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Abstract: Reducing the energy consumption is an important objective of the construction industry and this 

also applies for renovation, retrofit and refurbishment of existing buildings. Masonry buildings often need 

to be retrofitted and the use of Fibre Reinforced Polymeric (FRP) materials has proven to be a viable 

solution. With the inevitable declining of fossil fuels, carbon fibres and epoxy resins must be substituted 

with greener materials. This paper reports the results of several experimental investigations recently 

conducted by the authors using glass fibre meshes embedded into an inorganic matrix (known as FRCM: 

Fibre Reinforced Cementitious Matrix) to reinforce historic masonry constructions. This strengthening 

technique has been applied in laboratory to reinforce masonry wall panels, tile brickwork vaults and to 

construct masonry ring-beams at eaves level of existing buildings. The mechanical behaviour of the 

reinforced masonry elements have been significantly enhanced and test results demonstrate that is 

possible to avoid the use of more traditional composite reinforcements like high-strength carbon fibres and 

epoxy resins to bond the reinforcing materials to the masonry substrate.  

Keywords: Sustainable strengthening techniques, GFRP grids, masonry walls, masonry tile vaults, ring beam 

reinforcement. 

 

1. Introduction 

In recent years, the conservation and protection of the architectural heritage of Europe became a 

priority and an important issue for architects and engineers. However the poor quality of the masonry 

material used to construct these historic struĐtures ofteŶ ĐoŵpliĐated the teĐhŶiĐiaŶs’ ǁork. IŶ ŵaŶǇ 
applications, the solution was to use composite materials, mainly carbon and kevlar fibres, bonded 

with strong adhesives (i.e. epoxy resins) to the masonry substrate (Bagherpour, 2012; Tinazzi et al., 

2000; Triantafillou, 1998; Valluzzi et al., 2001; Verstrynge et al., 2015). Thanks to these fibrous 

materials, it is possible to provide the needed tensile strength to the masonry material enhancing its 

mechanical behaviour. Several solutions have been proposed to increase the lateral strength of 

masonry wall panels (Binda et al., 1997; Corradi et al.; 2014; Tumialan et al., 2001; Van Rickstal et al., 

2001; Vintzileou et al., 1995), or the compressive strength of masonry columns (Aiello et al., 2007) or 

the capacity of vaulted structures (Alecci et al., 2016; Fagone et al., 2016; Gattulli et al., 2015). 

The problem of durability or the sustainable characteristics of the investigated strengthening 

techniques have not been studied and considered. Composite materials  exhibit several positive 

features which make them suitable as structural reinforcing elements (Corradi et al., 2015). FRPs are 

ĐharaĐterized ďǇ high teŶsile streŶgth iŶ the fiďres’ direĐtioŶ aŶd ďǇ  a linearly-elastic response up to 

failure. By using epoxy adhesives it was possible to transfer the loads from the masonry to the fibres 

and to protect the fibres from degradation due to environmental effects (Righetti et al., 2016). 

However the conservation bodies often prohibit or limit the use of organic (epoxy) adhesives on listed 

constructions. Both carbon fibres and epoxy adhesives are made from a pitch derived from oil 

processing. Furthermore the inevitable declining fossil fuels and the increase of their cost facilitated 

the use of more sustainable reinforcements. These also meet the need for reducing the energy 
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consumption and carbon emissions (Ercan, 2011; Kishali et al., 2010; Menezes et al., 2008). The use of 

glass-fibre composites embedded into a cementitious matrix can be an interesting solution in order to 

meet the above requirements. Fibreglass (GFRP) is a type of fibre-reinforced polymer where the 

reinforcement fibre is specifically glass fibre. This has been used in the construction sector since late 

1980s, with applications on both new and existing masonry structures. Chiefly, its application was 

researched as a strengthening technique to improve the performance of masonry structures. However, 

GFRP cost (both the composite material and the epoxy adhesive) and the limited mechanical 

enhancement compared with conventional retrofitting methods, curtailed a widespread adoption for 

reinforcement of non-historic masonry constructions.  

In the early 2010s, the use of specialized non-organic matrices (i.e. cementitious or lime-based 

mortars) was studied in order to foster improved long-term behaviour, provide reinforcement 

reversibility, meet the requirements of conservation bodies and use more compatible reinforcement 

materials with historic masonry (Lanas et al., 2003). This retrofitting method, known as FRCM (Fibre 

Reinforced Cementitious Matrix) is not labour-intensive, eliminates the need for an epoxy system to 

bond the fibres to the masonry and it is environmentally-friendly as it employs renewable and 

biodegradable resources. The adoption of non-organic matrices raises inherently less concerns 

regarding durability, production cost and health and safety restrictions compared to epoxy resins. The 

porosity of the specialized mortars allows walls and vaults to breathe, preventing damp and 

condensation problems. This reinforcement technique can be also listed within sustainable restoration 

techniques for historic constructions based on its non-invasiveness, non-energy consuming and 

reversible characteristics. It is also important to note that a key advantage of FRCMs is their inherent 

non-combustivity outperforming FRP systems during fire or high temperatures. Non-organic mortars 

present superior strength retention at elevated temperatures and can effectively protect the 

embedded fibrous reinforcement. 

FRCMs have been used over the last recent years for seismic retrofitting of historic masonry 

constructions (Borri et al., 2016; Cascone et al., 2016; Gattesco et al., 2014; Koutas et al., 2014 -2015; 

Papanicolaou et al., 2008; Tetta et al., 2015). These studies have demonstrated that the use of FRCMs 

can produce a significant enhancement of the mechanical properties of masonry structural elements.  

However non-organic matrices are not well established in applications involving the bonding of 

composite materials on masonry substrates (Carozzi et al., 2016). It is known that their mechanical 

properties are significantly weaker compared to epoxy adhesives.  

This paper presents work to discuss and identify the fields of application of FRCM reinforcements for 

historic masonry structures. Test results of previous experimental campaigns are concisely reported 

and analysed. Three different fields of application are presented: strengthening of wall panels using 

thermal-insulating mortars, reinforcement of tiled thin vaults and the study of masonry ring-beams 

reinforced with GFRP grids inserted in the horizontal mortar joints. For all three applications the FRCM 

system is made of a GFRP grid bonded with an inorganic mortar.  FRCM reinforcements can be 

expected to have a direct effect on the structural behaviour of the masonry elements and di fferent 

series of tests have been designed to analyse this effect. All test series used test pieces constructed at 

full size, by masons familiar with the traditional historic methods of construction.  

2. GFRP grid 

The fibrous material used in this study to reinforce the masonry elements is a GFRP grid with a mesh size of 

66x66 or 33x33 mm (Figure 1). The GFRP grid is made up of continuous fibre filaments embedded in 

thermosetting epoxy vinyl ester resin matrix. The glass fibre is an Alkali Resistant (AR) material and it is 

particularly suitable for application with inorganic cement- or lime-based mortars. Similarly to a woven 

fabric, glass grids are made up of a weft (the yarn going across the width of the grid) and a warp (the yarn 

going down the length of the loom) (Figure 2). The weight densities of the GFRP grids were 0.5 and 1 kg/m
2
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for 66x66 and 33x33 mm mesh sizes, respectively. Both grids were characterized by a dry glass fibre section 

of 3.8 mm
2
 in the weft and warp directions.  

Specimens were extracted from the grid and the mechanical characteristics were analysed via tensile test 

according with ASTM D3039. Test results are shown in Table 1. 

Table 1 – Mechanical properties of GFRP grid 

 
Sample size  

[-] 

Tensile strength 

[MPa] 

YouŶg’s ŵodulus 
[GPa] 

Elongation at failure 

[%] 

Warp 15 634 39.63 1.60 

Weft 13 558 35.72 1.56 

 

The used mortars are different both in composition and in mechanical properties and have been 

mechanically characterized. In the following sections the mechanical properties of the mortar are given for 

each application. 

 

 a)  b) 

Figure 1 –GFRP grid: a) 66x66 mm mesh size; b) 33x33 mm 

mesh size 

 

Figure 2 – Schematic layout 

3. Possible applications for FRCM reinforcements 

This section examines the results of previous studies undertaken by the authors using GFRP grids 

embedded into an inorganic matrix to reinforce three different masonry structural elements: wall panels, 

tiled vaults and ring beams.  

3.1 In-plane reinforcement of wall panels 

Masonry walls are often prone to be damaged when subjected to horizontal actions produced by 

earthquakes. In order to increase their in-plane capacity an innovative strengthening technique has been 

investigated. The aim is to increase both the mechanical properties and the energy efficiency of the load-

bearing walls. It consists in inserting a GFRP grid into a thermal-insulating mortar jacketing. The application 

of a thermal-insulating mortar is useful in order to reduce the building energy consumption over its lifetime 

and increase the thermal insulation of the walls. Reinforcement was applied using a multi-stage process. 

After removing the original plaster, the original bed-joint were repointed by using new mortar (Figure 3) 

and the wall surface was ground to obtain a near smooth surface. To connect the GFRP-reinforced mortar 

layers and confine the wall panel two GFRP L-shaped bar joined together using epoxy past were used 

(Figure 4). Approx. 5 L-shaped connectors have been used for each wall panel. 
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Figure 3 – Mortar joints repointed with new mortar 

 
Figure 4 – Detail of the GFRP L-shaped bar  

 

After the application of the GFRP grid, a second layer of thermal insulating mortar (each mortar layer has a 

thickness of approx. 50 mm) is applied in order to cover the grid (Figure 5). The test elements were 

constructed in laboratory as free-standing square wall panels 1.17 m high and 0.25 m thick (two wythes). In 

order to investigate the effectiveness of this retrofitting technique, the wall panels have been tested in 

shear (diagonal tension test) in accordance with ASTM E519 and RILEM TC 76-LUM standards. Results are 

presented in detail in Borri et al. (2015). Four different non-cement based thermal insulating mortars have 

been used in the reinforced panels. Table 2 describes the mechanical characteristics of the bricks and 

mortars used for the construction of the masonry panel. The mechanical characteristics of the thermal 

insulating mortars are also reported in Table 2. These mortars are identified by the letter designations RO, 

D, R2 and C. 

 

           

Figure 5 – Application of the mortar 

Table 2 – Mechanical properties of the materials used to build the masonry panels 

 Mortar* Bricks RO D R2 C 

Compressive strength (MPa) 0.85 21.58 0.72 0.66 0.87 2.70 

Sample size  (-) 19 10 4 4 4 4 

Coefficient of variation (%) 18 21 14 12 5 7 

Indirect tensile strength (MPa) 0.18 - 0.13 0.14 0.23 0.43 

Sample size (-) 19 - 4 4 4 4 

Coefficient of variation (%) 31 - 16 10 5 0.4 

YouŶg’s ŵodulus  (MPa) 12640 - 1130 580 1030 2396 

Sample size  (-) 4 - 4 4 4 4 

Coefficient of variation (%) 21 - 24 16 11 15 

* Used for panel construction 
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Thermal conductivity ;λͿ values for the used mortars have been experimentally analysed. The obtained 

results are shown in Table 3: mortars exhibited values between 0.074 and 0.275 W/mK. The mortar with 

the smallest value of thermal conductivity was RO while the one with the highest was C-type (0.275 W/mK). 

Methods and results are reported in detail in Buratti et al. (2016). 

Table 3 – Thermal conductivity values of the analysed mortars 

Samples 
λ 

(W/mK) 

RO 0.074 

D 0.123 

R2 0.130 

C 0.275 

 

Two unreinforced and eight reinforced solid clay brick panels have been tested in shear. Figure 6 shows the 

test setup: the load is applied along a panel diagonal using a hydraulic jack. Two Linear Variable Differential 

Transformers (LVDTs) have been installed along the diagonal of both wall facades to record elongations and 

shortenings. Figure 7 shows the test arrangement.  

 

Figure 6 – Diagonal tension test layout 

 

Figure 7 – Arrangement of the instruments during the 

test 

Test results are reported in Table 4 in terms of maximum diagonal load (P), shear strength (), load capacity 

increment (P) and shear modulus (G). The letter designation UR is used for unreinforced panels while RO, 

D, R2 and C are used to identify the type of thermal insulating mortar. All wall panels have been reinforced 

with a GFRP grid (66x66 ŵŵ ŵesh sizeͿ applied oŶ ďoth paŶels’ sides. 
Unreinforced panels failed by opening of diagonal cracks in the mortar joints along the compressed 

diagonal (Figure 8). Failure initiated in the central area of the masonry wall panel and extended towards the 

specimen corners. After the appearance of the diagonal cracks, the force dropped very gradually and the 

wall panel started to slid on the stepped cracks. A similar failure mode occurred for the reinforced panels: 

the diagonal cracking was followed by the detachment of the GFRP grid from the masonry substrate 

(Figures 9-10). Test results highlighted that shear capacity of reinforced specimens is mainly linked to the 

tensile strength and stiffness of the thermal insulating mortar: the load capacity increment is remarkable 

only for panels reinforced with mortars characterized by high mechanical characteristics (R2 and C types). 

The shear stress (approx. 3.15 bigger than the shear strength, see Borri et al. (2015)) – angular strain 

responses of both unreinforced and retrofitted wall panels are shown in Figure 11. 
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Table 4 – Test results on wall panels 

Panel 

designation 

Maximum 

diagonal load P 

(kN) 

Shear 

strength  

(MPa) 

P 

(%) 

Shear modulus G 

(MPa) 

UR_1 204.5 0.234 - 4466 

UR_2 197.7 0.226 - 3691 

RO_1 202.9 0.232* 0.8 4247 

RO_2 228.3 0.261* 13.5 5412 

D_1 236.4 0.271* 17.6 3981 

D_2 258.5 0.296* 28.5 4127 

R2_1 315.6 0.361* 56.9 3528 

R2_2 325.5 0.373* 61.9 - 

C_1 431.4 0.494* 115 3431 

C_2 420.3 0.481* 109 - 

* Calculated using a wall thickness of 250 mm 

 

 

Figure 8 – Failure mode for unreinforced panel 

 

Figure 9 – Failure mode for panel reinforced with mortar 

type RO 

 

 

Figure 10 – Detail of the GFRP mesh 

after cracking 

 

Figure 11 – Shear stress vs. angular strain for unreinforced and reinforced 

specimens 
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3.2 Reinforcement of tiled vaults 

Masonry arches and vaults are common in historic masonry buildings. Due to several factors such as 

degradation of the material, increased service loads due to structural modifications, seismic actions, these 

structural elements often need to be retrofitted or repaired. In a single-ring arch, the critical failure mode is 

defined as ͞hiŶge ŵeĐhaŶisŵ͟ (Figure 12). It is characterized by flexural cracks along the mortar joints at 

the hinge positions. The hinges alternate between the extrados and the intrados of the structure. 

The reinforcing technique studied could be considered as an evolution of a traditional Spanish building 

technique (Tabicada technique) (Figure 13). It consists in building vaults with several layers (typically two or 

three) of thin bricks alternated with layers of mortar. Bricks were arranged in diagonal direction in order to 

cover the mortar joints of consecutive layers (Figure 14). 

The innovative aspect of the technique is to reinforce the mortar joints by applying the 66x66 mm GFRP 

ŵesh oŶ the eǆtrados of eaĐh ďriĐks’ laǇer ;Figure 15Ϳ.  
In order to evaluate the effectiveness of a reinforced technique for masonry arches using GFRP meshes, 17 

masonry arch specimens have been built using two or three tile layers respectively. Arches had a span of 

2000 mm with a corresponding height of 700 mm above springer level. Two types of mortar have been 

used. The flexural and compressive strengths of type 1 mortar were 0.58 and 0.16 MPa, respectively. The 

mechanical characteristics of type 2 mortar were 5.25 and 1.96 MPa.  Specimens were tested by applying a 

vertical compression load at the keystone. Test results are shown in Table 5. All test specimens are indexed 

by an alphanumeric code: in this nomenclature DR refers to Double-Ring and TR to Triple-Ring arch; the 

second part of the code refers to the type of strengthening (UT for Unreinforced; IT for reinforced arch with 

GFRP grid placed into the mortar bed joints; OT for reinforced arch with GFRP grid placed both into the 

mortar bed joints and at the extrados of the arch); and the third part of the code refers to the identification 

number of the specimen. 

 

 

    

Figure 12 – Hinge mechanism for arch structures 

 

      
Figure 13 – Examples of Tabicada technique 

 

Test results are shown in Table 5. All test specimens are indexed by an alphanumeric code: in this 

nomenclature DR refers to Double-Ring and TR to Triple-Ring arch); the second part of the code refers to 

the type of strengthening (UT for Unreinforced; IT for reinforced arch with GFRP grid placed into the mortar 

bed joints; OT for reinforced arch with GFRP grid placed both into the mortar bed joints and at the extrados 

of the arch); and the third part of the code refers to the identification number of the specimen.  
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The failure mode of unreinforced specimens was due to the formation of the four-hinge mechanism (Figure 

16) while, the reinforced arches failed for the separation of the layers of tiles and GFRP reinforcement 

(Figure 17). Results are presented in detail in Castori et al. (2016). 

Tests show that the use of composite FRCM strengthening increases the capacity the masonry arch samples 

and prevents the hinge mechanism. The application of the reinforcing material produced a capacity 

increase between 2 and 7 times for the double-layer arches (DR series) and approx. of 3 times for the triple-

layer arches (TR series), compared with the unreinforced arches of the same series. 

Table 5 – Tests results (masonry arches) 

Arch 

designation 
Mortar type 

Failure load 

(kN) 

Load point 

deflection 

(mm) 

Failure mode 

DR_UT_01 1 0.15 - Mechanism 

DR_UT_02 2 1.57 2.46 Mechanism 

DR_IT_01 1 0.82 4.88 Ring separation + snap-through 

DR_IT_02 2 3.52 26.53 Ring separation + snap-through 

DR_OT_01 2 8.32 27.13 Ring separation + snap-through 

DR_OT_02 2 10.54 3.21 Ring separation + snap-through 

DR_OT_03 2 8.50 13.93 Ring separation + snap-through 

DR_OT_04 2 7.49 8.64 Ring separation + snap-through 

TR_UT_01 1 1.07 1.34 Mechanism 

TR_UT_02 2 6.83 4.93 Mechanism 

TR_UT_03 2 4.10 7.69 Mechanism 

TR_IT_01 1 2.71 2.23 Ring separation + snap-through 

TR_IT_02 2 8.46 17.60 Ring separation + snap-through 

TR_IT_03 2 12.99 24.79 Ring separation + snap-through 

TR_OT_01 2 16.66 14.04 Ring separation + snap-through 

TR_OT_02 2 17.83 13.06 Ring separation + snap-through 

TR_OT_03 2 13.16 9.90 Ring separation + snap-through 

 

 

Figure 14 – Detail of unreinforced arch 

 

Figure 15 – Detail od reinforced arch 
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Figure 16 – Four-hinge mechanism    

 

Figure 17 – Ring separation of the brick layers 

and GFRP reinforcement 

 

The retrofitting technique was more effective for vaults made using weak mortar (Type 1); for example, in 

the IT series, the increases in capacity provided by mortar type 1 for double- and triple-layer arches were 

145 and 29 % larger compared with the arches constructed with the mortar type 2. Tests also highlighted 

that the application of the grid reinforcement at the arch extrados (OT series) reduced the problem of the 

local buckling and avoided a premature collapse. 

3.2 Ring beam reinforcement 

It is known that ineffective wall-to-wall and floor-to-wall connections may facilitate out-of-plane collapse 

mechanisms in case of a seismic event. The separation of a masonry structure into separate components 

oscillating independently is the main consequence of a lack of connection. A catastrophic collapse of one or 

more wall elements or the failure of the bearing of the roof on its supporting wall then follows. In order to 

increase the quality of connections and achieve a box-like behaviour of the masonry structure against 

earthquakes, the application of a ring beam at the ground and eaves levels is an effective retrofitting 

method (Figure 18). This may improve the integrity of the masonry construction so as to prevent separation 

of individual wall panels and out-of-plane collapse mechanisms. FRCM could be also applied here, building 

a composites-reinforced masonry ring beam. The innovative reinforcing technique consists in removing a 

small section of the upper part of perimeter walls and rebuilt a masonry ring beam reinforced at the mortar 

bed-joints with the GFRP grid using recycled or new stone or bricks (Figure 19). This retrofitting technique 

may be also applied when the fair-faced appearance of the masonry must be preserved. 

 

    
Figure 18 – Examples of reinforced concrete ring beams 

 

As part of a previous study, described in detail in Sisti et al. (2016), six full-scale masonry beams were 

constructed and subjected to bending tests. Four stonemasonry specimens (length 5 m and square cross 

section characterized by side of 0.5 m), were built using 3 layers of stones and 4 layers of GFRP grid 

embedded in a ready mix hydraulic lime-mortar (type CM) (Figure 20). The remaining two specimens 

(length 5 m and cross section of 0.4 x 0.33 m), were built using 4 layers of clay bricks and 5 layers of GFRP 

mesh embedded in a ready-to-use cement-based mortar (type MI) (Figure 21).  

 



 

XII Congresso Internacional sobre Patologia e Reabilitação de Estruturas 
XII International Conference on Structural Repair and Rehabilitation 
 

26-29 October, 2016, Porto, Portugal 
 

 

Sustainable Strengthening Techniques for Masonry Structures  10 

 

 a)  b)  c)  d)  e) 

Figure 19 – Construction methods of a reinforced masonry ring beam: a) removing the upper part of the existing wall; 

b) applying the first mortar layer reinforced with the GFRP grid; c) applying the stones; d) applying a second GFRP 

reinforced mortar layer; e) repeating the phases described in c) and d) until reaching the necessary height  

 

Both mortars have been tested in compression according with UNI EN 12390-3 standard. Type CM and type 

MI mortars exhibited a compressive strength of 5.99 and 10.61 MPa, respectively. Also stones and bricks 

have been tested: the compressive strength values evaluated were 46.33 and 24.42 MPa. With regard to 

the reinforcement, two different mesh sizes were used, having a rigid square grid size of 33 x 33 and 66 x 

66 mm.  

In order to evaluate the effectiveness of the strengthening technique, reinforced ring beams have been 

tested in bending by applying the load perpendicularly or parallel to the mortar bed joints. This latter has 

been done in order to simulate the behaviour of a masonry ring beam in earthquake. However the testing 

apparatus was not designed to simulate precisely the loading condition which may be produced by a 

seismic event, but to create a set of internal forces in the ring beam similar to those which would be 

generated by the vertical and horizontal out-of-plane component of earthquake loading.  

   

  

Figure 20 – Stone FRCM ring beam 

  

Figure 21 – Clay brick FRCM ring beam 

 

Ring beams were simply supported at the ends and test were carried out over a span of 4 m. Load was 

applied by using concrete blocks and/or cement bags distributed along a load-span of 2 m. LVDTs were 

used to record vertical deflections at 1/4, 1/2 and 3/4 of the test span on both sides of the beam (Figure 

22).  Figure 23 shows the test arrangement.   

Because masonry is a material having little tensile strength (known as no-tension material), it was not 

possible to test unreinforced beams as a control to compare results. Unreinforced beams cannot support 

the stresses produced due by self-weight.  

 

 

Figure 22 – Bending test set-up 

 

Figure 23 – Test arrangement and bending moment 

diagram 
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Table 6 presents the results of the bending tests carried out on reinforced ring beam. Each specimen is 

identified with an index composed by three parts: the first designates the masonry type (P for stone 

masonry and L for ďriĐk ŵasoŶrǇͿ aŶd the ďeaŵ’s ideŶtifiĐatioŶ Ŷuŵďer, the seĐoŶd the tǇpe of grid used 
(G33 in case of GFRP mesh with a grid size of 33 x 33 mm while G66 for gird size of 66 x 66 mm) and the 

third the direction of the bending loads (V for loads parallel to the mortar joints and H for loads 

perpendicular to the bed joints). The cross section area of the reinforced material used on each specimen is 

reported in the table. In the same are also listed the mid-span bending moments produced by both self-

weight (Mw) and by applied load (Mmax). For specimen P7_G66_V the maximum mid-span bending moment 

was 54.73 kNm and the maximum load was 62.9 kN. Failure initiated at mid-span with the opening of 

vertical cracks, which increased with the load while horizontal cracks at the mortar joints opened near the 

ďeaŵ’s eŶds. For the ďriĐk-masonry beams, specimen L9-G33-V the maximum bending moment was 39.73 

kNm and the maximum load was 51.2 kN. The bending test for the L10_G33_H specimen was stopped with 

an applied load of 38.3 kN without reaching the failure. Figure 24 shows the failure mode of a 

stonemasonry ring beam and in Figure 25 it can be seen a detail of a failed brick masonry ring beam with 

the GFRP grid detached from the mortar.  

Table 6 – Tests results on ring beams 

Beam 

designation 

Dry fibre cross 

sectional area 

(mm
2
) 

Maximum 

Load 

(kN) 

Bending 

moment Mw 

(kNm) 

Bending moment 

MMax 

 (kNm) 

Total bending 

moment 

(kNm) 

P5_G33_V 171.1 56.8 10.7 39.75 50.45 

P6_G33_H 171.1 56.6 10.7 39.62 50.32 

P7_G66_V 342.2 62.9 10.7 44.03 54.73 

P8_G66_H 342.2 43.1 10.7 30.14 40.84 

L9_G33_V 213.9 51.2 3.86 35.87 39.73 

L10_G33_H 213.9 38.3 3.86 26.80 30.66 

 

 

Figure 24 – Failure of a stone masonry ring beam 

 

Figure 25 – Detail of a brick masonry ring beam after 

failure 

4. Conclusions 

It is possible to conclude that some common damage typically found in historic adobe constructions can be 

easily prevented through the use of composite materials bonded using inorganic mortars and the load 

capacity of these masonry structural elements can be also efficiently increased. This paper set out to review 

the advantages of this retrofitting technique and has summarized the test results of previous research 
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investigations conducted by the authors on masonry wall panels, tiled brickwork vaults and stonemasonry 

ring-beams. The differences in the performance of unreinforced and FRCM-retrofitted masonry structures 

of different forms of construction has been studied, enabling a better understanding of the structural 

behaviour of masonry elements reinforced with FRCMs. 

As a result of this study, it is possible to conclude that: 

1. Test results demonstrate how GFRP grids bonded using thermal insulating mortars can produce a 

double positive effect of increasing the lateral capacity and substantially enlarging the thermal 

insulation of external walls. The results of the investigation highlighted the need to find a 

Đoŵproŵise ďetǁeeŶ the ŵortar’s therŵal resistaŶĐe ;ŵaiŶlǇ goǀerŶed ďǇ its lightǁeight 
characteristics) and its mechanical strength (conversely increasing with higher weight density of the 

aggregates and quantity of cement). Test results demonstrated that it is possible to increase the 

ǁall’s lateral ĐapaĐitǇ usiŶg therŵal iŶsulatiŶg ŵortars ǁith shear iŶĐreŵeŶts up to 115 %. 

2. For tiled vaults, GFRP grids were applied to the extrados of the vaults alternating layers of tiled 

bricks and GFRP grids, and vaults were again tested to determine their strengthened response. 

Measurements were taken of both the global vault response using displacement transducers and of 

a local behaviour to obtain a detailed understanding of the FRCM strengthened vault. Significant 

increases in terms of load capacity have been measured and test results demonstrated that tile 

brickwork vaults may be effectively retrofitted using GFRG grids embedded into the mortar joints. 

3. The construction of a ring-beam at eaves level is an effective method to prevent out-of-plane 

collapse mechanisms of masonry wall panels. In this paper the use of GFRP grids coupled with 

inorganic mortars has been investigated by testing several brick- and stone-work masonry ring 

beams. It was concluded that it is possible to construct FRCM strengthened ring beams and test 

results showed a high bending capacity of strengthened beams. It is also possible to keep the fair-

faced aspect of the masonry by inserting the grid reinforcement into the horizontal mortar joints. 

The bending capacity of the reinforced ring beams was governed by the behaviour of the bond 

between the masonry and the GFRP grid.  

The present work is not exhaustive and further development work is needed, but a clear trend has been 

identified: FRCM reinforcement can enhance the mechanical characteristics of masonry structural 

elements. This enhancement is usually smaller compared to the one achievable using more traditional 

composite reinforcements applied with organic resins. However the use FRCMs may overcome several 

drawbacks typical of traditional composite reinforcements and meet the requirements of conservation 

bodies having more sustainable features and a better long-term behaviour.  
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