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Abstract

Research on iris recognition have observed that iris tex-
ture has inherent radial correlation. However, currently,
there lacks a deeper insight into iris textural correlation.
Few research focus on a quantitative and comprehensive
analysis on this correlation. In this paper, we perform a
quantitative analysis on iris textural correlation. We employ
steering kernels to model the textural correlation in images.
We conduct experiments on three benchmark datasets cov-
ering iris captures with varying quality. We find that the
local textural correlation varies due to local characteristics
in iris images, while the general trend of textural correla-
tion goes along the radial direction. Moreover, we demon-
strate that the information on iris textural correlation can
be utilized to improve iris recognition. We employ this in-
formation to produce iris codes. We show that the iris code
with the information on textural correlation achieves an im-
proved performance compared to traditional iris codes.

1. Introduction
Biometric systems aim to automatically authenticate hu-

man based on their behavioural and physiological charac-
teristics, instead of conventional passwords or ID cards. A
large number of biometric traits have been employed by
biometric systems, for example, fingerprint, iris, face, palm
print, finger vein, gait, voice, retina, etc. Among these bio-
metric traits, iris has shown a high reliability due to the
stability and distinctiveness of iris textures. State-of-the-
art iris recognition algorithms have achieved very promis-
ing performance [3, 4, 21, 2, 11, 8]. Current large scale
deployments of iris recognition systems in UAE and India
are considered successful. Also, significant research on less
constrained iris recognition have been conducted and the
results are encouraging [9, 10, 15, 16, 18, 19, 13].

Intuitively, iris textures have inherent correlation. For
example, a furrow or ciliary pattern tends to propagate in
the radial direction, as observed in [3, 9]. Also, some exper-
imental evidences exist for such correlation. In [5], Daug-

man compares the capacity between real iris codes and syn-
thetic ’white noise’ iris codes which have fully random and
uncorrelated bits. The experimental results show that the
capacity of real iris codes is lower than ’white noise’ iris
codes. Such capacity difference reflects the anatomical cor-
relation within a natural iris, besides the correlation induced
by Gabor filters [5]. In [11], Ma et al. conclude that the
information along the angular direction of an iris image
is highly discriminating. This conclusion means that the
iris texture along the angular direction has higher random-
ness (i.e. with less correlation). In [9], Liu et al. propose
a Markov network model with radial connections for code-
level information fusion. The improved performance of this
model demonstrates the radial correlation of iris textures.

However, the evidences of iris textural correlation are
less direct in the above works. In these works, this correla-
tion is recognized based on the performance of iris matching
results, rather than directly modelling and analysing the tex-
tural correlation in iris images. Therefore, although the ex-
perimental results have successfully revealed the existence
of iris textural correlation, the following questions remain
open: (1) What is the characteristic of textural correlation
in human iris? For example, does all the textural correla-
tion follow radial direction? If not, is the radial correlation
dominant? What is the direction that the iris texture is most
likely to be uncorrelated (i.e. the most random and distinc-
tive)? What is the distribution of the direction of iris textural
correlation? (2) Is it possible to utilize the information on
iris textural correlation to improve iris recognition?

To investigate the above questions, a model for iris textu-
ral correlation and a quantitative analysis on it are desirable.

In this paper, we employ steering kernels (SKs) [17]
to model and analyse the iris textural correlation. The
SK is able to reflect the correlation between a pixel and
its neighbouring regions. Therefore, by calculating and
analysing the SKs centered at each pixel of iris images, we
are able to quantitatively analyse the iris textural correla-
tion. Fig. 1 shows some examples of SKs. Fig. 1(a) shows
an unwrapped iris image with four marked example pix-
els. Fig. 1(b) presents the image patches centered at each
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(a)
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Figure 1: Examples of steering kernels modelling iris tex-
tural correlations: (a) an unwrapped iris image with ex-
ample pixel marked by four colours; (b) the images patch
centered at each example pixel; the contrast of each patch
is enhanced for better visual inspection; (c) the estimated
steering kernel centered at each example pixel.

marked pixel (the contrast of these image patches is en-
hanced for better visual inspection). Fig. 1(c) shows the
SKs corresponding to each patch. It can be seen that the SK
assigns higher intensity to the pixel with a higher correlation
to the centre pixel, so it tends to spread along the direction
with a higher textural correlation to the centre pixel.

Based on SKs, we perform two analysis. The first anal-
ysis focuses on the general textural correlation. It aims to
understand the general trend of iris textural correlation. The
second analysis studies the distribution of local textural cor-
relation. The aim is to gain the statistical knowledge on lo-
cal textural correlation in iris images.

Furthermore, we investigate the method to utilize the in-
formation of iris textural correlation to improve iris recog-
nition. Specifically, we utilize the textural correlation infor-
mation to produce iris codes, in order to alleviate the influ-
ence of noise on individual bits in iris codes. We calculate
the value of a specific bit using not only the Gabor filtering
result on this bit, but also its neighbouring bits with high
textural correlation to this bit. Experimentally, we find that
the iris code produced using this method achieves an im-
proved performance compared to traditional iris codes.

Contribution. Our contribution is two-fold. First, we
make a quantitative analysis on the textural correlation in
human iris images. To the best of our knowledge, this is the
first work quantitatively analysing the iris textural correla-
tion. It provides a deeper insight into the characteristic of

(a) CASIAT (b) ND0405 (c) CASIAD

Figure 2: Example images of the datasets used in the exper-
iment.

iris textures. Second, we show that the information on iris
textural correlation can be utilized in the stage of iris codes
generation, improving iris recognition performance.

The rest of the paper is organised as follows. In section
2, we introduce the datasets used for analysis and the pre-
processing for the data. In section 3, we present the method
and result of our analysis on iris textural correlation. In sec-
tion 4, we describe the method to produce iris codes utiliz-
ing iris textural correlation, and we report the experimental
result. Finally, in section 5, we conclude the paper.

2. Datasets and pre-processing

2.1. Datasets

We conduct experiments on three benchmark datasets:
CASIA.v4 thousand (CASIAT) [1], ND-iris-0405
(ND0405) [14] and CASIA.v4 distance (CASIAD) [1]. As
described below, these three datasets cover the iris captures
with varying image quality. We show some example images
of each dataset in Fig. 2.

CASIAT consists of 2000 eyes captured at a close dis-
tance. This dataset includes 20, 000 images with a high
overall quality. The main noise factor is the specular re-
flection and glasses in some images. In our experiment, we
use this dataset to represent the iris captures with a satis-
factory quality. Correspondingly, we eliminate some noisy
captures based on the iris segmentation results (see the pre-
processing below). The final subset used in the experiment
has 12, 108 images from 1790 eyes.

ND0405 is a dataset captured at a close distance in-
cluding 64, 982 images from 712 eyes. Despite the close
capturing, the images in this dataset suffer from noise due
to real world conditions, including blurring, eyelids occlu-
sion, specular reflection, rotation, off-angle, soft contact
lenses, etc. We use ND0405 to represent the iris data with
a relatively higher quality. The capture has good resolution
and clear iris texture, but suffering from some noise and
degradations. We use a subset of ND0405 consisting of the



first 8 images of each eye, and we eliminate some images
with too small iris region. It leads to a subset of 5613 im-
ages from 712 eyes used in the experiment.

CASIAD is a distantly captured dataset including both
eyes from 142 subjects. The stand-off distance is around 3
meters. The images include most of facial features and pat-
terns. The eye region of most images suffers from low reso-
lution, blurring, blinking, eyelids occlusion, specular reflec-
tion, motion, etc. We use CASIAD to represent the iris data
with a relatively lower quality. The captures suffer from the
information loss and noise due to the distant capture. We
conduct the experiment on a subset of CASIAD constructed
by detecting left and right eye regions using Viola-Jones ob-
ject detector [20], manually correcting false detections, and
eliminating images with too small iris regions. It results a
subset with 5037 images from 284 eyes for experiment.

From each dataset, we use a subset for parameter tun-
ing, and we use the rest of the data for test. Specifically, for
CASIAT, we use the images of the first 50 eyes for param-
eter tuning; for ND0405 and CASIAD, we use the images
of the first 20 eyes for parameter tuning. The images of the
rest eyes are used for test on each dataset.

2.2. Pre-processing

The pre-processing includes iris segmentation and nor-
malization (unwrapping). For CASIAT, we seek limbic and
pupillary boundaries using the Hough transform based seg-
mentation in [12]. We eliminate the images with segmenta-
tion failures in these two boundaries. The reason is to keep
the CASIAT subset representing the iris captures with a sat-
isfactory quality, since the segmentation failure in these two
boundaries is mainly due to the influence of noise. For the
remaining images in CASIAT, we detect eyelids, reflections
and shadow using the algorithm in [7]. We manually correct
the segmentation failures in eyelids (see the method below).

For ND0405 and CASIAD, we perform the whole iris
segmentation process using the algorithm in [7], and we
manually correct the false segmentations. In other words,
we preserve the noisy captures in these two datasets, en-
abling them to represent iris captures with varying quality.

The manual correction of segmentation failures is per-
formed as follows. For eyelids, we manually label the cor-
rect boundary as the final boundary. In terms of limbic
and pupillary boundaries, after manually labelling a cor-
rect boundary, we select the final boundary among a set
of boundaries near to the manual one by maximizing the
score of Daugman’s integro-differential operator [3, 4]. Ex-
perimentally, we find that the above correction method for
limbic and pupillary boundaries significantly improves the
performance of iris recognition, compared to directly us-
ing the manually labelled boundary as the final boundary.
We think the reason is that the position of limbic and pupil-
lary boundaries sought by the integro-differential operator

is more stable than the manually labelled boundary.
For all the datasets, we unwrap the segmented iris re-

gion using the rubber sheet model in [3, 4]. The size of
unwrapped images is set to 100× 360.

3. Analysis of iris textural correlation
In this section, we analyse the iris textural correlation

using steering kernels (SKs) [17]. First, we describe the
method to calculate SKs. Then, we present and discuss the
result of analysis using SKs.

3.1. Steering kernels (SKs)
We use SKs to model the correlation between a pixel and

its neighbouring regions. Let x ∈ R
2 be the coordinate

of a centre pixel. The SK centered at x is defined as fol-
lows [17]:

K (xi − x) =

√
det (Ci)

2πh2
exp

(
− (xi − x)TCi (xi − x)

2h2

)

(1)
where xi denotes the coordinate of a pixel in the neighbour-
ing region of x, Ci ∈ R

2×2 is a covariance matrix including
the local shape information at xi, and h is a smoothing pa-
rameter. We directly use the value of K (xi − x) as the
correlation between two pixels at xi and x. A SK measures
the correlation between two pixels from two aspects: dis-
tance and shape. In terms of distance, it can be seen that
K (xi − x) has a higher value if xi is closer to x. In other
words, the closer a pixel to the centre pixel, the higher corre-
lation they have. As for the shape, the value of K (xi − x)
is influenced by the covariance matrix Ci which includes
the local shape information. The effect of Ci is similar to
the covariance matrix of a Gaussian kernel.

The key to calculate a SK is the computation of Ci.
In [17], Ci is decomposed into three components, includ-
ing scaling, rotation and elongation:

Ci = γiUθiΛiU
T
θi (2)

where γi is the scaling parameter, Uθi is the rotation ma-
trix and Λi is the elongation matrix. Uθi and Λi are further
defined as follows:

Uθi =

[
cos θi sin θi
− sin θi cos θi

]
(3)

Λi =

[
σi 0
0 σ−1

i

]
(4)

In Eqn. 3 and Eqn. 4, θi and σi are rotation and elongation
parameters, respectively.

Now, the problem becomes how to determine the three
shape parameters γi, θi and σi. The three parameters can be
estimated based on the dominant directions of local gradient
fields. For a pixel at xi, we use Gi = [gx (xi) , gy (xi)] ∈



R
M×2 to denote the local gradient matrix of a patch cen-

tered at xi, where M is the number of pixels in this patch,
gx (xi) and gy (xi) are column vectors of the gradient
along x and y directions in this patch, respectively. The
dominant directions of local gradient field can be sought by
the truncated singular value decomposition of Gi:

Gi = UiSiV
T
i (5)

where 2 × 2 orthogonal matrix Vi includes the vectors of
dominant directions of local gradient field, and 2 × 2 diag-
onal matrix Si includes the energy in dominant directions.
Let v = [v1, v2]

T ∈ R
2 be the column in Vi corresponding

to the smaller singular value in Si. θi is obtained by:

θi = arctan (v1/v2) (6)

Essentially, θi is calculated as the most common direction
in the local gradient field. Note that the SK estimates local
orientations based on the vertical and horizontal gradients
of image patches. Since the vertical and horizontal gradi-
ents of image patches can be viewed as the output of two
filters, such method to compute local orientations is similar
to steerable filters which are able to estimate local orienta-
tions using the output of multiple basis filters [6].

The elongation parameter σi is determined using the en-
ergy in dominant directions. Let s1 and s2 be the larger and
smaller eigen values in Si, respectively. σi is obtained by:

σi =
s1 + λ

s2 + λ
(7)

where λ is a regularization parameter to preserve the shape
of the SK when s1 ≈ s2 ≈ 0. Actually, s1/s2 � 1 means
that the patch centered at xi includes more edges. In this
case, Eqn. 7 results that σi � 1, i.e. a more elongated SK.
On the other hand, s1/s2 ≈ 1 means that the patch mainly
contains flat regions. Correspondingly, Eqn. 7 leads to a σi

close to 1, keeping a nearly circular shape.
The scaling parameter γi is calculated by:

γi =

√
s1s2 + λ′

M
(8)

where λ
′

is a regularization parameter to prevent γi from
becoming 0. Since

√
s1s2 is the geometric mean, Eqn. 8

leads to a larger γi in flat regions (s1 ≈ s2) and a smaller γi
in textured regions (s1 � s2).

The overall effect of the above calculation of γi, θi and
σi is that the SK has a more circular shape and larger
spreading in flatter regions, while it becomes narrow and
spreads along the local edge direction in textured regions.
This is reasonable as a model of the correlation between a
pixel and its neighboring regions. For flatter regions, the
pixel distant from the centre pixel is still possible to be cor-
related with the centre pixel, and the correlation between

the centre pixel and pixels at different directions tends to be
similar. It is consistent with a SK with a larger spreading
and more circular shape. In contrast, for textured regions,
the pixel distant from the centre pixel is less possible to be
correlated with the centre pixel, since they are more likely to
be separated by textures. Also, the correlation depends on
the local texture direction. This is consistent with a narrow
SK spreading along the local edge direction.

Fig. 1 shows some examples of SKs in. we can see that
the shape of these SK is consistent with the above anal-
ysis in textured regions (the left two images in Fig. 1(b)
and Fig. 1(c)) and flatter regions (the right two images in
Fig. 1(b) and Fig. 1(c)). We refer to [17] for more examples
and discussion on SK.

3.2. Analysing iris textural correlation using steer-
ing kernels (SKs)

This subsection presents the detailed analysis of iris tex-
tural correlation modelled by SKs. First, we describe the pa-
rameter setting to calculate the SKs for this analysis. Then,
we analyse the general textural correlation. It seeks the
knowledge on the general trend of iris textural correlation.
Finally, we analyse the local textural correlation. It aims to
understand the local characteristics of iris textures.

Parameter setting. The parameters to determine the SK
are as follows: h in Eqn. 1, the size of SK, regularization
parameters λ and λ

′
in Eqn. 7 and Eqn. 8, M which is the

size of Gi (i.e. the size of the image patch to compute shape
parameters γi, θi and σi). In this paper, we set h to 2, the
size of SK to 15×15, λ to 1, λ

′
to 1e-7. We select these pa-

rameters by visually examine the produced SK on the data
for parameter tuning, with considering the parameter set-
ting in [17]. In terms of M , this parameter influences the
scale of analysis (i.e. the size of the patch used to calculate
the local shape information). In our experiment, we vary
M to investigate the textural correlation in different scales.
Specifically, M is varied among 49, 121, 255 and 361, and
they correspond to patch sizes of 7 × 7, 11 × 11, 15 × 15
and 19× 19, respectively. In the rest of this paper, we refer
to these patch sizes as scale, and we use scale instead of M .

General textural correlation (GTC). We use the mean
of SKs to model the GTC. Specifically, given an unwrapped
iris image, we calculate a set of SKs centered at each pixel.
Therefore, each SK models the textural correlation between
a specific pixel and its neighbouring region. We use the
mean of these SKs (MSKs) to model the GTC in this iris
image. Since each individual SK tends to spread along the
direction with a higher correlation to the corresponding cen-
tre pixel (the pixels in this direction have higher intensity
due to a higher correlation to the centre pixel), the MSK
will spread along the direction with a generally higher cor-
relation to all the pixels in an iris image. For a dataset with
multiple images, we calculate a MSK for each image, and



(a) CASIA.v4 thousand

(b) ND-iris-0405
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Figure 3: The mean of mean steering kernels (MMSK) cal-
culated from each dataset with different scales; from left to
right: the scale is 7× 7, 11× 11, 15× 15 and 19× 19.

we use the mean of all the MSKs (MMSK) to model the
GTC in this dataset. To mitigate the influence of outliers
(i.e. non-iris pixels like eyelids), we only consider the SKs
centered at the pixel with less than 10% outliers in its neigh-
bouring region whose size is equal to the scale parameter.

The results of our analysis are as follows. Firstly, we vi-
sually show the GTC in each dataset. In Fig. 3, we present
the MMSK in each dataset with different scales. It can be
seen that these MMSKs generally have an elliptical shape
spreading along the vertical direction. It means that the
GTC is stronger along the radial direction than the other
directions in all the three datasets. In other words, the GTC
tend to go along the radial direction.

Also, we numerically validate the direction of GTC in
each dataset. We define the direction of a SK as the an-
gle between the direction with the largest spreading and
the positive horizontal direction. We compute the direction
with the largest spreading by PCA (we normalize the range
of this direction to [0°, 180°]). We use the direction of SK
as the direction of iris textural correlation, since the direc-
tion with the largest spreading in a SK can be viewed as the
direction with the strongest correlation to the centre pixel.
Therefore, we calculate the direction of MMSK as the di-
rection of GTC. To obtain an estimate of error, we partition
each dataset into multiple folds, and we calculate MMSK
and its direction for each fold. Tab. 1 reports the mean and
standard deviation (std) of the directions of MMSKs. We
find that the directions of all the MMSKs are very close to
90°. This show a general radial correlation of iris textures.

Scale CASIAT ND0405 CASIAD
7× 7 89.77± 0.06 89.73± 0.20 89.86± 0.04
11× 11 89.87± 0.08 89.48± 0.04 89.92± 0.03
15× 15 89.70± 0.04 89.67± 0.09 89.89± 0.06
19× 19 89.75± 0.06 89.62± 0.20 89.88± 0.05

Table 1: The direction of the mean of mean steering kernels
(MMSK) on each dataset with different scales (in degree).

Scale CASIAT ND0405 CASIAD
7× 7 89.7± 3.5 89.8± 12.4 89.8± 3.8
11× 11 89.7± 3.8 89.9± 12.7 89.8± 3.9
15× 15 89.7± 4.3 89.9± 14.0 89.9± 4.0
19× 19 89.7± 5.3 89.7± 15.4 90.0± 4.2

Table 2: The mean and standard deviation of the direction of
mean steering kernel (MSK) on each dataset with different
scales (in degree).

Moreover, the shape and direction of the MMSKs shown in
Fig. 3 and Tab. 1 change little with scales. It means that the
general radial correlation preserves in different scales.

Finally, we study the GTC in each iris image using the
direction of mean SK (MSK). Given a dataset, we calculate
a MSK for each image, and we calculate the direction of
each MSK as the direction of the GTC in each image. In
Tab. 2, we report the mean and std of the direction of MSK
in each dataset. The result clearly shows that the GTC in
each iris image approximately goes along the radial direc-
tion (90°) in all the datasets with different scales, despite
of some variations. We also observe that, on each dataset,
the mean direction changes little with scale, but the std in-
creases when the scale gets larger. In our opinion, the rea-
son is that a larger scale may induce more textural variation,
so it increases the std of the direction of MSK. Interestingly,
ND0405 dataset has a higher std than the other two datasets.
It means that the iris texture in this dataset is more variant.

In all, Fig. 3 visually demonstrates that the iris texture
has a general radial correlation in different scales, and it is
quantitatively verified by the results in Tab. 1 and Tab. 2.

Local textural correlation (LTC). We also investigate
the local characteristics of iris textural correlation. We per-
form this analysis based on the distribution of the direction
of individual SKs. Specifically, given an iris image, we cal-
culate a set of SKs centered at each pixel. For each indi-
vidual SK, we calculate its direction as defined in the above
analysis of GTC. These directions of local SKs reflect the
textural correlation in different local regions of an iris im-
age. Therefore, we use the histogram of these directions
to represent the distribution of LTC in an iris image. For a
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Figure 4: The distribution of the direction of individual steering kernels on each dataset.

Scale CASIAT ND0405 CASIAD
7× 7 90.0± 0.0, 21.8± 0.6, 157.0± 0.0 90± 0.0, 22.8± 0.4, 157.3± 0.5 90.0± 0.0, 23.7± 0.8, 156.3± 0.9

11× 11 90.0± 0.0, 22.0± 0.0, 155.6± 0.8 90± 0.0, 26.7± 0.9, 154.0± 0.0 90.0± 0.0, 26.9± 0.3, 155.1± 0.3

15× 15 90.0± 0.0, 24.0± 0.0, 154.1± 0.3 90± 0.0, 29.8± 0.6, 151.0± 0.0 90.0± 0.0, 27.1± 0.6, 153.8± 0.4

19× 19 90.0± 0.0, 26.0± 0.0, 154.1± 0.3 90± 0.0, 32.0± 0.0, 148.8± 0.6 90.0± 0.0, 29.1± 0.3, 152.5± 0.7

Table 3: The direction corresponding to the peak and valleys in the distribution in Fig. 4 (in degrees, format: peak, left valley,
right valley).

dataset, we calculate the overall distribution of LTC by ac-
cumulating the histogram obtained from each image in this
dataset. We use a histogram consisting of 181 bins corre-
sponding to the integer degrees between 0° and 180° (note
that 0° and 180° are actually equivalent). Similarly to the
analysis on the GTC, to alleviate the influence of outliers,
we calculate the histogram only using the SKs centered on
the pixel with less than 10% outliers in its neighbouring re-
gion whose size is equal to the scale parameter.

In Fig. 4, we plot the distribution on the three datasets
with different scales. We also study the directions corre-
sponding to the peak and left/right valleys (left/right valleys
are the lowest point at the leff/right of the peak). To obtain
an estimate of error, we partition each dataset into multiple
folds; for each fold, we obtain a distribution of LTC and find
peak and valleys; we report the mean and std of the direc-
tions of peaks and valleys obtained from all folds in Tab. 3.
We have several observations from Fig. 4 and Tab. 3:

First, the majority direction of SKs concentrates around
90° at all the scales on all the datasets. The peak of all the
distributions locates exactly at 90°. This shows that, locally,
most of iris textures have radial or near-radial correlation.

Second, the distribution is more concentrated around 90°
when the scale is larger. It means that the LTC is more radial
if investigated on larger regions.

Third, interestingly, all the distributions in Fig. 4 are
nearly symmetric. This is validated by the position of left
and right valleys in Tab. 3. We can see that the two valleys

are approximately symmetric to the radial direction (90°). It
means that the structures with radially symmetric directions
have a similar amount in human iris.

Fourth, the directions of left and right valleys are around
20°~30° to the horizontal direction (note that both 0° and
180° are horizontal directions). It means that human iris
textures are most unlikely to spread along these two direc-
tions. Therefore, the direction around 20°~30° to the an-
gular direction may be the most distinguishing direction for
human iris textures, due to the highest randomness.

From the above analysis on GTC and LTC, we conclude
that the LTC varies due to local characteristics, while the
GTC tend to go along the radial direction.

Also, we observe that the larger scale leads to higher std
(higher variation) in GTC (Tab. 2), but it results more con-
centrated distribution (lower variation) in LTC (Fig. 4). We
think a possible reason is as follows. Locally, the larger
scale is able to seek more radial correlation, so the corre-
sponding distribution is more concentrated. However, the
local radial correlation in the larger scale may be weaker
than that in the smaller scale, since a larger region may ex-
ist higher textural variation. Such weaker local correlation
increases the variation in GTC. In other words, although the
larger scale is able to seek more SKs with the largest spread-
ing along near-radial directions (i.e. more concentrated dis-
tribution of LTC), the high intensity pixels in these SKs
are less concentrated around the radial direction compared
to the SKs with a smaller scale (i.e. a weaker correlation).



Consequently, the MSK in the larger scale is more diffused.
It leads to a larger variation in the direction of MSKs.

The individuality of LTC. We also investigate if LTC
is person-specific. We measure the individuality by the dis-
criminability index (DI) [3] calculated from the intra-class
and inter-class distances between distributions of LTC of
different iris captures. We used cosine distance as the dis-
tance between distributions of LTC. We find that the ob-
tained DIs are generally around 0.6 for all the dataset at all
the scales. It means that LTC has very slight individuality.

4. Improving iris recognition utilizing textural
correlation

In this section, we investigate the method to improve iris
recognition by utilizing the information on iris textural cor-
relation. We show that an improvement can be achieved by
utilizing this information to produce iris codes.

4.1. The proposed method

We compute a bit in an iris code not only using the Gabor
filtering result at this bit, but also using its neighboring bits
that have a higher textural correlation to this bit. The moti-
vation is that the bits with higher textural correlation should
be highly correlated in the iris code as well; by considering
the highly correlated bits together to compute the iris code,
we expect that we are able to suppress the flipping of indi-
vidual bits due to noise, thus improving the performance.

Specifically, we use the traditional iris code as the initial
iris code, and we compute the final iris code using the ini-
tial iris code and the textural correlation information. Given
an unwrapped iris image, we extract the initial iris code us-
ing 1-D log-Gabor filter [12]. We operate on the iris code
from real and imaginary parts separately. Without losing
generality, we focus on the iris code from the real part in
the following. Let cx be the bit in the position x of an ini-
tial iris code from the real part of 1-D log-Gabor filtering.
Let c̃x be the corresponding bit of cx in the final iris code.
Recall that K (xi − x) denotes the SK centered at x. We
compute c̃x as follows:

c̃x = fbw

⎛
⎝
∑
i

K (xi − x) cxi∑
i

K (xi − x)
, 0.5

⎞
⎠ (9)

where fbw (x, y) is a binarization function: fbw (x, y) = 1
if x > y, otherwise fbw (x, y) = 0.

Eqn. 9 performs a textural correlation-weighted major-
ity voting with the SK as a model for textural correlation.
It assigns higher weights to the bits with a higher textural
correlation to the centre bit. The final value of the centre
bit is determined using the majority in its neighboring bits
after weighting. By doing this, we bound local bits together
based on their textural correlation to mitigate the influence
of noise on the individual bit.

4.2. Experimental analysis

Experiment setting. To study the effectiveness of the
iris code produced using textural correlation information
(ICTC) in section 4.1, we evaluate the performance of ICTC
using the traditional iris code as baseline. We conduct
experiments on the three datasets described in section 2.
The partition of gallery and probe sets is as follows. For
CASIAT, we use the first image of each eye as gallery and
the rest images as probe. For ND0405, we use the first
two images of each eye as gallery and the rest images as
probe. For CASIAT, we use the first five images of each
eye as gallery and the rest images as probe. The parame-
ters of 1-D log-Gabor filtering (wavelength/sigmaOnf) are
selected using the parameter tuning data described in sec-
tion 2. Their values are as follows: 22/0.48 for CASIAT,
35/0.49 for ND0405, 19/0.48 for CASIAD.

As for the parameters to calculate the SK, we set the
scale to 11 × 11. The setting of the other parameters are
the same as that in section 3.2. Especially, the kernel size is
15×15. It means that, in Eqn. 9, xi is restricted to a 15×15
square region centered at x.

Results. We evaluate the performance using receiver op-
erating characteristic (ROC). For each dataset, we randomly
select some subjects from test data for 100 times, and we
calculate the ROC curve for each random selection. We
show the mean ROC curves of ICTC and baseline in Fig. 5.
It can be seen that, on CASIAD dataset, ICTC has a bet-
ter performance than baseline. On ND0405 and CASIAT
datasets, ICTC performs better than the baseline when FAR
is lower than 0.1%, and the performance of the two iris
codes are similar when FAR is larger than 0.1%.

Also, we report the mean and standard deviation of
genuine acceptance rate when the false acceptance rate is
0.01% (GAR@FAR=0.01%) in Tab. 4. It can be seen that
ICTC has a better GAR when FAR= 0.01%. It demon-
strates that the performance of iris recognition can be im-
proved by utilizing the information of iris textural correla-
tion.

5. Conclusion

In this paper, we study the textural correlation in human
iris images. We find that the iris textural correlation has the
following general and local characteristics:

General characteristic: the general correlation of iris
textures approximately goes along the radial direction. The
numerical direction of general textural correlation is very
close to 90°, but it has some variations in different images.

Local characteristic: (1) the distribution of the direction
of local textural correlation concentrates around the radial
direction (90°), with the peak locating at 90°; (2) the tex-
ture with radially symmetric directions has similar amount;
(3) the most distinguishing direction of iris images may be
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Figure 5: The ROC curves for comparison.

Method CASIAT ND0405 CASIAD
Baseline 97.7± 0.2 84.5± 2.8 64.8± 2.3

ICTC 98.1± 0.2 87.9± 2.0 69.2± 2.0

Table 4: GAR@FAR= 0.01% for comparison (percentage).

around 20°~30° to the angular direction, due to the highest
randomness in textures along this direction.

Also, we demonstrate that it is possible to improve iris
recognition using the information on textural correlation.

Future work may focus on utilizing the above local char-
acteristic (3) for iris recognition, from the aspects like fea-
ture design and parameter selection.
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