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Optimal Generation of Iris Codes for Iris
Recognition

Yang Hu, Konstantinos Sirlantzis, and Gareth Howells

Abstract—The calculation of binary iris codes from feature
values (e.g. the result of Gabor transform) is a key step in
iris recognition systems. Traditional binarization method based
on the sign of feature values has achieved very promising
performance. However, currently, little research focuses on a
deeper insight into this binarization method to produce iris
codes. In this paper, we illustrate the iris code calculation
from the perspective of optimization. We demonstrate that the
traditional iris code is the solution of an optimization problem
which minimizes the distance between the feature values and iris
codes. Furthermore, we show that more effective iris codes can
be obtained by adding terms to the objective function of this
optimization problem. We investigate two additional objective
terms. The first objective term exploits the spatial relationships of
the bits in different positions of an iris code. The second objective
term mitigates the influence of less reliable bits in iris codes. The
two objective terms can be applied to the optimization problem
individually, or in a combined scheme. We conduct experiments
on four benchmark datasets with varying image quality. The
experimental results demonstrate that the iris code produced
by solving the optimization problem with the two additional
objective terms achieves a generally improved performance in
comparison to the traditional iris code calculated by binarizing
feature values based on their signs.

Index Terms—iris recognition, iris code, spatial relationship,
feature reliability.

I. INTRODUCTION

THE iris has become one of the most reliable biometric
traits for human authentication due to some inherent

advantages, for example, it is a highly protected internal organ
which is visible externally; iris patterns are highly distinctive
with a high degree of freedom; iris patterns are relatively
stable over time etc. State-of-the-art iris recognition algorithms
have reported promising performance [1]–[6]. Most of these
algorithms use binary features (i.e. iris codes). The binary
nature of iris codes brings significant advantage in memory
and computational cost, enabling the large scale deployment
of iris recognition systems. Current nationwide deployments of
iris recognition systems in UAE [7] and India [8] are consid-
ered successful, with millions of subjects enrolled. Alternative
feature extraction and selection approach instead of binary iris
codes have also shown high effectiveness [9]–[15].

A traditional iris recognition system mainly consists of
three components: iris segmentation, feature extraction and
iris matching. Generally, feature extraction can be further
divided into two steps: feature value extraction and iris code
production. Feature value extraction applies methods such as
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Gabor transform [1], [2] and Ordinal measure [5] to the iris
image, generating a set of feature values. Iris code production
obtains binary iris codes from the feature values as the final
feature representation of iris. Currently, for traditional iris
recognition systems, significant research effort has been devot-
ed to iris segmentation [16]–[19], feature value extraction [1],
[2], [5], [20]–[22] and iris matching [23]–[26]. However, for
iris code production, most of state-of-the-art methods use
simple binarization based on the sign of feature values [1],
[2], [5], [21], [27]. Experimentally, this binarization method
achieves a generally promising performance, but, currently,
there lacks a deeper insight into this method. An important
question one may ask is this: “Is it optimal to produce the iris
code by binarization based on the sign of feature values?”.
A similar question is: “How could we find more effective
iris codes given feature values?”. Currently, although a large
number of feature selection algorithms are investigated to
obtain more effective iris codes [28]–[33], these methods focus
on selecting more valuable bits from iris codes, rather than
directly calculating optimal iris codes from feature values.
Therefore, the above questions remain open.

In this paper, we investigate the issue of iris code production
from the perspective of optimization. We illustrate that the
traditional iris code based on the sign of feature values is
the solution of an optimization problem. This optimization
problem seeks iris codes by minimizing the distance between
the feature values and iris codes. Such an illustration enables
us to apply additional objective terms to this optimization
problem, in order to obtain more effective iris codes. We
investigate two additional objective terms. The first objective
term exploits the spatial relationship of the bits in different
positions of an iris code. The idea is that iris pixels are
not uncorrelated; instead, they are spatially related [1], [34].
Therefore, as a feature representation of iris textures, the bits
at different positions of an iris code should also have spatial
relationships. The first objective term exploits such spatial
relationships using a Markov Random Field (MRF) model.
The second objective term mitigates the influence of less
reliable bits in iris codes. As shown in [23], a bit is less
reliable if the corresponding feature value is close to the axis
in complex Gabor feature space, because such bits are less
stable: they are more likely to flip between 0 and 1. Our second
objective term aims to mitigate the influence of these less
reliable bits. It improves their reliability by enhancing their
stability: this term promotes less reliable bits to be assigned
uniform bit values to suppress the flipping of these bits. We
show that the two additional objective terms can be applied
to the original optimization problem not only individually, but
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also in a combined scheme. The iris codes obtained by solving
the original optimization problem with the two additional
objective terms lead to a generally improved performance.

Contributions. Our contribution is as follows. First, We
investigate the iris code production from the perspective of
optimization. We demonstrate that traditional iris codes based
on the sign of feature values are the solution of an optimiza-
tion problem. Second, based on this optimization problem,
we propose two additional objective terms to obtain more
effective iris codes. The first objective term exploits the spatial
relationship of the bits in different positions of an iris code,
while the second objective term mitigates the influence of less
reliable bits in iris codes. Experimentally, we find that the two
objective terms are able to improve the incorrect iris matching
result when using the traditional iris code caused by factors
such as the imaging variation in different captures. Third, we
propose a scheme to combine the two additional objective
terms. We show that the iris code obtained by the combined
scheme achieves a generally improved performance, compared
to traditional iris codes and the iris codes obtained using each
individual objective term.

The remainder of this paper is organized as follows. In
section II, we present the proposed method to produce iris
codes based on optimization. In section III, we report the result
of experimental analysis of the proposed method. Finally in
section IV, we concluded the paper.

II. PRODUCING IRIS CODES BY OPTIMIZATION

A. Illustration of the traditional iris code production from a
perspective of optimization

Let f = [f1, f2, ..., fn]
T ∈ Rn be a vector consisting of all

features values extracted from an unwrapped iris image. For
example, for the most widely used Gabor feature [1], [2], f
is constructed by concatenating the real and imaginary parts
in all positions into a vector after applying Gabor transform
to the unwrapped iris region; each element in f is either
the real or imaginary part of the Gabor transform result.
Let b = [b1, b2, ..., bn]

T be a binary vector of the iris code
corresponding to f with n bits. For the ith bit bi, traditional
binarization method to calculate it is as follows:

bi =

{
1 if fi ≥ 0

0 if fi < 0
(1)

In other words, traditional iris codes are produced based on
the sign of feature values.

In this subsection, we demonstrate that the traditional bi-
narization method can be illustrated as the solution of the
following optimization problem:

argmin
b∈{−1,1}n

‖b− f‖22 (2)

We note that b ∈ {−1, 1}n in Eqn. 2 is different from the
traditional iris code where b ∈ {0, 1}n. However, we will
show that, the solution of Eqn. 2 is equivalent to the tradition
iris code in binary feature domain, and it makes no difference
in the hamming distance given two iris codes.

The objective function in Eqn. 2 can be expanded as follows:

‖b− f‖22 = ‖b‖22 + ‖f‖
2
2 − 2fTb (3)

Note that ‖f‖22 is a constant, and ‖b‖22 = n due to b ∈
{−1, 1}n. Therefore, Eqn. 2 is equivalent to:

argmin
b∈{−1,1}n

−fTb (4)

Since fTb =
∑
i

fibi, the optimization problem with respect

to bi reduces to:
argmin
bi∈{−1,1}

−fibi (5)

To minimize Eqn. 5, the sign of bi should be consistent with
the sign of fi, thus we can obtain the solution as follows:

bi =

{
1 if fi ≥ 0

−1 if fi < 0
(6)

It can be seen that the solution is equivalent to the traditional
iris code (Eqn. 1) if we replace all the −1 by 0 in the obtained
iris code b, and it does not change the hamming distance given
two iris codes. On the other hand, from the perspective of
optimization, an explanation is that the solution of Eqn. 5 is
equivalent to the solution of the following problem in binary
feature space:

argmin
bi∈{0,1}

−fibi (7)

Based on the above illustration, we can explain the tradi-
tional method of iris code production as follows. Given an
unwrapped iris image, the extracted feature values construct a
n-dimensional feature vector. In each dimension of the feature
vector, two anchor points are set at −1 and 1. The traditional
method of iris code production binarizes a feature value by
assigning it to the nearest anchor point at the corresponding
dimension (i.e. Eqn. 2).

B. Iris code production using additional objective terms

Based on the derivation from Eqn. 2 to Eqn. 7 in sec-
tion II-A, Eqn. 2 formulating the traditional iris code produc-
tion can be rewritten into the following equivalent problem:

argmin
bi∈{0,1}
i=1,2,...,n

−
∑
i

fibi (8)

Based on Eqn. 8, we can use more complex models to
obtain iris codes by adding terms to the objective function of
this optimization problem. We expect that, by adding proper
objective terms, we are able to obtain more effective iris codes.
In this subsection, we investigate two additional objective
terms for iris code production. Note that, in the rest of this
paper, we apply both additional objective terms to Eqn. 8, so
they are designed based on bi ∈ {0, 1} , i = 1, 2, ..., n. In
implementations, bi ∈ {0, 1} and bi ∈ {−1, 1} are equivalent
for the additional objective term 1, but bi ∈ {0, 1} is necessary
for the additional objective term 2.

Additional objective term 1. This objective term exploits
the spatial relationship of the bits in different positions of an
iris code. Traditional iris code production method binarizes the
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feature values in different positions individually (as shown in
Eqn. 1 and Eqn. 6). In other words, it considers each feature
value separately. However, as studied in [1], [34], the iris
texture has inherent correlations along the radial direction.
For example, as pointed out in [1], [34], a furrow or ciliary
pattern tends to propagate in the radial direction. Therefore, as
a feature representation of iris patterns, the bits in an iris code
should be dependent along the vertical direction. In this paper,
due to the binary nature of iris codes, we assume that such
a vertical dependency will lead to a vertical bit-adjacency in
an iris code. Accordingly, our first objective term exploits the
vertical bit-adjacency in an iris code. It is defined as follows:∑

i

∑
j∈Ni

|bi − bj | (9)

where N i denotes two immediate vertical neighbors of bit i:
one at the top of i and one at the bottom of i. Minimizing
Eqn. 9 with respect to bi ∈ {0, 1} , i = 1, 2, ..., n prompts
each bit in an iris codes to have the same value as its vertical
neighbors. Incorporating Eqn. 9 into Eqn. 8 leads to the
following optimization problem:

argmin
bi∈{0,1}
i=1,2,...,n

∑
i

(−fi)bi + α
∑
i

∑
j∈Ni

|bi − bj | (10)

where α is a parameter controlling the trade-off between
the influence of the sign of feature values and the vertical
adjacency of iris codes. Eqn. 10 is a first order Markov
Random Field with binary labels. It can be solved via graph
cuts [35], [36].

Additional objective term 2. This objective term aims to
mitigate the influence of less reliable bits in iris codes. Some
bits in iris codes are less reliable. Specifically, after Gabor
transform, the value of some obtained features are close to the
axes in complex Gabor feature space (considering a feature
value as a point in complex Gabor feature space, with the
real and imaginary parts as the coordinate of this point). Or
equivalently, the value of some features are close to the origin
in the feature space (i.e. close to 0), if we consider the real
and imaginary parts separately. As investigated in [23], the
bits corresponding to such feature values are less reliable. The
reason is as follows. Since such feature values are close to
the origin, the noise on these feature values are more likely to
change their sign. As a result, in the traditional iris code based
on the sign of feature values, the bits corresponding to these
feature values are more likely to flip between 0 and 1 under
the influence of noise. The flipping of these bits may cause
false non-matching in intra-class comparisons, given multiple
captures of the same iris. Thus, such bits are less reliable. In
other words, a bit is less reliable if the corresponding feature
value is close to the origin in the feature space, since such bits
are less stable in iris codes.

From the above description of less reliable bits, we can
find that the main reason of their low reliability is their
low stability: they are more likely to flip between 0 and 1.
Therefore, additional objective term 2 aims to improve the
reliability of these bits by suppressing their flipping to enhance
their stability. This objective term assigns uniform bit values

to the bits with the corresponding feature values close to the
origin (i.e. less reliable bits). By doing this, the value of such
bits are no longer influenced by the sign of their corresponding
feature values which is less stable (as described above, the
sign of a feature value is likely to be changed by noise if this
feature value is close to the origin). Thus, we expect that the
obtained iris code is more stable and hence more effective.

In this paper, we design the additional objective term 2 to
assign less reliable bits uniform bit values of 0. The reason of
using 0 rather than 1 is that we find it is more concise to be
formulated as an objective term (Eqn. 11). Correspondingly,
in the iris code obtained by additional objective term 2, the bit
corresponding to a positive feature value close to the origin
will have a different bit value from the traditional iris code,
while the value of the other bits is the same between the iris
code obtained by additional objective term 2 and the traditional
iris code.

Additional objective term 2 is formulated as follows:∑
i

∑
j 6=i

bibj (11)

It is obvious that (1) minimizing Eqn. 11 with respect to bi ∈
{0, 1} , i = 1, 2, ..., n encourages a bit to be assigned a value of
0. Furthermore, we can see that Eqn. 11 also models a pairwise
correlation of the bits in an iris code. We will show that (2)
such pairwise correlation derives a threshold to determine if
a bit is less relibale. The overall effect of (1) and (2) is that
this objective term assigns bit values of 0 to the found less
reliable bits, while it does not influence the value of the other
bits.

Incorporating Eqn. 11 into Eqn. 8 leads to the following
optimization problem:

argmin
bi∈{0,1}
i=1,2,...,n

−
∑
i

fibi + β
∑
i

∑
j 6=i

bibj (12)

where β is a parameter balancing between the first term and
the second term.

Solving Eqn. 12 with respect to bi leads to the following
problem:

argmin
bi∈{0,1}

−

fi − β∑
j 6=i

bj

 bi (13)

To minimize the objective function, the solution for bi is as
follows:

bi =


1 if fi − β

∑
j 6=i

bj ≥ 0

0 if fi − β
∑
j 6=i

bj < 0
(14)

It can be seen that Eqn. 14 essentially shifts the feature value
towards the negative direction, and it calculates bi based on the
sign of the shifted feature value. By doing this, positive feature
values near to the origin (lower than β

∑
j 6=i

bj) will change

their signs, and hence the corresponding bits are assigned
bit values of 0 instead of 1 (i.e. these bits are considered to
be less reliable). In Eqn. 14, the shift applied to the feature
value, β

∑
j 6=i

bj , essentially serves as the threshold to determine
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Algorithm 1: Solving Eqn. 12
Input : vector of feature values f ; parameter β

1 Initialization: obtaining b0 by binarizing f based on the
sign of its elements ( Eqn. 2); t = 0;

2 while not converge do
3 b̃t = ‖bt‖22 − bt;
4 f̃ t = f − βb̃t;
5 compute bt+1 by binarizing f̃ t based on the sign of

its element;
6 t← t+ 1;
7 end

Output: b

if a bit is less reliable (i.e. near to the origin). bi will be
considered less reliable and assigned a bit value of 0 instead
of 1 only if the corresponding feature value (fi) is positive
but its distance to the origin is lower than β

∑
j 6=i

bj . It can

be seen that this threshold is dynamic and it is derived by
solving the optimization problem with additional objective
term 2 (Eqn. 12). Eqn. 14 only focuses on the less reliable bits
corresponding to positive feature values. The reason is that, as
illustrated above, the additional objective term 2 is designed to
assign uniform bit values of 0 to all less reliable bit; therefore,
it does not consider the less reliable bits corresponding to
negative feature values, since their bit values are already 0.

According to Eqn. 14, the solution for bi depends on the
values of the other bits. Similarly, the solution of the other
bits also depends on the value of bi. Therefore, the final iris
code should be sought by an iterative algorithm with each of
its bits updated in every iteration, until the objective function
in Eqn. 12 converges to a minimum. To improve the efficiency
of the iterative algorithm, we write the solution of Eqn.12 into
a vector form as follows. Let bt = [bt1, b

t
2, ..., b

t
n]

T ∈ Rn be
the iris code at the tth iteration. We define b̃t = ‖bt‖22 − bt

(note that the ith element of b̃t is equal to
∑
j 6=i

btj). Then, bt+1

can be calculated based on the sign of each element in f −
βb̃t, similarly to Eqn. 14. At the beginning of the iterative
algorithm, the iris code is initialized based on the sign of f
(i.e. the same as traditional iris code). The whole algorithm is
summarized in Algorithm. 1.

We show an example in Fig. 1 to illustrate the process of
iris code production using Algorithm. 1. In this figure, we use
a 5 × 5 patch as an example. This patch is extracted from
the real process of iris code production for an unwrapped iris
image using additional objective 2 (Algorithm. 1). We show
the relevant results on this patch in each iteration during the
process of iris code production.

In Fig. 1, each column corresponds to one iteration of Algo-
rithm. 1, and the first column corresponds to the initialization
stage. Within each column of Fig. 1, we order the sub-figures
so that the result in a sub-figure depends on the result in its
above sub-figure; the result in the top sub-figure of a column
depends on the result in the bottom sub-figure of the previous
column. In all, in Fig. 1, the flow of the algorithm is from top
to bottom, from left to right.

Algorithm 2: Combining the two objective terms
Input : vector of feature values f ; parameter α, β

1 Initialization: obtaining b0 by binarizing f based on the
sign of its elements ( Eqn. 2); t = 0;

2 while true do
3 b̃t = ‖bt‖22 − bt;
4 f̃ t = f − βb̃t;
5 obtain bt+1 by binarizing f̃ t based on the sign of its

element;
6 if convergence then
7 compute b∗ ∈ {0, 1}n by solving Eqn. 10 with f̃ t

as the vector of feature values;
8 break;
9 end

10 t← t+ 1;
11 end

Output: b∗

It can be seen that, in the first iteration (the second column
from the left in Fig. 1), the produced iris code (b1 in Fig. 1(e))
includes more zeros than the initial iris code (b0 in Fig. 1(b)).
This is because a shift (βb̃0 in Fig. 1(c)) is applied to the
initial feature values (f in Fig. 1(a)), and the shifted feature
(f̃0 in Fig. 1(d)) includes more negative values.

Then, in the second iteration (the third column from the
left in Fig. 1), the shift for feature values (βb̃1 in Fig. 1(f)) is
generally lower than the shift in the previous iteration (βb̃0 in
Fig. 1(c)). The reason is that the shift is calculated based on
the iris code in the previous iteration; since b1 includes more
zeros than b0, βb̃1 is lower than βb̃0. The lower shift leads that
the shifted features in this iteration (f̃1 in Fig. 1(g)) include
less negative values than that in the previous iteration (f̃0 in
Fig. 1(d)). Therefore, the obtained iris code in this iteration
(b2 in Fig. 1(h)) includes less zeros than that in the previous
iteration (b1 in Fig. 1(e)).

Finally, in the third iteration (last column from the left), the
shift for feature values (βb̃2 in Fig. 1(i)) becomes larger than
the shift in the previous iteration (βb̃1 in Fig. 1(f)), because b2

(Fig. 1(h)) contains less zeros than b1 (Fig. 1(e)). It leads that
the produced iris code in this iteration (b3 in Fig. 1(k)) has
more zeros than that in the previous iteration (b2 in Fig. 1(h)).
In our experiment, the iris code at this 5 × 5 patch does not
change after the third iteration, while the iris code of the whole
image does not change after the seventh iteration.

From the above example, we can see that the Algorithm. 1
iterates between smaller and larger shifts of the feature values
(shown in Fig. 1(c), Fig. 1(f) and Fig. 1(i)) to produce iris
codes with less or more zeros (shown in Fig. 1(e), Fig. 1(h)
and Fig. 1(k)). In this case convergence means that, in an
iteration, a shift for each dimension is found, such that, in the
next iteration, another shift larger or lower than this shift for
each dimension does not change the obtained iris code. This
shift essentially defines the separation points of the feature
values corresponding to less reliable and reliable bits: a bit
is considered less reliable if the corresponding feature value
is positive but its distance to the origin is lower than this
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-0.4240 0.0746 0.3801 0.3962 0.2686

-0.4594 -0.0160 0.3091 0.4232 0.3483

-0.5419 -0.2203 0.0437 0.2137 0.2430

-0.6513 -0.5332 -0.4397 -0.2784 -0.0786

-0.8300 -0.8485 -0.8300 -0.6084 -0.4240

(a) f

0 1 1 1 1

0 0 1 1 1

0 0 1 1 1

0 0 0 0 0

0 0 0 0 0

(b) b0

0.2531 0.2531 0.2531 0.2531 0.2531

0.2531 0.2531 0.2531 0.2531 0.2531

0.2531 0.2531 0.2531 0.2531 0.2531

0.2531 0.2531 0.2531 0.2531 0.2531

0.2531 0.2531 0.2531 0.2531 0.2531

(c) βb̃0 = β
(∥∥b0∥∥2

2
− b0

)
-0.6771 -0.1784 0.1270 0.1431 0.0155

-0.7125 -0.2691 0.0561 0.1701 0.0952

-0.7950 -0.4734 -0.2094 -0.0393 -0.0101

-0.9044 -0.7863 -0.6928 -0.5315 -0.3317

-1.0831 -1.1016 -1.0831 -0.8615 -0.5061

(d) f̃0 = f − βb̃0

0 0 1 1 1

0 0 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

(e) b1

0.2074 0.2074 0.2073 0.2073 0.2073

0.2074 0.2074 0.2073 0.2073 0.2073

0.2074 0.2074 0.2074 0.2074 0.2074

0.2074 0.2074 0.2074 0.2074 0.2074

0.2074 0.2074 0.2074 0.2074 0.2074

(f) βb̃1 = β
(∥∥b1∥∥2

2
− b1

)
-0.6314 -0.1327 0.1727 0.1889 0.0612

-0.6667 -0.2234 0.1018 0.2158 0.1409

-0.7493 -0.4277 -0.1637 0.0064 0.0356

-0.8586 -0.7405 -0.6470 -0.4857 -0.2859

-1.0373 -1.0559 -1.0373 -0.8158 -0.4240

(g) f̃1 = f − βb̃1

0 0 1 1 1

0 0 1 1 1

0 0 0 1 1

0 0 0 0 0

0 0 0 0 0

(h) b2

0.2153 0.2153 0.2153 0.2153 0.2153

0.2153 0.2153 0.2153 0.2153 0.2153

0.2153 0.2153 0.2153 0.2153 0.2153

0.2153 0.2153 0.2153 0.2153 0.2153

0.2153 0.2153 0.2153 0.2153 0.2153

(i) βb̃2 = β
(∥∥b2∥∥2

2
− b2

)
-0.6394 -0.1407 0.1647 0.1809 0.0533

-0.6747 -0.2314 0.0938 0.2078 0.1329

-0.7572 -0.4356 -0.1717 -0.0016 0.0276

-0.8666 -0.7485 -0.6550 -0.4937 -0.2939

-1.0453 -1.0639 -1.0453 -0.8238 -0.4684

(j) f̃2 = f − βb̃2

0 0 1 1 1

0 0 1 1 1

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

(k) b3

Fig. 1: An example of iris code production using additional objective 2 (Algorithm. 1). This example is based on a 5×5 patch
extracted from the real process of iris code production for an unwrapped iris image using additional objective 2 (Algorithm.
1). Each column represents an iteration, and the first column corresponds to the initialization stage. Within each column, the
result in a sub-figure depends on the result in its above sub-figure; the result in the top sub-figure of a column depends on the
result in the bottom sub-figure of the previous column. The overall flow of the algorithm in this figure is from top to bottom,
from left to right. We use red color to mark the less reliable bits sought by the algorithm, and we use green color to mark a
possible new less reliable bit introduced by the algorithm.

shift, and all such less reliable bits will be assigned uniform
bit values of 0. Note that the algorithm only focuses on the
less reliable bits with positive feature values and the reason is
explained before.

Specifically, for the 5×5 patch in Fig. 1, the final separation
points are defined by βb̃2 in Fig. 1(i). We use red color to
mark the less reliable bits corresponding to the final separation
points in Fig. 1. Investigating the original feature values in f
in Fig. 1(a), we can see that the feature values marked red
(corresponding to less reliable bits) are closer to the origin (0)
than the other positive feature values, and there is a generally
large difference between the feature values marked red and
the other positive feature values.

Also, we find that the Algorithm. 1 to solve Eqn. 12 may
introduce new less reliable bits, since some other positive
feature values may be shifted to be near to the origin. One
possible new less reliable bit is mark green in Fig. 1. As
shown in Fig. 1(j), the shifted feature value of this bit is
close to the origin in the last iteration. However, in our
experiment, we find that, although additional objective term
2 may introduce new less reliable bits, it generally leads to an
improved performance, either as an individual additional term
(Eqn. 12) or in the proposed combined scheme of the two
terms (please see the experimental results in section III-B).
We think a possible reason is that, the positive feature values
above the separation points found by solving Equ. 12 (i.e.
using additional objective term 2) are inherently more reliable.

Finally, the convergence of Algorithm. 1 depends on the
parameter β. The algorithm will not converge if β is too large.
We use the patch in Fig. 1 as an example. When β is a very
large positive number, it is possible that the shift in the first
iteration (βb̃0 in Fig. 1(c)) is larger than all the feature values
in f (Fig. 1(a)); it leads that the shifted feature values in

Fig. 1(d) are all negative; this finally results a b1 with all
zeros; then, in the next iteration, since b1 are all zeros, the
shift in Fig. 1(f) will be all zeros as well; therefore, the shifted
feature values in Fig. 1(g) will be the same as f in Fig. 1(a),
and the produced iris code in Fig. 1(h)) will be the same as
the initial iris code; the solution will alter between a vector of
zeros and the traditional iris code in the following iterations.
In our experiment, we find that, in most of the cases, the
algorithm converges with a proper choice of β, while it does
not converge with an improper β. Please see the experiment
section on the setting of β in our experiment.

Combine the two objective terms. We propose a simple
yet effective scheme to combine the two additional objective
terms. Given a vector of feature values f , we firstly use
additional objective term 2 to mitigate the influence of less
reliable bits, i.e. solving Eqn. 12 by Algorithm 1. Then, in the
iteration where Algorithm 1 converges, instead of producing
the iris code based on the sign of shifted feature values
f̃ t = f − βb̃t (see Algorithm 1), we calculate the final iris
code by solving Eqn. 10 using f̃ t as the input (i.e. using the
elements of f̃ t as the fi in Eqn. 10). In other words, in the
iteration where Algorithm 1 converges, we seek the final iris
code by applying additional objective term 1 to the shifted
feature values, in order to exploit the spatial relationship. This
scheme essentially combines the effect of the two additional
objective terms. First, it shifts the feature values to prompt
the less reliable bits to be assigned uniform bit values using
additional objective term 2. Then, given the shift feature
values, it seeks the final iris code by exploiting the spatial
relationship of the bits using additional objective term 1. The
whole algorithm is summarized in Algorithm 2.

In Fig. 2, we show examples of (1) traditional iris code,
(2) the iris code produced by additional objective term 1, (3)
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the iris code produced by additional objective term 2 and (4)
the iris code produced using the combined scheme of the two
additional objective terms. All the iris codes are obtained from
the same unwrapped iris image. In the figures of the iris codes
(2), (3) and (4), we mark the bits that are different from the
traditional iris codes (i.e. the changed bits due to the additional
objective terms). We use red colour to mark the bits being 1 in
the traditional iris code but being 0 in the current iris code, and
we use blue colour to mark the bits being 0 in the traditional
iris code but being 1 in the current iris code.

It can be seen that, in the iris code produced by additional
objective term 1 (Fig. 2(b)), the regions of 1 and 0 are
more adjacent, compared to the traditional iris code. Some
small regions of 1 or 0 surrounded by large regions with a
different bit value in the traditional iris code are assigned
the same bit value as their surrounding regions in the iris
code produced by additional objective term 1, due to the
exploited spatial dependency. In the iris code produced by
additional objective term 2 (Fig. 2(c)), the value of some bits
in the boundary between the regions of 1 and 0 changes to
0, in comparison to the traditional iris code. It is because the
boundary between the regions of 1 and 0 is usually where the
feature values change their signs; the feature values located
at these boundaries are more likely to be close to the origin,
so the corresponding bits are more likely to be less reliable.
Finally, in the iris code produced by the combined scheme
(Fig. 2(d)), we find the effect of both objective terms. Some
bits located at the boundary between the regions of 1 and 0
change to 0 in comparison to the traditional iris code, while
the spatial dependency of the bit values is exploited as well.

We note that an alternative method to combine the two
additional objective terms is to apply them jointly as follows:

argmin
bi∈{0,1}
i=1,2,...,n

∑
i

(−fi)bi + α
∑
i

∑
j∈Ni

|bi − bj |+ β
∑
i

∑
j 6=i

bibj

(15)
We do not adopt this combination method due to three reasons.
First, minimizing Eqn. 15 requires an iterative algorithm
solving a first order MRF with binary labels in each iteration; it
is computationally more expensive. Second, we experimentally
find that, with Eqn. 15, it is difficult to seek a proper
combination of the parameters α and β to achieve a good
trade-off between the three terms. Third, we experimentally
find that the proposed method of combination is sufficient to
achieve an improved performance with less effort in parameter
tuning and computation.

III. EXPERIMENT

In this section, we conduct experimental analysis to the
proposed optimization method to produce iris codes. Firstly,
we introduce our experimental setting, including datasets,
parameter setting and performance evaluation (section III-A).
Then, to study the effect of the proposed method for iris
code production, we compare the performance between the
traditional iris code and the iris codes produced by the
proposed methods (section III-B). After that, we perform
separate analysis on the proposed additional objective term 1
(section III-C) and additional objective term 2 (section III-D),

(a)

(b)

(c)

(d)

Fig. 2: Examples of the iris codes produced by different
methods. (a): Traditional iris code; (b): the iris code produced
using additional objective term 1; (c): the iris code produced
using additional objective term 2; (d): the iris code produced
using the combined scheme of the two objective terms. In (b),
(c) and (d), the colours mark the changed bits in comparison to
the traditional iris code. The red colour marks the bits being 1
in the traditional iris code but being 0 in the current iris code;
the blue colour marks the bits being 0 in the traditional iris
code but being 1 in the current iris code.

aiming to gain a deeper insight into the two objective terms.
Finally, we report the computational load of the proposed
methods (section III-E).

A. Experimental setting

Datasets. We conduct the experiments on four bench-
mark datasets: CASIA.v4 thousand [37], ND-iris-0405 [38],
CAISA.v4 distance [37] and UBIRIS.v2 [39]. The four
datasets cover iris data with varying qualities. We show
example images of the four datasets in Fig. 3, and we report
the information of the data used in our experiment in Tab. I.

CASIA.v4 thousand (also referred as CASIAT in this paper)
is a large scale dataset consisting of 2000 eyes from 1000 sub-
jects, captured in near-infrared (NIR) wavelength and a close
distance. The dataset includes 20, 000 images captured by a
commercial IKEMB-100 camera. The images in this dataset
have a high overall quality, despite the influence of glasses and
specular reflections in some images. In our experiment, we use
CASIA.v4 thousand dataset to represent the iris captures with
a satisfactory quality for iris recognition. Correspondingly, we
eliminate the images where the iris segmentation fails (we
will introduce details on iris segmentation later), since such
images usually have a higher noise level which causes the iris
segmentation failure.

ND-iris-0405 (also referred as ND0405 in this paper) is
a large-scale dataset captured in NIR wavelength and at a
close distance. The current version of this dataset includes
64, 982 iris images from 712 eyes, captured by a LG2200
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(a) (b) (c) (d)

Fig. 3: Examples of the images in all the datasets used in our
experiment. (a): CASIA.v4 thousand; (b): ND-iris-0405; (c):
CASIA.v4 distance; (d): UBIRIS.v2.

iris imaging system. Many real-world conditions occur in
this dataset, leading to degradations in the captures, including
blurring, eyelids occlusion, specular reflection, rotation, off-
angle, etc. Also, some subjects wear soft contact lenses which
cause distortion on iris textures. In our experiment, we use
ND-iris-0405 dataset to represent the iris data of a relatively
higher quality, with good resolution and clear iris texture, but
suffering from some noise and degradations due to real-world
conditions. We use a subset of ND-iris-0405 consisting of the
first 8 images of each eye, and we eliminate some images with
too small eye region from the subset.

CASIA.v4 distance (also referred as CASIAD in this paper)
is a dataset captured at a distance under NIR wavelength. It
includes both eyes from 142 subjects. The stand-off distance
is around 3 meters. The images include most of facial features
and patterns. The eye region of most images suffers from
blinking, eyelids occlusion, specular reflection and motion
blur. In our experiment, we use CASIA.v4 distance dataset
to represent the iris data with a relatively lower quality. The
captures suffer from the information loss and noise due to
the distant capture. We conduct the experiment on a subset of
CASIA.v4 distance dataset constructed as follows. We employ
all the images from both left and right eyes of all the subjects
in our experiment. We detect left and right eye regions from
the images using classical Viola-Jones object detector [40].
We correct false detections manually, and we eliminate some
images with too small iris regions.

UBIRIS.v2 (also referred as UBIRIS2 in this paper) is a
colour iris dataset captured with dynamic lighting condition-
s. The whole dataset consists of 11, 102 images from 261
subjects. The stand-off distance is between 3 and 8 meters.
The images are influenced by specular reflection across the
eye region, eyelids occlusion, off-angle and blurring. In our
experiment, we use UBIRIS.v2 dataset to represent the iris
captures with heavy noise, due to a combination of distant
capture and colour wavelength. We conduct the experiment on
a subset of UBIRIS.v2 with 1000 images from 171 eyes. This
subset was released for NICE II contest [41]. For UBIRIS.v2,
we operate on the illumination (Y) channel of YCbCr colour
space.

The iris segmentation is performed as follows. For CA-
SIA.v4 thousand dataset which represents the captures with
a generally satisfactory quality, we apply Hough transform
to the result of Canny edge detection to seek two circular

TABLE I: Information on the data used in our experiment.

Dataset Eyes Images Wavelength Image quality
CASIAT 1790 12108 NIR Highest
ND0405 712 5613 NIR Higher
CASIAD 284 5037 NIR Lower
UBIRIS2 171 1000 Visible Lowest

TABLE II: Parameter setting on each dataset; recall that n is
the number of bits in an iris code

Dataset α β wavelength sigmaOnf
CASIAT 1.2 1/2n 22 0.48
ND0405 1.2 1/2n 35 0.49
CASIAD 1.2 1/2n 19 0.48
UBIRIS2 0.3 1/2n 40 0.38

boundaries for limbus and pupil. For this dataset, we manually
eliminate the images with the segmentation failure in limbic
or pupillary boundary. The reason is that the images with
failure in the segmentation of the two boundaries usually have
a higher noise level, and we eliminate them to keep the data
representing high quality iris captures. The eyelids, shadow
and reflections are detected using the algorithm in [42] for
the remaining images in CASIA.v4 thousand dataset. For the
other three noisy iris datasets, we employ the algorithm in [42]
for iris segmentation, including the segmentation of limbus
and pupil, and the detection of eyelids, reflection and shadow.
The segmentation failures are corrected manually, so that most
noisy captures are preserved in these three datasets, enabling
them to represent iris captures with varying noise level. The
size of unwrapped iris image is set to 100× 360. We use 1-D
log-Gabor filter [43] to produce the feature values given an
unwrapped iris image.

We set the gallery and probe images on each dataset as
follows. For CASIA.v4 thousand dataset, we use the first
image of each eye as gallery image, and we use the remaining
images as probe images. For ND-iris-0405 dataset, we use
the first 2 images of each eye as gallery images, and we use
the rest of the images as probes. For CASIA.v4 distance and
UBIRIS.v2 datasets, we use the first 5 images of each eye as
gallery images, and we use the rest of the images as probe
images. The number of gallery images is chosen based on the
image quality of each dataset. We use more gallery images for
the datasets with lower quality.

Parameter tuning and performance evaluation. We use
exclusively separated data for parameter setting and perfor-
mance evaluation. For CASIA.v4 thousand dataset, we use the
first 50 eyes to tune the parameter, and we use the remain-
ing 1740 eyes for performance evaluation. For ND-iris-0405
dataset, we use the first 20 eyes to tune the parameters, and
we use the remaining 692 eyes to evaluate the performance.
For CASIA.v4 distance dataset, we use the first 20 eyes to
tune the parameters, and we use the remaining 264 eyes to
evaluate the performance. For UBIRIS.v2 dataset, we use the
first 19 eyes to tune the parameters, and we use the remaining
152 eyes to evaluate the performance.

There are 4 parameters to be determined in the proposed
method of iris code production: α is the parameter in our
method based on additional objective term 1 (Eqn. 10), β is
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the parameter in our method based on additional objective
term 2 (Eqn. 12), wavelength and sigmaOnf are 1-D log-Gabor
parameters. Based on the above described data for parameter
setting, we set these parameters as reported in Tab. II. We
find that for additional objective term 2, β = 1/2n achieves
a generally good convergence and performance on all the
datasets. As for additional objective term 1, the α on colour
dataset (UBIRIS.v2) is lower than that on NIR datasets. We
think the reason is that colour iris images contain a relatively
higher amount of noise, and using a small α on colour data
is able to prevent the bit-adjacency term incorrectly spreading
the influence of noise bits in an iris code.

We evaluate the performance in two tasks: identification and
verification. The identification performance is evaluated by
cumulative match characteristic (CMC), while the verification
performance is evaluated by receiver operating characteristic
(ROC).

B. Comparison with traditional iris codes
In this subsection, we make comparisons between the tradi-

tional iris code and the iris code produced by the proposed
methods. Specifically, we compare the performance of the
following four iris codes: traditional iris codes which binarize
feature values based on their signs as baseline (referred as
Baseline); the proposed iris code using additional objective
term 1 (referred as Proposed OT1); the proposed iris code
using additional objective term 2 (referred as Proposed OT2);
the proposed iris code using the combined scheme of the two
additional objective terms (referred as Proposed Comb). We
show the CMC and ROC curves of all the comparison methods
on all the datasets in Fig. 4.

It can be seen that the performance varies on NIR datasets
(CASIAT, ND0405, CASIAD) and colour dataset (UBIRIS2).
Considering the result on NIR datasets, we find that Pro-
posed OT1 and Proposed OT2 generally achieve better CMC
and ROC performance, in comparison to Baseline. This result
demonstrates that we can obtain more effective iris codes
by modeling the spatial relationship of the bits in iris codes
(Proposed OT1) or mitigating the influence of less reliable bits
in iris codes (Proposed OT2), using additional objective terms.
Furthermore, we find that Proposed Comb generally achieves
the best rank 1 recognition accuracy in the CMC curves and
the best ROC curve, in comparison to the other methods. This
result shows that, by combining the two additional objective
terms using our scheme, we are able to obtain more effective
iris codes, from the same feature vector, than using each
individual additional objective term, or using no additional
objective terms (i.e. Baseline). Especially, Proposed Comb
achieves a generally improved performance compared to Pro-
posed OT1. The difference between the Proposed Comb and
Proposed OT1 is that, Proposed Comb computes an iris code
by applying additional objective term 1 to the processed
feature values using additional objective term 2 (i.e. the feature
values are shifted by solving Eqn. 12), while Proposed OT2
computes an iris code by directly applying additional objective
term 1 to the original feature values. In other words, with the
same objective term of spatial relationships (additional objec-
tive term 1), the feature values obtained based on additional

objective term 2 perform better than the original feature values.
This observation validates the effectiveness of the proposed
additional objective term 2 in handling less reliable bits from
another aspect.

The only exception on NIR datasets is that, on ND0405,
Proposed OT2 has a lower rank 1 recognition accuracy
than Baseline (see Fig. 4(b)). However, on ND0405, Pro-
posed Comb still achieves a better rank 1 recognition accuracy
than Proposed OT1. In other words, although additional ob-
jective term 2 has a lower rank 1 recognition accuracy than
Baseline on ND0405, applying additional objective term 1 to
the feature values produced by additional objective term 2
still leads to a better performance than applying additional
objective term 1 directly to the original feature values. This
result supports the effectiveness of additional objective term
2. Also, Proposed OT2 still has an improved ROC curve
compared to Baseline on ND0405 (see Fig. 4(f)).

On the other hand, for the colour dataset (UBIRIS.v2), we
find that applying the additional objective terms leads to little
improvement compared to Baseline. We think a reason is that
the colour captures in this dataset include too heavy noise. The
heavy noise induces a large amount of highly unreliable feature
values. Consequently, the spatial relationship exploited based
on these feature values is less reliable (Proposed OT1), and the
performance is also less likely to improve by only handling the
feature values close to the origin (Proposed OT2). Therefore,
adding these objective terms leads to similar performance to
Baseline.

Since the above results show that the noise in iris captures
may influence the performance of the proposed iris code,
we conduct an experiment to further explore the influence
of noise on the proposed method. This experiment is based
on the iris matching result on four low quality subsets of
CASIAD dataset. Specifically, given the probe set of CASIAD
as described in section III-A, we select four low quality subsets
from this probe set. These four low quality subsets correspond
to the images with low quality in four quality measures: focus,
motion, off-angle and occlusion, respectively (we calculate
these quality measures using the method in [44], [45]). Each
low quality subset includes the images with the lowest 10%
quality in the probe set, corresponding to one of the four
quality measures above. We perform iris matching between the
full gallery set of CASIAD and each of the four low quality
subsets, and we investigate the performance of different iris
codes on different low quality subsets. Note that we only
perform quality selection for the probe set and we preserve
the full gallery set. It simulates the scenario that, in real
applications, the gallery set usually remains unchanged after
registration phase, and the variation of noise types and noise
levels mainly exist in the probes.

In Fig. 5, we show the CMC and ROC curves of different
iris codes on each low quality subset. Following our previous
notations, we use Baseline to refer to the performance of tra-
ditional iris code, and we use Proposed OT1, Proposed OT2,
Proposed Comb to refer to the performance the proposed iris
code using additional objective term 1, additional objective
term 2 and the combined scheme, respectively. Moreover, in
each subfigure, we include the performance of the traditional
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Fig. 4: Comparison of different iris codes.
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Fig. 5: CMC and ROC curves on CASIAD subsets with low quality.

iris code on the full gallery and probe sets of CASIAD
(referred as Baseline full in Fig. 5). We use Baseline full as
a reference performance of the iris codes on general data in
CASIAD without specific selection based on image quality.

We have several observations from the result in Fig. 5. First,
Baseline performs worse than Baseline full on all the four low
quality subsets. This is less surprising since the probe set used
by Baseline has a significantly lower quality than that used by
Baseline full: each low quality subset includes the data with
the lowest 10% quality corresponding to a quality measure in
the full probe set.

Second, the noise in each low quality subset is not high
enough to influence the verification performance (ROC) of
the proposed iris codes. It can be seen that the ROC curves

in Fig. 5 is consistent with that in Fig. 4(g): Proposed OT1
and Proposed OT2 perform better than Baseline, and Pro-
posed Comb performs the best among all the iris codes.

Third, the noise in some low quality subsets is high enough
to influence the identification performance (CMC) of the
Proposed Comb. It can be seen that, in Fig. 5(b), Fig. 5(c)
and Fig. 5(d), although Proposed OT1 and Proposed OT2
still achieve generally better performance than Baseline, Pro-
posed Comb show little improvement over Proposed OT1
and Proposed OT2. We think a possible reason is that the
noise level in each subset is not high enough to influence
the iris code produced by each individual additional objective
term (Proposed OT1 and Proposed OT2), but the combined
scheme accumulates the noise in each individual result, hence
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(a) Image pair (b) Proposed OT1 (c) Proposed OT2 (d) Proposed Comb

(e) Scaled examples, Proposed OT1 (f) Scaled examples, Proposed OT2 (g) Scaled examples, Proposed Comb

Fig. 6: Effect of the proposed iris codes. (a): A pair of unwrapped iris images from the same eye in CASIA.v4 thousand
dataset; (b)-(d): the regions that are falsely not matched in the traditional iris code but correctly matched in the iris code
produced by Proposed OT1, Proposed OT2, Proposed Comb, respectively; we use red color to mark the edge of such regions
in each image; (e)-(g): upscaled examples of the regions in (b)-(d), respectively; each column in (e)-(g) is a pair of image
patch at the same position in the two unwrapped images; note that the contrast of each patch in (e)-(g) is enhanced for better
visual inspection.

Proposed Comb is influenced by the accumulated noise and
its performance is impaired.

Investigating the performance in the figures with an order of
Fig. 4(c)/Fig. 4(g), Fig. 5, Fig. 4(d)/Fig. 4(h), we can obtain
an insight on how the noise influences the performance of
the proposed iris code (note that we think the noise level is
Fig. 4(c)/Fig. 4(g) < Fig. 5 < Fig. 4(d)/Fig. 4(h); it is consis-
tent with the performance shown in these figures). Beginning
with Fig. 4(c)/Fig. 4(g), the increasing of noise level will firstly
harm the intra-class consistency of the proposed iris code,
leading to an impaired CMC performance of Proposed Comb
as shown in Fig. 5. At the point of Fig. 5, we think that
the noise influences little on the inter-class separation of the
proposed iris code, since the ROC performance of each method
is consistent between Fig. 5 and Fig. 4(g). It may be because
of the inherent randomness of iris textures. Then, starting
from Fig. 5, a further increasing on the noise level begins to
influence the inter-class separation of the proposed iris code,
degrading the ROC performance as shown in Fig. 4(h).

As the final part of this subsection, in Fig. 6, we show some
examples to illustrate how the proposed method improves the
iris matching result, compared to the traditional iris code. In
Fig. 6(a), we show a pair of unwrapped iris images from
the same eye in CASIAT dataset. The two images have
lighting variation (the bottom one is darker), and it leads to
some variation in local textures. In Fig. 6(b), Fig. 6(c) and
Fig. 6(d), using the real part of iris codes as examples, we
mark the regions that are falsely not matched in the real
part of traditional iris code but correctly matched in the real
part of Proposed OT1, Proposed OT2 and Proposed Comb,
respectively. We use red color to mark the edge of such regions
in each figure. The edge is detected by applying Canny edge
detector to a binary image representing the pixels that are
falsely not matched in the traditional iris code but correctly
matched in the proposed iris codes. Furthermore, for better
visual inspection, we scale some of the marked regions in

Fig. 6(b), Fig. 6(c) and Fig. 6(d), and we show the scaled
examples in Fig. 6(e), Fig. 6(f) and Fig. 6(g), respectively.
Note that we enhance the contrast of the scaled region to obtain
a better visual effect.

From the example in Fig. 6(e), we find that Proposed OT1
improves the matching of local textures with imaging varia-
tions in the two captures. It can be seen that, in Fig. 6(e),
the texture within the marked region has imaging variation
between the patches in each pair. For example, in the third
column from right in Fig. 6(e), the marked region in the bottom
patch is darker and has lower contrast, compared to the marked
region in the top patch. We think such imaging variation
on local textures causes false non-matching in the traditional
iris code. However, the marked regions in each patch pair
are correctly matched using Proposed OT1. We think this is
because Proposed OT1 models the spatial relationship in iris
codes: it promotes the bits along the same texture (i.e. with
a spatial relationship) to be adjacent, and this mitigates the
change of bit value due to the imaging variation on local
textures.

Investigating the example in Fig. 6(f), we think that Pro-
posed OT2 enhances the matching of regions corresponding
to less reliable bits under imaging variations. Note that the
marked regions in Fig. 6(f) correspond to less reliable bits
in iris codes. This is because the matching result of these
regions is different between the traditional iris code and
Proposed OT2 (i.e. the corresponding bit in the traditional
iris code is changed in Proposed OT2), and Proposed OT2
only changes the less reliable bits in the traditional iris code.
It can be seen that the marked regions in each patch pair in
Fig. 6(f) are similar but with some variations. We think such
imaging variation in the marked regions causes the flipping
of less reliable bits (recall that a less reliable bit is more
likely to flip between 0 and 1 under the influence of noise).
The flipping of less reliable bits leads to inconsistent bits in
the traditional iris code between the marked regions in each



11

Rank

A
cc

u
ra

cy

(a) CMC, CASIAT

Rank

A
cc

u
ra

cy

(b) CMC, ND0405

Rank

A
cc

u
ra

cy

(c) CMC, CASIAD

Rank

A
cc

u
ra

cy

(d) CMC, UBIRIS2

False acceptance rate

G
en

u
in

e 
ac

ce
p

ta
n

ce
 r

at
e

(e) ROC, CASIAT

False acceptance rate

G
en

u
in

e 
ac

ce
p
ta

n
ce

 r
at

e

(f) ROC, ND0405

False acceptance rate

G
en

u
in

e 
ac

ce
p
ta

n
ce

 r
at

e

(g) ROC, CASIAD

False acceptance rate

G
en

u
in

e 
ac

ce
p
ta

n
ce

 r
at

e

(h) ROC, UBIRIS2

Fig. 7: The experimental results to analyse the spatial relationship of the bits in iris codes.

patch pair, hence resulting false non-matching. In contrast,
Proposed OT2 assigns uniform bit values of 0 to less reliable
bits to suppress their flipping, so the marked regions in each
patch pair are correctly matched using Proposed OT2.

Studying the example in Fig. 6(g), we think that Pro-
posed Comb may achieve both the above mentioned effects.
It improves the matching result of local textures with imaging
variations, and it also enhances the matching result of regions
corresponding to less reliable bits in iris codes. In our opinion,
the left 3 patch pairs in Fig. 6(g) may correspond to the
former case, since the corrected regions in these patch pairs
are mainly thin and nearly vertical regions that are more likely
to correspond to the local texture. Accordingly, the remaining
4 patch pairs are possible to correspond to the latter case.

In all, our experimental results in this subsection show that:
(1) when the iris data is less noisy, the iris code produced by
the proposed method is able to achieve generally improved
identification and verification performance, compared to the
traditional iris code; (2) when the iris data is less noisy,
the combined scheme of the two additional objective terms
leads to a generally improved performance, compared to each
individual objective term; (3) in our experiment, the highest
noise level where (1) and (2) apply is distant NIR captures;
(4) for the iris data with heavier noise (colour captures in our
experiment), the iris code produced by the proposed method
performs similarly to the traditional iris code; (5) the increas-
ing of noise level firstly influences the intra-class consistency
of the proposed iris codes, and the further increasing of noise
level begins to impair the inter-class separation.

C. Analysis of the spatial relationship of the bits in iris codes

The radial correlations of iris textures have been demon-
strated in researches such as [1], [34]. In this subsection, we
study this spatial relationship in iris texture from the point of
view of iris code optimization, using the proposed additional

objective term 1. We perform the analysis by varying the
neighbor type in Eqn. 10, and investigating the performance
of the obtained iris codes using additional objective term 1
with different neighbor types. Intuitively, the best performance
will be achieved by a neighbor type that is closest to the
inherent spatial relationship of iris textures. The reason is
that such neighbour type correctly models the inherent spatial
dependency in iris textures. In contrast, a neighbor type
that is different from the inherent spatial relationship will
introduce an incorrect dependency between the bits that should
be independent; it will harm the randomness of iris codes,
leading to a degraded performance. In other words, only by
using a neighbor type which is closest to the inherent spatial
dependency of iris textures we can obtain the iris code with
the best performance, since it expresses the inherent spatial
relationship in iris textures without influencing the inherent
randomness part of iris codes. We test three basic neighbor
types, vertical neighbor (including 1 top pixel and 1 bottom
pixel of the centre pixel, referred as OT1 Vertical), horizontal
neighbor (including 1 left pixel and 1 right pixel of the
centre pixel, referred as OT1 Horizontal) and cross neighbor
(combination of vertical and horizontal neighbors, referred as
OT1 Cross).

We show the CMC and ROC curves of the iris codes pro-
duced by additional objective term 1 with the three neighbor
types on all the datasets in Fig. 7. We find that, on NIR
datasets, the iris code obtained with the vertical neighbor con-
sistently outperforms the iris code obtained using the other two
neighbor types. As for the colour dataset, although the three
neighbor types have similar ROC curves, the iris code with the
vertical neighbor achieves a slightly better rank 1 recognition
accuracy in the CMC curve. In all, we can conclude that, with
the additional objective term 1, the iris code produced using
the vertical neighbor generally achieves the best performance.
This observation experimentally illustrates that iris texture
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Fig. 8: The experimental results to analyse the proposed additional objective term 2.

has a spatial dependency along the radial direction, from the
perspective of iris code optimization. It is consistent with the
demonstrations in previous researches such as [1], [34].

Finally, we find that the iris code with cross neighbor
performs generally better than the iris code with horizontal
neighbor on all the datasets. We think it is because the cross
neighbor includes the information on vertical relationship,
while the horizontal neighbor does not.

D. Analysis on the effect of additional objective term 2

The proposed additional objective term 2 aims to handle
less reliable bits from the perspective of iris code optimization.
However, in the existing researches, the similar aim can be also
achieved by iris weight map methods, such as [23]–[26]. The
iris weight map methods assign more weight to more reliable
bits in iris matching stage to emphasize more reliable bits and
suppress less reliable bits. Since both the proposed additional
objective term 2 and iris weight map methods are designed
for the same aim, it is necessary to study their comparative
performance.

We choose two representative iris weight map methods to
perform this analysis. The first method is the personalized
weight map in [24]. It represents a general iris weight map
method with real value weights. The second method is the
fisher feature selection in [46]. It represents a special case
of iris weight map methods: the iris weight map with binary
weights. The result of feature selection can be viewed as an
iris weight map with binary weights: a bit is assigned a weight
of 1 if this bit is selected, otherwise the weight of this bit is
0.

In this analysis, we investigate the performance of the fol-
lowing six methods: the traditional iris code (Baseline), the iris
code produced by additional objective term 2 (Proposed OT2),
Baseline selected by the fisher feature selection for iris match-
ing (Baseline FS), Proposed OT2 selected by the fisher fea-
ture selection for iris matching (Proposed OT2 FS), Baseline
with the personalized weight map used for iris matching
(Baseline PW), Proposed OT2 with the personalized weight
map used for iris matching (Proposed OT2 PW). For each
dataset, we calculate the iris weight map for each eye using
the gallery images described in section III-A. With the iris
weight maps, we perform iris matching based on a weighted
Hamming distance. Please see [24] for more details.

We show the CMC and ROC curves of all the methods on
ND-iris-0405, CASIA.v4 distance and UBIRIS.v2 datasets in
Fig. 8. We do not show the results on CASIA.v4 thousand
dataset, because the performance of Baseline PW and Pro-
posed OT2 PW are exactly the same as that of Baseline and
Proposed OT2 respectively on this dataset, due to our single-
image gallery setup. Also, the fisher feature selection is less
applicable with the single-image gallery setup.

We have three main observations from the results in Fig. 8.
First, Baseline FS and Baseline PW perform generally better
than Proposed OT2 on all the datasets. This result demon-
strates that the proposed additional objective term 2 can not
replace the iris weight map methods. A possible reason is that
the iris weight map methods utilizes more information than the
proposed additional objective term 2. Specifically, additional
objective term 2 seeks the less reliable bits in each iris code
separately, while the iris weight map methods compute the bit
reliability using multiple iris codes in gallery. Also, for the
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non-binary iris weight map, the weighted Hamming distance
used for iris matching is more effective than the general
Hamming distance used by Proposed OT2.

Second, Proposed OT2 FS performs generally better than
Baseline FS, similarly for Proposed OT2 PW and Base-
line PW. That is, applying the iris weight map methods to
Proposed OT2 performs better than directly applying the iris
weight map methods to the traditional iris code. This observa-
tion suggests that the iris weight map method is applicable to
the iris code produced by additional objective term 2, and the
performance is better than directly applying the iris weight
map method to the traditional iris code. This observation
validates the effectiveness of additional objective term 2.

Third, on UBIRIS.v2 dataset, the performance is similar
between: (1) Baseline FS and Proposed OT2 FS, (2) Base-
line PW and Proposed OT2 PW. The reason is similar to
the one analysed in section III-B: the high noise level in
colour iris captures influences the performance of the proposed
optimization method for iris code production. As a result, on
this dataset, it makes little difference applying iris weight map
methods to the iris code produced by each method.

Overall, the experimental analysis in this subsection demon-
strates that, in terms of handling less reliable bits, the proposed
method can be combined fruitfully with the iris weight map
methods. The performance is generally better than directly ap-
plying the iris weight map methods to the traditional iris code.
However, the proposed method with additional objective term
2 (Proposed OT2) can not replace alone the iris weight map
methods. This observation demonstrates the effectiveness of
the proposed additional objective term 2 from the perspective
of iris matching.

E. Analysis on the computational cost

The computational cost is a critical factor in real applica-
tions. It is expected that the proposed methods have higher
computational cost than the traditional binarization method.
This is because adding objective terms leads to a more
complex algorithm than simple binarization, and it induces
more computational load. In this subsection, we study the
additional computational cost of the proposed methods. We
report the computational cost of four methods: the traditional
binarization method (Baseline), the proposed additional objec-
tive term 1 (Proposed OT1), the proposed additional objective
term 2 (Proposed OT2) and the proposed combined scheme
(Proposed Comb). We estimate the computational cost by
measuring the elapsed time to produce an iris code given a
vector of feature values. The measure is based on a Matlab
implementation of all the methods, running on a desktop with
Intel i5-3470 quad-core 3.20GHz CPU, 16GB RAM, Windows
7 64bit system and Matlab 2013a 64bit. We report in Tab. III
the mean elapsed time of all the methods to produce an iris
code on all four datasets.

It can be seen that, as expected, the computational cost of
the proposed methods are generally higher than the traditional
binarization method. However, the highest elapsed time to
compute an iris code using the proposed methods is 56.5ms
in our experimental setting. We think this is acceptable in real

TABLE III: The computational cost of the comparison meth-
ods to produce an iris code (ms)

Method CASIAT ND0405 CASIAD UBIRIS2
Baseline 0.60 0.56 0.56 0.53

Proposed OT1 47.8 46.0 47.9 39.0
Proposed OT2 9.50 7.70 8.90 6.30

Proposed Comb 56.5 51.1 53.1 43.6

applications, because the iris code production is performed
only once for each iris capture, and a delay of around 55ms
is practically very small.

Comparing between the computational cost of Pro-
posed OT1 and Proposed OT2, we find that Proposed OT1
leads to a generally higher computational cost. It means that
solving the MRF in Eqn. 10 requires more computational effort
than solving Eqn. 12. Also, Proposed Comb has the highest
computational cost, since it essentially solves both Eqn. 12
and Eqn. 10.

IV. CONCLUSION

In this paper, we investigate the problem of iris code
production from the point of review of optimization. We
demonstrate that the traditional iris code can be expressed
as the solution of an optimization problem. Furthermore, we
propose to apply additional terms to the objective function
of this optimization problem to produce more effective iris
codes. We investigate two additional objective terms, one
exploits the spatial relationship of the bits in an iris code,
and the other mitigates the influence of less reliable bits
in iris codes. We also propose a scheme to combine the
two additional objective terms. The experimental results on
benchmark datasets demonstrate that the proposed method
leads to a generally improved performance in comparison
to the traditional iris code, and the computational cost is
acceptable in real applications. Our experimental analysis also
provides deeper insights into the proposed additional objective
terms as well as the characteristics of iris codes. Future work
may focus on: (1) designing more effective objective terms
to produce iris codes; (2) examining the proposed method
on more datasets covering more data variations, to investigate
the stability and robustness of the proposed method to more
varying data.
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