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Abstract

Appropriate large-scale citizen-science data present important new opportunities for biodi-

versity modelling, due in part to the wide spatial coverage of information. Recently proposed

occupancy modelling approaches naturally incorporate random effects in order to account

for annual variation in the composition of sites surveyed. In turn this leads to Bayesian analy-

sis and model fitting, which are typically extremely time consuming. Motivated by presence-

only records of occurrence from the UK Butterflies for the New Millennium data base, we

present an alternative approach, in which site variation is described in a standard way

through logistic regression on relevant environmental covariates. This allows efficient occu-

pancy model-fitting using classical inference, which is easily achieved using standard com-

puters. This is especially important when models need to be fitted each year, typically for

many different species, as with British butterflies for example. Using both real and simulated

data we demonstrate that the two approaches, with and without random effects, can result

in similar conclusions regarding trends. There are many advantages to classical model-fit-

ting, including the ability to compare a range of alternative models, identify appropriate

covariates and assess model fit, using standard tools of maximum likelihood. In addition,

modelling in terms of covariates provides opportunities for understanding the ecological pro-

cesses that are in operation. We show that there is even greater potential; the classical

approach allows us to construct regional indices simply, which indicate how changes in

occupancy typically vary over a species’ range. In addition we are also able to construct

dynamic occupancy maps, which provide a novel, modern tool for examining temporal

changes in species distribution. These new developments may be applied to a wide range

of taxa, and are valuable at a time of climate change. They also have the potential to moti-

vate citizen scientists.

Introduction

The study of species distributions is an important and expanding area of ecological research,

allowing the investigation of factors affecting species occurrence, as well as analysis of changes
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in species’ range and distribution [1]. Often the primary sources of distribution data are

opportunistic, presence-only citizen-science records [2]. These data, which are relatively

unstructured, are often available in large quantity and over extensive geographic areas and

time periods. They are inherently biased [3], for example with variation in coverage both spa-

tially and temporally, and suitable methods are required to produce robust and unbiased mea-

sures of distribution change from such data [4]. Throughout this paper we shall analyse

presence-only citizen-science data.

Opportunistic distribution recording schemes exist for a wide variety of taxa. In the UK, for

example, the Biological Records Centre oversees recording schemes for 85 taxonomic groups,

for which data are made available through the National Biodiversity Network gateway [5],

which at a greater scale form part of the Global Biodiversity Information Facility (GBIF),

which holds over 600 million occurrence records for 1.6 million species (http://www.gbif.org/

). Covering primarily North America, but also many other countries, more than 17 million

checklists for birds are collated by eBird, for which a “Big Data” approach has been described

[2, 6].

When presence-absence information with replicate observations is available, occupancy

models [7] are a popular choice to model distribution data [8] as they allow for imperfect

detection and provide inference on a parameter denoting the probability that a site is occupied.

Ignoring imperfect detection can bias estimates of occupancy [9]. For some opportunistic data

non-detection records can be constructed from the sightings of other “benchmark” species

[10], although within-season replication is required for at least some sites in order to separate

detection probability from occupancy probability.

Biases associated with presence-only opportunistic citizen-science data which can be

addressed with the aid of occupancy models are discussed in [11], namely geographical bias in

the distribution of surveyed locations, observation bias via variation in observer effort, and

reporting bias where observers may not record all species observed. A simulation study by [4]

favoured occupancy models for estimating robust distribution trends from opportunistic data.

Occupancy models have been applied to opportunistic records of various taxa including

dragonflies, butterflies and birds [10–12], as well as being used for producing indicators for

priority species and pollinators [13]. However the focus is often upon spatial change within a

single year or temporal change in occupancy (via time series), although [14] assessed temporal

changes in the occupancy of bees in the context of neonicotinoid use.

We are particularly motivated by the use of occupancy models in the State of UK Butterflies

2015 report [15], to analyse data from the Butterflies for the NewMillennium (BNM) record-

ing scheme [16], and produce national indices for UK butterflies. The BNM database com-

prises over 11 million species occurrence records submitted mostly by volunteer members of

the public, and the increase in the volume of such data over time can be seen from Fig 1.

The national report by [15] for the analysis of the BNM data was the first wide-scale appli-

cation of occupancy models to UK butterflies (see also [17]), informed by [4] which employed

Bayesian inference with random effects, and used list length (number of species recorded per

visit) to describe variation in detection probability. This application of occupancy models uses

a Bayesian approach for model fitting, which is computationally demanding and requires pow-

erful computer clusters, resources which are often not available or feasible financially, and a

limitation to the wider adoption of these models. This is especially true as models usually need

to be fitted to data for multiple species. Bayesian implementations of occupancy models may

typically use random effects to describe site effects on occupancy and detection probability.

Because of the hierarchical framework of occupancy models, fitting them with random effects

using classical inference is not straightforward, though one potential approach is outlined in

[18]. Instead, we build upon the work of [17], who describe site variation in occupancy

Efficient occupancymodel-fitting for extensive citizen-science data
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through appropriate fixed covariates in a standard manner, and we shall also model variation

in detection through fixed covariates, which is more tractable within a classical framework,

and can potentially be used to identify important ecological factors. Additionally, by analysing

data separately for each year, model fitting is simplified and annual updates can be created

from only the most recent data.

The work of this paper has more general application and relevance, particularly to large-

scale multi-species analysis of opportunistic occurrence records; for example the State of

Nature report for the UK applies occupancy models to 1,589 terrestrial and freshwater species

[19], following the Bayesian implementation of [4].

We model the occurrence of UK butterflies using efficient methods of classical statistical

inference, drawing comparisons with the results of a Bayesian implementation in [15]. We

present the standard occupancy model used and the Bayesian alternative from [15] and [4].

We describe the calculation of occupancy indices, and present both the illustrative butterfly

species selected in the paper and the covariates included in the models. Comparisons between

Bayesian and classical modelling using real and simulated data are provided, demonstrating

Fig 1. a) The number of BNM records as a function of time and b) the number of sites (1 km squares) with
records each year.

https://doi.org/10.1371/journal.pone.0174433.g001
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the major efficiency gain from using classical analysis. Focusing on classical analysis, we pro-

vide new regional occupancy indices and large-scale occupancy maps, together with associated

standard error displays, and introduce dynamic maps. The paper ends with general discussion

and avenues for further work.

Materials andmethods

Occupancy models

For any species, records are made at S sites, each surveyed T times within a fixed season, result-

ing in an encounter history yi = {yi,j; j = 1, 2, . . ., T} for the ith site, where yi,j = 1 indicates that

the species was detected and yi,j = 0 otherwise. The encounter history probability for the ith

site is given as

Prðyi j zi ¼ 1Þ ¼
YT

j¼1

p
yi;j
i;j ð1� pi;jÞ

1�yi;j
; for i ¼ 1; � � � ; S;

where zi is an indicator for whether the ith site is occupied taking the values 0/1, such that yi =

0 with probability 1 when zi = 0 (site i unoccupied), and pi,j represents the detection probability

for site i and visit j. The likelihood is then the product of all such probabilities over the set of S

sites,

Lðc; p; fyigÞ ¼
YS

i¼1

fPrðyi j zi ¼ 1Þci þ IðyiÞð1� ciÞg;

where ψi = Pr(zi = 1) represents the occupancy probability. The corresponding probability that

the site is unoccupied is (1 − ψi). Detection probability can vary with site-specific covariates, as

well as covariates that vary within the season. The likelihood is zero-inflated to account for the

sampling of potentially unoccupied sites. Hence I(yi) denotes an indicator function which is

satisfied if and only if the encounter history for the ith site is entirely zero, i.e. I(yi = 0) = 1; I(yi
6¼ 0) = 0. For classical inference we form maximum-likelihood estimates of parameters and

describe ψi by a function ofM site-specific covariates, wi,m, where we assume

logitðciÞ ¼ b0 þ
PM

m¼1
bmwi;m. The model fitted in the classical analyses we call model C.

The model fitted in the Bayesian analysis we call model B [4, 15]. For this case we index ψi
and pi,j with respect to year, so that

logitðci;tÞ ¼ bt þ ui;

where bt is a fixed year effect for year t and ui is a random site effect, where ui* N(0, σu). The

detection probability pi,t,j is described by

logitðpi;t;jÞ ¼ at þ klogðGi;t;jÞ;

where k is a constant, Gi,t,j is the list length (number of species recorded) at site i in year t on

visit j, and at is a random year effect, where at* N(μ, σ). This model forms a component of

the Sparta [4] package in R [20]. We assume the following prior distributions: bt* U(−10,

10); σu* U(0, 5); μ* N(0, 10); σ* U(0, 5); k* U(−10, 10).

The indicator variable zi is also indexed with respect to t, so that for site i and year t, the

indicator variable zi,t is estimated from the Markov chain Monte Carlo (MCMC) used in

model fitting. The annual proportion of sites occupied is then estimated and forms the index
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of occurrence as follows

It;B ¼
1

nt

Xnt

i¼1

zi;t;

where nt is the number of sites. Trends in occupancy were estimated from the posterior mean

percentage change in fitted occupancy between 2005 and 2014.

Model differences

There are several key differences between models B and C. The Bayesian approach necessarily

uses data from all years at once because of the structure of model B. In contrast the classical

approach analyses the data from each year separately, because of the structure of model C.

Model B does not assume time variation in the random site effect distributions, so that occu-

pancy is only assumed to change with time through the year effects. By contrast, in model C,

year-to-year changes occur both from the occupancy intercept for each year (year effects), as

well as due to temporal changes in covariates. In addition, as the covariates used in model C

are indexed by site location, it is possible to use model C to estimate occupancy at a variety of

levels, incorporating prediction, without any further model fitting. This is not true of model B

without modification. In this paper we draw comparisons with the results and approach of

[15]. In theory a Bayesian approach could be taken for single years, or incorporate covariates,

but these are more tractable using classical inference, particularly, for example, for selection of

covariates.

Indexing occupancy

Suppose that in year t, a region of interest for any species contains nt sites, with occupancy esti-

mate ĉ i;t for site i. For model C, to index occupancy we simply take the average occupancy

estimate in the region of interest. Thus the occupancy index It,C for that region in year t is

given by

It;C ¼
1

nt

Xnt

i¼1

ĉi;t:

A weighted mean of the estimated occupancy probabilities is described in [17], however it was

found to produce unreliable results, due to certain variances being estimated with poor

precision.

Estimates of uncertainty for It,C are obtained using an efficient parametric bootstrapping

approach [21, p192] [22]. We generate 1000 bootstrap resamples from a multivariate Normal

distribution based on the parameters and variance-covariance matrix estimated by the fitted

occupancy model. The occupancy index is then estimated for each replicate and quantiles

taken to estimate 95% confidence intervals. A comparison of parametric and nonparametric

bootstrap approaches is given in S1 Appendix.

For the classical analysis, occupancy trends over time were estimated by fitting a weighted

linear regression to the index, with the inverse standard deviations of the bootstrap replicates

for each year as weights. Associated 95% confidence intervals were derived by estimating a

trend for each replicate index from the parametric bootstrap and obtaining appropriate

quantiles.

In order to form regional indices, [17] found it preferable to define the points within each

region of interest by taking all sites within a region, rather than taking only those at which

observations of at least one species had been made in the given year. However, at the national

Efficient occupancymodel-fitting for extensive citizen-science data
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scale this could involve too much extrapolation, and for suitable comparison we have adopted

the approach in [15], taking all sites for which at least one record has been made during the

time period of the study (shown in Fig A in S1 File). We now define sites for the butterfly

application.

Application to BNM data

We compare models B and C for estimating occupancy for ten representative butterfly species,

which are listed in Table A in S1 File, for 1976-2014. We then present more detailed results for

three of these species.

We take 1 km squares of the UK national grid as sites, as in [15]. Records from the BNM

data with a precise location (1 km2 or less) and exact date were extracted. Squares with at least

one species recorded in fewer than 3 years were excluded, as in [15]. We assume that different

records in the same sample unit do not refer to different locations that vary greatly. A total of

69,936 1 km squares with records were considered.

In [15], the calendar year was taken as a period of temporal closure, when the occupancy

status of each site does not change, however given the varying flight periods of butterflies, we

restrict the data to be within the main period for butterfly flight (beginning of April to the end

of September each year). A comparison with the results of [15] without this restriction is pro-

vided in Fig B in S1 File.

The observations of non-target species are used to generate non-detection records and

form detection histories, {yi}, for each site. A visit to a given site is therefore defined by an

occasion where either the target or one or more non-target species was observed. Detections of

the non-target species outside the first and last month that the target species was observed

(within April-September) in a given year were disregarded, in order to prevent non-detection

records being created outside the target species’ flight period, when the target species is mostly

likely not present as an adult and hence not detectable.

In 84% of cases fewer than five visits were made at each location within a given year, and

only 0.5% had more than 50 visits. Hence to limit the size of the data arrays and aid computa-

tional efficiency, the maximum number of visits to a location per year was limited to 50

(removing non-detections, at random, in favour of detections of the target species where

T> 50).

For classical inference, occupancy models were fitted using the unmarked [23] package in
R. Occupancy maps are also created in R, and corresponding maps of estimated standard-

error display the associated uncertainty, using the delta method to produce estimates on the

probability scale using the deltamethod function in the msm package [24] in R, which was
more efficient than estimating standard errors from unmarked. Dynamic occupancy maps,

which show annual occupancy maps as a sequence, were created using Shiny [25], and asso-

ciated data and R code are provided via FigShare (https://doi.org/10.6084/m9.figshare.

4748278.v1). The occupancy indices and trend estimates presented for the Bayesian approach

result directly from [15].

Three species. We present further results for three illustrative species. Large Skipper and

Small White are wider-countryside species with relatively large ranges across the UK. Large

Skipper has shown recent expansions in range and increases in abundance, and Small White

populations are reasonably stable. The third species, Silver-washed Fritillary, is a habitat-spe-

cialist, found in woodlands and limited mostly to southern England; this species has started to

show increases in range and abundance.

Covariates. For illustration, we select a set of general covariates to represent spatial varia-

tion in occupancy, where northing, easting, minimum February (on average the coldest winter

Efficient occupancymodel-fitting for extensive citizen-science data
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month) temperature, and average monthly rainfall (mm, April-September) were included as

covariates for occupancy with both linear and quadratic effects. The weather covariates were

taken from historic weather-station data [26], available from www.metoffice.gov.uk/public/

weather/climate-historic/, which were smoothed using a thin-plate spline [27], using the

fields package [28] in R, to obtain weather covariates at a scale of 1 km2. Selected land

cover variables were also included, but as linear effects only to reduce the model complexity.

Percentage land cover was taken from a 1 km2 land cover map from 2007 [29], which can be

downloaded from https://eip.ceh.ac.uk/lcm/lcmdata. These data consist of 10 aggregate land

cover classes, but, as given in Table B in S1 File, we used five combined classes to minimise

complexity. The same set of covariates was adopted for all species considered, for illustration.

In practice covariate sets would be expected to vary with species, following covariate selection

procedures. All covariates were standardised to have zero mean and unit variance.

In the analysis of [15] detection probability was modelled using a random effect and the sin-

gle covariate of list length. We consider annual variation in the effect of list length, and since

detection probability might additionally be expected to vary seasonally, as butterfly popula-

tions fluctuate according to their life-cycle, as a proxy for the seasonal variation in population

size we also include the proportion of observations made of the species of interest each week.

Correlations between these two covariates are low, ranging from -0.23 to 0.37 over the species

considered.

Simulation study

Models B and C were applied to varying scenarios for simulated occupancy data. For each of

200 simulations, data were simulated for 1000 sites, 10 years, and 10 annual visits. Occupancy

was simulated to vary either according to a covariate simulated from a standard Normal distri-

bution, or with respect to a Normal random effect with a variance of 5, both on the logit scale.

The occupancy intercept varied from 0.4 to 0.6 in even increments over time on the logit scale.

In model C the slope parameter for the occupancy covariate varied by even increments each

year from -0.5 to 0.5. Detection probability was assumed to be constant, and we considered

p = 0.15, 0.3. For each scenario we assume that data from 20% or 50% of sites are missing in

each year. In total eight simulation scenarios were considered, and in each case both models B

and C were applied. For model C we always fit a model where occupancy varies with a covari-

ate, and for model B we always assume a random effect.

Model C was fitted separately to each year using unmarked in R, as in the application to

BNM data. Model B was fitted using a subset of R code from the Sparta package [4]; we ran

3 chains and 10,000 iterations, with the first 20% discarded for burn-in and thinned by taking

every third iteration. Detection probability was assumed to be constant, with a uniform prior

U(-10, 10) on the logit scale. As previously, for model C the occupancy intercept, bt, was esti-

mated for each year, also with a uniform prior U(-10, 10). The standard deviation of the ran-

dom effect for occupancy, σu was given a uniform prior U(0, 25).

Results

Comparing models B and C

We compare models B and C fitted to the representative set of 10 UK butterfly species, and

start by considering how to model detection probability appropriately. In Fig 2 we compare

the effect of using one or two covariates for detection probability using model C. The AIC dif-

ferences are generally larger for later years, due to the corresponding increase in data noted in

Fig 1. There is a clear conclusion that it is better to use the two covariates, rather than just one,

which we do for model C.

Efficient occupancymodel-fitting for extensive citizen-science data
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Fig C in S1 File shows a general increase in average list length over time, particularly prior

to the increase in records from 1995 ownards. Estimated annual coefficients for list length

from model C (when seasonal variation is excluded) are illustrated in Fig D in S1 File. In most

cases there is consistent time variation in the slope parameter, which is not a feature of model

B of [15]. The estimated slopes typically vary about similar values, with the main exceptions of

Orange-tip and Green Hairstreak, for which the slopes are much smaller. This may be because

these two species only fly early in the year, when there are fewer butterfly species in flight, and

list lengths are expected to be short. For Large Skipper, list length appears to be of increasing

importance over time.

We now compare the indices obtained using models B and C in Fig 3. Although the agree-

ment varies between species, in most cases the two indices show high and significant correla-

tions at short- and long-term scales (Table C in S1 File), and we can expect even better

agreement if covariates selected are matched to the characteristics of individual species.

Fig 2. AIC comparison using varying covariates for detection probability. The solid black line compares
having the seasonal covariate and list length as two covariates, rather than with just list length. The dashed
blue line compares having the seasonal covariate and list length as two covariates, rather than with just the
seasonal covariate.

https://doi.org/10.1371/journal.pone.0174433.g002
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Agreement is especially good for the early years, considering the far smaller number of sites

recorded then (see Fig 1). There may also be differences due to variation in how detectability

was modelled, and in the exact data used, although Fig B in S1 File shows similar results when

we replicate the approach in [15], except for using covariates instead of random effects, and

allowing the slope for list length to vary annually.

A small number of classical estimates are not presented, which occurs for early years, when

the amount of data is substantially smaller than for later years, and the model-fitting fails. This

issue can be resolved by repeating the numerical optimisation used to obtain maximum-likeli-

hood estimates from a wider range of alternative starting values for the model parameters, or

by performing model selection in search of optimal covariates.

Fig 4 compares estimated trends from the two occupancy indices for 2005-2014, and sug-

gests that the trends from the classical approach are estimated as slightly more negative than

Fig 3. Index Comparison for models B (black, circles) and C (blue, triangles). The 95% confidence
bands follow directly from the MCMC of the Bayesian analysis and from an approximate bootstrap approach
in the classical case. In model C, detection probability has two covariates, the seasonal covariate and list
length, and the data are restricted in date.

https://doi.org/10.1371/journal.pone.0174433.g003
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those from the Bayesian approach. Wider confidence intervals for some species trends are

related to wider confidence intervals of the indices, particularly for earlier years in the series,

relative to the size of the index values. We see also that the intervals for model B are generally

shorter than those for model C, which is probably due to the fact that model B uses informa-

tion from all years at all times.

A check of the performance of the two model fitting methods is provided by simulation

(Table 1). It appears that both methods are working correctly. They produce similar results, in

spite of using different models and different model-fitting procedures. The root-mean-square-

error comparisons reflect in part the fact that model B uses the data for all years, whereas

model C only uses the data for each year at a time. This is one reason why fitting model C is

approximately 50 times faster than fitting model B. Another is how models with random

Fig 4. Trend comparison for models B and C. Trend comparison for 2005-2014 frommodel C and the trend from [15]—the
State of UK Butterflies 2015 (SOBUK). Species codes are defined in Table A in S1 File. The 95% confidence bars for model C
and result from the approximate bootstrap approach, while for model B we use the results of [15].

https://doi.org/10.1371/journal.pone.0174433.g004
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effects can result in poor mixing when MCMC is used; see [30, p82]. In the remainder of the

paper we fit model C.

Further analyses from the classical analysis

For illustration, Table 2 presents the estimated regression coefficients for model C for five

years for Large Skipper. In practice a covariate selection procedure would be necessary for

each species separately. For Large Skipper, in most years the weather covariates were impor-

tant. Land cover covariates might be expected to have similar effects over multiple years,

which is largely true for these five years for the significant covariates. Coefficients for wood-

land and mountain seem to be significant and positive, whereas there is a negative relationship

with urban land cover. Both grassland and arable might be omitted, but this would require fur-

ther investigation.

Table 1. Simulation check of the Bayesian (B) and classical (C) models.

M p Median Mean RMSE

B C B C B C

a) 0.5 0.15 0.499 0.500 0.501 0.501 0.028 0.030

0.2 0.15 0.501 0.500 0.501 0.500 0.022 0.024

0.5 0.30 0.500 0.501 0.500 0.501 0.023 0.023

0.2 0.30 0.499 0.499 0.500 0.500 0.018 0.018

b) 0.5 0.15 0.502 0.501 0.502 0.501 0.026 0.030

0.2 0.15 0.501 0.500 0.501 0.501 0.021 0.024

0.5 0.30 0.499 0.501 0.500 0.500 0.021 0.023

0.2 0.30 0.499 0.500 0.500 0.500 0.018 0.018

The data were simulated based on a) a covariate and b) a random effect, for occupancy. The true median and mean occupancy estimates were both 0.5 for

all scenarios. M represents the proportions of sites missed per year and p the detection probability. RMSE denotes the root-mean-square-error.

https://doi.org/10.1371/journal.pone.0174433.t001

Table 2. Estimated covariate coefficients for occupancy for Large Skipper.

Parameter 2010 2011 2012 2013 2014

Intercept 1.751** 3.176** 2.199** 4.174** 3.211**

North 0.723 0.974** −0.209* −1.024** −0.507
East 0.076 1.072** 0.949** 1.903** 0.216

North2 −0.922** −1.005** −0.545** −0.482** −1.503**

East2 −0.354** −0.362** −0.541** 0.162 −0.004
Temp 0.184 1.404* 1.092** −0.366 −3.241**

Temp2 0.734** 0.623** 0.594** 0.157** 2.021**

Rain −0.386 1.974** 0.693** 2.075** −1.548**

Rain2 −0.007 −0.943** 0.295** −0.976** −0.921**

Woodland 0.57** 0.723** 0.708** 0.634** 0.544**

Grassland −0.125 0.085 0.108 −0.126 −0.186*

Arable −0.115 0.134 0.233** −0.035 −0.246**

Urban −0.348** −0.198** −0.2** −0.325** −0.401**

Mountain 0.742* 0.566* 0.583** 0.953** 1.858**

5% significance is indicated by * and 1% significance is indicated by **.

https://doi.org/10.1371/journal.pone.0174433.t002
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We demonstrate the utility of model C for obtaining regional indices by using the geo-

graphical regions illustrated in Fig E in S1 File. We can see from Fig 5 the importance of

regional indices, to complement overall national pictures.

Fig 6 presents occupancy maps for 2014 for three species. Despite a lack of appropriate

model selection for covariates, the three maps show sensible predictions, and the associated

standard error maps display higher uncertainty for certain areas, for example at the northern

range limit for Large Skipper. Dynamic maps which display occupancy across multiple years

are provided at https://ebdennis.shinyapps.io/DynMap/.

Discussion

This paper has shown that comparable occupancy estimates may be obtained using a model

with covariates fitted by classical inference compared to a model with random effects fitting

using MCMC. The primary benefits of using model C are computational efficiency and imple-

mentation of covariates. These findings have importance for the application of occupancy

models to multiple sets of potentially large and long-running opportunistic data sets, which

may be of particular relevance to practitioners and organisations limited in access to and funds

for powerful computational resources. An efficient approach also provides the flexibility for

many scientific hypotheses to be investigated, as demonstrated in this paper, for example to

visualise and assess spatial as well as temporal variation and changes in occupancy.

Using random effects is a popular and useful approach in many applications, but modelling

variation directly via covariates, where available, may be more informative ecologically. Model

B can be modified by the addition of covariates, but model fitting will still be time-consuming.

Also for fitting model C by classical inference, methods of model selection and goodness-of-fit

are generally better established and suitable priors do not require selection and comparison.

Dynamic maps provide an up-to-date tool for visualising and monitoring changes in a spe-

cies’ distribution, which can motivate and retain the citizen scientists that contribute data.

Maps of species’ distributions are common, for example maps of observations or occurrence

Fig 5. Illustrative regional occupancy indices for Large Skipper.Confidence intervals are suppressed for
clarity. The indices are presented across two plots for clarity, and are loosely grouped for northern and
southern regions.

https://doi.org/10.1371/journal.pone.0174433.g005
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are available online for eBird data, but they are frequently presented for only a single year at a

time. Furthermore, [31] highlighted the importance of providing associated error maps stating

that “quantifying and honestly communicating the uncertainty in species distribution maps is

a greatly under-appreciated but very important issue”, although of course the standard errors

themselves are only estimates. Regional indices allow for the study of occupancy trends in

regions of particular interest and how changes in occupancy might vary spatially over a species’

range, without having to fit models for each region. Composite indices for groups of species

may be derived as in [13, 15]. Using model C, this could easily be done on a regional basis or

for all squares to create maps of composite occurrence. Alternatively species’ richness may be

estimated by summing species’ occupancy estimates [32, p256].

Illustrative examples have been presented in this paper, but the covariates chosen for occu-

pancy were selected for demonstration only. Interaction terms, for example, were not

Fig 6. Illustrative spatial distributionmaps.Maps are shown for Large Skipper, Small White and Silver-
washed Fritillary in 2014: a) observations b) estimated occupancy probability c) estimated standard error.

https://doi.org/10.1371/journal.pone.0174433.g006
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considered and may be important, and alternative non-linear relationships could be accom-

modated [33, 34]. Only aggregated land cover classes were considered here, whereas specific

subclasses may be important, particularly for habitat specialist species, for example those

restricted to or favouring chalk and limestone grassland. Alternatively variables linked to spe-

cies’ host plants have been shown to relate to butterfly distributions [35]. The possible omis-

sion of grassland that was found for Large Skipper—a species which lays its eggs on various

grasses—could be a consequence of the covariate being a composite of different grassland

types. An interesting question is whether covariate selection should be done for each year sepa-

rately. In some cases that might not be necessary, as for example the effect of land cover might

be supposed not to change with time. Ultimately in practice compromise is required between

appropriately modelling individual species’ occupancy whilst minimising complexity. Good-

ness-of-fit also requires consideration, for example possibly using receiver operator character-

istic (ROC) curves to assess model performance [17].

It is important that the probability of detection is well modelled in order to avoid biases in

the estimation of occupancy. We allowed detection probability to vary with a species’ seasonal

variation in abundance by using the proportion of observations made per week, and found

this to be an important covariate which was not accounted for in [15]. A similar metric was

used for predicting phenology by [36], although a spline may also provide a suitable approach

[37]. Other applications to taxa such as butterflies have used date as a covariate for detection

probability, but have limited the analysis to a single brood for bi- or multi-voltine species [11].

Occupancy models that model arrival and departure to estimate phenology have also been

developed [38, 39].

Occupancy indices could be produced for alternative regions or areas to those demon-

strated here, for example for particular land cover types, urban areas, climatic regions [40], or

specific areas or sites of interest, or alternatively using a clustering mechanism. The paper of

[22] displayed changes in the abundance of farmland birds for each 100 km square in the UK

on a map and regional occupancy indices could be visualised in a similar way. Other similari-

ties with the study by [22] may be drawn, where biodiversity is predicted spatio-temporally.

An approximate parametric bootstrap is also beneficially used in that case.

The choice of benchmark species could be fine tuned [17], for example a regional approach

could be adopted, since in Scotland the expected list length will vary considerably compared to

southern England. The paper of [41] adopted a regional benchmarking approach for analysing

the occurrence of bryophytes, but in that case species richness was much higher than in this

paper.

The models of this paper do not include spatial autocorrelation. There may be benefit in

accounting for spatial autocorrelation in occupancy probability [42], for example [43] explic-

itly account for relative distances between sites as well as the influence of local density on occu-

pancy and temporal dependencies. However these approaches may be computationally

draining for multi-species, multi-year analyses, particularly at fine spatial scales over poten-

tially large ranges. An exploratory look at estimates of Moran’s I, using R [44], for the covari-

ates considered here suggested relatively low spatial autocorrelation. In order to provide a

check we estimated Moran’s I for the residuals from model C, using the approach of [45], for

samples of species and years. There was little indication that the models need to include spatial

autocorrelation, although an exhaustive study has not been undertaken. We note also the cau-

tion of [42] regarding the dangers of naively including spatial autocorrelation when analysing

large data sets.

Combining multiple sources of information has been suggested by [46]. [47] presents a

Bayesian hierarchical model that describes temporal variation in range size and abundance by
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combining BNM data with monitoring scheme data at the 10 km scale, but discusses the

potential limitations for widespread application.

Dynamic occupancy models [32] estimate temporal changes in occupancy via relevant

extinction and colonisation probability parameters. However, as indicated by [11], applying

dynamic occupancy models to large data sets can be computationally intensive, particularly in

a Bayesian framework. Fitting simple occupancy models to data for each year separately is

computationally efficient, and does not necessarily require the models to be fitted to all data as

new records arise each year. A multi-year approach may nevertheless be beneficial for less

well-studied taxa for which data may be poor in some years. For the classical approach, fixing

covariate effects across years may be favourable in this scenario.

Opportunistic schemes are commonly used to form atlases for various taxa around the

world and the methods of this paper are likely to be applicable to other species groups. In the

UK alone, 85 recording schemes exist for mapping the distributions of many plants and ani-

mals, and global schemes such as eBird and GBIF hold immense quantities of citizen-science

data, for which we require optimal and efficient modelling approaches, to aid monitoring and

understanding of changes.
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30. Kéry M, Schaub M. Bayesian Population Analysis usingWinBUGS. Academic Press, New York; 2011.
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