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Eco-Friendly Location of Small Hydropower

Christina Ioannidou Jesse R. O'Hanley∗

Kent Business School, University of Kent, Canterbury CT2 7PE, United Kingdom

Abstract

We address the problem of locating small hydropower dams in an environmentally friendly manner. We

propose the use of a multi-objective optimization model to maximize total hydropower production, while

limiting negative impacts on river connectivity. Critically, we consider the so called �backwater e�ects�

that dams have on power generation at nearby upstream sites via changes in water surface pro�les. We

further account for the likelihood that migratory �sh and other aquatic species can successfully pass

hydropower dams and other arti�cial/natural barriers and how this is in�uenced by backwater e�ects.

Although naturally represented in nonlinear form, we manage through a series of linearization steps to

formulate a mixed integer linear programing model. We illustrate the utility of our proposed framework

using a case study from England and Wales. Interestingly, we show that for England and Wales, a region

heavily impacted by a large number of existing river barriers, that installation of small hydropower dams

�tted with even moderately e�ective �sh passes can, in fact, create a win-win situation that results in

increased hydropower and improved river connectivity.

Keywords: small hydropower; optimization; �sh passage barriers; river connectivity; backwater e�ects;

probability chains.

1 Introduction

E�orts to reduce carbon emissions in both industrialized and developing countries has resulted in an in-

creased interest in renewable energy production. Hydropower, in particular, has gained special attention.

Although installation costs can be appreciable, operating costs are generally low, the technology is already

well developed, and of the many other sources of renewable energy (e.g., wind and solar) it is far more reliable

in terms of providing base load power generation. Among the various types, small hydropower plants (SHP)

∗Correspondence email: j.ohanley@kent.ac.uk
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with an installed capacity of up to 10 MW are by far the most common and logistically feasible option in

many places, particularly across Europe. According to the European Small Hydropower Association, SHP

currently supplies enough electricity for 13 million households and plays a key role in greenhouse gas (GHG)

emissions reduction through green energy production (ESHA, 2012). It also supports water management

policies, aids in climate change adaptation through �ood control, and contributes to the prevention of water

scarcity and drought.

In the UK, the government has set a goal of reducing emissions by 18% by 2020 (HM Government, 2009a).

Renewable energy is considered a key part of the overall plan with respect to electricity generation. In

particular, the UK Renewable Energy Strategy has set a legally-binding target to ensure that 15% of energy

production comes from renewable sources by 2020 (HM Government, 2009b). Even if small-scale hydropower

is not expected to play a major role in this, the ambition is such that all sources of renewable energy are

expected to deliver their maximum sustainable potential (EA, 2010). In particular, according to the UK's

National Renewable Energy Action Plan (DECC, 2010), new SHP schemes of between 40 MW and 50 MW

need to be installed annually until 2020.

Although clean in terms of GHG emissions, the installation of hydropower schemes can nonetheless have

adverse impact on the local environment, especially on �sh populations and other aspects of river ecosystems

(Stanford et al., 1996; Bednarek, 2001; Roni et al., 2002; O'Hanley and Tomberlin, 2005). Hydropower dams

form physical barriers that often disrupt the natural connectivity of rivers by reducing water and sediment

transfer, which can impact geomorphology processes and fragment river habitats. In particular, dams can

impede �sh access to essential breeding and rearing areas, resulting in reduced �sh productivity and other

changes in aquatic community composition (Lucas and Baras, 2001). Hence, any decision about installing

hydropower dams normally involves a trade-o� between renewable energy production on the one hand and

healthy rivers on the other. This highlights the need for decision support tools in SHP location planning,

which are capable of balancing these two basic but competing goals. Such tools would prove extremely useful

to river management organizations in devising more sound and e�ective hydropower development strategies.

In this paper, the problem of optimally locating SHPs is addressed. We propose a series of integer programing

models for siting SHPs in order to maximize overall hydropower generation capacity while limiting negative

impacts on river connectivity. Studies thus far have focused on searching for a set of feasible locations for

installing SHP rather than optimizing site selection.
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1.1 Hydropower Location

Much of the literature on hydropower location focuses on the use of geographic information systems (GIS)

to screen for potential dam locations, driven in large part by the increasing availability of satellite imagery

and other remotely sensed data. Site feasibility and power generation potential are usually the two main

concerns (Ramachandra et al., 2004; Dudhani et al., 2006; Coskun et al., 2010; Kusre et al., 2010; Cyr et al.,

2011), with only occasional treatment of environmental aspects (Lee et al., 2008; Rojanamon et al., 2009;

Yi et al., 2010). A good example is the study by Yi et al. (2010), which uses a combination of hydrologic,

topographic, and environmental criteria to rate the suitability of candidate SHP sites. Using a case study

area in South Korea, a small set of promising locations for reservoir and run-of-river type SHPs is identi�ed

by performing a series of geospatial data processing steps.

Installation decisions are considered independently in almost every proposed methodology. An exception

is Larentis et al. (2010), where the interactive e�ects of hydropower dams are considered. The proposed

methodology treats total hydropower in a subbasin as a system, where the siting of a dam reduces the

generation potential of upstream sites by raising the water surface depth (the so called �backwater� e�ect

explained in more detail in Section 2.3). Maximum hydropower potential within a basin is estimated by

siting dams in series along a river course, such that each dam lies outside the length of the backwater curve

produced by the dam downstream.

Of particular relevance to our current work is the study by Ziv et al. (2012). Rather than employ a typical

GIS approach, the authors examine in detail the ecological impacts of hydropower development within the

Mekong River Basin. Their framework, which incorporates spatially-explicit �sh dispersal and population

growth models, is designed to explore trade-o�s between hydropower, �sh abundance, and biodiversity. Trade-

o� curves are produced by enumerating all possible dam development scenarios, which invariably limits the

scalability of their approach to problems involving small numbers of possible dam locations.

Another relevant study is one carried out by the UK's Environment Agency (EA), which looked into the

potential for expanding renewable energy production from small scale hydropower across England and Wales

(EA, 2010). All known weirs were considered as possible hydropower plant locations. Using a variety of

methods to estimate �ow, weirs were assessed for their hydropower potential and subsequently categorized

based on their environmental sensitivities (i.e., presence of �sh key �sh species or areas of special conservation

concern).

To our knowledge, Chang et al. (1992) is only existing example in the literature to propose a formal optimiza-

tion framework for selecting hydropower development alternatives. Their methodology takes into account
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potential reductions in water quality (measured in terms of dissolved oxygen concentrations) caused by the

installation of hydropower dams. Using a case study of the upper Ohio basin, they investigate trade-o�s

between power generation and water quality.

1.2 Barrier Mitigation Planning

While there are few examples involving the use of optimization techniques for locating new hydropower dams

(Chang et al., 1992), optimization has been applied frequently in the context of cost-e�ectively removing

of dams and other river infrastructure to improve river connectivity. Some examples include: Paulsen and

Wernstedt (1995), O'Hanley and Tomberlin (2005), O'Hanley (2011), O'Hanley et al. (2013b), and Neeson

et al. (2015). A key feature of these studies and other similar optimization based approaches is the explicit

consideration of the spatial structure of barrier networks and the interactive e�ects that barrier removal

decisions have on longitudinal connectivity.

One study dealing speci�cally with hydropower is Kuby et al. (2005), who propose the use of a multi-

objective optimization model for prioritizing the removal of large hydropower dams. Their model quanti�es

trade-o�s between ecological gains for migratory �sh, economic losses from reduced hydropower generation

and water storage capacity. The use of a multi-objective framework is noteworthy in that it o�ers decision

makers a means of identifying alternative portfolios of dam removal that vary in terms of their ecological

and socioeconomic bene�ts. This, in turn, can help to inform negotiations among managers and di�erent

stakeholders.

Zheng et al. (2009) propose a mixed integer linear programing model for optimizing the net bene�ts of

removing multiple dams in the Lake Erie basin. The model is multi-objective and aims to maximize a

combination of ecological (e.g., native species biomass) and socio-economic (e.g., recreational and commercial

harvesting) goals subject to a budget constraint. Zheng and Hobbs (2012) extend the model proposed by

Zheng et al. (2009) by adding the additional goal of reducing the risk of dam failure.

A detailed review of procedures and techniques related to evaluating and prioritizing the mitigation of �sh

passage barriers can be found in Kemp and O'Hanley (2010). Given multiple and often con�icting envi-

ronmental and economic goals, they recommend the use of optimization models and multi-criteria decision

making techniques as an objective and e�cient means for prioritizing barrier repair and removal decisions.

The remainder of the paper is organized as follows. In Section 2, we present the hydropower plant location

problem. Speci�cally, in Section 2.1, we present a basic nonlinear model and in Section 2.2 a linear reformu-

lation. In Section 2.3, we talk brie�y about the backwater e�ect caused by siting a dam. This is followed
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in Section 2.4 by the development of an extended version of the hydropower plant location problem, where

backwater e�ects are considered. In Section 3, we apply our methodology to a case study of England and

Wales and discuss key �ndings. Finally, in Section 4, we give some concluding remarks.

2 Hydropower Plant Location Problem

The aim of the hydropower plant location problem (HPLP) is to select sites for installing dams to maximize

potential hydropower generation while keeping longitudinal river connectivity at or above some speci�ed

lower bound. Given a range of dam sizing options for each potential dam location, the hydropower potential

wji (measured in Watts) at site j when �tted with a dam of size i is de�ned by the well-known equation:

wji = ηjiρgQjHji (1)

where ηji is the e�ciency (in the range 0-1) of the dam's turbine, ρ is the density of water (1000 kg/m3), g

is the acceleration due to gravity (9.81 m/s2), Qj is the river's volumetric �ow (m3/s) at site j, and Hji is

the hydraulic head (m) of the dam (i.e., the di�erence in water surface height above and below a dam). At

each site j, only one sizing option i can be selected.

Hydropower dams and other arti�cial or natural barriers that may be present within a river network are

assumed to allow partial �sh passage. More formally, the passability of a barrier refers to the fraction of �sh,

in the range [0, 1], that are able to successfully navigate it in the upstream and or downstream direction,

where 0 denotes a completely impassable structure and 1 a completely passable one (Kemp and O'Hanley,

2010). Typically, barriers with larger head heights are more di�cult to pass as �sh need to leap higher.

Cumulative passability, which is synonymous with longitudinal connectivity, describes the collective impact

that multiple barriers have on �sh dispersal. Assuming barrier passabilities are independent, cumulative

passability to an area immediately above any barrier is evaluated by multiplying the barrier's passability by

the passabilities of any downstream barriers to the river mouth. To ensure that longitudinal connectivity is

not excessively compromised by the installation of hydropower dams, a constraint is included in the model

HPLP requiring cumulative passability weighted habitat above hydropower dams and other barriers to be

greater than or equal to a user-de�ned threshold. For each dam sizing option, a di�erent barrier passability

value can be assigned depending on the dam's height and what options are available for constructing an

e�ective �sh pass (e.g., �sh ladder, �sh elevator, or bypass channel).
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2.1 Basic Model

In order to formulate a basic version of HPLP, let N , indexed by j, be the set of candidate hydropower

dam sites. For each dam site j ∈ N , set Sj , indexed by i, speci�es the dam sizing options available at j.

Installation of a dam of size i at site j results in a hydropower potential of wji, as determined by equation

(1). In addition to locating new dams, other arti�cial and natural barriers, which invariably impact �sh

passage and longitudinal connectivity, may already be present in a river network. These are denoted by the

set B, indexed by j, while the set J , indexed by j and k, is used to denote all existing arti�cial/natural

barriers plus candidate dam sites (i.e., J = N ∪ B). It is assumed throughout that a river has a strictly

�dendritic� structure, meaning that it never diverges in the downstream direction, thus excluding braided

river systems. In e�ect, this implies that 1) the set of potential barrier locations J forms a tree network with

each location j ∈ J having at most one downstream site and 2) there is a unique path from the river mouth

to any upstream location.

To continue, the set Dj ⊆ J speci�es all potential barriers downstream from and including site j ∈ J . For

each location j ∈ J , the quantity vj denotes the net amount of habitat (measured in terms of length or area)

upstream of j to the next set of potential barriers or the ends of the river network. Parameter p0j refers to the

current passability of site j ∈ J , while pji refers to the change in passability at site j ∈ N when a dam of size

i is built there. Note that pji can be negative (a decrease in passability), positive (an increase in passability),

or zero (no change in passability) depending on what type of dam and or �sh passage structure is installed.

This requires some further explanation. In general, installation of a dam will cause a decrease in �sh pas-

sage. However, in certain situations (as with our study area discussed below), it may be feasible to locate

hydropower dams at existing arti�cial or natural barriers, which have current passabilities well below 1 (i.e.,

if N ∩B 6= ∅). If a dam were to be located at such a site and �tted with a suitable �sh pass, then it is entirely

possible for passability to increase above its current baseline.

Finally, let V 0 be the total amount of habitat currently accessible to �sh (i.e., V 0 =
∑

j P
0
j vj , where

P 0
j =

∏

k∈Dj
p0k) and let α ≥ 0 be a scaling parameter for determining the minimum amount of accessible

habitat that needs to be achieved following the siting of hydropower dams.

Using the following decision variables:

xji =















1 if a hydropower dam of size i is installed at site j

0 otherwise
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zj = cumulative passability to river habitat immediately above location j

a nonlinear formulation for HPLP is given as follows:

[HPLP1] max
∑

j∈N

∑

i∈Sj

wjixji (2)

s.t.

zj =
∏

k∈Dj

(

p0k +
∑

i∈Sk

pkixki

)

∀j ∈ J (3)

∑

j∈J

vjzj ≥ αV 0 (4)

∑

i∈Sj

xji ≤ 1 ∀j ∈ N (5)

xji ∈ {0, 1} ∀j ∈ N, i ∈ Sj (6)

The objective function (2) maximizes the sum of hydropower potential across all candidate dam sites. The

�rst set of constraints (3) calculates the cumulative passability of each site j. Cumulative passability zj

equals the product of the passability of site j and the passabilities of all downstream sites to the river mouth.

The passability of site j equals initial passability p0j plus any change in passability pji if a hydropower dam of

size i is installed at j (xji = 1). Constraint (4) guarantees that total cumulative passability weighted habitat

is bounded below by some multiple α of the current amount of accessible habitat V0 within the study area.

Constraints (5) guarantee that at most one hydropower sizing option is selected at site j. Finally, constraints

(6) force the xji dam location variables to be binary.
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2.2 Linear Reformulation

To reformulate [HPLP1] as a mixed integer linear program, we introduce the following additional variables:

yji = change in cumulative passability at site j given installation of dam size i

Variable yji equals 0 if there is no change in cumulative passability at site j and is positive/negative given an

increase/decrease in cumulative passability. Further, let dj ∈ Dj refer to the potential barrier immediately

downstream of j, if one exists. A linear version of the basic HPLP problem can be derived by replacing

equations (3) with the following constraints:

zj =















p0j +
∑

i∈Sj
yji Dj = ∅

p0jzdj
+
∑

i∈Sj
yji Dj 6= ∅

∀j ∈ J (7)

yji = pjixji ∀j ∈ N, i ∈ Sj |Dj = ∅ (8)

yji ≤ pjizdj
− pji (1− xji) ∀j ∈ N, i ∈ Sj |Dj 6= ∅ ∧ pji < 0 (9)

yji ≤ 0 ∀j ∈ N, i ∈ Sj |Dj 6= ∅ ∧ pji < 0 (10)

yji ≤ pjixji ∀j ∈ N, i ∈ Sj |Dj 6= ∅ ∧ pji ≥ 0 (11)

yji ≤ pjizdj
∀j ∈ N, i ∈ Sj |Dj 6= ∅ ∧ pji ≥ 0 (12)

The zj and yji variables, in combination with constraints (7)-(12), form a series of �probability chains�

(O'Hanley et al., 2013a) that recursively evaluate the cumulative passability of each site j based on the

cumulative passability downstream from j. Cumulative passability is being evaluated up the point that
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constraint (4) In particular, equations (7) determine the cumulative passability for each site. There are

two cases. If site j has no potential downstream barrier (Dj = ∅), then cumulative is equal to the initial

passability p0j at j plus any change in cumulative passability
∑

i∈Sj
yji resulting from the installation of a

dam at j. Alternatively, if site j does have at least one downstream site (Dj 6= ∅), then the initial passability

p0j at j needs to be further multiplied by the cumulative passability zdj
of j's downstream site dj .

Collectively, constraints (8)-(12) determine changes in cumulative passability yji due to dam installation. If

site j has no potential downstream barrier (Dj = ∅), equations (8) simply state that the change in cumulative

passability yji due to the installation of a dam of size i is equal to pji if a dam is located there (xji = 1), 0

otherwise (xji = 0). For sites with at least one potential downstream barrier (Dj 6= ∅), inequalities (9) and

(10) apply in cases where dam installation would cause a decrease in passability (pji < 0), while inequalities

(11) and (12) apply if dam installation would potentially cause an increase in passability (pji ≥ 0). In either

situation, they place an upper bound of pjizdj
on variable yji whenever a dam is located at site j (xji = 1),

0 otherwise.

It is worth pointing out that the upper bounds on the yji variables imposed by (9)-(12) are not guaranteed to

be strictly binding. Implicitly, there is a preference for increases (decreases) in cumulative passability to be

as large (small) as possible in order to satisfy the minimum accessible habitat constraint (4) (i.e., by having

the yji variables equal to their upper bounds). However, in situations where the siting of dams produces a

slack in constraint (4), it is possible for one or more yji variables to be less than their speci�ed upper bounds

and still satisfy constraint (4). While this in no way a�ects the optimality of the xji variables, values for the

yji variables and hence total accessible habitat
∑

j∈J vjzj may be incorrectly speci�ed.

To determine precisely changes in cumulative passability, one can perform a simple post-processing step,

after an optimal solution for the xji variables has been found, in which the yji variables for sites j ∈ J with

at least one downstream barrier (Dj 6= ∅) are iteratively set to pjizdj
xji starting with the most downstream

sites (i.e., |Dj | = 1) and progressively moving in the upstream direction. Alternatively, one can include

a secondary objective in an attempt to force the yji variables to their upper bounds. More speci�cally,

this can be achieved by adding ε
∑

j∈N

∑

i∈Sj
yji to objective function (2), where ε > 0 is some very small

weight less than the minimum di�erence between any pair of hydropower potential values wji (e.g., ε =

0.99×minj,k∈N,i∈Sj ,t∈Sk
{wji − wkt}). In our implementation, we used the post-processing option.
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Figure 1: Representative backwater pro�le for a mild M1-type curve (y > yn > yc).

2.3 Backwater E�ects on Hydropower Potential

In model [HPLP1], hydropower potential at each candidate site is assumed to be independent of the spatial

arrangement of dams, which does not necessarily hold in reality. In particular, the presence of a dam within

a watercourse (or any in-stream structure) invariably causes an increase in the water surface behind the dam,

which gradually decreases as one moves in the upstream direction (Figure 1). This change in the water surface

pro�le of a river is called the �backwater e�ect� and is described by the backwater curve, which determines,

based on slope and �ow characteristics, the depth of water at any given point upstream.

Backwater curves are important when evaluating the hydropower potential of sites. The presence of a dam

can cause a reduction in head di�erence (due to increased water depth) and hence a reduction in hydropower

potential at upstream sites. One option for dealing with backwater e�ects, akin to Kusre et al. (2010),

would be to include additional constraints in [HPLP1] that prevent nearby dams from being simultaneously

located if and when the change in head di�erence at the upstream site (caused by the presence of a dam

downstream) exceeds some threshold. The alternative, details of which are given below, is to explicitly

incorporate backwater e�ects into a more realistic but complex model.

To formulate a hydropower plant location model with interactive backwater e�ects, consider the following

additional notation. Let Mj be the set of sites downstream from j that can potentially have a backwater

e�ect on site j and let Ijk = Dj\ ({j} ∪Dk) be the set of sites lying between j and k. Assuming no dams

are located in set Ijk (i.e., xℓs = 0, ∀ℓ ∈ Ijk, s ∈ Sk), the reduction in head due the backwater e�ect caused

by a dam of size t located at downstream site k ∈Mj is denoted by ∆Hjkt.

Given the following additional decision variables:
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πji = hydropower potential at site j given installation of dam size i

λjkt =































1 if a dam of size t installed at site k has a backwater e�ect on a dam

located at site j upstream

0 otherwise

a more general formulation of HPLP is given by:

[HPLP2] max
∑

j∈N

∑

i∈Sj

πji (13)

subject to constraints (4)-(12) and the following:

πji ≤ ajiHjixji ∀j ∈ N (14)

πji ≤ ajiHji − aji
∑

k∈Mj

∑

t∈Sk

∆Hjktλjkt ∀j ∈ N (15)

λjkt ≥
∑

i∈Sj

xji + xkt − 1−
∑

ℓ∈Ijk

∑

s∈Sℓ

xℓs j ∈ N, ∀k ∈Mj , t ∈ Sk (16)

λjkt ≥ 0 j ∈ N, k ∈Mj , ∀t ∈ Sk (17)

xji + xkt ≤ 1 +
∑

ℓ∈Ijk

∑

s∈Sℓ

xℓr ∀j ∈ N, i ∈ Sj , k ∈Mj , t ∈ Sk|∆Hjkt ≥ Hji (18)

The objective function (13), similar to (2), maximizes total hydropower potential. The di�erence from (2) is

that hydropower is no longer �xed for each location and dam size option, hence the use of decision variables

πji. Inequalities (14) and (15), in combination, determine the hydropower potential of each site j, where
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parameter aji = ηjiρgQj . Speci�cally, if no dam is located at site j, constraints (14) forces hydropower

potential to be 0. On the other hand, if a dam of size i is located at site j, (15) becomes strictly binding

and speci�es that the hydropower potential of the dam must be less than or equal to the power that can

be produced with a nominal head value of Hji minus any decrease in power caused by the existence of a

backwater e�ect on site j (i.e., if λjkt = 1, for any k ∈Mj , t ∈ Sk, a head reduction of ∆Hjkt occurs). Note

that if xji = 1 and there is no backwater e�ect on site j, then (14) and (15) will be binding. Constraints (16)

guarantee that λjkt = 1 if and only if a hydropower dam is installed at j, a dam of size t is installed at k, and

no dam is installed in between them (i.e.,
∑

ℓ∈Ijk

∑

s∈Sℓ
xℓs = 0). For all other situations, constraints (17)

prevent λjkt from becoming negative. Due to the structure of the problem, the λjkt variables are guaranteed

to take on binary values. The next set of constraints (18) prevent the nonsensical siting of dams in which the

installation of a dam would cause an upstream dam to become completely �swamped� (i.e., the reduction in

head ∆Hjkt caused by a backwater e�ect is greater than the initial head Hji of the dam).

2.4 Backwater E�ects on Barrier Passability

In the above model [HPLP2], it is inherently assumed that backwater e�ects only impact hydropower po-

tential. In the majority of cases, particularly for small dams and weirs, head is also a critical factor in

determining the passability of a barrier. In what follows, we present an even more general model, denoted

[HPLP3], in which backwater e�ects can also in�uence the passability of barriers. To begin with, assume

that passability pj as site j is determined by the function:

pj = fj(Hj ,xj) ∀j ∈ J (19)

where Hj is the e�ective head height at site j and xj =
(

xj1, . . . xj|Sj |

)

speci�es the vector of hydropower dam

installation decisions for site j. Note that the pj variables would, in turn, in�uence cumulative passabilities

such that zj =
∏

k∈Dj
pk, ∀j. In the special case where equations (19) form a set of step-functions (e.g.,

equation (34) used in our case-study described below), it is possible formulate a linear model using a piece-wise

linear representation of (19), as described in Winston (2004), Sec. 9.2.

Speci�cally, let H0
j be the initial head height for site j and let H ′

ji be the nominal increase in head height due

to the installation of a dam of size i at site j. As before, ∆Hjkt represents the change in head height due to

the backwater e�ect caused by a dam of size t located at site k downstream. Further, let p̂0jr, r = 1, . . . , R,

be the nominal passability level of site j when no hydropower dam is located at j and head height Hj is in
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the range
(

Ĥr, Ĥr+1

]

. Similarly, let p̂jir be the passability of site j when a dam of size i is built there and

head height Hj is in the range
(

Ĥr, Ĥr+1

]

. Note that the Ĥr de�ne a total of R + 1 breakpoints along the

curve Hj versus fj(Hj ,xj). By introducing the following auxiliary variables:

µjkt =















1 if a dam of size t is installed at k and no dam is installed between j and k

0 otherwise

ujr =















1 if the head height for site j is in the range
(

Ĥr, Ĥr+1

]

0 otherwise

θjr = weight assigned to r-th breakpoint Ĥr for site j

ψjr = cumulative passability of site j given that j's head height is in the range
(

Ĥr, Ĥr+1

]

equations (19) can be replaced with (20)-(28) below.

Determination of Head Height

R+1
∑

r=1

Ĥrθjr = H0
j +

∑

i∈Sj

H ′
jixji −

∑

k∈Mj

∑

t∈Sk

∆Hjktµjkt ∀j ∈ J (20)

R+1
∑

r=1

θjr = 1 ∀j ∈ J (21)

θjr ≥ 0 ∀j ∈ J, r = 1, . . . , R (22)

θjr ≤































ujr r = 1

uj(r−1) + ujr r = 2, . . . , R− 1

uj(r−1) r = R+ 1

∀j ∈ J (23)
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R
∑

r=1

ujr = 1 ∀j ∈ J (24)

ujr ∈ {0, 1} ∀j ∈ J, r = 1, . . . , R (25)

µjkt ≤ xkt ∀j ∈ J, ∀k ∈Mj , ∀t ∈ Sk (26)

µjkt ≤ 1−
∑

s∈Sℓ

xℓs ∀j ∈ J, k ∈Mj , t ∈ Sk, ℓ ∈ Ijk (27)

Equations (20) in combination with constraints (21) and (22) simply require that a convex combination of

the breakpoints Ĥr with weights θjr (the left hand side of (20)) be found which is equal to the e�ective head

height of site j (the right hand side (20)). The e�ective head height at site j, in turn, is equal to the initial

head H0
j plus any nominal increase in head H ′

ji due to the installation of a dam of size i (xji = 1) minus any

decrease in head ∆Hjkt due to the backwater e�ect on site j caused by a dam of size t located at downstream

site k (µjkt = 1). Constraints (23)-(25) enforce adjacency restrictions on the θjr weighting variables, namely

that at most two weights can be positive and must be adjacent. Assuming that passability and head height

are inversely related, it is preferable, all things considered, for µjkt = 1 in order to have higher passability at

site j and so more easily meet the minimum accessible habitat requirement (4). Constraints (26) and (27)

force variable µjkt to be equal to 0 if either no dam is located at site k downstream (xtk = 0) or a dam is

installed between k and j (
∑

s∈Sℓ
xℓs = 1|ℓ ∈ Ijk ) .

Given a correct determination of the head height at site j, the ujr can be used to determine the cumulative

passability of site j through the use of constraints (29)-(32) below.

Determination of Passability

zj =
R
∑

r=1

ψjr ∀j ∈ J (28)

ψjr ≤ p̂0jrujr +
∑

i∈Sj

xji ∀j ∈ J, r = 1, . . . , R (29)
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ψjr ≤ p̂0jrzdj
+
∑

i∈Sj

xji ∀j ∈ J |Dj 6= ∅, r = 1, . . . , R (30)

ψjr ≤ p̂jirujr + 1− xji ∀j ∈ N, ∀i ∈ Sj , r = 1, . . . , R (31)

ψjr ≤ p̂jirzdj
+ 1− xji ∀j ∈ N |Dj 6= ∅, ∀i ∈ Sj , r = 1, . . . , R (32)

Equations (28) determine the cumulative passability of each site j by summing across the cumulative passabil-

ity terms ψjr associated with head height ranges r. For each head height interval
(

Ĥr, Ĥr+1

]

, r = 1, . . . , R,

inequalities (29) and (30) set upper bounds on the cumulative passability value ψjr when no dam is located

at site j (
∑

i∈Sj
xji = 0), while inequalities (31) and (32) apply if a dam of size i is located at j (xji = 1).

Given that exactly one of the ujr variables will be equal to 1 (i.e., head height must fall within a speci�c

range
(

Ĥr, Ĥr+1

]

), a single pair of constraints, either (29)-(30) or (31)-(32) depending on the dam installa-

tion decision, will be binding for each site j. Regardless of the dam location decision for site j, constraints

(29)-(30) and (31)-(32) work in the exact same fashion as (11)-(12) do for the simpler model [HPLP2], in

which backwater e�ects on passability are ignored. More speci�cally, they form a series of probability chains

that iteratively evaluate cumulative barrier passability by starting from the most downstream barrier and

progressively moving to barriers upstream.

We note that the above linearization is actually quite general. Even when equation (19) is not strictly a

step-wise function, it is possible to approximate a continuous nonlinear curve to any degree of accuracy by

introducing a su�cient number of breakpoints R and auxiliary ujr, θjr, and ψjt variables and constraints.

3 Case Study

3.1 Background

A case study of England and Wales will be used to illustrate the bene�ts of using our proposed framework.

We started with a dataset consisting of the location of 25,935 natural (i.e., waterfalls) and arti�cial (i.e., weirs,

dams, barrages, and locks) barriers compiled by the UK Environment Agency (EA, 2010). Each barrier in

the EA's database is georeferenced and includes a description of its barrier type and head value. These head
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Figure 2: Location of arti�cial and natural �sh barriers across England and Wales.

values correspond to the di�erences between the upstream and downstream water elevations of the barriers

and were obtained from aerial surveys using a combination of Light Detection and Ranging (LIDAR) and

Interferometric Synthetic Aperture Radar (IFSAR) remote sensing technology (EA, 2010).

To determine key barrier parameters, including each barrier's immediate downstream barrier (dj) and net

upstream river length (vj), we used the RivEX toolbox (Hornby, 2014) for ArcGIS 10.2.1. Working o� a

1:50,000 scale continuous center-line hydrology layer provided by the UK Centre for Ecology and Hydrology

(CEH) (Moore et al., 1994), we �rst generated a single-threaded river network. The barrier points were

subsequently snapped to the river network using a 50 m snapping distance. This resulted in a �nal dataset

of 14,682 arti�cial and 4,947 natural barriers, as shown in Figure 2.

Following common practice within England and Wales, we assumed that SHP could only be installed at

existing dam/weir sites. We considered three di�erent SHP sizing options. All dams/weirs with head heights

up to 5 m were deemed suitable for the installation of a 5 m SHP; those with heights between 5 and 10 m

were candidates for a 10 m SHP. For any dam/weir with a height greater than 10 m, installation of an SHP

was assumed to not increase the existing height of the structure. As a conservative estimate (Cyr et al.,

2011), we assumed SHPs had a conversion e�ciency of ηji = 0.7, ∀j, i.

To determine �ow values (Qj) of each SHP candidate site, we developed a regression model to predict mean
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�ow based on mean annual precipitation within the site's upstream catchment area. Mean �ow data were

obtained for 1,403 georeferenced gauging stations from the UK National River Flow Archive (NRFA). In a

series of ArcGIS steps, we delineated the catchment area for each gauging station using 50 m digital elevation

model (DEM), out�ow drainage direction, and cumulative catchment area grids provided by CEH. Gauging

station catchment areas were then overlaid on a 5 km×5 km annual precipitation grid for England and Wales

produced from UK MetO�ce historical monthly average rainfall grids for the period 1981-2010 (MetO�ce,

2014). From this, area-weighted annual precipitation could be determined for each gauging station (precipj)

and subsequently used to estimate mean �ow (Qj) as follows.

ln (Qj) = −8.37 + 1.05 ln (precipj) (33)

The log-linear model (33) produced a very good �t to the data, with an adjusted R2 of 0.89. The previous

GIS steps were then repeated to calculate a precipj value for each potential SHP site j and estimate an

associated �ow volume Qj based on regression model (33).

Potential changes in head height due to the backwater e�ect of an SHP located downstream (∆Hjkt) were

determined as follows. Under a gradually varied �ow regime, backwater pro�les for each SHP site up to

the nearest SHP or river con�uence point can be found using the �standard step� method, as described in

Chadwick et al. (2013). This method allows the evaluation of depth at any speci�ed distance upstream

of a structure by dividing the watercourse into equal intervals and then iteratively calculating depth at

upstream cross sections by solving an energy balance governing equation (Chow, 1959). The standard step

method requires, among other things, information about the slope and channel geometry of each upstream

cross section. Slope values were calculated in ArcGIS using the DEM provided by CEH. We assumed that

watercourses had a simple rectangular geometry. Stream width was estimated based on a river segment's

Strahler stream order. To do this, we determined using RivEX the Strahler order (a gross measure of stream

size) for each stream segment in the CEH river network and then overlaid the locations of 24,130 �eld

measurements of stream width taken across the UK (M. Naura, University of Southampton, pers. comm.)

to produce a look-up table of Strahler order versus mean stream width.

Finally, we assumed that SHPs would be �tted with �sh passes having a combined upstream/downstream

passage e�ciency of 0.5. This is broadly in line with the �ndings of Noonan et al. (2012). For a site where no

SHP is installed, passability was assumed to vary with the height of a barrier. Based on protocols developed

in SNIFFER (2010) for adult trout, we used the following to determine upstream passability p as function

of head height H.
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p =















































1 if H ≤ 0.4 m

0.6 if 0.4 m < H ≤ 0.6 m

0.3 if 0.6 m < H ≤ 1 m

0 if H > 1 m

(34)

Based on this, we used a set ofR+1 = 5 breakpoints to de�ne equation (20), such that Ĥ = {−6, 0.4, 0.6, 1, 75}

and p̂0 = {1, 0.6, 0.3, 0}. The �rst breakpoint (-6 m) corresponds to the largest (negative) change in head

value due swamping, while the last breakpoint (75 m) corresponds to the largest head height observed in our

dataset.

We acknowledge that a more in-depth case study would include cost information related to the construction

of dams and �sh passes, as well as the monetary bene�ts of hydropower production. Unfortunately, this goes

beyond the scope of our present study. While �sh pass costs can be estimated fairly accurately based on the

height of a structure, dam construction costs vary considerably from site to site depending on the structural

characteristics of any existing weir and the geology/topology of the surrounding area. Devising realistic cost

estimates is thus di�cult without conducting extensive �eld surveys. Moreover, we believe our model is

primarily suited to the strategic level needs of environmental/energy planning authorities concerned with

where hydropower development should be permitted while limiting impacts on river connectivity. Given this,

the main focus of our case study is on analyzing hydropower potential across England and Wales rather than

performing a detailed economic analysis of the costs and bene�ts that would accrue to individual companies

(usually privately owned) who would ultimately build and operate hydropower facilities.

3.2 Results

The basic model [HPLP1] and the backwater e�ects model [HPLP3] were both implemented in C++ using

CPLEX callable libraries version 12.6. All experiments were performed on the same quad-core Dell OptiPlex

9020 laptop (Intel i7-4770 processor, 3.4 GHz per chip) with 8GB of RAM and running Windows 7 64-bit

operating system. Model sizes of [HPLP1] and [HPLP3] for our case study area are reported Table 1.

Before going into our analysis, it is important to point out that river connectivity within England and Wales

is heavily impaired by the presence of existing barriers. Only about 3% (3,410 km) of the 132,071 km of

potential stream habitat located above barriers is currently accessible to migratory �sh. In systems with

few existing barriers, minimum accessible habitat requirements would normally ensure that comparatively
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Table 1: Model sizes of [HPLP1] and [HPLP3] for the England and Wales case study area.
Variables

Model Binary Continuous Constraints
[HPLP1] 14,682 34,311 62,495
[HPLP3] 93,198 299,064 524,124

small numbers of dam are installed. In our case study, however, there are nearly 20,000 existing barriers, the

majority of which (75%) are completely impassable. According to model [HPLP3] with α = 0, up to 14,607

SHPs could be installed across England and Wales, resulting in a maximum hydropower potential of 691.9

MW, while at the same time increase accessible habitat by 229% to 11,217 km of river.

To consider a more realistic scenario of hydropower development, we added the following constraint to both

[HPLP1] and [HPLP3]:

∑

j∈N

∑

i∈Sj

xji ≤ n (35)

which allowed us to determine what the maximum hydropower production would be if at most n new SHPs

were located. In addition, we observed during preliminary experiments that both [HPLP1] and [HPLP3]

occasionally selected sites with unrealistically small hydropower potential (i.e.,≪1 kW), mainly in an attempt

to satisfy the minimum accessible habitat requirement (4). Indeed, a quick inspection of the England and

Wales dataset reveals that among the 14,682 candidate dam sites, nearly a quarter (3,557) have hydropower

potential less than 1 kW. In practice, development of sites with insu�cient hydropower potential is di�cult

to justify on economic grounds. To prevent the selection of low-hydropower sites, therefore, we added the

following set of constraints to [HPLP1]:

cxji ≤ wji j ∈ N, i ∈ Si (36)

and an equivalent set of constraints to [HPLP3]:

cxji ≤ πji j ∈ N, i ∈ Si (37)

In our implementation, we set constant constant c = 5000, thus excluding all sites with hydropower potential

<5 kW (typically termed �pico� hydro scale plants). Adding minimum site-level hydropower constraints (37)

to [HPLP3] with constraint (35) non-binding (e.g., n = 14, 628) and α = 0, a total of 7,672 SHPs could

19



Table 2: Hydropower potential and accessible habitat for various SHP development scenarios.

[HPLP1] [HPLP3]
Hydropower Habitat Time Hydropower Habitat Time

n (MW) (km) (s) (MW) (km) (s)
≥0% Accessible Habitat Increase (α = 1.0)

100 174.7 3,935 4.7 174.4 4,027 234.2
500 368.5 4,532 4.6 365.4 4,592 161.1
1,000 471.1 5,302 4.5 465.4 5,345 199.5

≥50% Accessible Habitat Increase (α = 1.5)
100 173.2 5,119 5.9 172.9 5,119 531.7
500 367.9 5,145 5.5 364.9 5,116 728.9
1,000 471.1 5,302 4.6 465.4 5,345 216.1

≥100% Accessible Habitat Increase (α = 2.0)
100 155.3 6,821 8.9 154.7 6,821 936.2
500 362.1 6,828 8.7 359.1 6,822 653.1
1,000 469.4 6,827 7.6 463.7 6,821 698.4

≥150% Accessible Habitat Increase (α = 2.5)
100 - - - - - -
500 342.8 8,526 15.1 339.0 8,526 1518.0
1,000 461.0 8,530 10.8 451.5 8,527 889.9

≥200% Accessible Habitat Increase (α = 3.0)
100 - - - - - -
500 284.5 10,231 25.3 283.9 10,231 2412.5
1,000 437.6 10,232 12.6 429.9 10,231 2250.1

A '-' indicates that no feasible solution could be obtained for a given model due to the minimum accessible habitat
requirement (4).

be installed, resulting in a maximum hydropower potential of 681.9 MW and a 177% increase in accessible

habitat (9,439 km total).

Table 2 reports hydropower potential, accessible habitat, and run times (in CPU seconds) for models [HPLP1]

and [HPLP3] given the installation of 100, 500, or 1,000 new SHPs. It is interesting to note that a small

subset of candidate sites accounts for a large portion of hydropower generation potential within the study

area. For example, according to [HPLP3], almost 25% of maximum hydropower generation capacity (174.4

MW) can be achieved by siting 100 SHPs, which corresponds to just 0.6% of all candidate sites. With 1,000

dams (6.8% of all candidate sites), almost 67% of maximum hydropower development potential (465.4 MW)

can be achieved.

What really stands out from looking at Table 2 is that for our particular study area the installation of hy-

dropower dams actually creates a �win-win� situation with regards to increasing renewable energy production

and improving river connectivity. Assuming that an SHP is equipped with even a moderately e�cient �sh

pass (0.5 passability), the requirement for a ≥100% increase in accessible habitat (equivalent to more than

6,800 river km) could be met according to either model [HPLP1] or [HPLP3]. With 500 or 1,000 SHPs,

requirements for either a ≥150% or ≥200% increase in �sh habitat would be satis�ed. Nonetheless, there are
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Figure 3: Maximum hydropower potential considering backwater e�ects (model [HPLP3]) versus total acces-
sible habitat given 500 SHPs.

distinct tradeo�s between increasing �sh habitat, on the one hand, and achieving maximum hydropower po-

tential, on the other. Figure 3 shows how hydropower potential deceases with increases in accessible habitat

given the location of 500 SHPs.

A comparison of [HPLP1] and [HPLP3] shows that ignoring backwater e�ects results in a small to moderate

overestimation of maximum hydropower potential regardless of accessible habitat requirements. This over-

estimation goes up as the number of SHPs increases. For example, when no increase in accessible habitat

is required, the di�erence in hydropower potential for [HPLP3] given 100 SHPs is a mere -0.3 MW (-0.2%).

When the number of barriers increases to 1,000, however, there is a -5.7 MW (-1.2%) di�erence in hydropower

for [HPLP3]. The largest di�erence (-9.5 MW) is observed for 1,000 dams and a ≥150% increase in accessible

habitat requirement.

What is also clear from looking at Table 2 is that including backwater e�ects can result in an appreciable

increase in solution time. Regardless of the number of dams or accessible habitat requirements, [HPLP1] can

be solved in a matter of seconds to 10s of seconds. For [HPLP3], times vary from several minutes (100 SHPs

and a ≥0% increase in accessible habitat) to over 40 minutes (500 SHPs and a ≥200% increase in accessible

habitat).

Table 3 shows how hydropower potential varies for models [HPLP1] and [HPLP3] with and without backwater

e�ects included (i.e., by plugging solutions from [HPLP1] into [HPLP3] and vice versa). It is interesting to

note that in spite of the relatively modest backwater e�ects predicted for our case study area, the vast

majority of solutions to [HPLP1] (10 out of 13) are infeasible with respect to the non-swamping constraints
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Table 3: Variation in hydropower potential (in MW) for models [HPLP1] and [HPLP3] with and without
backwater e�ects included.

Solutions to [HPLP1] Solutions to [HPLP3]
n Without Backwater With Backwater Without Backwater With Backwater

≥0% Accessible Habitat Increase (α = 1.0)
100 174.7 173.6 174.4 174.4
500 368.5 Infeas. 365.4 365.4
1000 471.1 Infeas. 467.1 465.4

≥50% Accessible Habitat Increase (α = 1.5)
100 173.2 172.1 172.9 172.9
500 367.9 Infeas. 364.9* 364.9
1000 471.1 Infeas. 467.1 465.4

≥100% Accessible Habitat Increase (α = 2.0)
100 155.3 154.2 154.7 154.7
500 362.1 Infeas. 359.1* 359.1
1000 469.4 Infeas. 465.5* 463.7

≥150% Accessible Habitat Increase (α = 2.5)
100 - - - -
500 342.8 Infeas. 339.0* 339.0
1000 461.0 Infeas. 453.0* 451.5

≥200% Accessible Habitat Increase (α = 3.0)
100 - - - -
500 284.5 Infeas. 283.9* 283.9
1000 437.6 Infeas. 431.0* 429.9

A '-' indicates that no feasible solution to the original model could be obtained due to the minimum accessible habitat
requirement (4). For solutions to [HPLP1], 'Infeas.' indicates that one or more swamping constraints (18) are violated
when backwater e�ects are included. For solutions to [HPLP3], a '*' indicates that the minimum accessible habitat
requirement (4) is not strictly satis�ed when backwater e�ects are ignored.

(18), meaning one or more dams would end up being submerged due to the presence of a downstream dam.

It also interesting that more than half of [HPLP3] solutions (7 out of 13) would be technically infeasible,

due to violations of the minimum accessible habitat requirement (4), if backwater e�ects were ignored. This

occurs because small but material increases in accessible habitat (0.1-0.9%) are produced when passability is

calculated dynamically as function of head height (via constraints (20)-(32)), thus allowing accessible habitat

requirements to just be met by solutions to [HPLP3].

Table 4 reports basic statistics about initial head height, Strahler stream order, and distance to river mouth

of SHP sites selected by [HPLP3] for various minimum accessible habitat requirements. Column �All� refers

to all 14,682 candidate sites. What stands out is that low-head dam/weir sites (≤5 m) are far and away the

preferred choice for siting SHPs. Such sites make up roughly 87% of all arti�cial barriers, but account for no

less than 95% of selected sites, regardless of the speci�c number of SHPs sited or minimum requirements on

accessible habitat.

Another observation is that selected SHPs tend be located on high-order streams. This is not at all surprising

given that stream order is normally a very good proxy for �ow (Q) and, in turn, hydropower potential (π).
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Table 4: Key attributes of selected SHP sites given n =100, 500, or 1,000 and minimum accessible habitat increases of ≥0, 50, or 100%.

Accessible Habitat Increase
≥0% ≥50% ≥100%

All n = 100 n = 500 n = 1, 000 n = 100 n = 500 n = 1, 000 n = 100 n = 500 n = 1, 000
Initial Head Height (H)

H≤5 m 12,741 95 489 959 95 490 959 95 491 960
5 m < H≤10 m 1,562 4 6 30 4 6 30 4 5 30
H > 10 m 379 1 5 11 1 4 11 1 4 10

Strahler Order
1 2,811 - - - - - - - - -
2 3,696 - - - - - - - - -
3 4,114 - - 6 - - 6 - - 6
4 2,381 - 12 102 - 13 102 10 18 106
5 1,143 1 100 409 3 102 409 9 107 408
6 453 45 306 401 43 303 401 30 294 398
7 84 54 82 82 54 82 82 51 81 82

Avg Dist to Mouth (km) 96.3 105.8 111.9 108.7 104.1 111.0 108.7 89.0 109.8 107.9
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(a) (b)

Figure 4: Solutions to the backwater e�ects model [HPLP3] with 100 SHPs given a ≥0% (a) and ≥100% (b)
increase in accessible habitat.

Looking at the various solutions in Table 4, SHPs are never located on order 1-2 streams nor even on order

3 streams unless 1,000 SHPs are located. Instead, the vast majority (89-100%) of SHPs are located on order

5-7 streams.

What is more interesting is that for any given number of SHP sites, model [HPLP3] selects locations that are

both closer to the river mouth and on lower order streams as the minimum accessible habitat requirement

increases. Given 100 SHPs, for example, average distance to mouth decreases by 16.8 km (from 105.8 km

to 89.0 km) when the accessible habitat requirement changes from ≥0% to ≥100%. At the same time, the

number of sites selected on mid order 3-4 streams goes from 0 to 10.

Locating SHPs �tted with �sh passes closer to the river mouth makes perfect sense if the primary aim is to

increase accessible river habitat; barriers closer to the sea will generally disrupt longitudinal river connectivity

the most. However, within a given river catchment, stream order and distance to mouth are normally inversely

related, with low order streams found higher up in the catchment (i.e., further away from the river mouth).

All thing being equal then, the a priori hypothesis would be that sites on mainstem, high-order rivers that

are also close to the sea should be preferred.

This apparent contradiction is explained by the shifting spatial pattern of SHP location. Inspection of Figure

4 shows that SHPs are predominately located on major, high-order rivers, such as the Thames, the Severn,

the Trent, the Aire, the Tyne, and their major tributaries when habitat requirements are less stringent (i.e.,

given a 0% or 100% minimum increase in accessible habitat). However, when habitat requirements are at
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the high end (i.e., given a 100% minimum increase in accessible habitat), many more SHPs are located on

smaller, middle-order rivers at sites closer to the sea. Ultimately, what this shows is that balancing tradeo�s

between hydropower and river connectivity is a complex issue. Depending on one's aims, the best locations

for hydropower development can vary considerably.

4 Conclusions

Proposals to install hydropower dams inevitably raise con�ict between the need for renewable energy produc-

tion on the one hand and the desire for maintaining healthy, well-connected river ecosystems on the other.

In this paper, we present a suite of optimization based tools for locating small hydropower dams in an en-

vironmentally friendly manner. Importantly, we take into account the backwater e�ects that dams have on

both hydropower and �sh passability at nearby upstream sites. Through a series of linearization steps, we

manage to formulate a mixed-integer linear programing model.

The usefulness of our framework is demonstrated with a case study from England and Wales. We �nd that our

backwater e�ects model is highly scalable. With more than 14,000 candidate sites, model [HPLP3] could still

solve in less than hour, regardless of accessible habitat requirements. One key result is that a comparatively

small number of sites accounts for a large portion of hydropower potential within the study area. Installation

of just 100 SHPs can produce 25% of maximum hydropower generation capacity, while 67% of maximum

hydropower can be achieved by siting 1,000 SHPs. More importantly, given the heavily impaired state of

river connectivity across England and Wales, installation of SHP can actually create a win-win result yielding

both increased hydropower and improved river connectivity if SHPs are �tted with even moderately e�ective

�sh passes. We also observe that optimal SHP locations vary depending on how stringent requirements are

for increasing amounts of accessible river habitat. SHPs are predominately located in large river systems

when habitat requirements are low to moderate and more frequently in smaller river systems when habitat

requirements are high.

In our case study, we found that backwater e�ects had only a modest in�uence on maximum hydropower

potential and accessible river habitat. It is important to emphasize, however, that the extent of backwater

e�ects will be context dependent, determined in large part based on the size and spacing of dams and the

geometry of river channels. Across England and Wales, river connectivity and water surface pro�les are

already heavily impacted by a large number of existing barriers. Moreover, we assumed that 1) hydropower

facilities could only be installed at existing weirs and 2) increases in head height were restricted to ≤ 5

m. Consequently, even though spacing among candidate SHP sites is tight along some stretches of river,
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backwater e�ects were not as pronounced compared to a situation where dams could be constructed at

�green�eld� sites (i.e., where barriers are not currently present). In addition, many river channels across

England and Wales have relatively steep slopes (critical depth > normal depth), which causes a backwater

curve to reduce in length. Indeed, for most SHP candidate sites in our study, the backwater curve did not

extend to any immediate upstream sites due to the steepness of the channel slope. In other study areas, where

such conditions do not hold, we would expect backwater e�ects to have a much larger impact on hydropower

potential and accessible habitat.

Regardless of the relative in�uence of backwater e�ects on hydropower and river connectivity, our results

clearly show the bene�t of taking backwater e�ects into account. Solutions to our simpler model [HPLP1],

which ignored backwater e�ects, frequently produced infeasible solutions in which a dam would be entirely

swamped due to the presence of a nearby dam downstream. Hence, even though our more complex model

[HPLP3] had a marked overhead in terms of solution times, it invariably produced more realistic solutions

that did not violate non-swamping constraints.

There are a number of ways in which our models could be extended. For example, we have focused on

migratory �sh with a diadromous life-cycle history (i.e., where �sh travel between fresh water and the sea).

This is not the only type of migratory behavior. Our modeling framework could be easily adapted to

handle potadromous dispersal patterns (Cote et al., 2009; O'Hanley et al., 2013b), where �sh regularly move

between di�erent sections within a river network over the course of a year. One could also take a more

in-depth approach by incorporating spatially explicit �sh population dynamics (Ziv et al., 2012).

Whereas we focused on locating smaller run-of-river type hydropower dams, another area for future research

might include focusing on larger, reservoir type dams. As the name implies, such dams create large reservoirs

upstream (e.g., Lake Meade behind Hoover dam). Their main bene�t is the much greater hydropower that

can be generated. On the other hand, their impacts go well beyond disrupting river connectivity; they can

signi�cantly reduce sediment �ow, dampen seasonal �ow variation (aka the �natural hydrograph�), cause loss

of riparian and terrestrial habitat (due to submersion), and promote the spread of aquatic invasive species

(Stanford et al., 1996). At the same time, large reservoir dams can deliver additional socio-economic bene�ts

that run-of-river dams at best only partially provide, such as water storage/supply, �ood protection, �shing,

and recreational opportunities (Kuby et al., 2005; Zheng et al., 2009). Both the socio-economic bene�ts and

environmental costs of dams can be estimated fairly easily using established market and non-market valuation

techniques (MacDonald et al., 2011), suggesting that one might consider integrating adopting a bio-economic

analysis framework to optimize large hydropower dam location decisions.

Finally, one could take a more integrated approach that considers hydropower dam placement together with

26



arti�cial barrier mitigation decisions. Such a model would allow for o�setting actions in which reduced pass-

ability due the installation of hydropower facilities may be compensated for by improvements in passability

at other locations (Owen and Apse, 2015). With such a framework, it would be possible to determine where

best to carry out barrier mitigation, namely at newly installed hydropower dams or at other existing struc-

tures that more heavily impact connectivity. These sorts of considerations are important in many heavily

developed river systems, such as the US, Canada, and Europe where con�ict often arrises between proponents

on each side of the renewable energy generation versus river connectivity restoration debate.

There are a number of ways in which our models could be extended. For example, we have focused on

migratory �sh with a diadromous life-cycle history (i.e., where �sh travel between fresh water and the sea).

This is not the only type of migratory behavior. Our modeling framework could be easily adapted to

handle potadromous dispersal patterns (Cote et al., 2009; O'Hanley et al., 2013b), where �sh regularly move

between di�erent sections within a river network over the course of a year. One could also take a more

in-depth approach by incorporating spatially explicit �sh population dynamics (Ziv et al., 2012).

Whereas we focused on locating smaller run-of-river type hydropower dams, another area for future research

might include focusing on larger, reservoir type dams. As the name implies, such dams create large reservoirs

upstream (e.g., Lake Meade behind Hoover dam). Their main bene�t is the much higher hydropower poten-

tial. On the other hand, their impacts go well beyond disrupting river connectivity; they can signi�cantly

reduce sediment �ow, dampen seasonal �ow variation (aka the �natural hydrograph�), cause loss of riparian

and terrestrial habitat (due to submersion), and promote the spread of aquatic invasive species (Stanford

et al., 1996). At the same time, large reservoir dams can deliver additional socio-economic bene�ts that

run-of-river dams at best only partially provide, such as water storage/supply, �ood protection, �shing, and

recreational opportunities (Kuby et al., 2005; Zheng et al., 2009). Both the socio-economic bene�ts and

environmental costs of dams can be estimated using established market and non-market valuation techniques

(MacDonald et al., 2011), suggesting that one might consider adopting a bio-economic analysis framework

to optimize large hydropower dam location decisions.

Finally, one could take a more integrated approach that considers hydropower dam placement together with

arti�cial barrier mitigation decisions. Such a model would allow for o�setting actions in which reduced pass-

ability due the installation of hydropower facilities may be compensated for by improvements in passability

at other locations (Owen and Apse, 2015). With such a framework, it would be possible to determine where

best to carry out barrier mitigation, namely at newly installed hydropower dams or at other existing struc-

tures that more heavily impact connectivity. These sorts of considerations are important in many heavily

developed river systems, such as the US, Canada, and Europe where con�ict often arises between proponents
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on each side of the renewable energy generation versus river connectivity restoration debate.
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