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Abstract
The atomic and magnetic structures of CoO and NiO have been probed using reverse Monte
Carlo(RMC) refinements of neutron total scattering data. The results obtained show that the
known magnetic structure for NiO can be recovered by the RMC process starting from random
spin configurations, but it is insensitive to the spin direction in the {111} ferromagnetic planes.
Refinements of the magnetic structure of CoO starting from random spin configurations result in
collinear or non-collinear magnetic structures, consistent with those reported by other
techniques. Starting from an ordered collinear spin structure for CoO and NiO leads to different
results than when starting from a random arrangement of spins, which is evidence for
configurational bias that highlights the need to take care when selecting a starting model for
RMC refinements of magnetic structures.

S Online supplementary data available from stacks.iop.org/PS/91/114004/mmedia
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1. Introduction

Reverse Monte Carlo (RMC) refinements of neutron diffrac-
tion data have shown tremendous promise in recent years as a
way of uncovering new information about low dimensional
and frustrated magnets [1]. The RMC process involves fitting
a large supercell of a structure to the data with the addition of
magnetic spins to at least some of the atoms in this supercell
required to fit magnetic scattering [2–4]. In general two
common approaches can be taken to this, depending on
whether the compound of interest features significant mag-
netoelastic coupling, where the emergence of magnetic order
causes substantial distortions to the crystallographic structure
of a material. In cases where magnetoelastic coupling is
minimal, and the local positions of the magnetic cations are
well characterised by the average structure, it is possible to

approach refinements by fixing the atomic positions and only
allowing magnetic spin orientations to refine [4, 5]. In this
case fits can be made simply to the magnetic scattering alone,
ideally measured using polarised neutrons. This approach has
been found to be useful for a large number of exotic low
dimensional and frustrated materials, especially because it
does not require the use of a preconceived magnetic struc-
ture [1].

Many important materials, however, feature very strong
magnetoelastic coupling including magnetostriction alloys
[6], multiferroic oxides [7], and even metal-organic frame-
works, where it has been shown to cause negative thermal
expansion [8]. In RMC refinements of such materials, it is
necessary to refine both atomic positions and spin orientation
while fitting to the total scattering from the sample [9]. Such
studies reported thus far have been largely restricted to binary
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systems, due to their challenging nature, including selected
members of the antiferromagnetic transition metal rock salts
MO (M=Mn, Fe, Co and Ni) [2, 10–12]. The magnetic
structures of these materials are well known, from the pio-
neering work of Shull [13] more than fifty years ago, to have
k=[½,½,½]c propagation vectors (note that subscript c will
be used throughout when taking reference with regards to the
parent cubic structure). This is consistent with a rhombohe-
dral structure in which the dominant coupling is super-
exchange interactions between next-nearest neighbour
cations. In line with this MnO, Fe1−xO and NiO have large
rhombohedral structural distortions, which enable the next-
nearest neighbour cations to get closer together, strengthening
the interactions between them [13, 14]. The magnetic struc-
tures of these compounds contain {111}c sheets in which
nearest neighbour cations are, unfavourably, ferromagneti-
cally coupled. In Fe1−xO the spins are perpendicular to the
{111}c plane while in MnO and NiO they lie in the plane of
the sheets [13, 14]. The Bragg intensities of the essentially
rhombohedral diffraction patterns of MnO and NiO are
insensitive to the spin orientation in these planes, although at
least for NiO other techniques suggest the spins are oriented
along the á ñ112 c¯ axis [15].

The magnetic structure of CoO is somewhat more con-
troversial, with both a collinear, essentially rhombohedral,
structure and non-collinear magnetic structures fitting the
magnetic Bragg reflections [16]. The collinear structure of
CoO, which is generally favoured, is similar to that of the
other rock salts, with spins close to the 〈113〉c axis [16, 17]. It
is, however, inconsistent with the large tetragonal structural
distortion that accompanies its magnetic ordering at TN, 289
K. While evidence that the crystallographic structure of CoO
is monoclinic has emerged from high-resolution studies in
recent years [18, 19], resolving this discrepancy, additional
weak magnetic reflections have been observed from single
crystal neutron diffraction that are not consistent with a col-
linear structure [20].

Recent RMC refinements of MnO and Fe0.90O have
provided new insights into these oxides. MnO has been
confirmed to adopt a monoclinic magnetic structure, as long
known to be required from theory, with evidence being found
for the magnetic spins in MnO on average pointing along the
á ñ112 c¯ axis and featuring significant modulated out-of-plane
component [11]. For Fe0.90O, where the moment has long
been known to be, on average, perpendicular to the {111}c
planes RMC refinements have revealed that the reduced
magnetic moment arises, at least in part, from a deviation of
spins from the á ñ111 c towards á ñ110 c directions in three of the
four distinct groups of ions related by the face-centring
operation [12]. This, at least partially, lifts the magnetic
frustration caused by unfavourable ferromagnetic nearest-
neighbour coupling within the {111}c planes. In the light of
these results we have, therefore, expanded our work on this
series to CoO and NiO, to explore whether RMC refinements
can provide new insights into these archetypical antiferro-
magnets. We have carried out fits starting from both the
known collinear magnetic structures and random arrange-
ments of spins to test what effect the starting model has on the

magnetic structure refined using the RMC technique. For NiO
our results confirm that, below its Néel temperature at 528 K,
all spin orientations lie within the {111} planes but we find no
evidence to support a particular orientation of the spins within
these planes. We also recover both collinear and non-collinear
magnetic structures from our refinements of CoO. We find
strong evidence that the results obtained from the magnetic
refinement depends on whether ordered or random spin
configurations are used as a starting point, a warning of the
need to take care when selecting starting models for RMC
magnetic refinements.

2. Experimental

Data were collected on 7 and 8 g samples of NiO and CoO,
respectively, which were used as purchased from Sigma-
Aldrich. Their purity was checked by x-ray diffraction and
thermogravimetric analysis was used to confirm the samples
were single phase and stoichiometric with regards to oxygen
content. High quality data suitable for neutron total scattering
analysis were collected using the GEM diffractometer [21] at
the ISIS neutron source, Rutherford Appleton Laboratories
over the range of 0.3<Q<50 A−1 with counting times of
900 μA hr. The samples were held in 8 mm diameter vana-
dium cans in a GEM low-temperature furnace at or above
room temperature or in a closed-cycle refrigerator when
cooled below room temperature. Measurements of the empty
instrument, empty sample environments and empty vanadium
can were also carried out to correct for the instrumental
background and scattering from a vanadium rod was used to
produce a normalised total scattering structure factor F (Q)
(herein we use the terminology of Keen [22]). To obtain F (Q)
for total scattering analysis for NiO the data from different
detector banks were merged and normalised using the pro-
gramme Gudrun [23]. The stronger magnetic scattering from
CoO required that self-normalisation and a ‘Top Hat’ cor-
rection were performed manually after background subtrac-
tion and merging were carried out.

RMC fits to these total scattering data were carried out
using the RMCProfile [9] suite of programmes by similar
methodology to that employed for MnO and Fe0.90O to fit
F (Q) and Bragg data sets. The Bragg data were initially fitted
in GSAS [24] via the EXPGUI interface [25] to obtain lattice
parameters, and background and instrumental constants, using
Chebyschev polynomials and an Ikeda-Carpenter function,
respectively, which were kept fixed during the RMC refine-
ments. The Rietveld fits were carried out using cubic and
tetragonal models for NiO and CoO, respectively, as the
additional splitting indicative of symmetry lowering to
rhombohedral and monoclinic phases, respectively, could not
be observed due to the moderate resolution data obtained. The
models used for RMC refinements contained about 10 000
atoms in a 12×12×12 supercell of the nuclear cubic unit
cell of NiO or 14a×14a×10c supercells of the nuclear
tetragonal supercell of CoO. It should be noted that
RMCProfile [9] does not apply any symmetry elements so
refined models are allowed to have P1 symmetry. 16 distinct
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starting models were used for each material, 8 from an
ordered arrangement of spins and pairs of refinements from
four different random spin configurations. The ordered
magnetic starting models for NiO had ferromagnetically
coupled {111} planes with spins pointing in the 112 c[ ¯]
direction, as well established by magnetisation measurements.
For CoO the ordered magnetic starting models had magnetic
spins oriented along the 1,1, 3.4 c[ ] axis, which was found to
give an improved fit to the data in Rietveld refinements
compared to the 113 c[ ] direction in previous models [17]. In
the RMC refinements the magnitude of the magnetic moments
were fixed at 2.8 μB for Ni2+, as calculated from the quan-
tised spin-only formula, and 4 μB for Co2+. Ni–O and Co–O
bonds were constrained to lie between 1.60–2.60 Å and
1.50–2.50 Å, respectively using so-called ‘distance window’
constraints. Similar constraints were placed on nearest
neighbour metal–metal bonds and oxygen–oxygen bonds at
2.50–3.34 and 2.50–3.50 Å for NiO and CoO, respectively.
Refinements allowed either atomic positions or the cation spin
orientations to change, by moving atom positions or spin
orientations by random fractions of a maximum move size,
for four alternating periods in order to minimise the cost
function:

åc c= ,
m

mRMC
2 2

where the cm
2 corresponds to the goodness of fit to the F (Q),

c ,F Q
2

( ) and Bragg, cProfile
2 datasets. The individual χ2 func-

tions being minimised were, where t is the neutron time-of-
flight:

åc s= - -F Q F Q ,F Q
j

j j F Q
2

calc exp
2 2[ ( ) ( )]( ) ( )

åc s= - -I t I t .
j

j jProfile
2

profile
calc

profile
exp 2

profile
2[ ( ) ( )]

The Monte Carlo algorithm avoids local minima by
accepting individual moves that degrade the fit to the data
with a probability that is close to inversely proportional to the
magnitude of how worse they make the fit. Refinements were
carried out with the Bragg and F (Q) datasets weighted
approximately equally and with σ values that ensured a rea-
sonable proportion of moves, between 20% and 80%, are
accepted. For the σ values used in this study it was found to
be necessary to allow atomic structure and magnetic structure
refine for two and one days per period for NiO and CoO,
respectively, in which time about 2.5 and 10 million moves
were accepted, respectively. This led to RMC refinements for
NiO and CoO taking a total of 8 and 4 days respectively at
which point the change in cRMC

2 over several hours for each
refinement was approximately an order of magnitude less that
the variations between different refinements. These were
carried out using a computer with 12 3.06 GHz Intel Xeon
processors and 64 GB RAM, with refinements running on one
processor each in parallel. Maximum move sizes for atomic
positions were set at 0.054 Å and 0.100 Å for the cations and
anions, respectively, with the maximum change in spin
orientation vector set at 0.05; spin orientation changes are

implemented by changing a unitary spin vector by a faction of
this maximum move and renormalizing to ensure the overall
magnitude of the spin is retained. For refinements of the
crystallographic and magnetic structure the Bragg dataset
from banks at 50°–75° (bank 4) and 24°–45° (bank 3) were
used respectively; the former contains data at higher Q,
allowing atomic positions to be refined more precisely while
the latter enabled all magnetic reflections to be observed at
lower Q. For CoO due to the method used to normalise the
F (Q) data the scale for the Bragg and F (Q) datasets had to be
refined separately.

3. Results and discussion

3.1. NiO

Rietveld fits to diffraction data obtained from NiO in the
paramagnetic phase at 548 and 673 K using all five detector
banks did not significantly improve when the oxygen occu-
pancies were allowed to refine, confirming the sample is
stoichiometric. Lattice parameters of 4.194 050(5) Å and
4.210 1680(5) Å, were obtained at 548 K and 673 K,
respectively. Fits to data collected at 300 K confirmed this
result and a fit using a cubic model gave a lattice parameter of
a=4.178 349(6) Å, with the magnetic intensities being well
fitted by the established model with spins oriented along the
á ñ112 c¯ direction with a magnitude of 1.698(4) μB (see figure
S1) [14].

RMC fits to total scattering patterns collected at 300 K,
starting from both ordered and disordered magnetic struc-
tures, gave equally good fits to the data with the average and
standard deviation of the eight fits of the χ2 of each type of
11.7(1.1)% and 11.9(8)% (see figure 1). Examination of the
RMC-refined crystallographic structure did not reveal any
large structural distortions or clustering, with the distribution
of atoms around any one position in the collapsed supercell
being uniformly spherical (see figure S2). The average nearest
neighbour distances obtained from the RMC refinements were
equivalent for both refinements starting from ordered and
random spin configurations with Ni–O, Ni–Ni and O–O dis-
tances of 2.075(14) Å, 2.942(14) Å and 2.941(16) Å for those
starting from ordered structures compared to 2.075(13) Å,
2.942(12) Å and 2.941(15) Å for those starting from initially
random magnetic structures; by comparison the distances
obtained from the average structure were 2.089 Å, 2.954 Å
and 2.954 Å (uncertainties for the bond distances obtained by
the Rietveld method are not given as these are in the 7th
significant figure).

The magnetic structures refined using RMC appear very
disordered (see figure 2 for a typical example) but as the scale
of the nuclear and magnetic phases in the refinement were
fixed to be the same the well-ordered nuclear structure sug-
gest this is a reasonable representation of the spin orientation
at ambient temperature. Analysis of the magnetic structures
obtained from RMC refinements indicated that in all cases the
antiferromagnetic coupling of {111}c ferromagnetic planes is
recovered from the data (see figure S3).
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In the case of those refinements starting from ordered
magnetic structures the spins remained oriented along the
á ñ112 c¯ directions, mostly along the 112 c[ ¯] axis although some
refined to the symmetry equivalent 112 c[ ¯] axis (see figure 3).
The moments in those refinements starting from boxes of
random spins were significantly more disordered with it not
always being possible to determine a clear spin direction. The
moments in these models were found to remain confined
along the {111}c planes, without a clear preference for the
á ñ112 c¯ directions. Configurations starting from random
orientation are not biased towards any kind of order but will

select a random direction within the {111}c planes, providing
the most disordered results that fit the data. This suggests the
data are quite insensitive to any particular spin direction
within the {111}c planes. Refinements starting with spins
oriented along various directions in the 60° crystal-
lographically distinct range of orientations in the {111}c
planes of a monoclinic magnetic structure for NiO may
indicate some subtle improvement for particular directions
indicative of a preferred orientation, as found in the previous
study of Goodwin et al [11] for MnO, but such refinements
are beyond the scope of this study. Those starting from
ordered magnetic structures exhibit initial configurational bias
due to the difficulty in reorienting spins away from their
ordered direction since these are close to values required for a
good fit to be obtained. Attempts were made to probe whether
the spin orientations of different atoms in the 2ac × 2ac × 2ac
magnetic unit cell could be distinguished from each other,
including those groups identified by our previous study of Fe1

Figure 1. Representative RMC fits to (a) Bragg data from detector
bank 3 of the GEM diffractometer and (b) total scattering data,
respectively, for NiO. The crosses and upper and lower lines
represent the experimental data, calculated fits and the difference
between them.

Figure 2. Spin orientations of Ni in RMC refined structures of NiO
are shown as arrows. This refinement started from an ordered spin
configuration and the oxygen atoms are omitted for clarity. (a)
Shows the entire magnetic configuration while (b) magnifies a small
section highlighting the {111} ferromagnetic planes.
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−xO. Stereographic projections showed no particular varia-
tions in spin orientations beyond that required for the known
collinear antiferromagnetic structure, however, suggesting an
absence of systematic deviations of the spin orientations of
different sites in NiO (see figure S4).

3.2. CoO

Rietveld fits to the neutron diffraction patterns of CoO above
289 K, in the paramagnetic phase, were well fitted by the
cubic rock salt structure with a=4.265 99(4) Å and 4.289
03(13) Å, for 300 K and 673 K respectively. Refinement of
the oxygen occupancy did not significantly improve the fit,
confirming the sample is also stoichiometric with respect to
oxygen content. The medium resolution of the diffractometer
used in this study only reveals splitting consistent with
symmetry lowering to tetragonal in the ordered phase, instead
of the recently reported monoclinic structure. Fits to data at
100 K, gave a=3.014 315(9) Å and c=4.216 85(3) Å for
the nuclear cell with magnetic reflections well fitted by the
known 2a×b×2c magnetic structure with spins parallel
and antiparallel to 1,1, 3.60 11 c[ ( )] with an overall moment of
3.864(5) μB (see figure S5) [17].

RMC refinements started from both ordered and dis-
ordered arrangements of spins both gave equivalent fits to the
total scattering patterns obtained at 100 K, with final average
χ2 of 19.45(6)% obtained over eight refinements of each type
(see figure 4). As was the case for NiO examination of the
refined atomic positions did not reveal any major defects or
clustering of atoms with both cobalt and oxygen atoms having
a uniform distribution around their average positions (see
figure S6). The average nearest neighbour distances for Co–
O, Co–Co and O–O were very similar with 2.10(2) Å 2.94(2)
Å and 2.991(15) Å obtained from the ordered starting

configurations and 2.12(2) Å, 2.99(2) Å and 2.991(15) Å
obtained from starting with random spin orientation.

Analysis of the magnetic structures obtained from RMC
refinements starting from ordered spin configurations indi-
cated they retained a similar magnetic structure, with {111}c
ferromagnetic planes coupled antiferromagnetically to each
other. In these cases the spin orientation remained close to the
orientations present in the ordered starting configurations (see
figures 5 and S7). Examination of the stereographic projec-
tions calculated for each site in the 2at×2at×2ct magnetic
unit cell for the random configurations showed that while half

Figure 3. (a) and (b) are stereographic projections from a fully
refined ordered starting configuration rotated by 180° relative to each
other, around the c-axis; (c) and (d) represent the same for a
refinement completed from a random spin configuration. The relative

spin density
⎡
⎣⎢

⎤
⎦⎥e q f

q f
q f

=
n

N
, ln

,

d cos d
( ) ( )

( )
where n(θ, f) is the

number of spins with orientations within the range d(cosθ), df [4].

Figure 4. Representative RMC fits to (a) Bragg data from detector
bank 3 of the GEM diffractometer and (b) total scattering data,
respectively, for CoO. The format is the same as for figure 1. The fit
shown is that obtained with a collinear model; fits obtained from
non-collinear models were of visually identical quality.
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of the refinements starting from random spin configurations
led to a similar structure the other half gave rise to a more
complex structure that did not contain simple {111}c ferro-
magnetic planes or collinear magnetic moments. This struc-
ture can be described on the basis of a 2at×2at×2ct
magnetic unit cell (here, subscript t indicates we are referring
to the tetragonal setting) but only the spins on atoms related to
each other by the body-centred operation maintain the same
spin direction (see figures 5 and S8). The spin orientations
still remain close to the á ñ102 t directions but these are
arranged in such a way that, while still satisfying the anti-
ferromagnetic next-nearest neighbour coupling required by
the dominant super-exchange, spins on nearest neighbour
sites that would otherwise be ferromagnetically coupled to
each other are offset by about 30° (see figure 6). Qualitatively
it is very similar to the non-collinear model proposed by Van
Laar, whose model also lacked {111} planes of aligned
planes [16]. As found in a similar result for Fe1−xO this model
would minimise the frustration inherent in these rock salt

oxides by at least partially satisfying the desire for nearest
neighbour spins to be antiferromagnetic [12]. That the non-
collinear structure does not emerge from any of our refine-
ments starting from a collinear phase again highlights the
potential for configurational bias in magnetic RMC refine-
ments. This highlights the important effect the starting model
selected has on the results obtained from magnetic RMC
refinements and, therefore, the need to be careful when
selecting a starting model. Interestingly pairs of identical
random starting spin configurations tend to lead to the
emergence of either collinear or non-collinear structures. This
suggests that even the precise nature of the random spin
configuration influenced where collinear or non-collinear
models emerged, although the number of pairs of refinements
performed was relatively small so we are reluctant to draw
any definitive conclusions here.

We have fitted our diffraction patterns of the anti-
ferromagnetic phase to the non-collinear model using the
Rietveld method to compare to the fit we obtain using the

Figure 5. Spin orientations of Co in RMC refined structures with collinear, (a) and (b), and non-collinear configurations, (c) and (d). The
format is the same as figure 2. (a) and (c) show the entire magnetic configuration while (b) and (d) highlight the presence and lack of {111}
planes.
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collinear structure. Unfortunately, as established by the work
of Van Laar [16] using low resolution data, we get almost
identical fits. The non-collinear models give a fit with Rp, and
Rwp and χ2 of 3.50% and 3.40%, which is very similar to the
values of 3.51% and 3.42% that we get from the collinear
structure. The Rietveld refinements of the non-collinear
model give Co magnetic moments of 3.853(6) μB with spins
pointed along the á ñ1.00 2 , 0, 2.61 3 t( ) ( ) directions. While
neither of these fits are ideal the recently reported monoclinic
model [18, 19] surprisingly gave a slightly worse fit to the
data with Rp, Rwp and χ2 of 4.24, 4.88 and 0.633. This is not
to say that the magnetic structure of CoO is not monoclinic,
merely there is no direct evidence for this in our moderate
resolution data.

Using the group-theoretical analysis package ISO-
DISTORT [26] we have examined how the two magnetic
structures relate to the parent Fm m3 structure. The FIND-
SYM [26] programme in this package identifies that the non-
collinear magnetic structure has Ic41/acd symmetry in a
structure containing a single unique Co cation at the 16e
(¾,¾,¾) position with freely refineable magnetic moments
along the c-axis and perpendicular to it. The collinear struc-
ture, on the other hand, is in magnetic space group Cc2/c with
the Co at the 4d (0,½,0) position, with refineable magnetic
moment along the a- and c-axes. Removal of the magnetic

spins from this latter structure leads to the C2/m crystal-
lographic structure first proposed Jauch et al [18] consistent
with their similar magnetic structures. The modes active for
these two magnetic structures are similar, with group-theor-
etical analysis suggesting that a transition to either structure
would involve symmetry lowering via primary distortion
modes at both the Γ, (0, 0, 0), and Λ-points, (½,½,½), with the
former allowing the distortion of the lattice while the latter
describes the magnetic order. In the Ic41/acd non-collinear
structure, however, there are secondary distortions allowed at
the X-point, (0,1,0), which is consistent with the weak
reflections observed in the work of Tomiyasu et al [20]. On
this basis they proposed a different non-collinear model,
which does not emerge in any of our RMC refinements, but
we agree that such distortions would not be allowed by the
Cc2/c collinear structure. We do not observe any X-point
reflections in our data but, as Tomiyasu et al [20] suggest
these have very weak intensities, ~1×10−3 of the order of
the (001) reflection and would be in the noise of our data.

Since both the collinear and non-collinear fits to the data
are equivalent, and indeed both emerge from non-config-
urationally biased RMC refinements starting from random
spin arrangements, we are unable to distinguish between these
two on the basis of our data. We suggest that in-order to
distinguish clearly whether the magnetic structure of CoO is
collinear or non-collinear patterns would need to be obtained
that have both the extremely high resolution required to
resolve the subtle monoclinic splitting of CoO [18, 19], but
also have low enough background to confirm the presence of
the very weak X-point reflections detected by Tomiyasu et al
[20]. The approach used for this analysis would need to allow
for the likely possibility that the symmetry of CoO will have
to be lowered further than either of the models encountered in
this work, to allow both these features to be accounted for.
Only an approach that can confirm and then reconcile these
two observations will provide a satisfying solution to the
continuing debate over the magnetic structure of CoO. Fur-
thermore, that the results obtained from these compounds are
so heavily influenced by the chosen starting configurations,
may suggest implications for RMC studies of other materials.
It emphasises the importance of considering starting from a
number of different random arrangements of spins, ideally
alongside configurations of more-ordered configurations
thought to be likely candidates for the magnetic structure of a
material. Only when a magnetic structure appears from the
vast majority of starting points for the refinement is it likely to
be a trustworthy solution.

4. Conclusions

In this study we have carried out RMC refinements of the
strongly magnetoelastically coupled CoO and NiO rock salt
antiferromagnets. We have found that regardless of whether
an ordered or disordered starting point is used for the
magnetic structure of NiO, we are able to recover the known
antiferromagnetic structure for this material [14], with its
ferromagnetic {111}c planes coupled antiferromagnetically to

Figure 6. Average magnetic structures of the (a) collinear and (b)
non-collinear magnetic structures of CoO.
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each other. While the spin orientations that emerge from our
models remain in the {111}c planes we find no clear evidence
that our data are sensitive to a particular orientation within
them. Configurational bias from the ordered starting points,
however, ensures the spins in these refinements remain along
the á ñ112 c¯ directions. In CoO we find that both collinear and
non-collinear models emerge from our RMC refinements,
which give an equally good fit to our data. Evidence for
configurational bias again is found as all the refinements
starting with collinear models as starting points yield collinear
structures at the end of their refinements. We have confirmed
the magnetic symmetry of these two structures, showing that
the collinear structure is Cc2/c and the non-collinear structure
is Ic41/acd, each of which account for a different observation
regarding CoO observed in recent diffraction studies [18–20].
Further studies are required to confirm and reconcile these
two observations to enable the true magnetic symmetry of
CoO to be uncovered.
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