulated Concrete Foams, in a descending order. The 

study suggests that as buildings become more energy-efficient during operational stages, 

serious attention needs to be given to their embodied impacts.  

 

The study lay out a methodological framework that could be adopted by industry 

practitioners in evaluating lifecycle environmental impacts of different BIM modelled 

materials options at building conception stage. This has the tendency of ensuring that most 

lifecycle environmentally beneficial materials combinations are selected during specification 

and construction. 

 

Keywords: Lifecycle Assessment; Building Information Modelling, materials specification; 

Global Warming Potential; Health Impacts. 
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1. Introduction 

The building sector is the largest consumer of energy in the developed nations, in terms of 

energy requirement for materials manufacture, construction and building operation [1]. The 

sector has become a major target for environmental improvement as it accounts for more than 

40% of total energy consumption and natural resources, with about 33% of global CO2 

emission coming from the sector [2] Whilst these alarming figures point out to a need for 

holistic efforts towards investigating and preventing environmental impacts due to buildings, 

fortunately, Life Cycle Assessment (LCA), which involves cradle to grave analysis of 

products, is arguably the best method of evaluating impacts of a particular product on the 

environment [3] Nonetheless, despite the claim that clear interaction between buildings’ 

lifecycle stages calls for such global methodology like LCA [4], it has been rather applied to 

other products, with little application to whole building analysis. This is due to the complex 

nature of buildings’ inventory analysis, inadequate inventory data, its long life span, and so 

on [3, 5] 

 

Previous research efforts towards estimating building lifecycle impacts have been dedicated 

to individual buildings in forms of offices, residential and industrial buildings [6, 7, 8, 9]. 

While these set of studies have set some frameworks for whole building lifecycle assessment, 

lack of global benchmark for comparing lifecycle impacts of each building [10], as well as 

failure of the studies to consider alternative materials specifications, have questioned the 

ingenuity of their findings. Other set of studies have been carried out to evaluate how 

materials configurations affect energy efficiency of buildings using various sensitivity 

analysis and “what if scenarios”; these among others include, Ceranic [11] Azhar et al. [12] 

and Autodesk [13]. Again, apart from showing impacts of using different building materials 

specification over its energy performance, these set of studies are limited to operational stage 

of building, thus leaving out environmental impacts of buildings during other stages - 

material manufacture, transportation, construction, maintenance and demolition stages. 

Although the studies provided rich information about impacts of materials specifications on 

operational energy performance, industry practices still lack knowledge of cradle to 

cradle/grave environmental impacts of different materials specifications. 

 

As the year 2016 has been earmarked as the period when BIM would be fully adopted for 

public procurements in the UK, with further cut down in emission target [14, 15], a number 
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of studies have highlighted the potential benefits and possibility of using BIM for lifecycle 

environmental assessment of buildings [7,16,17]. However, despite the growing adoption of 

BIM across the UK and increasing call for early stage simulation of different design and 

construction options to predict their environmental impacts, before actual site works, there 

has been no standard guideline for implementing whole building lifecycle assessment with 

the aid of BIM. Bulks of research efforts and software designs have been focussed on 

building energy performance during operational stage, thus leaving out all other lifecycle 

stages, which are very important for curtailing environmental impacts [18]. It is on this basis 

that this study emerges with an overall aim of determining the extent to which building 

materials specifications affect its lifecycle environmental performance. The study fulfils the 

following objectives: 

 

1. To determine impacts of materials specification on lifecycle Global Warming 

Potential (GWP) and health impacts of buildings. 

2. To comparatively evaluate lifecycle impacts of buildings based on fossil fuel and 

those based on renewable energy. 

3. To compare health and environmental impacts of operation stage and other lifecycle 

stages of building. 

4. To determine whether environmental friendly buildings are really healthy.   

 

The findings of this study would furnish industry practitioners with the knowledge of whole 

life impacts of different materials specifications. The successful integration of BIM with 

LCA tool signifies the possibility of design stage simulation of whole lifecycle environmental 

impacts of buildings, thus advancing current industry practice beyond its focus on operational 

stages.  

 

 

2. Existing Literature on BIM and LCA 

LCA is an internationally standardized technique for evaluating environmental impacts of a 

product, process or system throughout its life cycle. It covers extraction and transportation of 

its raw materials, manufacturing, transportation and distribution, use and re-use, maintenance, 

recycling and final disposal [19]. It is a holistic approach that considers all materials and 

energy inputs and flows throughout the life span of a product in question, in order to analyse 
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the environmental aspects and potential impacts of the product [20]. Techniques and 

approaches adopted in carrying out LCA vary from one study to another. Nevertheless, LCA 

is generically carried out within the framework of ISO 14040 which consists of four main 

phases [3].  

 

Goal and scope definition is the first phase of LCA where purpose and objectives of the study 

is defined, assumptions and simplification used is made known, the limit (boundary) of the 

system is stated, the necessary data is identified, functional unit is defined and the target 

audience is spelt out [4, 21]. This is followed by the inventory analysis stage where accounts 

of input and output flows of energy, water, material, emission and pollutants are made [4].  It 

is often referred to as data collection and calculation phase [21]. The next stage is referred to 

as Impact Assessment, which involves evaluation of the results obtained from the previous 

phase and characterisation of the result into more meaningful environmental impact such as 

global warming, toxicity and so on [4]. This precedes the last stage known as the 

interpretation phase where the results from the inventory analysis and impact assessment are 

all considered based on the goal of the study, in order to establish conclusion and 

recommendations [21]. 

 

Implementation of LCA is usually time-consuming as it takes a lot of time and effort to 

compile and manually input life cycle inventory data for every material used in the building; 

thus limiting its application in AEC industry [22]. Integration of BIM and LCA software 

therefore is a solution to the problem as quantity take-offs and material specifications are 

already included in BIM platforms. Various constraints of BIM based LCA has been 

identified over the years. For instance, inaccessibility and complication of LCA tools, 

inefficiency of data input into LCA programmes and problem of data interoperability exist 

[23]. It is expected that BIM and LCA tools are interoperable and compatible for future LCA 

to be effective in AEC industries. For implementation of LCA to be eased, there would be 

need for improving data exchange between different programmes or LCA tools are built-in 

for BIM software [24]. 

 

Nonetheless, several studies have been carried out on the concept of whole building LCA, 

with each having different techniques and approaches, as well as varied goal and scope [2, 6, 

7, 9, 25, 26]. Some of the studies address the use of BIM for LCA [16, 17]. For instance, 
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Wang et al [16] demonstrated how BIM supports implementation of LCA. The building 

model was prepared with Revit architecture, and Autodesk Ecotect was used for simulating 

the operational energy used through an easy file transfer between the two BIM tools. LCA of 

other stages of the building was carried out through combination of other external analysis 

tools and databases. Stadel et al. [17] point out the main obstacle in the use of BIM for LCA. 

They stressed that although recent development in BIM platform (especially Revit 

architecture) has allowed material take-off and estimates/schedule, there is still need to 

disaggregate individual material under the same family.  

 

Whole building Life Cycle usually cover five stages, raw materials and manufacturing, 

construction, operation, maintenance, and demolition stages [8, 16]. As a result of 

simplifications suggested for successful implementation of LCA, some studies neglect one 

stage or the other. Nevertheless, all studies identify material and manufacturing, construction 

and operation stages as crucial stages of buildings LCA. Other stages covered or omitted in 

each study would therefore be determined by the goal and scope of the study [27]. 

 

In implementing whole building LCA, a combination of LCA tools and other external 

analysis tools were used in different studies as a result of growing list of computer 

programmes suitable for the assessment. For instance, Ooteghem and Xu [6] combined 

ATHENA Impact Estimator and eQUEST. The former was used for other stages of building 

life cycle than operation stage while the latter provided information about operation stage of 

the case study used.  Ghattas et al. [25] argues that ecoinvent is one of the commonly used 

data source for LCA. Various database along with several mathematical analysis for 

summing up overall embodied impacts have been developed and used in previous studies 

[28]. For instance, Baek et al. [2] used inventory prepared by Japan Building Construction; 

Wang et al. [16] used Finnish building classification, while some other studies also used the 

Bath University Inventory of Carbon and Energy (ICE) to estimate embodied impacts of 

various building materials [29]. These thus suggest that although all LCA studies are carried 

out within the framework of ISO standards, simulation, database and analytical tools vary 

from one study to others. 
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3. Methodology 

A building that is regarded as zero energy or carbon neutral/negative during its operational 

stage is possibly constructed of materials with high embodied energy or construction 

techniques, which also have hazardous environmental effects. Therefore, this study is aimed 

at examining the impacts of commonly used materials specifications on life cycle 

environmental performance of buildings using a BIM enhanced approach. Based on 

American Institute of Architect (AIA) standard, the BIM model is produced at Level of 

Detail 200 (LOD 200) as the approximate quantities, size, shape, location, and orientation are 

required for both energy analysis and quantity estimation required. This section describes the 

methodological framework, case study model, research instruments and detail approach used 

in the study. 

 

3.1. Life Cycle Methodological Framework 

LCA is performed within the framework of ISO14040 [6] considering its four established 

phases [7, 30]. This study is carried out within the framework provided by the standards and 

considered all the phases as described below.   

 

Goal and Scope:  The scope of this study is limited to a single storey BIM modelled 

primary school building with variability analysis of materials specifications, to determine 

effects of each of the specifications over the building’s life cycle. A short lifecycle period of 

30 years was taken after Saynajoki et al. (2012 in [25]), and in consideration of  years 

considered in Green Building Studio which was used for simulating operational energy of the 

building 

Inventory Analysis: The life cycle inventory of material input were computed using 

volume estimates capacity of Revit. The quantities were entered into ATHENA Impact 

estimator which in turn estimates the impacts of the building using database of impact 

categories associated with unit of the material specified, and the type of construction. The 

inventory of energy use during the operational stage was made using Revit Architecture with 

its powerful link to Autodesk Green Building Studio (GBS). The estimate was made for each 

of the design specifications used in the study. The result from Revit Architecture and GBS 

were ultimately entered into ATHENA impact estimator which finally converts the unit of 
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gas and electricity used into different impact categories such as climate change potential, 

acidification, eutrophication, and so on.  

Impact Assessment: Two primary impact categories assessed in the study are Global 

Warming Potential (GWP) and Human Health particulates (human toxicity). The GWP was 

considered as a result of highest impact rating given to it by the BRE [31]. Human Health 

particulate (HH impacts) was given a special consideration as a result of its potential for 

health deterioration and impacts on respiratory system which may result in such diseases as 

asthma, bronchitis and acute pulmonary diseases [32].  

Interpretation: Variability analysis was used to evaluate impacts of different design 

specifications on the buildings’ LCA. The impact of the main case study was interpreted for 

the whole building and alternative configurations/specification so as to set basis for 

comparing commonly used building specifications.  

 

3.2. Process Description 

For a typical LCA of each of the typologies used in the study, a BIM model of the building is 

generated using Revit. Material take-off of the building is estimated to determine volumes of 

each of the materials that contributed to the building as a single entity. Excel sheet was used 

to segregate each of the building components so as to determine materials that contributed to 

each components; for instance, walls made of timber are separated from those made of steel 

within the same building. Operational energy required for the building is determined with the 

aid of Revit and Green Building Studio, and the results are then entered into the Impact 

Estimator along with the quantities of each of the materials to determine the life cycle 

environmental impacts of the building. The procedure is repeated for other design 

specifications, and their impacts are comparatively evaluated to achieve the aim and 

objectives of the study. 

 

3.3. Case Study Design 

In this study, case study approach was adopted, with variability analysis carried out to fulfil 

the goal of the study. The case study used for the study is a two-floor primary school building 

located in Canada. Table 1 gives a brief description of the building, and Table 2 provides 
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inventory of material specifications for all design options used in the study. The model is 

detailed at LOD 200. 

 

Table 1 : General building characteristics 

 

Building type: Primary school,  

Number of floor: 2  

Ground Floor area 1319m2  

First floor area :938m2  

Lighting control: All manual 

 Green roof area: 258m2  

First floor roof area: 1050m2 

Low level roof: 183m2 

 

Table 2: Material specifications for the typologies 

Building system Specific characteristics 
Exterior walls A. 100mm facing brick, 110mm cavity filled with polystyrene insulation, 

CMU inner wall with 12.5mm plasterboard finish and partly curtain wall. 

B. Cladded timber cavity wall filled with cellulose insulation. 

C. ICF with expanded Polystyrene. 

D. Gypframe steel framed wall with polystyrene insulation. 

E. Brick/block cavity wall. 

Interior walls 

 

 

A. Cavity masonry units filled with sound barrier. 

B. Timber cavity with cellulose insulation. 

C. Cavity CMU with polystyrene insulation. 

D. Timber/steel cavity with cellulose insulation. 

E. Timber cavity with cellulose insulation.  

Structure 

 

 

A. Self-sufficient brick/block component served as structural support. 

B. Hardwood structural post as main beam, and glue lamp as secondary frame. 

C. Reinforced Concrete column structure 

D. Steel frame 

E. Hardwood structural post as main beam, and glue lamp as secondary frame. 

Ground floor 

 

A. Composite hollow core floor finished with synthetic resin  

B. Timber raised floor insulated with blown cellulose, on CMU structure. 

C. Timber raised floor insulated with blown cellulose, on CMU structure. 

D. Steel plate raised on CMU, and finished with synthetic resin 

B. Timber raised floor insulated with blown cellulose, on CMU structure. 

First floor 

 

A. Timber boards with I-section timber frames and synthetic resin floor finish 

B. Timber frame and timber board finished with synthetic resin 

C. Precast concrete floor 

D. Gypframe steel flooring 

Windows A. Aluminium-frame, double-glazed, argon-filled, U-value 1.55 W/m2 K  

B. Timber-frame, double-glazed, argon-filled, U-value 1.55 W/m2 K  

C-E. Aluminium-frame, double-glazed, argon-filled, U-value 1.55 W/m2 K  

Roof 

 

A. Slate roofing sheet with wood frame 

B. Insulated timber plate flat roof with EPDM cover 

C. Reinforced concrete flat roof with 40% GGBS/recycled aggregate 
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D. Insulated steel plate flat roof covered with EPDM 

E. Slate roofing sheet with wood frame 

HVAC A-D. Gas fired boiler, steam from Central Power plant 

E. Renewable source with lower percentage of fossil fuel. 

Electricity 

 

A-D. 100% from external regional utility 

E. renewable/non-renewable sources 

Ceiling A-E. Suspended gypsum ceiling with steel grid  

Column A. Pressure treated sawn hardwood – free from Copper Chromium 

Acetate(CCA) 

B. Pressure treated sawn hardwood – free from Copper Chromium 

Acetate(CCA) 

C. Pressure treated sawn hardwood – free from CCA 

D. Steel column. 

E. Pressure treated sawn hardwood – free from CCA 

 

Note: A is a typical Brick/block building, B is a timber structure, C is Insulated Concrete 

Form building, D is a steel structure while E is also a Brick/CMU like A, but based on 

renewable energy sources. 

 

3.4. Sustainable Alternatives and LCA of Required PV Panels. 

LCA was carried out for energy efficient alternatives for the typology A. The required 

electricity and fuel was estimated for different building requirements such as space cooling, 

fans, lighting, heating, miscellaneous equipment and so on, using Energy End-use Chart of 

Green Building Studio.  LCA was estimated for required PV panel to power lighting, 

miscellaneous equipment and fans based on earlier studies [33, 34, 35]. The estimated LCA 

was added to the original LCA value for the embodied and construction impacts of the 

buildings while electricity and fuel requirement was only estimated for other facilities that are 

not powered by the PV panel. The embodied CO2 for PV panels  found in literatures are 

14.65g/Kwhe, 34.3 g/Kwhe, 44g/Kwhe 50 g/Kwhe, 60 g/Kwhe, 280 g/Kwhe based on the years 

covered by the study, with recent years producing less CO2 emission per KiloWatt hour of 

electricity generated [33, 36]. Therefore, an average of 60gCO2/Kwh of electricity on a life 

cycle of 30years was used in the study. 

 

 

5. Findings and Discussion 

This section analyses the findings of the comparative analysis and discusses its implications, 

so as to draw meanings from the findings. It comparatively evaluates the results of the 
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findings and follows it up with discussion of the comparative analysis. The discussion is 

based on relevance of each buildings’ life cycle stages, materials specifications, GWP, health 

impacts, and so on. 

 

 

5.1. Comparative Analysis of GWP of the Design Typologies 

The figure below comparatively evaluates GWP of all design typologies used in this study 

over the life cycle of the buildings. In terms of the four conventional typologies (A, B, C and 

D), ICF building has the highest GWP of 5,670,000kgCO2 equivalent of which amount to 

annual journey of about 573SUVs over the entire life cycle of the building, or 19SUVs/year. 

The steel building has the second highest impact of 5,350,000kgCO2 equivalent; which 

equals 540SUV/year over the entire life cycle of the building or annual journey of 18SUVs. 

Brick/block building has the third highest GWP of 5,210,000kgCO2 equivalent, an annual 

journey of 526SUVs over the entire life cycle of the building which could also be expressed 

as 17.5SUVs/year. Timber structure has the lowest GWP among the four typologies. It has a 

total GWP of 4,672,625kgCO2 equivalent, which equals annual journey of about 472SUV 

over the entire life cycle of the building, the same amount as about 16SUVs/year. 

 

The low energy typology suggests that a decision that has to do with reduction in operational 

energy is more important than material selection in building. Comparing typology A and E, 

the use of PV panel to compliment electricity resulted in a decrease of 3,788,973kgCO2, 

equivalent to annual journey of 383SUVs or a save of up to 13SUVs in a year. Total impact 

of using PV panel contributed only 11027kgCO2 equivalent which is less than annual journey 

of 2SUVs over the entire life cycle of the building, or 0.04SUV/year. Echoing findings by 

Dodoo et al. [37], the study suggests that the more the reduction in operational energy, the 

less the GWP of the building typology. 
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Figure 1: Comparative evaluation of GWP of the five building typologies 
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5.2. Comparative Analysis of Health Impacts of the Design Typologies 

Similar to GWP of the building typologies, the health impact varies from one building to 

another. Figure 2 shows HH Criteria measured in terms of kgPM2.5 of particulate matter that 

would be present in the air as a result of material manufacturing and transportation, 

construction, replacement, operation and end of life impacts of the buildings. 

 

The Figure 2 shows that after the low energy building, timber building has low health impacts 

over the life cycle of the building. Surprisingly, the product, construction, replacement and 

end of life stages of the timber building have insignificant impacts when compared with 

operational stage. This means that by further reducing the operational energy requirement of 

the timber building, it would have almost no health effect throughout the entire life cycle of 

the building. ICF building produced the highest KgPM2.5 of fine particulate matter, followed 

by steel building and then the brick/block building. The result based on low energy building 

suggests that unlike timber building, reducing operational energy for a brick/block building, 

ICF or steel structure does not entirely reduce their health impacts as the product stage also 

contributed significant health effects. Although, operational stage has the greatest health 

effects compared to other stages. 

 

5.3 Relationship between GWP and Health Impact 

This study shows a direct relationship between GWP and health impacts of the buildings. 

Both the GWP ranges from ICF building, then the steel building, brick/block building and 

timber building in descending order. From their relationship, it can be concluded that the 

greener a building in terms of GWP, the healthy the building. This suggest that to make a 

building healthy for both the occupants and construction workers, the use of energy efficient, 

greener, renewable and local materials becomes important as they results in low GWP which 

in turns results in less health effects. 
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Figure 2: Comparative evaluation of human health impacts of the five building typologies 
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5.4 Design Specifications and Embodied Impacts  

Embodied impacts vary from one building design specification to another based on the 

findings of this study and similar findings [16, 27]. As represented in Figures 1 and 2, the ICF 

has highest GWP and health impacts compared to other building typologies. The brick/block 

building has the second highest in terms of both impacts; steel building is next to the brick 

building while timber building has lowest impacts compared with other buildings. While 

there is much gap between ICF and brick/block buildings in terms of embodied GWP, – up to 

440Mg, an equivalent of up to annual travelling distance of 44SUVs – there is little 

difference between brick/block and steel building – just about 20Mg (annual travelling 

distance of approximately 2SUVs). Total GWP saving as a result of the use of timber 

compared to steel or brick/block building amounts to 527Mg.  This shows that there is direct 

relationship between embodied GWP and embodied Health impacts in a similar relationship 

with total GWP and total Health impact. The building with highest embodied GWP has the 

highest embodied health impact and vice versa. 

 

5.5. Design Specifications and Operational Impacts 

The findings suggest that the higher the energy requirements of a building, the more would be 

the GWP and health impacts associated with the operational stage of the building. Unlike 

embodied impacts where ICF building has highest GWP and potential health impacts, steel 

building uses more energy than ICF and other building typologies, thereby having the highest 

GWP and health impacts due to operational stage of the building. The next highest impact at 

the operational stage after ICF (which is next to steel) is due to timber building which is 

slightly higher than that of brick/block building. This suggests that massive cavity walling 

system reduces operational impacts of buildings much more than thinner walling frame. 

However, when insulation pattern of the timber building was improved, it led to reduction in 

both GWP and health impacts due to operational stage, while it insignificantly added to 

embodied impacts of the building. These results suggest that when evaluating LCA of a 

whole building as an entity, thickness and efficiency of insulation is a very important element 

that can go a long way in reducing life cycle impacts of buildings. This is because, the 

thicker/more-efficient the insulation, the lesser the operational energy requirements and the 

potential impacts due to the operational stage. Even as timber is proved to be more 
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environmental friendly in this study, poor insulation to a timber building would have far more 

environmental impacts than ICF or well insulated brick/block buildings. 

 

5.6. Comparative Analysis of Conventional and Low Energy Typologies  

The more the renewable technology used in a building, the less would be the environmental 

impacts due to the building. This conclusion is reached as a result of direct comparison 

between building typology –A which is a brick/block building and its alternative typology –E 

which is based on combination of electricity and PV panel. As shown in the figures, the 

building based on renewable energy technology has very low GWP (about one fourth), when 

compared to the same building that is based on fossil fuel. Although embodied impacts would 

increase when using renewable technologies, it has insignificant effects compared to resulting 

impacts of electricity and fuel. As the health impacts also varies significantly with GWP of 

buildings as earlier discussed, the building based on renewable technology has lesser health 

impacts compared to its conventional alternative. 

 

5.7. Relevance of Each Stage to Environmental Impacts of Buildings 

Building types and its materials specifications determine the stage that is more relevant when 

carrying out LCA of whole buildings. For a building that is based on electricity and fuel, 

operational impacts is the most impactful stage in terms of whole lifecycle analysis of a 

building, with product stage being the next important stage for such a building. However, for 

a building that is based on renewable technology, product stage has more impacts than all 

other stages. Construction stage closely follows either of the two stages depending on the 

sources of energy used in running the building. Similarly, materials used in the building 

determine the relative importance of replacement and end of life stages. For buildings with 

massive walling system and less tendency for reusability of the materials, end of life impacts 

is more than replacement impacts. This applies to buildings constructed with brick/block and 

ICF. However, this is contrary for steel and timber structure as their end of life stage has less 

GWP and health impacts than the replacement stage. 

 

Summarily, this means that a general conclusion regarding the relevance of replacement and 

end of life stages could not be made. The reusability/recyclability of the building components 
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determines their relative importance just like source/means of energy use in building 

determines the most impactful between operational and construction stages. 

 

6. Implication for Practice 

Currently, reducing the demand for operational energy is the most important factors to be 

considered in achieving buildings that would have low impacts over its lifecycle. Therefore, 

both the designers and policy makers should concentrate their efforts on reducing operational 

energy requirements of buildings. This would not be limited to the use of renewable 

technologies for building operation; it would involve selection of appropriate insulation 

materials to reduce outdoor impacts on the building as discussed in the findings of timber 

structure with varied insulation efficiency. 

 

Meanwhile, as demonstrated by renewable alternatives of buildings, embodied impacts 

increase when building uses renewable technology. As such, designers are encouraged to 

improve the use of environmental friendly materials such as timber, especially for internal 

partition so as to reduce environmental impacts due to building materials. Also, when using 

timber or steel walling system, there would be more need to improve the thickness of 

insulation materials much more than what would have been used if the building were to be 

constructed with bricks and blocks. This is because; finding showed that the timber and steel 

walling system requires thicker insulation than what is been used for brick cavity walling. 

Doing this would prevent the reduced negative impact avoided from embodied energy from 

being lost to operational energy. This is needed, as the operational energy becomes more 

when insulation is not efficient. 

 

As a result of economic aspects of sustainability, it may not be easy to prevent the use of such 

materials as Portland cement – which is the main element that contributed to high impact of 

ICF. However, assigning eco-points to different materials may be a great way of addressing 

embodied impacts of materials. This could be done in such sustainable design appraisal tools 

as the UK BREEAM and the US LEEDS. In that wise, the designers would be able to trade 

off among all stages of building rather than the current practices which only concentrate on 

operational impacts. This is expected to be the next line of action; especially as continuous 
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awareness and stringency of legislations reduces operational impacts, thus calling for more 

concern about embodied impacts. 

 

7. Conclusion 

The study was carried out to determine the impacts of materials specifications on life cycle 

environmental impacts of buildings with the aid of BIM enhanced LCA methodology. It 

clearly shows the relevance of LCA and its need in holistic evaluation of environmental 

impacts of buildings from cradle to grave/cradle. The study carried out to determine 

implementation of whole building lifecycle analysis showed that the life cycle standard – 

ISO14040 – which is the internationally standardized LCA methodology can also be applied 

to whole building in similar way to products. This may be done in order to determine relative 

importance of building components, lifecycle stages, or comparing different building 

typologies/specifications, with the aid of what if scenarios or variability analysis.  

 

Resolutely, to benefit from LCA methodology in mitigating the environmental and health 

impacts of building right from design stage, Revit material take-off with combination of other 

tools used in the study has demonstrated that, future integration of BIM platform with LCA 

tools would assist in early stage assessment of buildings’ lifecycle impacts. This would be 

necessary, as the studies along with BIM platforms analysis showed that, until now, not a 

single BIM tool or platform has incorporated enough intelligence for whole building LCA 

studies. Presently, recent assessments as well as this study use combination of different tools, 

with this study using Revit, Green Building Studio, excel sheets and ATHENA Impact 

Estimator.  

 

Irrespective of materials specifications, the study showed that buildings that are based on 

renewable energy are environmentally preferable to those based on fossil fuels over its 

lifecycle. This is because; operational stage contributes far more impacts than all other stages 

over the lifecycle of buildings. As such, attempts to reduce operational impacts or use 

renewable energy significantly reduces lifecycle environmental and health impacts of 

buildings. However, despite the significant nature of the operational impacts, embodied 

impacts due to material selection, construction and end of life is far from being trivial. As 

codes are becoming more stringent, environmental awareness and demand for operationally-
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energy efficient building is increasing. This result in the use of renewable technologies, such 

as PV panel, ground source heat pumps, and so on for building operation, thus resulting in 

reduced operational impacts. Therefore, optimization of embodied impacts becomes 

imperative as other stages are becoming the most important stage to be considered in LCA of 

buildings. 

 

Considering the environmental and health impacts of buildings based on design specifications 

used in the study, buildings constructed with Insulated Concrete Forms has more negative 

environmental and health impacts than steel building which also has more negative effects 

than brick/block buildings. Timber structure is the most environmental friendly of all the 

typologies used in the study. However, there is need for efficient insulation system in a 

timber building so that environmental and health impacts prevented due to embodied energy 

would not be lost to higher operational impacts. Improving insulation to buildings 

constructed with steel also has a tendency for shifting its impacts below those constructed 

with brick/block cavity walling system as operational impacts was the main factor that 

contributed to its higher impacts than those constructed with brick/block at the same level of 

insulation. 

 

Direct relationship was also established between GWP and health impacts of buildings. The 

more the potential of a building for global warming, the more likely the building is to affect 

human health. This shows that the greener a building in terms of environmental impacts, the 

more healthy and breathable the building becomes.  
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