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INTRODUCTION

Hamiltonian Partial Differential Equations (Hamiltonian PDEs) have been investigated since many years, especially
in the context of multi-symplectic methods (see, e.g., [1, 13, 14]). In particular, after appropriate space discretization,
one can still obtain a discrete Hamiltonian formulation of such equations, resulting into a corresponding discrete
energy, which turns out to be conserved when appropriate boundary conditions (e.g., periodic) are prescribed. The
discrete energy can be then conserved by using energy-conserving methods in the class of Hamiltonian Boundary
Value Methods (HBVMs) [7, 6, 9], which are Runge-Kutta methods based on the concept of discrete line integral
[12, 5]. We shall sketch the approach when a Fourier-Galerkin space semi-discretization is considered and periodic
boundary conditions are prescribed for the nonlinear Schrödinger equation, thus extending to this equation recent
results obtained for the nonlinear wave equation [4]. Let us consider the problem, which we write in a general form,1

iψt(x, t)+ψxx(x, t)+ f ′
(
|ψ(x, t)|2

)
ψ(x, t) = 0, (x, t) ∈ [a,b]× [0,∞) =: Ω, (1)

(with i denoting, as usual, the imaginary unit, the subscripts denoting the partial derivatives, and f ′ the derivative of f ,
a real valued function ) and initial and boundary conditions given by

ψ(x,0) = ψ0(x)≡ u0(x)+ iv0(x), x ∈ [a,b], ψ(a, t) = ψ(b, t), ψx(a, t) = ψx(b, t), t > 0. (2)

We assume that the functions f and ψ0 are sufficiently smooth, so that they define a regular solution u(x, t). Equation
(1) can be cast into the Hamiltonian form, by setting ψ(x,y) ≡ u(x, t)+ iv(x, t) and y = (u, v)>:

yt = J∇H [y], with J =

(
0 1
−1 0

)
, and ∇H =

(
δ

δu
H ,

δ

δv
H

)>
the vector of the functional derivatives of the Hamiltonian functional H [y]≡H [u,v].2 It can be easily checked that,
because of the periodic boundary conditions,

H [u,v] =
1
2

∫ b

a

(
v2

x +u2
x− f

(
u2 + v2))dx = − 1

2

∫ b

a

(
vvxx +uuxx + f

(
u2 + v2))dx. (3)

We also consider the two quadratic functionals

M1[u,v] =
∫ b

a

(
u2 + v2)dx ≡

∫ b

a
|ψ|2dx, M2[u,v] =

∫ b

a
(vxu−uxv)dx ≡ Im

∫ b

a
ψ̄ψxdx. (4)

1 In the typical case, f (r) =±r2.
2 We shall use either one or the other notation, when convenient. Moreover, we shall sometimes omit the arguments, to simplify the notation.
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The conservation laws for H , M1, and M2 are formulated in the following theorem [11].

Theorem 1 For problem (1)-(2), the following statemets hold:

H [u,v](t) = H [u,v](0), M1[u,v](t) = M1[u,v](0), M2[u,v](t) = M2[u,v](0), ∀t > 0.

In other words, (3) and (4) provide conservation laws for problem (1)-(2), whose numerical solution is considered in
the next section. Later on, we sketch the main facts about HBVMs and, finally, we report on some numerical tests
along with final conclusions.

NUMERICAL APPROXIMATION

In order to solve (1)-(2), we use a Fourier-Galerkin space semi-discretization, by expanding the solution in the
following periodic orthonormal basis for L2([a,b]),

c0(x)≡
1√

b−a
, c j(x) =

√
2

b−a
cos
(

2 jπ
x−a
b−a

)
, s j(x) =

√
2

b−a
sin
(

2 jπ
x−a
b−a

)
, j = 1,2, . . . , (5)

thus obtaining:

u(x, t) = γ0(t)c0(x)+ ∑
j≥1

γ j(t)c j(x)+η j(t)s j(x), v(x, t) = α0(t)c0(x)+ ∑
j≥1

α j(t)c j(x)+β j(t)s j(x). (6)

By introducing the infinite vectors

w(x) =



c0(x)
c1(x)
s1(x)
c2(x)
s2(x)

...

 , q(t) =



γ0(t)
γ1(t)
η1(t)
γ2(t)
η2(t)

...

 , p(t) =



α0(t)
α1(t)
β1(t)
α2(t)
β2(t)

...

 , (7)

and the infinite matrix

D =
2π

b−a



0

1 ·
(

1
1

)
2 ·
(

1
1

)
. . .


, (8)

we see that (6) can be rewritten as u(x, t) = w(x)>q(t), v(x, t) = w(x)>p(t), and the problem can be formulated as
the infinite-dimensional Hamiltonian ODE problem (where, as usual, the dot denotes the time derivative):

q̇(t) = D2p(t)−
∫ b

a
w(x) f ′

(
(w(x)>q(t))2 +(w(x)>p(t))2

)
w(x)>p(t)dx,

(9)
ṗ(t) = −D2q(t)+

∫ b

a
w(x) f ′

(
(w(x)>q(t))2 +(w(x)>p(t))2

)
w(x)>q(t)dx,

which is Hamiltonian with Hamiltonian function

H(q,p) =
1
2

[
p>D2p+q>D2q−

∫ b

a
f
(
(w(x)>q)2 +(w(x)>p)2

)
dx
]
. (10)



The following result can be easily shown, by taking into account that

ux(x, t) = w′(x)>q(t) ≡
[
D̃w(x)

]>q(t), (11)

vx(x, t) = w′(x)>p(t) ≡
[
D̃w(x)

]>p(t), D̃ =
2π

b−a



0

1 ·
(

−1
1

)
2 ·
(

−1
1

)
. . .


,

with D̃> =−D̃ and D̃D = DD̃.

Theorem 2 The Hamiltonian (10) is equivalent to (3), via the expansions (6). Similarly, the quadratic functionals (4)
are equivalent to

M1(q,p) =
∫ b

a

(
(w(x)>q)2 +(w(x)>p)2

)
dx, M2(q,p) = 2q>D̃p, (12)

respectively. Both (10) and (12) are constants of motion for the solution of (9).

In order to practically solve problem (9), the series in the expansions (6) are truncated after N terms (for a suitably
large N). Consequently, the dimension of the vectors and matrices in (7)–(11) becomes 2N +1. By imposing that the
residual be orthogonal to the functional subspace VN = span{c0(x), c1(x), s1(x), . . . , cN(x), sN(x)} , which contains
the approximation to the solution, the equation to be solved has dimension 4N +2, and formally is still given by (9).
Moreover, also Theorem 2 continues to hold true, even though now the truncated invariants are only approximations
to the corresponding original ones.3 Also, in order to obtain a practical computational procedure, the integrals (with
periodic integrands) in (9) will be approximated, up to the round-off errors, using a composite trapezoidal rule defined
at the discrete points

xi = a+ i(b−a)/m, i = 0, . . . ,m, (14)

which is known to quickly converge to the corresponding integrals, provided that f is suitably regular. Consequently,
in the sequel we shall assume m to be large enough to assure this requirement. In such a case, any symplectic Runge-
Kutta method, applied to solve the truncated version of (9), will conserve the quadratic invariants (12) in the discrete
solution (see, e.g., [15]) while, in general, it will fail to conserve the Hamiltonian (10).

For solving the Hamiltonian problem (9), one can consider the use of a HBVM(k,s) method, which is the k-stage
Runge-Kutta method defined by the following Butcher tableau [6, 9]:

c1
...
[
b j ∑

s−1
`=0 P̀ (c j)

∫ ci
0 Pj(τ)dτ

]
i, j=1,...,k

ck

b1 . . . . . . bk

where
∫ 1

0
Pi(x)Pj(x)dx = δi j, Pi ∈Πi, i, j = 0, . . . ,k,

Pi, Pj are the normalized and shifted Legendre polynomials, and (bi,ci)i=1,...,k the Legendre weights and abscissae,
respectively. For such methods, the following result holds true [9, 5].

Theorem 3 For all k ≥ s, a HBVM(k,s) method applied to problem (9) with stepsize h:

• is symmetric and of order 2s;
• when k = s, it becomes the (symplectic) s-stage Gauss collocation method;
• is energy conserving (i.e., it conserves the Hamiltonian H) when f is a polynomial of degree ν ≤ b2k/sc ;
• for general and suitably regular functions f , the energy error at each step is O(h2k+1).

The last point, in turn, implies that a (at least practical) conservation of the energy is obtained, provided that f is
suitably regular (which will be assumed hereafter), by choosing k large enough, also considering that the computational
cost for implementing a HBVM(k,s) method depends essentially on s, rather than on k [8, 2, 3] (see also [5]).

3 Under regularity assumptions, they converge very fast to the continuous ones, as N→ ∞.



TABLE 1. Errors in the numerical invariants when solving problem (1)-(2) and (15).

method maximum error in H maximum error in M1 maximum error in M2

HBVM(2,2) 2.3462 ·10−06 6.8834 ·10−15 2.5255 ·10−17

HBVM(10,2) 2.2204 ·10−16 2.4429 ·10−04 2.3111 ·10−17

NUMERICAL TESTS

Let us now consider problem (1)-(2), with the following parameters:

a =−b =−20, f (r) = 0.2526896 · r6, u0(x) = [cosh(x)]−1, v0(x) = 0, (15)

which has a solution with a blow-up around t∗ ≈ 2. The corresponding Hamiltonian value is H0 ≈ 0.24, whereas the
quadratic functionals have values M1 = 2 and M2 = 0, respectively. If we use the (practically) energy-conserving
HBVM(10,2) method to perform 1000 steps with stepsize h, by using (see (14))

N = 100, m = 1001, h = 0.1, (16)

then the numerical solution (correctly) blows-up after 20 integration steps, with an error in the invariants as listed in the
last row of Table 1. On the other hand, by using the HBVM(2,2) method (i.e., the symplectic 2-stage Gauss method)
with the same parameters as in (16), one obtains that while the quadratic invariants are preserved, the Hamiltonian
function is not, as is shown in the second row of Table 1. However, in this latter case, the numerical solution doesn’t
blow-up, and all the 1000 integration steps are performed. Consequently, even though the mass and the momentum
are numerically conserved, nevertheless, the Hamiltonian error is responsible for the wrong qualitative behavior of the
numerical approximation.

In the future, we plan to investigate the numerical solution of (1)-(2) by means of EQUIP methods [10], which
conserve both the Hamiltonian (10) and the quadratic invariants (12). This will hopefully further enhance the reliability
of the numerical solution.
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