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Li Yu,1, 2 Carlos A. Pérez-Delgado,1 and Joseph F. Fitzsimons1, 2, ∗

1Singapore University of Technology and Design, 20 Dover Drive, Singapore 138682
2Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543

Homomorphic encryption is a form of encryption which allows computation to be carried out on the en-
crypted data without the need for decryption. The success of quantum approaches to related tasks in a delegated
computation setting has raised the question of whether quantum mechanics may be used to achieve information
theoretically secure fully homomorphic encryption. Here we show, via an information localisation argument,
that deterministic fully homomorphic encryption necessarily incurs exponential overhead if perfect security is
required.

The insight that information must be represented and ma-
nipulated in accordance with physical laws has led to the
blossoming field of quantum information science. The ap-
plications of this approach to information processing are di-
verse, and it has led to discoveries ranging from new algo-
rithms [1, 2] and communications protocols [3, 4] which ex-
ploit quantum states for increased efficiency to techniques for
enhancing the precision of metrology [5]. Historically, cryp-
tography was one of the first fields for which quantum infor-
mation processing was shown to offer an advantage over clas-
sical processing, when in 1984 Bennett and Brassard intro-
duced a quantum protocol for information theoretically secure
key distribution [6]. While for many quantum cryptography
has remained synonymous with quantum key distribution, the
field has grown substantially, with quantum protocols being
discovered which enhance the security with which many cryp-
tographic tasks can be accomplished, including digital sig-
natures [7], anonymous communication [8], private database
queries [9], and random number generation [10]. The im-
portance of information theoretically secure cryptography is
highlighted by the fact that quantum algorithms offer new
attacks against cryptosystems which rely on assumptions of
computational intractability for their security [11–13]. Unfor-
tunately, not all cryptographic tasks that we may wish to ac-
complish admit an information theoretically secure quantum
protocol, and indeed a number of no-go theorems have been
discovered which show that quantum mechanics alone is in-
sufficient to accomplish certain tasks, such as bit commitment
[14] and oblivious transfer [15], with perfect security.

One of the most celebrated results in classical cryptography
in recent years has been the discovery of computationally se-
cure protocols for fully homomorphic computation [16–19].
A homomorphic encryption scheme is one which allows data
to be encrypted in such a way that certain operations can be
performed on the data without decryption. This allows a user
to provide encrypted data to a remote server for processing
without having to reveal the plaintext. A number of examples
of such homomorphic encryption schemes have been known
for many years [20, 21], but it was the ground-breaking work
of Gentry [16] which for the first time demonstrated a fully
homomorphic encryption scheme, one which allowed for ar-
bitrary computations to be performed on the encrypted data,
rather than being restricted to some class of non-universal op-

erations. The ability to perform universal computation on en-
crypted data has greatly increased the utility of homomorphic
encryption, and as a result it has become one of the most ac-
tive areas of modern cryptography.

One drawback of recently discovered classical fully homo-
morphic encryption schemes is that they derive their security
from computational assumptions. At first glance, it is tempt-
ing to think that the requirement that encrypted data be ma-
nipulable by a third party necessarily precludes information
theoretic security. However, the classical one-time pad, in
which plaintext bits are XORed with a completely random
key, provides an immediate counter-example. Any sequence
of bit-flips necessarily commutes with the decryption step,
and hence represents a non-trivial set of computations on the
plaintext which can be performed directly on the ciphertext.
Although this may seem a rather trivial example, the cryp-
tographic community has expended significant effort on the
search for information theoretically secure homomorphic en-
cryption systems which support arbitrary algebraic operations
(see [22] for a review of recent work in the area). Attempts
have also been made to construct fully homomorphic classi-
cal encryption schemes with information theoretic security.
Current schemes only achieve approximate perfect security,
however, and result in encodings which grow exponentially as
they approach perfect security [23].

The existence of perfectly secure quantum protocols for
blind computation [24–27], and recent experimental demon-
strations thereof [28, 29], highlight the possibilities opened
by quantum cryptographic techniques in this area. As cryp-
tographic tasks, blind computation and homomorphic encryp-
tion are similar in many ways. Both tasks envision a two party
scenario, where the first party, Alice, wishes the second party,
Bob, to carry out a computation for her, without revealing the
input of her computation. In blind computation, however, Al-
ice specifies not only the input data but also the computation
to be performed, and the task is to utilise Bob’s resources to
perform this computation without revealing either the input
or the program. As a result, the current protocols for accom-
plishing this task are interactive, requiring multiple rounds of
communication between Alice and Bob, a significant differ-
ence from the setting of homomorphic encryption.

The idea of quantum homomorphic encryption appears in
[30], which shows that a perfect, universal, quantum homo-
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morphic scheme cannot be constructed using one-time pads
and which presents an interactive protocol for achieving simi-
lar functionality. Other cryptographic schemes have been pro-
posed that achieve some of the functionality of homomorphic
encryption using quantum data [31, 32]. However, these rely
on assisted computation, and so require multiple rounds of
interaction between Alice and Bob, thus amounting to inter-
active protocols rather than simply encryption schemes. A
quantum homomorphic encryption scheme does exist for a
restricted model of quantum computation known as boson
scattering, which offers limited information theoretic secu-
rity [33]. The existence of such schemes raises the question
as to whether quantum techniques can be exploited to con-
struct an information theoretically secure fully homomorphic
encryption scheme. Here we answer that question in the neg-
ative by proving that quantum mechanics does not allow for
efficient information theoretically secure fully homomorphic
encryption that perfectly conceals the plaintext. To achieve
this we first formalise the notion of quantum homomorphic
encryption, and then proceed to show via an information lo-
calisation argument that any such scheme which perfectly
hides Alice’s input must necessarily reveal the computation
performed, and hence the encoding must be sufficiently long
to specify any such computation. For a fully homomorphic
encryption scheme this implies that the coding must be ex-
ponentially long, and thus rules out the existence of efficient
fully homomorphic encryption schemes which perfectly hide
Alice’s data.

Formally, a classical homomorphic encryption scheme con-
sists of four procedures. The first is a key generation algo-
rithm that generates a classical encryption key, a classical de-
cryption key, and potentially some additional auxiliary key.
The second is an encryption algorithm, that encrypts the input
using the encryption key. Third is a decryption algorithm that
decrypts the output using the decryption key. Finally, there is
an evaluation algorithm that performs the computation on the
ciphertext without decryption, which may use the auxiliary
key. For any permissible logical circuit C, the result of the
evaluation algorithm should be such that after decrypting the
output, one obtains the result of applying C to the unencrypted
input. A fully homomorphic encryption scheme, then, is one
in which C can be freely chosen from the set of all classical
circuits. Here we shall consider only schemes with perfect
completeness, where the evaluation operator must determinis-
tically implement the chosen circuit. We will say that a homo-
morphic encryption scheme has perfect information theoretic
security if the ciphertext is a density operator independent of
the plaintext.

We will define a quantum homomorphic encryption (QHE)
scheme using similar criteria as for the classical case, ex-
tended to take into account the possibility of entanglement
within the protocol. A QHE scheme consists of four compo-
nents: a key generation protocol which produces a quantum
state |ψe〉 used as a key for encryption; an encryption uni-
tary operator Ue which encrypts the input state |ψi〉 using the
encryption key state, potentially making use of some ancilla
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FIG. 1: A schematic diagram for a general quantum homomorphic
encryption scheme with input data |ψi〉 and output |ψo〉. The state
|ψe〉 represents the initial state of Alice’s key, while Ue and Ud are
Alice’s encryption and decryption operators. Both parties are also
allowed an ancilla system, and access to a shared entanglement re-
source. Alice’s decryption key corresponds to the subsystem she re-
tains after applying Ue to her system. Note that no assumption is
made about the dimensionality of subsystems. Time points t1 and t2,
used in the proof of Theorem 1, are also shown.

system, and which produces a decryption key in a state ρd ; a
decryption unitary operator Ud which decrypts the encrypted
state using the key state; and a set of evaluation unitary op-
erators {UC}, such that after decrypting the output the net ef-
fect is equivalent to applying the quantum circuit C directly
to the initial input state. Here the decryption key is produced
when the encryption unitary is applied. Although this is some-
what more general than the procedure for generating the cor-
responding classical key, we make this generalization to allow
for the possibility of a causal relationship between encryption
and decryption keys which, via the no-cloning theorem, may
prevent them from existing simultaneously. Note that we have
not specified an auxiliary key. This is because, without loss
of generality, we can assume that this auxiliary key forms part
of the encrypted state. An encryption-evaluation-decryption
sequence based on this definition is depicted in Figure 1[38].

As we now prove, for such a scheme to operate determin-
istically, it is necessary that the dimension of the encrypted
state grows as the log of the cardinality of the set of possi-
ble choices of C, and hence fully homomorphic encryption
with perfect information theoretic security is impossible ex-
cept when the size of the encoding grows exponentially with
the size of the plaintext. To prove this, we begin by proving
a modified version of an information localisation theorem due
to Griffiths [34].

Lemma 1 (Data Localisation). Let S be some bipartite quan-
tum system with Hilbert space HA ⊗HB, initially in state
(|ψ〉⊗ |φ〉)A⊗ |γ〉B, where |φ〉 and |γ〉 are fixed states. Let
ρ be the state of S after the application of a unitary operator
U. Then, if the reduced density operator on system B, TrA ρ , is
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independent of the input data state |ψ〉, there exists a unitary
operator V : HA 7→HA such that TrB ρ =V (|ψ〉〈ψ|⊗σ)V †

for some density matrix σ independent of |ψ〉.
Proof. For simplicity of notation we will define ρA = TrB ρ
and ρB = TrA ρ , and use r to denote the rank of ρB. We shall
further divide the Hilbert space HA = HA1 ⊗HA2 such that
|ψ〉 is the state of HA1 and |φ〉 is the state of HA2 .

We begin from the requirement that ρB is independent of
|ψ〉. This implies that changing the value of |ψ〉, while hold-
ing |φ〉 and |γ〉 constant, will not alter TrA ρ . We shall con-
sider the effect on the state of ρ of varying only |ψ〉. Let
an orthonormal basis of HA1 as |a j〉, j = 1,2, · · · ,dA1 , where
dA1 is the dimension of HA1 , and let {|bk〉 : k = 1,2, · · · ,r}
be an orthonormal set of eigenstates of ρB with corresponding
eigenvalues pk.

For each state |a j〉, for 1≤ j≤ dA1 , we can expand the state
of the system after application of U to yield

U(|a j〉A1 ⊗ |φ〉A2 ⊗ |γ〉B) =
r

∑
k=1

√
pk|τ jk〉A ⊗ |bk〉B. (1)

Note that the possible complex phases have been absorbed
into the definition of |τ jk〉. Since |bk〉 are eigenstates of ρB
with eigenvalues pk, the expansion on the right hand side of
Eq. (1) is a Schmidt expansion for U(|a j〉A1 ⊗ |φ〉A2 ⊗ |γ〉B),
and hence {|τ jk〉 : k = 1,2, · · · ,r} for any fixed j must be or-
thonormal. Thus, we have 〈τ jk|τ jk′〉= δk,k′ .

Now consider the case where we keep the input on HA2 and
HB fixed, while changing the input state on HA1 to one of the
form |υ j j′〉= (|a j〉+ |a j′〉)/

√
2 for j 6= j′. In this case,

U(|υ j j′〉A1 ⊗|φ〉A2 ⊗|γ〉B) =
r

∑
k=1

√
pk

[
(|τ jk〉+ |τ j′k〉)/

√
2
]

A
⊗|bk〉B. (2)

Since the output reduced density operator on HB is still ρB =

∑r
k=1 pk|bk〉〈bk|, the right hand side of Eq. (2) should be a

Schmidt expansion, with the Schmidt coefficients still being√
pk. Hence (|τ jk〉+ |τ j′k〉)/

√
2 must be already normalised

and these states must be orthogonal for different values of k.
From this we obtain

δk,k′ =
1
2
(〈τ jk|+ 〈τ j′k|)(|τ jk′〉+ |τ j′k′〉)

= δk,k′ +
1
2
(〈τ jk|τ j′k′〉+ 〈τ j′k|τ jk′〉), j 6= j′, (3)

and hence 〈τ jk|τ j′k′〉+ 〈τ j′k|τ jk′〉= 0 as long as j 6= j′.
Similarly, by considering input states on HA1 of the

form |η j j′〉 = (|a j〉 + i|a j′〉)/
√

2, we obtain 〈τ jk|τ j′k′〉 −
〈τ j′k|τ jk′〉 = 0 and hence 〈τ jk|τ j′k′〉 = 0 for j 6= j′. These
criteria can be expressed compactly as 〈τ jk|τ j′k′〉 = δ j, j′δk,k′ .
Hence {|τ jk〉} forms an orthonormal set, and it is possible to
define the subspaces HC and HD as having orthonormal bases
{|c j〉} and {|dk〉} such that HA = HC⊗HD, and

|τ jk〉= |c j〉⊗ |dk〉, j = 1,2, · · · ,dA1 , k = 1,2, · · · ,r. (4)

For a generic input state |ξ 〉 = |ψ〉⊗ |φ〉⊗ |γ〉, where |ψ〉 =
∑

dA1
j=1 α j|a j〉 we then have

U |ξ 〉=
dA1

∑
j=1

α j

r

∑
k=1

√
pk|τ jk〉A⊗|bk〉B

=

dA1

∑
j=1

α j|c j〉


C

⊗
(

r

∑
k=1

√
pk|dk〉⊗ |bk〉

)
DB

= |ψ〉C⊗
(

r

∑
k=1

√
pk|dk〉⊗ |bk〉

)
DB

. (5)

Now, let V ′ : HA1 7→HC be an isometry such that

V ′|a j〉= |c j〉, j = 1,2, · · · ,dA1 , (6)

and let V be any extension of V ′ into a full unitary over
HA. Then TrB

(
U |ξ 〉〈ξ |U†

)
= V (|ψ〉〈ψ|⊗σ)V †, for some

density operator σ independent of |ψ〉, as the lemma re-
quires.

Lemma 1 shows that in any quantum homomorphic encryp-
tion scheme with perfect information theoretic security, the
computation has to occur on Alice’s “side”. The following
theorem formalises this intuition, showing that the encrypted
state must contain enough information to identify any operator
previously applied to it.

Theorem 1. Let Q be a quantum homomorphic encryption
scheme with perfect information theoretic security with en-
cryption operator Ue and decryption operator Ud and a set of
evaluation unitaries. Let ρa,b (ρ ′a,b) be the state held by Alice
(intended to be the encrypted state plus her decryption key)
after applying the evaluation unitary Uc (Uc′ ) corresponding
to a quantum circuit c (c′) (i.e., at time t2 in Figure 1). Then,
if b and b′ implement distinct unitary operations, ρb and ρ ′b
must have orthogonal support.

Proof. For clarity, we will identify different parts of the en-
cryption, circuit evaluation and decryption process with two
parties, Alice and Bob, as depicted in Figure 1. We begin by
analysing the state of Alice and Bob’s joint system after Al-
ice has sent her encoded data to Bob. This is marked as time
t1 in Figure 1. Let ρa,1 (ρb,1) be the states of Alice’s (Bob’s)
subsystem at this point. From this point forward, all com-
munication flows from Bob to Alice. The requirement that
Q be perfectly information theoretically secure implies that
I(ρb,1; |ψi〉〈ψi|) = 0. Hence, by Lemma 1 there exists some
unitary operator V such that

ρa,1 =V (|ψi〉〈ψi|⊗ρ ′a,1)V
†, (7)

for some appropriate ρ ′a,1.
Now, consider the system after Bob has sent his message

back to Alice. This is time t2 in Figure 1. Due to the previous
analysis the state of the system at this point can be written as

ρa,2 = (V ⊗ I) |ψi〉〈ψi|⊗ρ ′a,1⊗ρb
(
V †⊗ I

)
, (8)
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where ρb represents Bob’s message. The density matrix ρb
cannot in general be assumed to be pure, since Bob could have
sent a message that remains entangled to his system. Here V
acts only on the part of the system that was in Alice’s posses-
sion prior to receiving the message from Bob, and the identity
operator I acts on Bob’s message.

The requirement that the evaluation unitary Uc implements
a specific circuit c implies that

Udρa,2Ud
† =

(
Wc|ψi〉〈ψi|W †

c
)
⊗ρanc, (9)

where Wc is the unitary operator corresponding to quantum
circuit c, and ρanc is simply some state of the ancilla system.
Let U ′d =Ud (V ⊗ I), then for all c and all |ψi〉,

U ′d
(
|ψi〉〈ψi|⊗ρ ′a,1⊗ρb

)
U ′†d =

(
Wc|ψi〉〈ψi|Wc

†)⊗ρanc.
(10)

As the state ρ ′a,1 and the operator U ′d are independent of c,
in the language of [35] this corresponds to a programmable
quantum gate array, where ρb acts as a program to implement
the unitary operator Wc. The no programming theorem [35]
states that for a programmable quantum gate array to imple-
ment two distinct unitary operators, the program states must
be orthogonal. Hence if ρb and ρb′ correspond to the mes-
sages returned from Bob after application of evaluation op-
erators corresponding to two non-equivalent circuits, then ρb
and ρb′ must have orthogonal support.

A direct consequence of this theorem is that for any per-
fectly information theoretically secure homomorphic scheme
(fully homomorphic or otherwise), if a known input state is
encrypted, and an evaluation operator from some unknown
circuit c is applied, it is always possible to unambiguously de-
termine c from the resulting encrypted state. This mirrors a
result obtained for one time programs [36], a similar task in
which the secret to be protected is Bob’s circuit rather than
Alice’s input. Further, this property severely compromises the
efficiency of any QHE encoding, as we now prove.

Corollary 1. Let Q be a QHE scheme, with perfect informa-
tion theoretic security, that corresponds to a permissible set
of unitary operations S. Then, the following statements hold:

1. The size of the system required to store the encrypted
state after the application of an evaluation operator Uc
corresponding to an arbitrary operation in S is at least
log2 |S| qubits.

2. If S contains the set of reversible classical operations
on n bits, then the size of the encrypted state grows at
least exponentially in n.

3. If S is a set that is ε-approximately universal on n
qubits, that is every element of SU(2n) can be approxi-
mated to an accuracy of ε , then the size of the encrypted
message grows proportional to

(
22n−1

)
log2 (1/ε).

Proof. The proof of the first part of the corollary follows di-
rectly from Theorem 1. Each ρb corresponding to an opera-
tor in S must have orthogonal support on a distinct subspace.
Since each such density operator must have at least unit rank,
a system must be at least |S|-dimensional in order to represent
every possible ρb. The second part of the corollary follows
from the fact that there are (2n)! distinct permutations of the
n-bit classical states, and hence any S which contains all such
operations must have cardinality at least log2(2

n)! ≥ 2n. The
final part of the corollary, the bound on approximate quantum
computation, follows from the fact that an ε-net that covers
SU(d) requires Ω

(
(1/ε)d2−1

)
elements [37]. Hence the car-

dinality of any set of operators which suffices to approximate
an arbitrary element of SU(2n) to within an accuracy of ε must
grow at least as (1/ε)22n−1.

From this corollary, it follows that no QHE with perfect in-
formation theoretic security can deterministically implement
either exact or even approximate universal quantum computa-
tion or reversible classical computation without incurring ex-
ponential overhead [39]. It should be clear that the first bound
in the corollary, from which the others follow, is tight, since it
is satisfied by the trivial scheme where the encoding is simply
a classical description of the computation to be performed.
Hence in order to obtain an information theoretically secure
QHE, one must be willing to sacrifice either perfect informa-
tion security, determinism, or face restriction to a permissible
set of circuits which is polynomial in the size of the input. As
the results presented here incorporate the classical schemes as
a special case, this exponential lower bound for classical re-
versible computation goes some way towards explaining the
scaling found in [23].
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RSA 2013, edited by E. Dawson (Springer Berlin Heidel-
berg, 2013), vol. 7779 of Lecture Notes in Computer Science,
pp. 375–388, ISBN 978-3-642-36094-7, URL http://dx.
doi.org/10.1007/978-3-642-36095-4_24.

[24] A. Broadbent, J. Fitzsimons, and E. Kashefi, Proceedings of the
50th Annual IEEE Symposium on Foundations of Computer

Science (FOCS 2009) pp. 517–526 (2009).
[25] J. F. Fitzsimons and E. Kashefi, arXiv preprint arXiv:1203.5217

(2012).
[26] T. Morimae and K. Fujii, Physical Review A 87, 050301 (2013).
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