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Abstract. As the complexity of information systems evolves, there is a
growing interest in defining suitable process models than can overcome
the limitations of traditional formalisms like Petri nets or related. Causal
nets may be one of such promising process models, since important char-
acteristics of their semantics deviate from the ones in the literature. Due
to their novelty, very few discovery algorithms exist for Causal nets.
Moreover, the existing ones offer very few guarantees regarding the out-
come produced. This paper describes an algorithm that can be applied
as a second step to any discovery technique to significantly improve the
quality of the final Causal net derived. We have tested the technique
in combination with the existing algorithms in the literature on several
benchmarks, noticing a considerable improvement in all of them.

1 Introduction

The discipline of process discovery addresses an important problem: to obtain
a formal process model from a log (set of sequences of activities) [1]. There
has been quite important progress in terms of process discovery algorithms in
the last decade, but it is widely accepted that no silver bullet algorithm for
process discovery has still been found, and therefore the investigation of process
enhancement techniques for improving the quality of a model in the presence
of a log may be crucial for the incorporation of process discovery as a common
practice in industry. This paper presents a technique for enhancing the quality
of a process model.

Causal nets (C-nets) [2] has been proposed as a suitable formalism for describ-
ing process models. Due to its compact representation, flexibility, and declarative
semantics, complex behavior can be naturally expressed in a C-net. Fig. 1(b)
shows an example of C-net. The informal semantics of this C-net is:

Activity a must be executed initially, since no obligations (input arcs with
dots) exist for a. It can generate obligations to either 1) activity b, or 2) activity
c or 3) activities b and c. Any of these three possibilities requires the execution
of the corresponding activities, consuming the obligation(s) from activity a and
generating obligation(s) to activity e. The final execution of e will empty the set
of obligations and therefore will lead to a valid trace.

There have been few atempts for C-net discovery in the literature. In [3–5],
algorithms for discovering heuristic nets (a subclass of C-nets) are presented.
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Fig. 1. (a) A log. (b) Causal net describing the log.

The more general approach among these three is [5], which discovers flexible
heuristic nets. Unfortunately, these three approaches suffer from a fundamental
problem: none of them can guarantee to derive fitting models [6], i.e., in the
worst case no sequence in the log is represented in the model.

To the best of our knowledge, the approach in [7] is the first algorithm for
discovering the full class of C-nets. Remarkably, it offers two important guar-
antees: i) it derives a fitting model with ii) the minimal number of arcs. The
approach uses a Satisfiability Modulo Theories (SMT) solver as the discovery
engine. However, the use of such a complex machinery for discovery makes the
approach rather limited for handling large inputs. A way to alleviate the com-
plexity of this approach is to apply divide-and-conquer strategies on top of the
SMT solver, as described in [8], using tailored clustering techniques to partition
the log into small fractions that may be better handled by the solver. The combi-
nation of the individual C-nets obtained can be easily joined into the final C-net,
due to the additive nature of the model. The experiments performed in [8] show
the capability of the high-level strategy to handle larger inputs.

This paper presents a new application of the SMT-based approach from [7].
Instead of addressing discovery, it assumes an initial skeleton of a C-net (which
can be obtained via discovery or manually), and amends the C-net in two dimen-
sions: fitness and simplicity (see [1], Sect. 5.4.3). For fitness, it may incorporate
new arcs and bindings necessary to reproduce the sequences in the log, while for
simplicity it minimizes the number of arcs and bindings, removing the redun-
dant ones. The core idea of the set of techniques of this paper strongly relies on
adapting the SMT problem used for discovery in [7] to be used for simulation
in this paper. One side-effect theoretical contribution of this paper is the reduc-
tion of the fitness decisional problem (i.e., does a C-net fit a log? ) into an SMT
problem.

Organization of the paper: In Sect. 2 we give the formal definition of C-
nets and we introduce some of the mathematical background used in the rest
of the paper. Our approach to C-net enhancement is explained in Sect. 3 and
experimentally tested in Sect. 4. Finally, Sect. 5 presents some future work and
concludes this paper.
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2 Background

2.1 Mathematical preliminaries

A multiset (or a bag) is a set in which elements of a set X can appear more than
once, formally defined as a function X → N. We denote as B(X) the space of all
multisets that can be created using the elements of X. Let M1,M2 ∈ B(X), we
consider the following operations on multisets: sum (M1 + M2)(x) = M1(x) +
M2(x), subtraction (M1−M2)(x) = max(0,M1(x)−M2(x)) and inclusion (M1 ⊆
M2)⇔ ∀x ∈ X,M1(x) ≤M2(x).

A log L is a bag of sequences of activities. In this work we restrict the type
of sequences that can form a log. In particular, we assume that all the sequences
start with the same initial activity and end with the same final activity, and that
these two special activities only appear once in every sequence. This assumption
is without loss of generality, since any log can be easily converted by using two
new activities that are properly inserted in each trace.

Given a finite sequence of elements σ = e1e2 . . . en, its length is denoted
|σ| = n, and the element at position i (e.g., ei) is denoted σi. Its prefix sequence
up to element i (but not including it), with i ≤ n+1, denoted σ←i, is e1 . . . ei−1.
We define σ←1 as the empty sequence, denoted ε. Conversely, its suffix sequence
after i, with i < n, denoted σi→, is ei+1 . . . en. We express the fact that an
element e appears in sequence σ as e ∈ σ. The alphabet of σ, denoted Aσ, is the
set of elements in σ. We extend this notation to logs, so that AL is the alphabet
of the log L, i.e., AL =

⋃
σ∈LAσ.

2.2 Causal nets (C-nets) and the discovery problem

In this section we introduce the main model used along this paper.

Definition 1 (Causal net [2]). A Causal net is a tuple C = 〈A, as, ae, I, O〉,
where A is a finite set of activities, as ∈ A is the start activity, ae ∈ A is the
end activity, and I (and O) are the set of possible input (output resp.) bindings
per activity. Formally, both I and O are functions A → SA, where SA = {X ⊆
P(A) | X = {∅} ∨ ∅ /∈ X}, and satisfy the following conditions:

– {as} = {a | I(a) = {∅}} and {ae} = {a | O(a) = {∅}}
– all the activities in the graph (A, arcs(C)) are on a path from as to ae,

where arcs(C) is the dependency relation induced by I and O such that
arcs(C) = {(a1, a2) | a1 ∈

⋃
X∈I(a2)X ∧ a2 ∈

⋃
Y ∈O(a1)

Y }.

Definition 1 slightly differs from the original one from [2], where the set
arcs(C) is explicitly defined in the tuple. The C-net of Fig. 1(b) is formally de-
fined as C = 〈{a, b, c, e}, a, e, I, O〉, with I(a) = {∅}, O(a) = {{b}, {c}, {b, c}},
I(b) = {{a}},O(b) = {{e}}, I(c) = {{a}},O(c) = {{e}}, I(e) = {{b}, {c}, {b, c}}
and O(e) = {∅}. The dependency relation of C, which corresponds graphically
to the arcs in the figure, in this case is: arcs(C) = {(a, b), (a, c), (b, e), (c, e)}. The
activity bindings are denoted in the figure as dots in the arcs, e.g., {b} ∈ O(a) is
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represented by the dot in the arc (a, b) that is next to activity a, while {a} ∈ I(a)
is the dot in arc (a, b) next to b. Non-singleton activity bindings are represented
by circular segments connecting the dots: {b, c} ∈ O(a) is represented by the
two dots in arcs (a, b), (a, c) that are connected through an arc.

Definition 2 (Binding, Binding Sequence, Projection). Given a C-net
〈A, as, ae, I, O〉, the set B of activity bindings is {(a, SI , SO) | a ∈ A ∧ SI ∈
I(a) ∧ SO ∈ O(a)}. A binding sequence β ∈ B∗ is a sequence of activity
bindings. By removing the input and output bindings from a binding sequence β,
we do obtain an activity sequence denoted as act(β).

As example, two possible binding sequences of the C-net in Fig. 1(b) are: β1 =
(a, ∅, {b})(b, {a}, {e})(e, {b}, ∅) and β2 = (a, ∅, {b, c})(c, {a}, {e})(e, {c}, ∅). The
projection of β1 is act(β1) = abe.

The semantics of a C-net are achieved by selecting, among all the possible
binding sequences, the ones satisfying certain properties. These sequences will
form the set of valid binding sequences of the C-net, and their corresponding
projection (see Def. 2) will define the language of the C-net. The next definition
addresses this.

Definition 3 (State, Valid Binding Sequence, Language). Given a C-net
C = 〈A, as, ae, I, O〉, its state space S = B(A × A) is composed of states that
represent multisets of pending obligations. Function ψ ∈ B∗ → S is defined
inductively: ψ(ε) = ∅ and ψ(β · (a, SI , SO)) = ψ(β)− (SI × {a}) + ({a} × SO).
The state ψ(β) is the state of the C-net after the sequence of bindings β. The
binding sequence β = (a1, S

I
1 , S

O
1 ) . . . (a|β|, S

I
|β|, S

O
|β|) is said to be valid if:

1. a1 = as, a|β| = ae and ∀k : 1 < k < |β|, ak ∈ A \ {as, ae}
2. ∀k : 1 ≤ k ≤ |β|, (SIk × {ak}) ⊆ ψ(βk−1)
3. ψ(β) = ∅

The set of all valid binding sequences of C is denoted as V (C). The language
of C, denoted L(C), is the set of activity sequences that correspond to a valid
binding sequence of C, i.e., L(C) = {act(β) | β ∈ V (C)}.

For instance, for the C-net of Fig. 1(b), the sequence β1 above is a valid binding
sequence, while β2 is not, since the final state is not empty (condition 3 is
violated). The language of that C-net is {abe, ace, abce, acbe}.

C-nets, contrary to Petri nets, have an “additive” nature. That is, while
adding a place to a Petri net can only restrict behavior, adding an arc (or any
other element) to a C-net can only add behavior. The “additive” nature of C-nets
is formally defined with the help of the following concepts. Given two C-nets C1

and C2 with the same initial and final activities, we say that C1 is included in C2,
denoted C1 ⊆ C2, if all the input/output bindings of C1 are also present in C2.
In such a case, then V (C1) ⊆ V (C2), L(C1) ⊆ L(C2) and arcs(C1) ⊆ arcs(C2).

These properties make the union of C-nets an effective operation to generate
C-nets that include the behavior of all the united C-nets. The union of two C-
nets C1 and C2 with the same initial and final activities, denoted C1∪C2, is the
C-net that contains all the activities and input/output bindings of C1 and C2.
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Property 1. Given two C-nets C1 and C2, L(C1 ∪ C2) ⊇ L(C1) ∪ L(C2).

The C-net discovery problem is defined as follows: given a log L, find a C-
net C such that L(C) ⊇ L. Additionally, the derived C-net can be optimized
in some dimension(s) (number of arcs, number of bindings, additional behavior,
among others). Given the additive nature of C-nets, there is a simple method to
generate a C-net that can replay all the traces in L. It is based on the immedi-
ately follows relation [9] between the activities in L, denoted <L and defined as
<L= {(a, b) | ∃σ ∈ L,∃i : 1 ≤ i < |σ| ∧ σi = a ∧ σi+1 = b}.

Definition 4. Given a log L, the immediately follows C-net of L, denoted CIF(L),
is the C-net 〈A, as, ae, I, O〉 such that: (i) A = AL, (ii) ∀σ ∈ L, σ1 = as ∧ σ|σ| =
ae, (iii) ∀a ∈ A, O(a) = {{b} | a <L b} ∧ I(a) = {{b} | b <L a}.

The immediately follows C-net can be computed in linear time with respect
of the size of the log, but allows for many unobserved behavior, thus exhibiting
a poor precision [6]. However, it is a simple alternative to generate a model for
sequences in which other approaches have problems in dealing with.

2.3 C-net discovery using SMT

Structural
Equations

Log L

contains L and

C−net that

with minimal
number of arcs

Binary Search

Arc

SMT Formula

SMT Solver

Bound

Fig. 2. SMT-based C-net discovery.

We briefly describe the strategy to de-
rive a C-net from a log based on Satis-
fiability Modulo Theories (SMT), pre-
sented in [7]. The approach is shown
in Fig. 2. First, the log is used to con-
struct an SMT formula representing
the possible bindings that each activ-
ity can have in a potential C-net that
includes as valid sequences any trace
in the log.

The construction of the formula
from a log L is as follows. Given a sequence σ ∈ L, by using the equations (E1),
(E2) and (E3) below, a binding sequence β = (σ1, X1, Y1) . . . (σ|σ|, X|σ|, Y|σ|) is
computed, such that act(β) = σ. The sets Xi and Yi of β are encoded using
integer variables over the domain {0, 1} (i.e., a Boolean variable, although we
treat it as an integer in this section). In particular we use a variable xσ,i,(a,σi)
to indicate whether activity a belongs to Xi in β (xσ,i,(a,σi) = 1 indicates that
the execution of activity σi consumes the obligation (a, σi)). Similarly, the vari-
able yσ,i,(σi,a) encodes if a belongs to Yi in β, so that if yσ,i,(σi,a) = 1 then the
execution of activity σi produces an obligation (σi, a). Using these variables, the
following equations are built for σ:

(E1) Every activity (except the initial one) has to consume at least one obli-
gation, i.e., X1 = ∅ and Xi 6= ∅ for i > 1. Formally, ∀i : 1 < i ≤ |σ|,∑
a∈Aσ←i

xσ,i,(a,σi) ≥ 1.
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(E2) Every activity (except the final one) has to produce at least one obliga-
tion, i.e., Y|σ| = ∅ and Yi 6= ∅ for i < |σ|. Formally, ∀i : 1 ≤ i < |σ|,∑
a∈Aσi→

yσ,i,(σi,a) ≥ 1.

(E3) The state of obligations after executing the prefix β←i (i.e., ψ(β←i)) con-
tains, at least, the obligations in (Xi × {σi}). This is the same as requiring
that the number of obligations of the type (a, σi) in ψ(β←i) is larger or equal
than the number of obligations (a, σi) in (Xi × {σi}). Moreover, if i is the
last occurrence of activity σi, then the previous relation must be an equal-
ity, since there cannot be pending obligations in the final state, i.e., the last
occurence of an activity must consume all the obligations for it. The number
of such obligations in ψ(β←i) can be computed by summing the number of
times the obligation has been produced minus the number of times it has
been already consumed before the execution of σi. Since this equation is
more involved than (E1) and (E2), please refer to [7] for the formal details.

Definition 5 (Structural equations, C-net of a satisfying assignment).
The set of structural equations for a C-net including the behavior of a log L,
denoted structural equations(L), is the set of equations obtained by adding the
equations (E1), (E2) and (E3) for every σ ∈ L. A satisfying assignment α of the
structural equations gives a set of binding sequences B such that ∀σ ∈ L,∃β ∈
B : act(β) = σ. Then, the C-net of the satisfying assignment α is the C-net
C = 〈A, as, ae, I, O〉 with:

– A = {a | ∃β ∈ B : (a,X, Y ) ∈ β}
– ∀a ∈ A, I(a) = {X | ∃β ∈ B : (a,X, Y ) ∈ β}
– ∀a ∈ A,O(a) = {Y | ∃β ∈ B : (a,X, Y ) ∈ β}.

It was shown in [7] that any C-net C of a satisfying assignment to the struc-
tural equations satisfies L(C) ⊇ L, and for any C-net C ′, if L(C ′) ⊇ L then
C ′ includes a C-net corresponding to a satisfying assignment to the structural
equations.

To minimize the number of arcs of the C-net, the formula obtained from the
structural equations is augmented with an upper bound on the number of arcs
the derived C-net can have, which can also be codified in the domain of SMT
with the theory of quantifier-free bit-vector arithmetic [10]. This upper bound
can be initially computed by counting the arcs of the immediately follows C-net
of the log L. On the other hand, a simple connectivity criteria can be used to
also derive a simple lower bound, by using the alphabet of the log AL: |AL| − 1.
Then, if an upper and lower bound on the number of arcs of the derived C-net
are available, a binary search strategy can be used to seek for the minimal C-
net that both includes the language of the log and has the minimal number of
arcs. The approach iteratively invokes an SMT solver to determine whether the
current arc bound used does not harm satisfiability of the formula. Hence, based
on the outcome of the SMT solver, the binary search strategy will update the
bounds accordingly.

The method in [7] guarantees that i) the traces in the log are included in the
set of valid binding sequences of the derived C-net (see Def. 2), i.e. the model
derived is fitting [6], and ii) it has the minimal number of arcs.
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Fig. 3. Deadlock in a C-net discovered using the FHM plugin. The refit algorithm is
able to generate (a) starting from (b).

3 C-net refitting

To improve the quality of a given C-net C with respect to a log L, we propose
the refit(C,L) algorithm, that will be presented in Sect. 3.6. This algorithm is
able, for instance, to derive the C-nets Fig. 3(a) and Fig. 4(a) starting from the
C-nets of Fig. 3(b) and Fig. 4(b), respectively.

Once we informally illustrate the limitations of current C-net discovery algo-
rithms (Sect. 3.1), the next sections present the necessary ingredients that will
be used in the refit(C,L) algorithm. In Sect. 3.2 we show how to adapt the tech-
nique from [7] in order to alleviate the complexity of the discovery problem by
using the skeleton of a given C-net. Then, in Sect. 3.3 the problem of simulating
a log by a C-net is solved by extending the SMT model derived in Sect. 3.2. Two
optimization techniques are presented in Sects. 3.4 and 3.5, that are ment to re-
duce the numbers of bindings. Sect. 3.6 will finally combine all these techniques
for presenting the overall strategy of the refit(C,L) algorithm.

3.1 Limitations of current discovery methods

There are currently two approaches specifically devised for C-net discovery: the
fast but heuristically based [5], and the slow and memory demanding but provid-
ing quality guarantees SMT-based [7, 8]. However, both approaches frequently
produce non-optimal C-nets as next examples illustrate.

Our first example shows a usual drawback of the strategy in [5]. The C-nets
produced by this strategy frequently have deadlocks and many (in the worst case,
all) of the sequences in the log cannot be replayed in the model. For instance,
we created a log by simulating the C-net in Fig. 3(a) and tried to rediscover it
using the FHM plugin in ProM that implements the algorithm in [5]. However,
since the approach is heuristic sometimes the concurrency or exclusive relations
between activities are not correctly interpreted by the algorithm. In this case,
the FHM plugin yields the C-net in Fig. 3(b). It is easy to see that this C-net
deadlocks because of the input binding drawn with a dashed line, since for b to
execute, activity d should have been executed, but d can only execute once b
has. In this case to fix the net a more careful analysis of the relations between
activities should have been performed.

On the other hand, although the strategy in [7] produces fitting C-nets with
minimal arcs (see Sect. 2.3), these nets might contain redundant bindings. For
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Fig. 4. Redundant bindings in a C-net discovered using an SMT-based approach. The
refit algorithm is able to generate (a) starting from (b).

instance, consider the log L = {abcf ,adef , abcdef ,adebcf , abcdebcf} which can
be described by the C-net of Fig. 4(a). However, a possible output for the SMT-
based approach is given in Fig. 4(b) which has two additional bindings, marked
with dashed arcs. In particular, it allows the sequences of activities bc and de to
be concurrent. This is a valid possibility in the sequences abcdef and adebcf of
L, and, since the number of arcs is not affected by the inclusion of the additional
bindings, then the algorithm does not prefer one C-net over the other, and the
outcome is dependent on the SMT solver implementation. In this example, it is
clear that the C-net in Fig. 4(b) can be improved by minimizing the number of
bindings in the model. This paper proposes a way to do this, thus extending [7].

3.2 C-net discovery using a skeleton

The structural equations of a log (Def. 5) precisely describe the C-nets whose
language includes the log. However, considering all this solution space might be
prohibitive in terms of complexity for the SMT solver. For instance, in [7] the
SMT solver could only complete for small logs when the whole set of equations
was considered.

To alleviate the complexity of the problem, some simplifications are proposed
in [7]. One possibility is to restrict the alphabets for which a given activity a can
produce/consume an obligation, thus reducing the number of variables of the
SMT problem. That is to substitute in the structural equations the sets Aσi→
and Aσ←i by some non-empty subset A′σi→ and A′σ←i , respectively, such that
∅ ⊂ A′σ←i ⊆ Aσi→ and ∅ ⊂ A′σi→ ⊆ Aσ←i . For instance, with this substitution
equation (E1) becomes ∀i : 1 < i ≤ |σ|,

∑
a∈A′σ←i

xσ,i,(a,σi) ≥ 1.

In [7] these reduced alphabets are computed by defining an activity window
around every activity a: only activities that in some sequence are at most at
a given distance from a are considered. This strategy enables the discovery of
C-nets from larger logs, but still in some cases the simplifications are not enough.

The alternative considered in this paper is to use what we call a C-net skeleton
to derive the reduced alphabets A′σi→ and A′σ←i . The C-net skeleton is simply
a C-net C whose arcs contain the relevant activity relationships, so that the
arcs of the discovered C-net C ′ can only be a subset of the arcs of C, i.e.
arcs(C ′) ⊆ arcs(C). To achieve this restriction, the reduced alphabets are defined
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as A′σi→ = Aσi→ ∩ {a | (σi, a) ∈ arcs(C)} and A′σ←i = Aσ←i ∩ {a | (a, σi) ∈
arcs(C)}. We denote as skeleton SMT(C,L) the set of structural equations of a
given log L when the activity sets are restricted using the arcs in C-net C.

Note that the arcs of the discovered C-net are fixed by the skeleton, but that
the input/output bindings of C ′ are not restricted to the ones in C. This degree
of flexibility is, precisely, what enables to include behavior in C ′ not previously
accepted by C. This is specially important for skeletons of non-fitting C-nets, as
will be demonstrated in Sect. 4.

3.3 Simulation as an SMT problem

The simulation of a log in a given C-net C can be expressed also as an SMT
problem by using the structural equations of C (i.e., skeleton SMT(C,L)) plus a
set of equations that restrict the possible values of the X and Y variables to the
set of input and output bindings in C. Although alternative simulation methods
are possible, this approach has some advantages. First of all, the straightforward
C-net simulation of computing the state after the execution of each activity is
worst-case exponential in the number of possible states3. Second, the simulation
problem of all the log can be solved in a single SMT problem instance (which is
NP-complete). Finally, the SMT-based simulation will be the basis for further
optimizations as we will see in Sect. 3.4.

Formally, given a C-net C = 〈A, as, ae, I, O〉 and a log L, for each se-
quence σ ∈ L we add the following equations:

∧
1<i≤|σ|

∨
S∈I(σi)Xi = S and∧

1≤i<|σ|
∨
S∈O(σi)

Yi = S. Let us denote as restrict choices(C,L) this set of
additional equations.

Since the equations in restrict choices(C,L) must be expressed using the
Boolean variables in the X and Y sets (see Sect. 2.3), a number of issues have
to be considered. For instance, the expression Xi = S might be already false
if S 6⊆ A′σ←i which allows discarding some comparisons. For the remaining in-
put bindings S, for which S ⊆ A′σ←i , the expression Xi = S is translated as∧
a∈S xσ,i,(a,σi) ∧

∧
a∈A′σ←i\S

xσ,i,(a,σi). There is an analogous consideration for

the Y sets.
We define the simulation SMT problem simulate SMT(C,L) as:

simulate SMT(C,L)
def
= skeleton SMT(C,L) ∧ restrict choices(C,L)

The solution to this SMT problem is the set of values of the X and Y variables
from which the Xi and Yi sets can be reconstructed. This means that from
each sequence σ in the log, we can obtain a valid binding sequence β such that
act(β) = σ.

3 One can notice this with the simple example of Fig. 1(b): to simulate the occurrence
of activity a, the three output bindings should be considered as potential successor
states, in general to proceed with the simulation any of them can be combined with
the occurrences of the sequent activities, which in turn may introduce new output
binding possibilities.
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Theorem 1. The equations simulate SMT(C,L) have a solution if, and only if,
every sequence σ in L is replayable by C.

Proof. ⇒ We start by observing is that the equations in skeleton SMT(C,L)
are equivalent to structural equations(L)∧ remove arcs(C,L), where remove arcs(C,L)
is a formula that assigns zero to all X and Y variables that correspond to
obligations of arcs not present in C (thus forbidding the presence of any arc
not in C). Thus, simulate SMT(C,L) is equivalent to structural equations(L)∧
remove arcs(C,L) ∧ restrict choices(C,L). Since by [7] we know that the solu-
tion to structural equations(L) yields the valid binding sequences of a C-net C ′

such that L(C ′) ⊇ L, and the possible solutions to simulate SMT(C,L) are also
solutions to structural equations(L), then we know that from the solutions to
simulate SMT(C,L) we can obtain a C-net C ′ such that L(C ′) ⊇ L. Now, be-
cause of remove arcs(C,L) ∧ restrict choices(C,L), we know that C ⊇ C ′ (for
instance C might contain bindings never used to simulate the sequences in L)
hence that L(C) ⊇ L(C ′) ⊇ L.
⇐ If every σ ∈ L can be replayed by C, then there is a valid binding

sequence β in V (C) such that act(β) = σ. If simulate SMT(C,L) has no solution
this would entail that, since structural equations(L) is always satisfiable (for
every log there is at least one possible C-net including it), the contradiction
is introduced either by remove arcs(C,L) or restrict choices(C,L). However the
latter equations simply restrict the solution to use the elements of C, thus it
contradicts the fact that β ∈ V (C). ut

3.4 Minimization of input/output bindings

The mechanism by which input and output bindings of a C-net can be minimized
is closely related to the SMT-based simulation we have seen in the previous
section. The basic idea is to build an SMT simulation problem in which we add
an additional equation, enforcing that at least a given number of bindings are
not used during the C-net simulation, i.e. the simulation problem then becomes
is it possible to simulate the net without using at least l of its bindings?, where
l is the desired number of unused bindings. Once we know how to establish this
bound on the number of unused bindings, by performing a binary search we can
maximize them, thus minimizing the number of required C-net bindings.

Formally, the quantity to maximize is:

unused(C,L)
def
=

∑

a∈A




 ∑

S∈I(a)

∧

σ∈L

∧

σi=a

Xi 6= S


 +


 ∑

S∈O(a)

∧

σ∈L

∧

σi=a

Yi 6= S






so given a (lower) limit l on the number of unused bindings, the SMT problem
built is:

min unused(C,L, l)
def
= simulate SMT(C,L) ∧ (unused(C,L) ≥ l)

To be able to perform a binary search we must provide a range of possible
values for the parameter l. The lower bound of this range is clearly zero, since
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it is possible that the C-net requires all its bindings. On the other hand, if C
contains n bindings it is possible to give a tighter upper bound than simply n.
First of all, any activity that is not the initial nor the final one, must have at
least one input and one output bindings, while the initial (final) activity must
have at least one output (input) binding. Thus if C contains |A| activities, this
means that at least (|A|−2)·2+2 = 2 |A|−2 bindings are required, so n−2 |A|+2
is a valid upper bound.

This upper bound can be improved with the information obtained during the
creation of the formula unused(C,L): if in any sequence some binding S is the
only possible choice, then there is no point in keeping it in the formula, since it
is mandatory and can never be unused. If an activity a has m mandatory input
(resp. output) bindings the upper bound decreases by m − 1 (since one input
(output) binding per activity was already considered in the original bound).

3.5 Simplification of unfrequent bindings

To require perfect fitness is sometimes too stringent, since the log may contain
noise or be incomplete [1]. Hence one may allow some percentage of the log to not
be reproducible by the model, specially if the fraction left out is the responsible
of complex constructs in the model whose corresponding behavior is not frequent
in the log (this is known as the 80/20 model).

The objective of the technique of this section is to remove as many bindings as
possible while removing as few sequences of the log as possible from the language
of the C-net. We assume the user provides a parameter f , which is the minimum
amount of fitness that the simplified net must have. To solve this problem we
follow a greedy strategy that iteratively selects the “best” binding to remove,
a strategy that does not guarantee the best possible final selection of bindings,
but works well in practice.

In particular, using the binding sequences provided by the simulation, each
binding is annotated with the set of sequences where it appears. The binding that
appears in the least number of sequences is selected, and the sequences where
it appears form the set of removed sequences Lr. From that point on, we add
the binding that introduces the least new sequences into Lr. In the case there
are several bindings with the same amount of sequences (in the first iteration)
or new sequences (in the remaining iterations), we consider the frequency of the
set sequences: we select the binding that shares its set of (new) sequences with
more other bindings. This way, we greedily maximize the number of removed
bindings. We will see the impact of this greedy technique in the experiments
performed in Sect. 4.

3.6 The algorithm

Algorithm 1 shows the refit algorithm. It starts by simulating all the sequences in
the log L. Although we have seen in Sect. 3.3 an implementation of the simulate
function that uses an SMT approach, any other function that decides whether a
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Algorithm 1 C-net refitting

1: function refit(C,L, f)
2: if ¬simulate(C,L) then . Sect. 3.3
3: E ← skeleton SMT(C,L) . Sect. 3.2
4: feasible, solutions← solve(E) . Call SMT solver
5: if ¬feasible then
6: Ln ← {σ ∈ L | ¬simulate(C, {σ})} . Non-replayable sequences
7: C ← C ∪ CIF(Ln) . Include missing behavior
8: E ← skeleton SMT(C,L)
9: feasible, solutions← solve(E) . Always solvable

10: end if
11: C ← extract cnet(solutions) . Obtain C-net from SMT solution
12: C ← minimize arcs(C,L) . Binary search of [7]
13: end if
14: C ← minimize bindings(C,L) . Sect. 3.4
15: if f < 1.0 then
16: C ← simplify(C,L, f) . Sect. 3.5
17: end if
18: return C
19: end function

given C-net C can replay the sequences in L could have been used, thus adding
some flexibility to the approach.

C-nets that can replay all sequences in L are simply minimized in the num-
ber of bindings (line 14). This tends also to reduce the number of arcs as a
side-effect4. Since the function that minimizes arcs (minimize arcs) is not based
on simulation as the function that minimizes bindings (minimize bindings), it
usually takes much more time to compute, and since the minimization of bind-
ings also reduces the number of arcs we have chosen to skip the minimization of
arcs in this case. Once the number of bindings has been reduced, if user demands
a simplification of the unfrequent bindings of the net (in which case f < 1.0),
then the simplify function Sect. 3.5 is executed. Otherwise the net is simply
returned without any other modification.

On the other hand, if some sequence of L is not in the language of C, a first
quick try to fix the net is performed by using the skeleton of C in an SMT-
based approach. If the problem is solvable, then the C-net is computed and the
procedure in [7] to minimize the number of arcs is applied to the net (line 12).
Otherwise all non-replayable sequences are identified (line 6) and the union of
the original C-net and the immediately follows C-net (c.f. Def. 4) is computed
(line 7). The resulting C-net is guaranteed to include all the sequences in the
log by Property 1, and it is used as the skeleton for another SMT problem. This
time the problem is guaranteed to be solvable, thus a C-net is extracted from
the solution (line 11) and the number of arcs minimized.

4 In all our experiments the number of arcs obtained by the minimization of bindings
was the same as the C-nets that were minimized in the number of arcs, see Sect. 4.
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In summary, the algorithm presented can be used to combine any strategy
for C-net discovery with an SMT-based approach to improve the quality (fit-
ness, simplicity) of the derived model. Next section provides experiments on the
combination of the refit algorithm with existing techniques for C-net discovery.

4 Experiments

Log Source Original name |L| |σm| |AL|
at1

[7]

aalst1 10 5 5
at2 aalst2b 8 11 5
mxa mixedXorAnd 3 14 7
opt optional1 11 8 6
cyc cycles 7 18 8
a15

[12]

a12f0n00 5 5 7 12
a21 a22f0n00 1 99 46 22
a31 a32f0n00 1 100 73 32
t31 t32f0n00 1 100 360 33
a41 a42f0n00 1 100 58 42
a25 a22f0n00 5 836 76 22
a35 a32f0n00 5 900 102 32
a45 a42f0n00 5 900 78 42

Table 1. Benchmarks used.

The utility of the proposed refit algorithm
(Sect. 3) has been tested in several scenar-
ios. All the experiments have been run in
an Intel Core Duo using the Linux 3.0 ker-
nel in which the amount of memory used
was limited to 1 Gb and the maximum
allowed elapsed processing time was one
hour. Table 1 shows the benchmarks used
in the experiments. They are well-known
logs from [12] and some small but complex
examples from [7] (some of them obtained
by simulation of C-nets in [2], namely the
at1 and at2 logs). The table also includes some basic information like the num-
ber of distinct sequences in the log (|L|), the length of the largest sequence (|σm|)
and the size of the alphabet of activities (|AL|).

To test the refit algorithm, besides having the log, we need some starting
C-nets. In this case we have used the three currently available algorithms that
discover C-nets, that is: the monolithic SMT-based approach of [7], denoted
SMTmono, the incremental SMT-based discovery approach of [8] (SMTinc) and
the Flexible Heuristics Miner (FHM ) plugin in ProM [5]. The C-nets generated
by the refit algorithm from these nets have been labeled by adding +refit to the
original generation method, so that FHM+refit refers to the C-net obtained by
the refit algorithm from the C-net generated by the FHM plugin.

Fig. 5 contains a summary of the results contained in Tables 2, 3 and 4. The
graph at the top compares the number of input/output bindings in the result-
ing net, the center graph shows the elapsed time to complete the execution of
the corresponding algorithm (for the +refit methods, this includes the time to
run the original discovery algorithm plus the time taken by the refit algorithm).
Finally the bottom graph compares the quality of the nets using two quality
measures: f is the ratio of sequences in the log that can be replayed by the
model, while cf is the cost-based fitness per case metric of [13] where 1.0 indi-
cates that all sequences in the log belong to the language of the C-net, and the
smaller the value is, the less similar are the sequences of the log to the language
of the C-net. We now provide the results of the two classes of techniques used
in combination with the refit algorithm.

SMT-based techniques: We start by evaluating the capacity of the refit algo-
rithm to minimize the number of input/output bindings (Fig. 5(top)). This part
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of the algorithm can be evaluated by comparing the results of SMTmono and
SMTinc with their +refit versions. These results can be found on Table 2, where
arc is the number of arcs, |IO| are the number of input/output bindings, Tr is
the time to complete of the refit algorithm, T is the total time of each method
and cl is the fraction of clusters successfully processed by SMTinc.

Since SMT-based methods derive fitting models with minimal number of
arcs, only a minimization of the bindings is performed by the refit algorithm.
On this regard we can see that SMTmono performs quite a good job for the
smallest benchmarks (on the left of the graph, where the refit algorithm could
not suppress any binding), but tends to create redundant bindings for the largest
ones, specially when there are several iterations of a loop in which there is a
choice or constructions like the one in Fig. 4. For these benchmarks there is a
variable reduction of bindings ranging from a modest 6% (a31) to a significant
21% (a25). Note that in some of the largest benchmarks (t31 and a45) SMTmono
is not able to complete due to memory exhaustion.

The incremental approach SMTinc can handle larger logs, but the C-nets
generated are sub-optimal in the number of arcs and bindings they contain [8].
Since this technique is not interesting for small logs, only the largest bench-
marks have been used with SMTinc. To distinguish the set of benchmarks in
which SMTinc has been executed we have drawn a vertical dashed line to sep-
arate both sets. As expected, the number of bindings provided by SMTinc is
generally larger than the ones found by SMTmono (when SMTmono is able to
complete). However the refit algorithm is capable of minimizing the number of
bindings to the same number as SMTmono+refit. In fact, all the C-nets obtained
by SMTmono+refit and SMTinc+refit are isomorphic with the only exception of
a41, where only 91% of the bindings are shared between both C-nets. The frac-
tion of shared bindings between the C-nets of the +refit versions of the discovery
methods can be found in Table 4. Formally, the values in the table correspond
to the input/output binding similarity (iobs) metric defined in [8].

In terms of running time (Fig. 5(center)), the overhead of the refit algorithm
is small when compared with the time taken by the discovery algorithm, being
usually an order of magnitude smaller (note that the Y axis in the graph is
logarithmic). The benchmarks that are not show in the graph had running times
of 0.2 s and below.

There are a couple of effects that deserve further comments. For instance for
the a41 benchmark, which is the only one in which SMTmono+refit and SMT-
inc+refit yield different C-nets, the final number of bindings for SMTinc+refit is
109, while in SMTmono+refit the same benchmark has 110 bindings. The reason
for this effect is simple: the set of initial bindings in both cases (in the C-nets
produced by SMTmono and SMTinc) is different, and since our technique simply
seeks for a minimal subset, this minimal subset can be different if the initial sets
are also different.

The second particularity is the t31 benchmark. This log is specially diffi-
cult for SMT-based techniques, due to the large sequences it contains. Trying
to discover a C-net using SMTmono, exhausts the memory, while SMTinc is
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SMTmono SMTmono+refit
Log arc |IO| T arc |IO| Tr T f cf
at1 6 14 0.0 6 14 0.0 0.0 1.00 1.00
at2 6 12 0.1 6 12 0.1 0.2 1.00 1.00
mxa 8 18 0.0 8 18 0.2 0.2 1.00 1.00
opt 9 16 0.0 9 16 0.1 0.1 1.00 1.00
cyc 9 18 0.1 9 18 0.1 0.2 1.00 1.00
a15 14 26 0.0 14 26 0.1 0.1 1.00 1.00
a21 34 64 9.3 34 64 1.1 10.4 1.00 1.00 SMTinc SMTinc+refit
a31 46 87 35.4 46 82 1.5 36.9 1.00 1.00 cl arc |IO| T arc |IO| Tr T
t31 – memout – – – – 0.93 0.97 2/3 45 100 253 memout
a41 63 125 248.4 63 110 3.5 251.9 1.00 1.00 3/3 65 134 53 63 109 5.3 58
a25 34 81 264.9 34 64 20.0 284.9 1.00 1.00 8/8 34 80 50 34 64 22.0 72
a35 46 89 814.0 46 82 19.2 833.2 1.00 1.00 8/8 46 94 114 46 82 22.7 137
a45 – memout – – – – 1.00 1.00 8/8 65 135 519 62 106 62.2 581

Table 2. Minimization of the input/output bindings of the C-nets generated using a
monolithic SMT-based approach [7], and an incremental one [8].

able to process two of the three clusters in which it is partitioned and fails in
the one that contains the larger sequences (thus the C-net found by SMTinc
in this benchmark has f = 0.93 and cf = 0.97). The refit algorithm finds that
not all sequences can be replayed by the initial C-net, and the SMT-problem
using the C-net as initial skeleton in unfeasible. When it tries to introduce the
missing sequences back into the model, simulation proceeds normally and the
seven non-replayable sequences are detected, the immediately follows C-net for
them is built, united with the original C-net and then the resulting net is min-
imized in the number of arcs. However, this last phase cannot be completed in
the available resources since the immediately follows C-net introduces too many
arcs making the SMT problem to be solved of a similar complexity to the one
that SMTmono had to solve.

FHM: The refit algorithm is fully exercised when the C-nets found by the FHM
plugin are used. This algorithm produces C-nets in a fraction of the times re-
quired by SMTmono or SMTinc, but, on the other hand, does not guarantee a
fitting model (see Fig. 5(bottom), where in several cases f = 0.0). When the
refit algorithm is used in these C-nets, the produced models obtain a fitness of
1.0, as expected, at the cost of having a larger (and different) set of bindings
(see Fig. 5(top)). The time required by the algorithm is quite reasonable (al-
though much larger than the time spent by FHM), specially when we compare
the outcome of the combination FHM+refit in contrast with SMTmono+refit or
SMTinc+refit, improving the total running time in one or two orders of magni-
tude. Thus, it is clear that a hybrid method FHM+refit would be an interesting
technique to obtain high quality C-nets with moderate running times. The de-
tailed results can be found on Table 3.
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FHM FHM+refit FHM+refit+simpl
Log arc |IO| T f cf arc |IO| Tr T f cf arc |IO| Tr+s f cf
at1 6 12 0.1 0.20 0.71 6 14 0.6 0.7 1.0 1.0 6 12 0.1 0.90 0.99
at2 7 11 0.0 0.00 0.24 6 12 0.2 0.2 1.0 1.0 4 8 0.2 0.13 0.61
mxa 8 14 0.0 0.00 0.12 8 18 0.1 0.1 1.0 1.0 6 10 0.1 0.33 0.76
opt 7 12 0.0 0.00 0.27 9 16 0.1 0.1 1.0 1.0 7 12 0.1 0.36 0.91
cyc 9 14 0.1 0.00 0.09 9 18 0.1 0.2 1.0 1.0 5 10 0.1 0.14 0.68
a15 14 25 0.2 0.00 0.87 14 26 0.1 0.3 1.0 1.0 11 20 0.1 0.78 0.99
a21 34 46 0.5 0.00 0.37 34 64 3.6 4.1 1.0 1.0 25 43 3.0 0.14 0.80
a31 46 72 0.2 0.00 0.34 46 82 2.9 3.1 1.0 1.0 40 70 3.0 0.49 0.87
t31 45 71 0.4 0.00 0.02 45 83 36.6 37.0 1.0 1.0 36 66 37.7 0.14 0.75
a41 62 97 0.3 0.00 0.26 63 109 5.2 5.5 1.0 1.0 57 96 5.5 0.58 0.94
a25 34 48 1.3 0.00 0.31 34 64 40.0 41.3 1.0 1.0 25 43 40.8 0.22 0.92
a35 46 72 0.5 0.00 0.34 46 82 35.7 36.2 1.0 1.0 40 70 36.8 0.47 0.86
a45 62 98 0.7 0.00 0.26 62 106 64.0 64.7 1.0 1.0 58 98 64.6 0.52 0.87

Table 3. Refitting of the C-nets generated using the flexible heuristics miner [5].

To exercise the refit algorithm on the part described in Sect. 3.5 we have
executed again the refit algorithm on the C-nets generated by FHM, providing
an f parameter to the algorithm that produces C-nets with at most the same
amount of bindings than the original FHM-generated nets. We have labeled
these C-nets as FHM+refit+simpl. The algorithm always achieves the same or
less number of bindings than the original FHM in a processing time that is
almost the same as the refit algorithm without simplification5. However, the
fitness results are much better than the ones obtained by FHM, on the number
of replayable sequences as well as on the cost-based fitness.

5 Conclusion and Future Work

This paper describes an SMT-based enhancement algorithm to improve the qual-
ity of a given C-net with respect to a log. The technique has been implemented
and tested with the existing C-net discovery algorithms in the literature. The
experimental results have shown that the combination of fast and heuristically
based methods with SMT-based techniques can yield high quality C-nets much
faster than purely SMT-based methods. As future work, we plan to study to
which extent the simplification procedure can produce more valuable models
when the logs contain noise.
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FHM vs. FHM vs. SMTmono vs.
Log SMTmono SMTinc SMTinc
at1 1.00 – –
at2 1.00 – –
mxa 1.00 – –
opt 1.00 – –
cyc 1.00 – –
a15 1.00 – –
a21 1.00 – –
a25 1.00 1.00 1.00
a31 1.00 – –
a35 1.00 1.00 1.00
t31 – – –
a41 1.00 0.91 0.91
a45 – 1.00 –

Table 4. Similarity between the obtained C-nets, after having applied the refit algo-
rithm.
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