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Abstract

This paper addresses the problem of recognizing human actions
captured with depth cameras. Human action recognition is a chal-
lenging task as the articulated action data is high dimensional in
both spatial and temporal domains. An effective approach to han-
dle this complexity is to divide human body into different body
parts according to human skeletal joint positions, and performs
recognition based on these part-based feature descriptors. Since
different types of features could share some similar hidden struc-
tures, and different actions may be well characterized by prop-
erties common to all features (sharable structure) and those spe-
cific to a feature (specific structure), we propose a joint group s-
parse regression-based learning method to model each action. Our
method can mine the sharable and specific structures among its
part-based multiple features meanwhile imposing the importance
of these part-based feature structures by joint group sparse regu-
larization, in favor of discriminative part-based feature structure
selection. To represent the dynamics and appearance of the human
body parts, we employ part-based multiple features extracted from
skeleton and depth data respectively. Then, using the group sparse
regularization techniques, we have derived an algorithm for mining
the key part-based features in the proposed learning framework.
The resulting features derived from the learnt weight matrices are
more discriminative for multi-task classification. Through exten-
sive experiments on three public datasets, we demonstrate that our
approach outperforms existing methods.

Keywords: action recognition, regularization, feature fusion,
group sparse

Concepts: •Computing methodologies→ Activity recognition
and understanding; Motion capture;

1 Introduction

Human action recognition has many potential applications includ-
ing video games, surveillance, robotics, etc. Despite the research
efforts in the past decade and many encouraging advances, it is still
challenging to have accurate action recognition due to the high di-
mensional and articulated nature of human actions performed un-
der a variety of scenarios. In addition, some actions may involve
interactions with external objects in the environment, which in-
creases the difficulty of action recognition. In this paper, we focus
on human action recognition in depth videos that have recently
driven significant attention from researchers [Han et al. 2016; Ag-
garwal and Xia 2014]. The 3D locations of skeletal joints provided
by the skeleton estimation algorithm [Shotton et al. 2013] make it
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easier to represent a human motion as a set of movements of body
parts.

Although skeletal features are very helpful for human action recog-
nition, they may not work well on certain occasions because: (1)
the 3D positions of the tracked joints in the depth video are not
always accurate, which increases the intra-class variations in the
actions, and (2) it is insufficient to use only the 3D joint positions
to fully model a human action, especially when the action includes
the interactions between human and objects.

To alleviate these problems, different appearance features based
on the depth data can be leveraged. [Wang et al. 2014] proposed
the Local Occupancy Patterns (LOP) as the local depth appearance
for each joint to characterize the interaction between the human
subject and the objects. Histogram of Oriented Principal Compo-
nent (HOPC) [Rahmani et al. 2014a], which is another local depth
appearance feature for each joint, gives more informative and ro-
bust model around the joints. As different features may perform
optimally under different conditions, it is reasonable to combine
these features so that they complement each other. Such multiple
features may contain some common properties among all feature
sets (i.e. sharable structures) while each feature set may possess its
own unique characteristics (i.e. specific structures). As a result, it
is important to extract the sharable and specific structures from the
multiple features for multi-task classification [Chen et al. 2013;
Zhang and Yeung 2012; Amit et al. 2007; Amit et al. 2007], which
can significantly reduce the complexity of the task due to share in-
formation between related tasks [Amit et al. 2007; Torralba et al.
2007].

Each set of multiple features contains data extracted from different
body parts. An example skeleton with 20 joints and their corre-
sponding part-based multiple features are illustrated in Figure 1.
As different actions may be well characterized by certain features
of certain body parts, we divide each individual feature set into
different groups according to different body parts and determine
how discriminative they are for multi-task action classification. We
then propose the Multiple Feature Sparse Fusion (MFSF) method
by introducing joint group sparse regularization to learn the group
sparse weight matrices of the sharable and specific feature struc-
tures. The proposed MFSF method can obtain the sharable struc-
tures among the part-based multiple features as well as the specific
structures of part-based individual feature sets, both with group s-
parsity corresponding to different body parts.

The contributions of our work are stated as follows. First, our
proposed Multiple Feature Sparse Fusion (MFSF) is a novel ap-
proach for human action recognition from depth video. The joint
group sparse regularization is used in the learning stage to selec-
t discriminative sharable and specific structures among part-based
multiple features for multi-task action classification. Second, s-
ince our MFSF model employs two non-smooth regularizers, we
propose an efficient algorithm to solve for the optimization param-
eters. The resulting parameters can select key part-based features
according to different types of actions.

The rest of this paper is organized as follows. We provide a brief
review of the existing literature in Section 2 and give a framework
overview in Section 3. We present the proposed learning scheme
in Section 4. Experimental results are reported and analyzed in
Section 5. We conclude the paper in Section 6.
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Figure 1: Skeletal joint locations and their corresponding part-based multiple features.

2 Related Work

Human actions captured in depth videos are high dimensional sig-
nals with huge spatio-temporal variations. The two major types of
visual features extracted from depth signals are those inferred from
the skeletal joints and those extracted directly from the depth map
data.

The skeletal features are based on the 3D locations of skeleton
joints on each frame of the action sequence, and they are very
discriminative for action recognition. In [Yang and Tian 2014],
“eigenjoints” were extracted from the 3D locations of joints for
human action classification using the Naive-Bayes nearest neigh-
bor rule. [Xia et al. 2012] utilized the spherical histograms of 3D
locations of the joints with Hiddenv Markov Models (HMMs) to
model the temporal changes of the skeletal action for classification
task. However, the noise in estimated 3D locations of joints and
occlusion of human body parts bound the reliability of this type of
features. In addition, the 3D skeleton data alone is not sufficient
to distinguish the interaction between the human subject and the
surrounding objects.

Other than skeletal joint features, some features directly extract
holistic or local descriptions from input depth map sequence. [Li
et al. 2010] sampled boundary pixels from 2D silhouettes as a bag
of features. [Yang et al. 2012] added the temporal derivative of
2D projections to get Depth Motion Maps (DMM). Space-Time
Interest Point (STIP) detection described by Histogram of Orient-
ed Gradients (HOG) [Dalal and Triggs 2005] and Histogram of
Optical Flow (HOF) [Laptev 2005] were originally proposed for
recognition tasks on RGB videos, but [Ni et al. 2013] showed
that they could easily be generalized to handle RGB-D signals.
Recently, [Oreifej and Liu 2013] extended histogram of oriented
3D normals [Klaser et al. 2008] to 4D (HON4D) by adding time
derivative that was shown to be informative for action recognition.
However, as is shown in [Rahmani et al. 2014a], information from
very strong derivative locations, such as edges and silhouettes, may
get suppressed [Rahmani et al. 2014b]. In order to improve the
discrimination of descriptors, [Rahmani et al. 2014a] proposed
the Histogram of Oriented Principal Components (HOPC) to cap-
ture the local geometric characteristics around each point within a
sequence of 3D point clouds. The HOPC descriptor is more in-
formative than HON4D as it captures the spread of data in three
principal directions.

Since different features may have their own strength under vari-
ous occasions, it is suggested to integrate them to encode human
actions for recognition such that these multiple features can im-
prove the discriminative power of human action representation.
[Yu et al. 2014] integrated three types of features to construct a
spatio-temporal representation, including pairwise joint distances,
spatial joint coordinates, and temporal variations of joint location-
s. [Chaaraoui et al. 2013] applied feature fusion with skeletal and
silhouette based features in order to obtain a visual feature for hu-
man action recognition. [Wang et al. 2014] defined ”actionlet” as
the combination of a limited numbers of joint features for action
recognition. The aforementioned multiple feature fusion method-
s either just use skeletal features or simply concatenate different
types of feature for multiple feature fusion. [Gao et al. 2015]
applied multi-feature mapping and dictionary learning model to
design human action recognition algorithms. [Liu et al. 2016]
proposed a framework to fuse the depth map feature learned by a
CNN model and skeletal feature for action recognition with depth
sequences.

In this work, we extract multiple features consisted of skeletal joint
features and two local depth appearance features (LOP and HOPC)
from the depth videos. Moreover, we divide each individual fea-
ture set into different feature groups according to different body
parts, and introduce group spare learning for the weights, which
was not considered in the previous work. In particular, our pro-
posed method learns the weights for the sharable and specific fea-
ture structures learnt among the part-based multiple features via
the joint group sparse regularization. The resulting group sparse
weight matrices help to select the discriminative part-based feature
structures to improve multi-task action classification.

3 Framework Overview

In this section, we give a brief overview of our framework for hu-
man action recognition.

We first extract the skeletal feature, and two depth based features
LOP and HOPC. Second, using these three types of part-based
features, we propose the Multiple Feature Sparse Fusion (MFSF)
to obtain the sharable and specific structures of the multiple fea-
tures. Using the group sparse regularization, the proposed MFSF
can rank the importance of the sharable and specific feature struc-
tures according to each body part. Third, we apply the weighted
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Figure 3: Illustration of the calculation of Φi
T Xi.

Figure 2: Flow chart of our proposed approach.

sharable and specific feature structures to construct the final rep-
resentation for each action. In the end, we train the SVM classifi-
er for action recognition using the final feature vectors. Figure 2
shows the flow chart of our proposed approach.

4 Multiple Feature Sparse Fusion

Recently, sparse regularization has been studied in a variety of re-
search fields [Evgeniou and Pontil 2007; Wang et al. 2011; Wang
et al. 2013]. Since group sparsity-inducing matrix norms can cap-
ture the group-wise importance of the elements in the matrices, in
our learning framework, we will use joint group sparsity regular-
izers to learn the group sparse weight matrices for sharable and
specific structures among part-based multiple features, in favor of
selecting discriminative feature structures of certain body parts. In
the following, we define our notation first, and then present a de-
tailed description of the proposed MFSF.

4.1 Multiple feature extraction

The use of skeletal features is inspired by the work [Wang et al.
2014]. Following their practice, we repeatedly partition the tem-
poral skeletal features into 1, 2, 4 sub-segments along the temporal
dimension, and then concatenate the low frequency Fourier coef-
ficients extracted from each segment. In addition to skeletal fea-
tures, other types of features we use are local HOPC [Rahmani
et al. 2014a] and LOP [Wang et al. 2014] to represent depth based
local dynamics and appearance around each joint. LOP feature
computes the local occupancy information based on the 3D point
cloud around a particular skeletal joint, so that the temporal dy-
namics of all such local occupancy patterns can roughly discrimi-
nate different types of interactions. LOPs are extracted in a local

region around each joint on each frame. For each joint on each
frame, the local region is divided into 3 × 3 × 4 numbers of bins,
and the size of each bin is 6 × 6 × 80 pixels. The LOP feature
is computed in each bin, and then all the LOP features in all the
bins are concatenated. Then, we use a similar Fourier temporal
pyramid transformation to represent LOP features. HOPC features
are also extracted locally over the location of joints on each frame.
For each human skeletal joint on each frame, the local region is
divided into 3 × 3 × 1 numbers of bins, and the size of each bin
is 12 × 12 × 6 pixels. We then compute the HOPC histograms in
all the bins. The concatenation of the HOPC histograms in all the
bins are used as the final local descriptor.

4.2 The feature fusion model using joint group sparse

regularization

In this subsection, we proposed the MFSF to obtain the sharable
and specific structures of multiple features. The importance of
sharable feature structure and specific features structure according
to each body part is obtained by two group sparse regularization
terms in the proposed MFSF.

Suppose there are M types of features. For each feature type i,
let Xi = [xi1, ..., xiN ] ∈ ℜdi×N denotes the i-th type of fea-
ture matrix for N training samples, where di is the dimension
of i-th type of feature. The feature set inside Xi is divided in-
to P feature groups according to different body parts, and each
xin = [x1

in, ..., xP
in]

T ∈ ℜdi (n ∈ [1, ..., N ]). We attempt to learn

a projection matrix Φi ∈ ℜ
di×S (usually, S ≪ di) with the j-th

diagonal block as φi
j (j ∈ [1, ..., P ]) for each Xi to project the P

feature groups inside Xi into P subspaces spanned by the columns
of the corresponding φi

j as illustrated in Figure 3. We have M×P
subspaces, which are set to have the same dimensionality such
that both the sharable and specific feature structures among part-
based multiple features can be easily quantified in the subspaces by
the weight matrices W0 = [w1

01, ...,w1
0C ; ..., ..., ...;wP

01, ...,wP
0C ],

Wi = [w1
i1, ...,w1

iC ; ..., ..., ...;wP
i1, ...,wP

iC ] ∈ ℜ
S×C , where C

indicates the number of action classes.

As illustrated in Figure 4, each w
j
0c (c ∈ [1, ..., C]) in Wi indicates

the weight for sharable structures among all types of features cor-
responding to the j-th body part with respective to the c-th class,

and each w
j
i c

in Wi indicates the weight for specific structures of
i-type of feature corresponding to the j-th body part with respec-
tive to the c-th class. We use Y ∈ {−1, C − 1}C×N to represent
the labels of all training samples, and define each column of Y as a
zero-mean vector [−1, ...,−1, C − 1,−1, ...,−1]T . For a sample

with class label c, the cth entry of the zero-mean vector equals to
a constant positive number C − 1.

To obtain the projects W∗
0, W∗

i ∈ ℜ
S×C , Φ∗

i ∈ ℜ
di×S for mining
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Figure 4: Illustration of the weight matrices (i.e., W0 and Wi) for sharable and specific feature structures. The rows in each weight matrix
cluster into P groups according to the body parts. The weights in the row groups with deep blue color have large values. For example,
we can see that the weights of M -th type feature of P -th body part have large values in this figure. The G1-norm imposes group sparsity
between different row groups in the weight matrices for sharable and specific feature structures.

sharable and specific structure of multiple features, we propose the
Multiple Feature Sparse Fusion (MFSF) model in the multi-task
learning framework formulated as

min
W0,{Wi},{Φi}

M∑

i=1

(J((W0 + Wi)
TΦT

i Xi,Y) + β‖Wi‖G1
+

γJ(Xi,ΦiΦ
T
i Xi)) + α‖W0‖G1

(1)

s.t. ΦT
i Φi = I, i = 1, 2, ...M.

The proposed MFSF can be represented as a least-square prob-
lem, where J(A,B) = (A − B)2. The first term aims to jointly
learn the common subspaces, and the sharable and specific feature
structures. The third term intends to deliver good reconstruction
of each Xi using projection matrix Φi. The ΦT

i Φi = I is applied
for reduction of redundant information. The G1-norm in regular-
ization terms ‖W0‖G1

and ‖Wi‖G1
is group ℓ1-norm [Yuan and

Lin 2006]. ‖W0‖G1
and ‖Wi‖G1

are defined as
∑P

j=1 ‖w
j
0‖2 and

∑P

j=1 ‖w
j
i‖2 (illustrated in Figure 3), where w

j
0 = [wj

01, ...,w
j
0C ],

w
j
i = [wj

i1, ...,w
j
iC ]. G1-norm uses ℓ2-norm within sharable and

specific feature structures corresponding to each body part and ℓ1-
norm between these structures. Hence, it enforces the sparsity be-
tween different sharable and specific structures, i.e., if sharable or
specific feature structures for certain body part are not discrimi-
native for multi-task classification, the objective in Eq. (1) will
assign zeros (in ideal case, usually they are very small values) to
them; otherwise, their weights are large. This norm regularizer em-
phasises the importance of different sharable and specific feature
structures according to body parts. Thus, MFSF results automat-
ically perform the selection procedure of these part-based feature
structures.

4.3 Optimization algorithm

We introduce an alternative optimization scheme in three steps as
follows.

Step 1. Fixing the coefficients Wi and Φi, optimize W0:

min
W0

M∑

i=1

J((W0 + Wi)
TΦT

i Xi,Y) + α‖W0‖G1
. (2)

Then we can get1

W0 = (
M∑

i=1

ΦT
i XiX

T
i Φi+αD0)

−1
M∑

i=1

(ΦT
i Xi(Y

T −X
T
i ΦiWi)).

(3)
D0 is a block diagonal matrix with the j-th diagonal block as

1

2‖w
j
0
‖2

Ij , Ij is an identity matrix, w
j
0 is the j-th segment of W0 and

includes the weights of sharable feature structures corresponding
to the j-th body part. Note that D0 is dependent on W0 and thus is
also unknown variable. We propose an iterative algorithm to solve
this problem, which is described in Algorithm 1.

Algorithm 1 Our method for optimizing problem (Eq. (2)).

Input: P, S, α,Xi ∈ ℜ
di×n,Y ∈ ℜC×n.

Output: W0

1: Let t=1. Initialize W0(t) ∈ R
S×C . Each φi

j in Φi is set as

the top S
P

principal components of [xj
i1, ..., x

j
iN ] in Xi.

2: while not converge do
3: Calculate the block diagonal matrix D0(t), where the j-th

diagonal block of D0(t) is 1

2‖w
j
0
(t)‖2

Ij .

4: For W0, W0(t + 1) = (
∑M

i=1 Φ
T
i XiX

T
i Φi +

αD0(t))
−1 ∑M

i=1(Φ
T
i Xi(Y

T − XT
i ΦiWi)).

5: t = t+ 1.
6: end while

Step 2. Fixing the coefficients W0 and Φi, optimize Wi:

min
{Wi}

M∑

i=1

(J((W0 + Wi)
TΦT

i Xi,Y) + β‖Wi‖G1
). (4)

Decoupling the problem above into the following independen-
t group sparse-regularized unconstrained least square problems:

min
Wi

J((W0 + Wi)
TΦT

i Xi,Y) + β‖Wi‖G1
. (5)

1When ‖w
j
0‖2=0, Eq. (2) is not differentiable. Following [Gorodnitsky

and Rao 1997], we can introduce a small perturbation to regularize the j-

th diagonal block of D0 as 1

2
√

‖w
j
0
‖2
2
+η

Ij . Then it can be verified that

the derived algorithm minimizes the following problem:
∑M

i=1 ‖(W0 +

Wi)Φ
T
i Xi−Y‖2F+α

∑P
j=1

√

‖w0
j‖22 + η, which is apparently reduced

to problem Eq. (2) when η → 0.
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Figure 5: Confusion matrix for MSR-Daily Activity dataset.

Algorithm 2 Our method for optimizing problem (Eq. (4)).

Input: P, S, β,Xi ∈ ℜ
di×n,Y ∈ ℜC×n.

Output: Wi

1: Let t=1. Initialize Wi(t) ∈ R
S×C . Each φi

j in Φi is set as

the top S
P

principal components of [xj
i1, ..., x

j
iN ] in Xi.

2: while not converge do
3: Calculate the block diagonal matrix Di(t), where the j-th

diagonal block of Di(t) is 1

2‖w
j

i
(t)‖2

Ij .

4: For Wi, Wi(t + 1) = (ΦT
i XiX

T
i Φi +

βDi(t))
−1ΦT

i Xi(Y
T − XT

i ΦiW0).
5: t = t+ 1
6: end while

Then we can obtain2

Wi = (ΦT
i XiX

T
i Φi + βDi)

−1ΦT
i Xi(Y

T − X
T
i ΦiW0). (6)

Di is a block diagonal matrix with the j-th diagonal block as
1

2‖w
j

i
‖2

Ij , w
j
i is the j-th segment of Wi and includes the weights of

i-th specific feature structures corresponding to the j-th body part.
Note that Di is dependent on Wi and thus is also unknown vari-
able. Hence, we propose an iterative algorithm which is described
in Algorithm 2.

2When ‖w
j
i‖2=0, Eq. (4) is not differentiable. Similarly as in footnote

1, we can regularize the j-th diagonal block of Di as 1

2
√

‖w
j

i
‖2
2
+η

Ij .

Step 3. Finally, we fix W0, Wi, optimize Φi:

min
{Φi}

M∑

i=1

(J((W0 + Wi)
TΦT

i Xi,Y) + γJ(Xi,ΦiΦ
T
i Xi))

s.t.ΦT
i Φi = I, i = 1, 2, ...M.

(7)

In step 3, we follow [Wen and Yin 2013] to solve the Eq. (7).
Given the Φi(t) in t-step, we first define a skew-symmetric ma-

trix Θ = ∇Φi(t)
T − Φi(t)∇

T , in which ∇ is the gradient of
the objective function, and can be indicated by ∇ = Xi((W0 +
Wi)

TΦi(t)
T Xi − Y)T (Wi + W0)

T − 2γXiX
T
i Φi(t). Then the

new updated point can be determined by the Grank-Nicolson-like
scheme Φi(t + 1) = (I + σ

2
Θ)−1(I − σ

2
Θ)Φi(t), in which σ is

the iteration step size. In each iteration, optimal size would be de-
termined by a line search method. We summarize our optimization
for Eq. (1) in Algorithm 3.

Figure 7: Sample frames of the MSR-Daily Activity dataset.
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Figure 6: Confusion matrix for MSR-Action 3D dataset.

Algorithm 3 Our method for optimizing problem (Eq. (1)). Note
that Iter and maxIter indicate the number variation of iteration and
maximum number of iteration in Eq. (7).

Input: P, S, α, β, γ,maxIter,Xi ∈ ℜ
di×n,Y ∈ ℜC×n.

Output: W0, Wi, Φi

1: Initialize W0, Wi ∈ R
S×C . Each φi

j in Φi is set as the top S
P

principal components of [xj
i1, ..., x

j
iN ] in Xi. Iter = 1.

2: while Iter < maxIter do
3: W0 ← Output of Algorithm 1.
4: Wi ← Output of Algorithm 2, i = 1, 2, ...M
5: for i = 1 to M do
6: ∇ ← Xi((W0 + Wi)

TΦT
i Xi − Y)T (Wi + W0)

T −
2γXiX

T
i Φi.

7: Θ← ∇ΦT
i − Φi∇

T .
8: Φi ← (I + σ

2
Θ)−1(I− σ

2
Θ)Φi.

9: end for
10: Iter=Iter+1
11: end while

4.4 Construction of final feature representation

Using the learnt parameters W0,Wi and Φi, we first define two
confidence vectors to encode the shared and specific feature struc-
tures of each new sample xi, i = 1, 2...M with part-based multi-
ple features Vi

sharable = WT
0 ΦT

i xi ∈ ℜ
C and Vi

specific = WT
i

ΦT
i xi ∈ ℜ

C . Inspired by the augmented feature construction in
[Li et al. 2014], we concatenate all the sharable confidence vectors
and all the specific confidence vectors together to form higher-level
augmented features and combine these augmented features to con-
struct our final representation. Then, using the final feature, we
train a linear SVM classifier to make the final classification deci-
sion.

5 Experiments

In this section, we evaluated our methods on three human action
recognition benchmarks. In all our experiments, we use LIBSVM
software [Chang and Lin 2011] with our final feature description
to train our linear SVM classifier. In the following, we first briefly
introduce the implementation details and then describe the experi-
ments and results.

5.1 Implementation datails

All the experiments are done on Kinect-based datasets. The out-
puts of Kinect are multiple signals that give RGB videos, depth
sequences and skeletal information. In order to have a fair compar-
ison with other depth based methods, we ignore the RGB signal.
For the MFSF model, there are three parameters: α, β and γ that
corresponding to group sparsity (α, β) and reconstruction loss (γ
), respectively. According to our observation, the performance is
best when α = 0.1 ∼ 0.2, β = 0.1 ∼ 0.2 and γ = 1 ∼ 2. For
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the dimensionality S of the subspace, we set its value about 1
3

of
the number of the training samples to obtain the stable accuracy re-
sults. 30 iterations (maxIter in Algorithm 3) are set for obtaining
a reliable solution in all of our experiments.

5.2 MSR-Daily Activity dataset

According to its intra-class variations and choices of action class-
es, MSR-Daily Activity dataset [Wang et al. 2014] is one of
the most challenging benchmarks for human action recognition.
This dataset contains 16 types of activities: drink, eat, read book,
call cell phone, write on a paper, use laptop, use vacuum cleaner,
cheer up, sit still, toss paper, play game, lie down on sofa, walk,
play a guitar, stand up, sit down. A skeleton has 20 joint positions.
The total number of the activity samples is 320. Most of the activi-
ties involve human-objective interactions. We follow the same ex-
periment setting as other related works, where half of the subjects
are used as training data, while the other half are used as testing
data.

Table 1: Comparative results on MSR-Daily Activity
dataset using different norms.

Method Different norms used Accuracy

F squared, F squared ‖W0‖
2
F , ‖Wi‖

2
F 92.5

G1, F squared, ‖W0‖G1
, ‖Wi‖

2
F 93.2

F squared, G1 ‖W0‖
2
F , ‖Wi‖G1

93.9

MFSF ‖W0‖G1
, ‖Wi‖G1

95.6

We first assess the power of our joint group sparse regularization
by evaluating the performance of different joint regularization us-
ing the plain Frobenius norm and the group ℓ1-norm for part-based
multiple feature fusion in the multi-task action recognition. The
results of this experiment are shown in Table 1. It can be seen that,
using group ℓ1-norm can improve the accuracy performance. Es-
pecially in the case of MFSF, the improvement is more significant,
and accuracy rise by more than 3% comparing with the case of just
using plain Frobenius norm squared.

Table 2: Comparative results on MSR-Daily Activity
dataset based on single type of features.

Method Types Accuracy

Only LOP feature [Wang et al. 2014] LOP 42.5

Proposed MFSF LOP 67.3

Actionlet [Wang et al. 2014] Skeleton 68

Proposed MFSF Skeleton 80.2

Local HOPC [Rahmani et al. 2014a] HOPC 81.7

Proposed MFSF HOPC 83.5

Then, we verify our method in the case of single-type features
without mining sharable structures among part-based multiple fea-
tures. As shown in Table 2, using LOP features, we achieve 67.3%
compared to 42.5% of the actionlet method. For skeletal based
features, we obtain 80.2% which is more than 12% higher than
the performance of actionlet. On local HOPC features, we reach
83.5% compared to 81.7% of the local HOPC method.

To verify the strength of the proposed MFSF, we try the different
combinations of multiple features. As provided in Table 3, using
skeletal and LOP features, we get 90.0% of accuracy which out-
performs the 85.8% of actionlet method. And finally, using all
three types, MFSF achieve the best performance of 95.6%. Com-
paring with the results of SFSL in Table 2, it also shows the benefit
of the selected multiple feature fusion.

Table 3: Comparative results on MSR-Daily Activity dataset
based on combinations of multiple features.

Method Types Accuracy

Actionlet [Wang
et al. 2014]

Skeleton+LOP 85.8

Proposed MFSF Skeleton+LOP 90.0

Proposed MFSF HOPC+LOP 91.3

Proposed MFSF Skeleton+HOPC 92.8

Proposed MFSF Skeleton+LOP+HOPC 95.6

The confusion matrix of the results by our MFSF method is p-
resented in Figure 5. It is clear that our method achieves perfect
classification results on 11 action classes. The larger error is due to
the misclassifications of the actions of ’call cell phone’ as ’drink’
and ’play (electronic) game’ as ’sit still’. The reason lies in the
high similarities between each pair of actions.

5.3 MSR-Action 3D dataset

Figure 9: Sample frames of the MSR-Action 3D dataset.

MSR-Action 3D dataset [Li et al. 2010] was captured using a
depth sensor similar to Kinect. A skeleton has 20 joint position-
s. It consists of 20 actions: high arm wave, horizontal arm wave,
hammer, hand catch, forward punch, high throw, draw x, draw tick,
draw circle, hand clap, two hand wave, side boxing, bend, forward
kick, side kick, jogging, tennis swing, tennis serve, golf swing, pick
up & throw.

Table 4: Comparative results on MSR-Action 3D dataset.

Method Accuracy

Depth HOG [Yang et al. 2012] (as reported
in [Xia and Aggarwal 2013])

85.5

Actionlet [Wang et al. 2014] 88.2

HON4D [Oreifej and Liu 2013] 88.9

DSTIP [Xia and Aggarwal 2013] 89.3

Lie Group [Vemulapalli et al. 2014] 89.5

3D2CNN [Liu et al. 2016] 90.18

HOPC [Rahmani et al. 2014a] 91.6

Max Margin Time Warping [Wang and Wu
2013]

92.7

MMDLM [Gao et al. 2015] 93

Proposed MFSF 94.3

Each action was performed by ten subjects for three times. The
frame rate is 15 frames per second and resolution 640 × 480. Al-
together, the dataset has 23797 frames of depth map for 402 action
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Figure 8: Confusion matrix for CAD 60 dataset.

performed by 10 different subjects. Each subject performed ev-
ery action two or three times. Altogether, there are 557 action se-
quences. This is a challenging dataset because many of the actions
are highly similar to each other.

We follow the same experiment setting as other state-of-the-art
methods, where half of the subjects are used as test data, and the
rest of the samples are used as test data, it is what other state-of-
the-art methods also done in the comparison. As shown in Table
4, we still achieve the highest recognition accuracy among the re-
ported results, however, the achieved margin is not as large as other
datasets. This is because that there is not any interaction with other
objectives, most of the classes are highly distinguishable just using
the skeletal features. Therefore, our multiple feature combination
could not boost up the accuracy results that much, but the group
sparse learning still shows its advantage over other methods.

The confusion matrix is illustrated in Figure 6. It is clear that, our
method works very well for most of the actions. The misclassifica-
tions occur if two actions are too similar to distinguish just using
the skeletal features, such as ’hand catch’ and ’high throw’, or if
the occlusion is so large that the 3D positions of the tracked joints
are frequently inaccurate, such as the action ’pick up and throw’.

5.4 Cornell Activity dataset 60 (CAD 60)

Cornell Activity dataset (CAD-60) [Sung et al. 2011] contains 68
video clips captured with Kinect cameras. A skeleton has 15 join-
t positions. The actions in this dataset can be categorized into 5
different environments: office, kitchen, bedroom, bathroom, and
living room. Three or four common activities were identified for
each environment, giving a total of 13 specific actions: still, talk-
ing on the phone, writing on white board, drinking water, rinsing
mouth , brush teeth, wearing contact lens, talking on couch , relax-
ing on couch, cooking (chopping), cooking (stirring), opening pill

container, working on computer.

Table 5: Comparative results on CAD 60 dataset .

Method Accuracy

STIP [Zhu et al. 2014] 62.5

Order Sparse Coding [Ni et al. 2012] 65.3

Local HOPC [Rahmani et al. 2014a] 73.5

Actionlet [Wang et al. 2014] 74.7

Hierarchical HMM [Raman and
Maybank 2016]

85.4

Proposed MFSF 86.9

In this dataset, we use a more challenging experimental setting for
a more effective comparison among different action recognition
methods. We follow the same experimental setting as in [Wang
et al. 2014] by adopting the leave-one-person-out cross-validation
per environment, which ensures that person participating in the
training cannot be seen in the testing. As shown in Table 5, the
proposed method achieves an accuracy of 86.9%, which is better
than the reported results of the state-of-the-art methods.

Figure 10: Sample frames of the CAD 60 dataset.
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The confusion matrix of the results by our method is presented in
Figure 8. It is clear that our method can achieve good performance
in recognizing most of the actions. The the misclassifications oc-
cur when distinguishing action still from those actions with subtle
motions (e.g., ’talking on the phone’, ’writing on white board’)
or if two actions are too similar (e.g., ’rinsing mouth’ and ’brush
teeth’).

6 Conclusion and Future Work

This paper presents a novel method called Multiple Feature Sparse
Fusion (MFSF) model to fuse the part-based multiple features for
action classification in depth sequences. Our MFSF method learns
the weight matrices for the part-based sharable feature structures
and specific feature structures, respectively, via the group sparse
regularization. The natural property of the proposed joint group
sparse regularization automatically identifies the important part-
based sharable and specific feature structures. State-of-the-art re-
sults are achieved on three challenging depth based action recog-
nition datasets, which shows the effectiveness of the proposed
method.

Future work includes the exploring the application of our MFSF
method for person-person interaction recognition, where how
to determine the importance of different sharable and specific
structures among part-based multiple features involving the
person-person interactions should be considered.
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