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Abstract—Causal nets have been recently proposed as a
suitable model for process mining, due to their declarative
semantics and compact representation. However, the discovery
of causal nets from a log is a complex problem. The current
algorithmic support for the discovery of causal nets comprises
either fast but inaccurate methods (compromising quality), or
accurate algorithms that are computational demanding, thus
limiting the size of the inputs they can process. In this paper
a high-level strategy is presented, which uses appropriate clus-
tering techniques to split the log into pieces, and benefits from
the additive nature of causal nets. This allows amalgamating
structurally the discovered Causal net of each piece to derive a
valuable model. The claims in this paper are accompanied with
experimental results showing the significance of the high-level
strategy presented.

Keywords-Process discovery, Causal nets, High-level strategy,
Clustering;

I. INTRODUCTION

The continuous growth of data generated by information
systems has originated the advent of Process Mining, a
discipline that sits in between the data mining and software
engineering fields. The data, often available as a set of traces
(logs) that information systems generate, can be processed in
order to discover formal process models, check whether the
available models conform to the reality observed in the log,
and extend the current processes for improving the quality
of the information provided [1].

There are several open problems in the area of Process
Mining. A crucial one is Control Flow Process Discovery:
given a log, to find a formal model (e.g., a Petri Net) for
a process which: i) represents (most of) the causal relations
between activities in the log, ii) conforms [2] with a high
degree the log, and iii) its graphical description is as much
structured as possible [3]. Obviously, the selection of a given
target model (Transition Systems, Petri nets, Heuristic nets,
among others) influences the type of algorithms one can
use for discovery. Moreover, given a formal model, there
exist many possibilities depending on the target subclass. For
instance the complexity of the α-algorithm [4] to discover
workflow nets is very low when compared to the theory of
regions [5], [6], [7], [8], which allows to discover general
Petri nets.

Recently, a formalism called Causal nets (C-nets) [9]
has been proposed as a suitable modeling language for
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Figure 1. (a) A log. (b) Causal net describing the log. (c) Single Petri net
modeling the same log with the help of silent transitions.

process mining. It is a rather compact representation that
allows expressing complex behavior that it is sometimes
difficult to describe using other formalisms. For instance
consider the log in Fig. 1(a). In Fig. 1(c) a Petri net that
contains all the sequences in the log is described. In order
to represent exactly the log (i.e., to avoid incorporating
in the net extra behavior), the use of silent transitions is
required, graphically represented as black boxes. On the
other hand, a simple C-net representing the log is shown in
(b), which is quite compact. The semantics of that C-net
can be informally described as:

Activity a must be executed initially, since no obligations
(input arcs with dots) exist for a. It can generate obligations
to either 1) activity b, or 2) activity c or 3) activities b and
c. Any of the these three possibilities requires the execution
of the corresponding activities, consuming the obligation(s)
from activity a and generating obligation(s) to activity e.
The final execution of e will empty the set of obligations
and therefore will lead to a valid trace.

The problem of C-nets discovery poses new challenges
that previous algorithms for discovery of other models like
Petri nets did not have to address. First, the declarative (or
a-posteriori) semantics of a C-net is defined on valid firing
sequences (sequences that result in an empty set of pending
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obligations), and therefore, C-nets are not prefix-closed.
Second, contrary to Petri nets that have a restrictive nature
(i.e., the addition of a place can only restrict the behavior),
C-nets have an additive nature, that is, the addition of
elements to the C-net can only add behavior. For instance,
by adding an arc with two dots between a and e in Fig. 1(b),
the sequence ae is added to the language of the C-net.

This paper describes a high-level strategy to discover a C-
net from a log. Although there are currently few discovery
algorithms for C-nets in the literature, we expect their
number to increase in the near future. The available dis-
covery algorithms can be roughly classified in two classes:
either they are fast and can handle large inputs [10] but
may provide unsatisfactory results (for instance the C-nets
generated by [10] can deadlock) or they provide high-quality
C-nets (in terms of i), ii) and iii) above) but they are
computationally expensive [11].

The additive feature of C-nets makes them specially
suitable for the divide-and-conquer strategy presented in this
paper (see Fig. 2). It is based on structurally combining
several C-nets that result on applying discovery methods to
small fractions of the log. The partitioning of the log is
done by tailored clustering algorithms which can be guided
by particular factors (frequency, similarity, balance, time,
among others). Since the fractions tend to be small, they
are tractable for high-quality discovery algorithms like [11].
Importantly, the union of the set of discovered C-nets can be
accomplished structurally, a crucial fact that makes C-nets a
very suitable model. If the same approach would have been
done using a different model like Petri nets, one has to face
the problem of deriving a Petri net which is the union of a
set of Petri nets, an important issue that cannot be tackled
structurally in general (a state-based solution to this problem
which is grounded on the theory of regions can be found
in [12]).

The organization of the paper is as follows: in Sect. II
we introduce some mathematical notation and the formal
definition of C-nets. Section III explains the properties of the
union of C-nets. These properties are then used in Sect. IV
to propose a high-level strategy to discover accurate C-nets
from large inputs. The strategy is then experimentally tested
on Sect. V. Section Sect. VI incorporates a discussion on the
connection of this work with existing contributions in the
literature, while Sect. VII concludes this paper and provides

some research directions for the future.

II. BACKGROUND

A. Mathematical preliminaries

A multiset (or a bag) is a set in which elements of a set X
can appear more than once, formally defined as a function
X → N. We denote as B(X) the space of all multisets
that can be created using the elements of X . Let M1,M2 ∈
B(X), we consider the following operations on multisets:
sum (M1 +M2)(x) =M1(x) +M2(x), subtraction (M1 −
M2)(x) = max(0,M1(x) −M2(x)) and inclusion (M1 ⊆
M2)⇔ ∀x ∈ X,M1(x) ≤M2(x).

A log L is a bag of sequences of activities. In this
work we restrict the type of sequences that can form a
log. In particular, we assume that all the sequences start
with the same initial activity and end with the same final
activity, and that these two special activities only appear
once in every sequence. This assumption is without loss of
generality, since any log can be easily converted to satisfy
these requirements by using two new activities that are
properly inserted in each trace.

Given a finite sequence of elements σ = e1e2 . . . en, its
length is denoted |σ| = n. The alphabet of σ, denoted Aσ , is
the set of elements in σ. We extend this notation to logs, so
that AL is the alphabet of the log L, i.e., AL =

⋃
σ∈LAσ .

Finally, the number of occurrences of a given element e in
σ, i.e. |{ei | ei = e}|, is denoted as #(σ, e).

B. Causal nets (C-nets)

In this section we introduce the main model used along
this paper.

Definition 1 (Causal net [9]): A Causal net is a tuple
C = 〈A, as, ae, I, O〉, where A is a finite set of activities,
as ∈ A is the start activity, ae is the end activity, and I
(and O) are the set of possible input (output resp.) bindings
per activity. Formally, both I and O are functions A→ SA,
where SA = {X ⊆ P(A) | X = {∅} ∨ ∅ /∈ X}, and satisfy
the following conditions:
• {as} = {a | I(a) = {∅}} and {ae} = {a | O(a) =
{∅}}

• all the activities in the graph (A, arcs(C)) are on a
path from as to ae, where arcs(C) is the dependency
relation induced by I and O such that arcs(C) =
{(a1, a2) | a1 ∈

⋃
X∈I(a2)X ∧ a2 ∈

⋃
Y ∈O(a1)

Y }.
Definition 1 slightly differs from the original one

from [9], where the set arcs(C) is explicitly defined in
the tuple. The C-net of Fig. 1(b) is formally defined as
C = 〈{a, b, c, e}, a, e, I, O〉, with I(a) = ∅, O(a) =
{{b}, {c}, {b, c}}, I(b) = {{a}}, O(b) = {{e}}, I(c) =
{{a}}, O(c) = {{e}}, I(e) = {{b}, {c}, {b, c}} and
O(e) = ∅. The dependency relation of C, which corre-
sponds graphically to the arcs in the figure, in this case is
arcs(C) = {(a, b), (a, c), (b, e), (c, e)}. The activity bind-
ings are denoted in the figure as dots in the arcs, e.g.,



{b} ∈ O(a) is represented by the dot in the arc (a, b) that is
next to activity a, while {a} ∈ I(b) is the dot in arc (a, b)
next to b. Non-singleton activity bindings are represented by
arcs connecting the dots: {b, c} ∈ O(a) is represented by the
two dots in arcs (a, b), (a, c) that are connected through an
arc.

Definition 2 (Binding, Binding Sequence, Projection):
Given a C-net 〈A, as, ae, I, O〉, the set B of activity bindings
is {(a, SI , SO) | a ∈ A ∧ SI ∈ I(a) ∧ SO ∈ O(a)}.
A binding sequence β ∈ B∗ is a sequence of activity
bindings. By removing the input and output bindings from
a binding sequence β, we do obtain an activity sequence
denoted as σβ .
Two binding sequences of the C-net in Fig. 1(b)
are: β1 = (a, ∅, {b})(b, {a}, {e})(e, {b}, ∅) and β2 =
(a, ∅, {b, c})(c, {a}, {e})(e, {c}, ∅). The projection of β1 is
σβ1 = abe.

The semantics of a C-net are based on characterizing,
among all the binding sequences it has, those ones that
satisfy certain properties and therefore their corresponding
projection (see Def. 2) will belong to the language of the
C-net. The next definition addresses this.

Definition 3 (State, Valid Binding Sequence, Language):
Given a C-net C = 〈A, as, ae, I, O〉, its state
space S = B(A × A) is composed of states that
represent multisets of pending obligations. Function
ψ ∈ B∗ → S is defined inductively: ψ(ε) = ∅ and
ψ(β · (a, SI , SO)) = ψ(β) − (SI × {a}) + ({a} × SO).
The state ψ(β) is the state of the C-net after the
sequence of bindings β. The binding sequence
β = (a1, S

I
1 , S

O
1 ) . . . (an, S

I
n, S

O
n ) is said to be valid

if:

1) a1 = as, an = ae and ∀k : 1 < k < n, ak ∈ A \
{as, ae}

2) ∀k : 1 ≤ k ≤ n, (SIk × {ak}) ⊆ ψ(βk−1)
3) ψ(β) = ∅

The set of all valid binding sequences of C is denoted
as VCN(C). The language of C, denoted L(C), is the set
of activity sequences that correspond to a valid binding
sequence of C, i.e., L(C) = {σβ | β ∈ VCN(C)}.
For instance, in Fig. 1(b), β1 is a valid binding se-
quence, while β2 is not, since the final state is not empty
(condition 3 is violated). The language of that C-net is
{abe, ace, abce, acbe}.

Importantly, C-nets can naturally represent behavior that
cannot be easily expressed in the Petri net notation unless
unobservable (silent) transitions are used. Fig. 3 illustrates
this point. In the C-net, activities c and d can occur concur-
rently or exclusively, even in different iterations of the loop
created by activity f , e.g., abcdez or abdefbcez. However,
there is still another possibility that arises from combining
the AND-split and the XOR-join: abdceefbdfbcez. Note that
in this last trace, activity e could execute twice for a single b
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Figure 3. C-net mixing concurrent and exclusive behavior for activities c
and d.
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Figure 4. SMT technique for C-net discovery.

(although in the overall trace they execute the same number
of times).

C. C-net discovery using SMT

We informally describe the strategy to derive a C-net
from a log based on Satisfiability Modulo Theories (SMT),
presented in [11]. The approach is shown in Fig. 4. First,
the log is used to construct an SMT formula representing the
possible bindings that each activity can have in a potential
C-net that includes as valid sequences any trace in the log.
Then the formula is augmented with an upper bound on
the number of arcs the derived C-net can have, which can
also be codified in the domain of SMT with the theory of
quantifier-free bit-vector arithmetic [13]. This upper bound
can be initially computed by counting the arcs of a C-net that
is built using simple ordering relation between activities and
whose language is guaranteed to contain all the sequences
in the log (see the formal details in [11]).

On the other hand, a simple connectivity criteria can be
used to also derive a simple lower bound, by using the
alphabet of the log AL: |AL| − 1. Then, if an upper and
lower bound on the number of arcs of the derived C-net are
available, a binary search strategy can be used to seek for the
minimal C-net that both includes the language of the log and
has the minimal number of arcs. The approach iteratively
invokes an SMT solver to determine whether the current



arc bound used does not harm satisfiability of the formula.
Hence, based on the outcome of the SMT solver, the binary
search strategy will update the bounds accordingly.

The method in [11] guarantees that i) the traces in the
log are included in the set of valid binding sequences of
the derived C-net (see Def. 2), i.e. the model derived is
fitting [2], and ii) it has the minimal number of arcs. To the
best of our knowledge, there is no other technique in the
literature that either guarantees fitting models or limits the
number of arcs. Hence, this will be the discovery technique
used in our high-level strategy.

III. C-NET UNION

C-nets, contrary to Petri nets, have an “additive” nature.
That is, while adding a place to a Petri net can only restrict
behavior, adding an arc (or any other element) to a C-net
can only add behavior. The “additive” nature of C-nets is
formally defined with the help of Def. 4 and Property 1.

Definition 4: Given two C-nets C1 = 〈A1, a
1
s, a

1
e, I1, O1〉

and C2 = 〈A2, a
2
s, a

2
e, I2, O2〉, we say that C1 is included

in C2, denoted C1 ⊆ C2, if:

• a1s = a2s ∧ a1e = a2e,
• A1 ⊆ A2, and
• ∀a ∈ A1, I1(a) ⊆ I2(a) ∧O1(a) ⊆ O2(a)

For instance the C-net C1 of Fig. 5(a) is included in the
C-net of Fig. 5(c), but it is not included in the C-net of
Fig. 1(b).

Property 1: Let C1 and C2 be two C-nets. If C1 ⊆ C2,
then VCN(C1) ⊆ VCN(C2), L(C1) ⊆ L(C2).

Proof: Since the input and output binding sets of C2

include the input and output binding sets of both C1 (Def. 4),
any valid binding sequence in C1 will also be a valid binding
sequence of C2, thus VCN(C1) ⊆ VCN(C2) which entails
L(C1) ⊆ L(C2) because the language of a C-net is obtained
by simply keeping only the sequences of activities executed
in the binding sequences.
As C1 of Fig. 5(a) is included in Fig. 5(c), its language,
{abce}, is a subset of the language of Fig. 5(c). Note that
the union does not necessarily give the smallest C-net (in
terms of its corresponding language) that can contain the
union of languages of the united C-nets. For instance, the
C-net in Fig. 1(b) includes both L(C1) and L(C2) but its
language is a proper subset of the C-net of Fig. 5(c).

In spite of the fact that minimality of behavior is not
guaranteed by the union operator (as the previous example
demonstrates), still Property 1 makes the union of C-nets a
very simple and effective operation to generate C-nets that
include the behavior of the united C-nets.

Definition 5: Given two C-nets with identical initial
and final activities, C1 = 〈A, as, ae, I, O〉 and C2 =
〈A′, as, ae, I ′, O′〉, their union, denoted C1∪C2, is the C-net

(a) a b c e

(b) a bc e

(c) a

b

c

e

Figure 5. (a) C-net C1 with language abce. (b) C-net C2 with language
acbe. (c) Union C-net C1 ∪ C2. Its language (using regular expressions)
is ab(cb)∗e ∪ a(bc)+e ∪ ac(bc)∗e ∪ a(cb)+e.

〈A ∪A′, as, ae, I ′′, O′′〉, where

I ′′(a) =





I(a) ∪ I ′(a) if a ∈ A ∩A′

I(a) if a ∈ A \A′

I ′(a) otherwise.

O′′(a) =





O(a) ∪O′(a) if a ∈ A ∩A′

O(a) if a ∈ A \A′

O′(a) otherwise.

For instance C-net C1 and C2 of Fig. 5(a) and (b), have
the same initial and final activities, thus they can be united.
Their union is the C-net of Fig. 5(c).

Lemma 1: Given two C-nets C1 and C2, VCN(C1∪C2) ⊇
VCN(C1) ∪ VCN(C2), thus L(C1 ∪ C2) ⊇ L(C1) ∪ L(C2).

Proof: Since by Def. 5 C1 ⊆ C1 ∪ C2 and C2 ⊆ C1 ∪
C2, by Property 1 we know VCN(C1) ⊆ VCN(C1 ∪ C2) and
VCN(C2) ⊆ VCN(C1∪C2), thus VCN(C1∪C2) ⊇ VCN(C1)∪
VCN(C2).

The union will be a crucial operator in the approach
presented in this paper, enabling the splitting of a log into
pieces and amalgamating the individual results by using the
union of C-nets. The next section is devoted to present this
high-level strategy.

IV. A DIVIDE-AND-CONQUER STRATEGY

A. A clustering algorithm for C-nets

Clustering is an active research area in process discov-
ery and there are numerous sequence clustering algorithms
available (see Sect. VI for a discussion on related work).
The approaches are very diverse, ranging from algorithms
that assign to the same cluster sequences that are near when
they are mapped to an n-dimensional space, to approaches
that rely on sequence alignment techniques. Any of these
techniques could be used in the clustering phase of our
strategy. However, none of them is tailored to produce
clusters particularly suitable for C-net discovery. In this
section we propose a simple clustering method that tries
to take advantage of the C-net specificities.
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Figure 6. C-net with optional behavior (activity c) and a choice between
d and e.

Ideally we would like to avoid situations like the follow-
ing: consider the log {abce, acbe}. If we partition this log
into two singleton clusters, namely {abce} and {acbe}, and
the simplest C-net for each cluster is generated, we obtain
the C-nets C1 and C2 of Fig. 5(a) and Fig. 5(b), respectively.
The union of these two C-nets is shown in Fig. 5(c). Clearly
the C-net of Fig. 5(c) contains many additional behavior in
the language of the net with respect to the original log.
In general, this phenomenon will occur when particular
orderings of concurrent behavior are assigned to different
clusters.

On the other hand, let us consider the log L =
{abdf, abef, acbdf, acbef}, which can be represented by the
C-net of Fig. 6. This log exhibits typical constructs like
choice (between activities d and e) and optional behavior
(activity c). In this case, creating four singleton clusters,
computing their simplest C-nets and merging them will yield
precisely the C-net of Fig. 6, thus including no additional
behavior. This is due to the fact that C-nets represent choice
and optional behavior with additional arcs. Note, neverthe-
less, that in general clustering traces in this way may also
introduce additional behavior: for instance consider the same
log L but now without the sequence acbef , let us call this
log L′. The result of splitting L′ into three singleton clusters
and merging the corresponding C-nets will yield exactly the
same C-net as before, thus sequence acbef will still belong
to the language of the net, while it is possible to construct
a C-net whose language is only L′ (excluding acbef ).
However, note also that the simplest C-net for L′ is again
the C-net of Fig. 6, since larger input/output binding sets
(involving additional arcs) are required to exclude sequence
acbef from the language.

Considering this particularity of C-nets, we propose the
recursive clustering method shown in Algorithm 1.

The algorithm is invoked with two parameters, the log L
and a threshold t, and will return the set of clustered logs
that either have less that t sequences or could not be further
split. First of all (line 2), it computes the set of activities
As that could be used to partition L. These are the activities
that both appear in at least one sequence of L, and do not
appear in at least one sequence of L. Then it checks if
the stop conditions are met (lines 3-5). In such a case, it
simply returns the singleton set containing L. Otherwise, it

Algorithm 1 C-net oriented clustering
1: function RECURSIVESPLIT(L,t)
2: As ← {a ∈ AL | ∃σ ∈ L : a /∈ Aσ}
3: if (|L| < t) ∨ (As = ∅) then
4: return {L}
5: end if
6: a← selectSplitActivity(As, L)
7: S1 ← recursiveSplit({σ ∈ L | a ∈ Aσ}, t)
8: S2 ← recursiveSplit({σ ∈ L | a /∈ Aσ}, t)
9: return S1 ∪ S2

10: end function

performs the recursive part of the algorithm, by selecting
first one activity among the set of candidate activities
As (line 6). The are several possible heuristics to decide
which candidate is better. In our current implementation
the selectSplitActivity function simply chooses the
activity that will yield more balanced partitions. Finally, two
clusters are formed by considering the sequences in which
the selected activity is present or not, and the function is
called recursively on them.

With respect to our initial objective of clustering together
concurrent behavior, this issue is fairly related with the
concept of synchronic distance [14], which provides a degree
of mutual dependence between two activities. In our setting,
the synchronic distance of activities a1 and a2 in a log L
can be formally defined as the maximal value of

|#(σ′, a1)−#(σ′, a2)|

where σ = σ′ · γ is a trace of L. When two activities are
totally independent, like it happens when activities are in
conflict or one of them is optional, their synchronic distance
is large (it can be as large as the length of a trace). On the
other hand, concurrent or causality-related activities often
have an small synchronic distance. Notice that selecting
activities that appear in one trace and do not appear in
another trace (as it is done in Algorithm 1), is a light
approximation to select these activities with large synchronic
distance, and hence candidates to have low dependency with
at least some other activity in the log. Thus they are good
candidates for splitting.

On the other hand, two concurrent activities are likely
to have low synchronic distance, and therefore they will
both appear in the sequence or none of them will appear.
If one of them is selected as splitting activity, then with
high probability the clusters that will arise from the splitting
will keep the synchronic distance between these activities.
However, in general as the recursive splitting progresses
the synchronic distance between concurrent activities may
change in the smaller logs generated, and therefore it is not
advisable to perform too much recursive splitting. This is the
reason to require in Algorithm 1 the minimal size a cluster
must have.



B. A flexible divide-and-conquer strategy

The naive approach to the discovery phase of the method-
ology would be to simply run the discovery algorithm on
each cluster. However by doing so we may miss important
optimization opportunities. Since these tuning strategies are
very dependent on the actual discovery algorithm used, let
us center the discussion on the discovery algorithm proposed
in [11]. This discovery algorithm basically translates the
discovery problem to a Satisfiablity Modulo Theories (SMT)
formula, and then uses an SMT solver to obtain a solution
which can be converted into a C-net (see Sect. II-C).

Using such a strategy, it is possible to guarantee that all
the sequences in each cluster will belong to the language
of the corresponding C-net generated, and that there is no
other C-net with less arcs that includes the cluster. Let us
call discoverMinArcCnet the function that, given a
cluster Li, returns the C-net Ci with the previous properties.
Algorithm 2 shows the divide-and-conquer strategy built
around this function.

Algorithm 2 Divide-and-conquer independent strategy
1: function DIVIDEANDCONQUER(L,t)
2: {L1, . . . , Ln} ← clusterLog(L, t)
3: for Li ∈ {L1, . . . , Ln} do
4: Ci ← discoverMinArcCnet(Li)
5: end for
6: {C ′1, . . . , C ′m} ← selectCnets({C1, . . . , Cn})
7: return

⋃m
i=1 C

′
i

8: end function

First of all, the algorithm receives two parameters: the
log L and the threshold t that determines the size of the
sequence clusters generated by the clustering algorithm. The
algorithm precisely starts with the clustering phase, with the
call to the clusterLog function. We have deliberately
avoided the direct use of the recursiveSplit function
(Algorithm 1) to reinforce the idea that any clustering
algorithm (or combination) can be used. In order to test the
benefits of the clustering technique presented in the previous
section, in our experiments we have used two clustering
alternatives:
• The recursiveSplit function from Algorithm 1.
• A random balanced clustering, obtained by dividing

the initial log into a given number of fragments of the
same size (with exception of the last one that could
have less traces).

For each cluster Li in the set {L1, . . . , Ln} of computed
clusters, the function discoverMinArcCnet is called,
which produces a C-net Ci whose language includes Li
and has the minimum number of arcs. Note that this step
can be trivially parallelized and timeouts can also be set so
that a C-net is generated in a given maximum amount of
time (by uniting the C-nets of the clusters whose processing

finished before the timeout, thus yielding also a fault-
tolerant approach to process discovery), trading fitness (i.e.,
capability for replaying the sequences in the log) for speed.

Finally, from the set of generated C-nets, a subset is
selected (line 6). Here additional quality heuristics can be
introduced. For instance, it is possible to select only the best
C-nets in terms of the ratio: covered sequences per C-net arc,
or the subset of C-nets whose union yields the best ratio, etc.
In general, to guarantee that all the sequences belong to the
language of the final C-net, all the generated C-nets must be
selected. However, it is sometimes not adequate to use the
whole set of C-nets for the union, since other factors may
be more important than fitness. Among the possible factors
to consider, there are two which are often contemplated.
• Noise: when a high percentage of noise is detected in a

cluster, it may be advisable to not use the corresponding
C-net. Noise can be sometimes detected with traditional
data mining techniques [15].

• Readability: this is a subjective factor that may be
estimated on the graph structure of the C-net.

C. An arc minimizing divide-and-conquer strategy

Algorithm 2 offers a flexible framework to adapt the C-
net discovery algorithms to different requirements. How-
ever, in its most straightforward implementation (i.e., using
recursiveSplit or the random balanced clustering as
the clusterLog function and selecting all the C-nets in
the selectCnets function), the final C-net computed does
not necessarily have the minimum number of arcs, although
each one of its component C-nets has. The reason is that all
the minimizations are local to each cluster and do not take
into account the arcs of the C-nets found by applying the
discovery technique to the other clusters.

A possible scheme to alleviate this inconvenient is shown
in Algorithm 3. The basic idea in this case is to sort the

Algorithm 3 Divide-and-conquer incremental strategy
1: function INCDIVIDEANDCONQUER(L,t,α)
2: (L1, . . . , Ln)← sortLogs(clusterLog(L, t))
3: C1 ← discoverMinArcCnet(L1)
4: C ← C1

5: b← max(|AL| − 1, |arcs(C)|)
6: for Li ∈ (L2, . . . , Ln) do
7: lb←

∣∣∣ALi
\
⋃i−1
j=1ALj

∣∣∣+ 1

8: ub← α · b− |arcs(C)|
9: Ci ← discoverMinNewArcCnet(Li, C, lb, ub)

10: C ← C ∪ Ci
11: end for
12: return C
13: end function

clusters according to some criterion (e.g., by the number of
sequences they represent, by the size of their alphabet, etc.)



and then discover the smallest C-net for the first cluster in the
order, i.e., L1. Then, for the remaining clusters L2, . . . , Ln,
instead of searching for the C-net with the minimal amount
of arcs, the objective will be to minimize the number of ad-
ditional arcs (with respect to the current C-net C). This task
is performed by function discoverMinNewArcCnet,
which is quite easy to implement in the discovery algorithm
of [11], since we must simply remove from the part of the
SMT formula that bounds the number of arcs (see Fig. 4
in Sect. II-C) the arcs already in C. This will minimize the
number of new arcs introduced.

Remember that the discovery algorithm of [11] is able
to minimize the number of arcs by performing a binary
search, thus we have to provide some new bounds when
minimizing the number of additional arcs. Lines 5, 7 and 8
tackle this. Let us consider first the lower bound in line 7.
This is computed as the difference between the alphabet of
the current cluster Li and all previous clusters. By Def. 1 any
C-net activity (besides as and ae, that, in any case, cannot
belong to this set difference because they always appear in
all clusters) have at least one outgoing and one incoming arc.
Thus the smallest structure in which k new activities can be
inserted in a C-net, requires at least k+1 arcs (for instance
connecting all k activities in a row, and then connecting the
endings of the row to some activities already in the net).

For the upper bound, a similar theoretical limit can be
found. However, it is more practical to define a user upper
bound on the relative number of arcs that the user wants.
This parameter, named α in the algorithm, indicates the
fraction of additional arcs allowed, being α · b the total
number of arcs that the final C-net can have. The value
for the b variable is computed as the maximum between the
minimum number of arcs that a C-net with alphabet AL can
have (|AL| − 1) or the number of arcs found in the first
cluster. In case there is no C-net in the given bounds, the
discoverMinNewArcCnet function returns the empty
C-net, which is the neutral element with respect to C-net
union.

V. EXPERIMENTS

The main purpose of this section is to illustrate the
benefits of using the high-level technique presented in this
paper with respect to the monolithic application of the
technique in [11]. For that, we have selected a small set
of benchmarks for which the aforementioned technique has
problems to tackle, and we provide here the results for
these benchmarks using the techniques described in this
paper. Also, we compare the clustering technique proposed
in Algorithm 1 with the naive strategy of random balanced
clustering, described informally in Section IV-B.

Table I shows some basic information on the logs used
in our experiments. The first five benchmarks are well-
known logs from [6]. They were selected because they are
difficult to tackle with the monolithic approach of [11]. For

the sake of readability, the names of the logs have been
shortened by removing “f0n00” before the underscore, i.e.
a22_5 refers to a22f0n00_5. The last one log is the
msweb benchmark, which is a selection of 15000 sequences
from the Microsoft Anonymous Web Data database in the
UCI KDD repository1. The table contains the following
information for each benchmark: |L| is the number of (non-
distinct) sequences in the log, |Lu| is the number of distinct
sequences, |σ| is the length of the largest sequence and |AL|
is the size of the alphabet of activities.

Log |L| |Lu| |σ| |AL|
a22 5 900 836 76 22
t32 1 200 100 360 33
a32 5 900 900 102 32
a42 1 100 100 58 42
a42 5 900 900 78 42
msweb 15000 4250 20 236

Table I
BENCHMARK INFORMATION.

Tables II and III give information on the execution of each
one of the clustering algorithms explained in Sect. IV-A:
t is the threshold value used to partitioning the log, cl is
the number of clusters produced. For each benchmark, we
report particular information on each one of the clusters
provided in columns L1 to L8 (the maximum number of
clusters achieved in the benchmarks is 8). For each cluster,
the number of sequences, number of distinct sequences (if
different), and the size of the alphabet is shown. Focusing
on this table, the first impression is the good balance in size
for the derived clusters, both in number of traces and size
of the log. This is a desirable feature of any divide-and-
conquer technique, enabling a significant reduction both in
peak memory consumption and CPU time.

Tables IV and V show the results of the divide-and-
conquer strategy of Algorithm 3 on the benchmark logs
compared with the monolithic approach of [11], using for
clustering Algorithm 1 and the random balanced clustering,
respectively. For the cluster initial sorting of Algorithm 3 we
chose no particular ordering, thus clusters were sequentially
processed (first L1, then L2, etc.). The tables contain the
following information: arcs is the number of arcs of the
final C-net, CPU is the elapsed time (in seconds) required
to complete the discovery process, α is the α parameter
of Algorithm 3, cl indicates the fraction of clusters suc-
cessfully processed. For these experiments we have limited
the maximum amount of memory to be used to 1Gb, and
the maximum amount of elapsed time to one hour. The
expressions mem and time in the CPU columns indicate
which of both limits was reached. The α parameter was
set in each case to a value that allowed us to unite all the
resulting C-nets.

1Available at: http://kdd.ics.uci.edu/databases/msweb/msweb.html



Log t cl L1 L2 L3 L4 L5 L6 L7 L8

a22 5 150 8 |L| 103 103 119 129 109 86 133 118
|Lu| 93 103 101 128 96 85 112 118
|AL| 18 19 16 21 18 19 16 21

t32 1 50 3 |L| 90 26 84 – – – – –
|Lu| 45 13 42 – – – – –
|AL| 32 32 33 – – – – –

a32 5 150 8 |L| 92 138 90 135 113 120 110 102
|AL| 20 26 20 26 30 31 25 31

a42 1 50 3 |L| 23 28 49 – – – – –
|AL| 35 41 41 – – – – –

a42 5 150 8 |L| 110 119 109 112 112 115 114 109
|AL| 31 36 32 37 33 39 40 40

msweb 1000 7 |L| 3739 760 3343 2249 3635 641 633 –
|Lu| 926 371 566 854 766 311 456 –
|AL| 188 142 171 165 182 135 153 –

Table II
RESULTS OF THE RECURSIVESPLIT CLUSTERING FUNCTION

(ALGORITHM 1).

Log t cl L1 L2 L3 L4 L5 L6 L7 L8

a22 5 113 8 |L| 113 113 113 113 113 113 113 109
|Lu| 111 111 111 112 112 113 111 106
|AL| 22 22 22 22 22 22 22 22

t32 1 67 3 |L| 67 67 66 – – – – –
|Lu| 67 67 66 – – – – –
|AL| 33 33 33 – – – – –

a32 5 113 8 |L| 113 113 113 113 113 113 113 109
|AL| 32 32 32 32 32 32 32 32

a42 1 34 3 |L| 34 34 32 – – – – –
|AL| 42 42 42 – – – – –

a42 5 113 8 |L| 113 113 113 113 113 113 113 109
|AL| 42 42 42 42 42 42 42 42

msweb 2143 7 |L| 2143 2143 2143 2143 2143 2143 2142 –
|Lu| 828 800 793 818 845 843 807 –
|AL| 167 177 190 172 187 171 174 –

Table III
RESULTS OF A BALANCED RANDOM CLUSTERING.

To report on the quality of the derived C-nets, Tables IV
and V additionally have the last three columns. For each
benchmark, these three values are meant to estimate two
main features of the model derived: i) fitness [2] and ii)
similarity with the model derived using the monolithic
approach. Informally, in the fitness dimension the capability
of the log in replaying log traces is measured. Column cf
is the cost-based fitness per case metric of [16], where 1.0
indicates that all sequences in the log belong to the language
of the C-net, and the smaller the value is, the less sequences
are reproducible by the C-net.

A metric complementary to fitness is precision: it is used
to determine the amount of extra behavior that the model
contains but was not observed in the log [2], [17]. Since the
precision measures for C-nets are not yet developed, there
is no way to quantify the amount of additional behavior
of the generated model with respect to the C-net of the
monolithic approach. For this reason we have defined two
similarity measures to compare two C-nets generated for

monolithic [11] d&c-rsplit (Sect. IV)
Log arcs CPU cf cl α arcs CPU cf as iobs
a22 5 34 265 1.0 8/8 1.5 34 50 1.00 1.00 0.998
t32 1 – mem – 2/3 1.5 45 253 0.97 – –
a32 5 46 814 1.0 8/8 2.0 46 114 1.00 1.00 0.977
a42 1 63 248 1.0 3/3 1.5 67 53 1.00 0.94 0.940
a42 5 – mem – 8/8 1.7 65 519 1.00 – –
msweb – time – 7/7 2.0 1079 441 1.00 – –

Table IV
RESULTS OF THE DIVIDE-AND-CONQUER STRATEGY COMPARED TO THE

MONOLITHIC APPROACH.

d&c-rand (Sect. IV)
Log cl α arcs CPU cf as iobs
a22 5 8/8 1.0 34 24 1.00 1.00 1.000
t32 1 0/3 1.1 – – – – –
a32 5 8/8 1.0 46 62 1.00 1.00 0.977
a42 1 3/3 1.1 63 57 1.00 1.00 0.984
a42 5 8/8 1.1 64 719 1.00 – –
msweb 7/7 2.5 1282 632 1.00 – –

Table V
RESULTS OF THE DIVIDE-AND-CONQUER STRATEGY USING A RANDOM

BALANCED CLUSTERING.

the same log. These two similarity measures, namely arc
similarity and input/output binding set similarity, appear in
columns as and iobs in Table IV, respectively. Given two C-
nets C1 = 〈A, as, ae, I1, O1〉 and C2 = 〈A, as, ae, I2, O2〉,
these similarity measures are defined as follows:

as(C1, C2) =
|arcs(C1) ∩ arcs(C2)|
|arcs(C1) ∪ arcs(C2)|

iobs(C1, C2) =

( ∑

a∈A\{as}

|I1 (a) ∩ I2(a)|
|I1(a) ∪ I2(a)|

+

∑

a∈A\{ae}

|O1 (a) ∩O2(a)|
|O1(a) ∪O2(a)|

)
· 1

2 · (|A| − 1)
.

These are normalized similarity measures, where values
range between 1.0 (identical) to 0.0 (completely different).
In particular the input/output binding set similarity is a more
accurate indicator than the arc similarity in the sense that
iobs(C1, C2) = 1.0 entails that C1 is equal to C2, while
as(C1, C2) = 1.0 does not. For instance the C-nets C1

of Fig. 1(b) and C2 of Fig. 7(a) have as(C1, C2) = 1.0
but iobs(C1, C2) = 6

10 . Note also that low values do not
necessarily imply that both C-nets have a different language,
specially if the nets contain redundant bindings. For instance
the C-nets of Fig. 5(a) and Fig. 7(b) have the same language,
i.e., abce, but their similarity values are very low (0.5 for
the as metric, and 1

3 for iobs).
The general conclusion that can be drawn from the

experimental results of Table IV is the capability of the
approach in handling benchmarks for which the monolithic



(b) a b c e

(a) a

b

c

e

Figure 7. (a) C-net with arc similarity equal to 1.0 with C-net of
Fig. 1(b). (b) C-net with low similarities with C-net of Fig. 5(a) but the
same language.

technique of [11] fails. Moreover, for those benchmarks were
the monolithic approach succeeds, the reduction in CPU time
is considerable (roughly a x6 reduction). This reduction in
time comes with no significant penalty in the quality of the
derived C-nets: the as and iobs metrics computed for these
C-nets are close to 1.0, which means that since the C-net
derived for the monolithic approach is an optimal model in
terms of number of arcs, then the approach of this paper is
capable in finding models close to the optimal.

It is also worthwhile to compare the results of Tables IV
and V, to have some insight on the benefits of the new clus-
tering algorithm proposed in this paper. The naive approach
of a random balanced clustering proved to be a valid method
for most of the benchmarks but t32_1, which could not be
handled due to memory problems in two of the three clusters,
and CPU time expired in the remaining cluster. Comparing
the running times between the two alternatives, they are on
the same order of magnitude, but with differences sometimes
reaching an x2 factor.

One of the elements that helps in explaining these dif-
ferences is the α factor used in each case. In general,
the random balanced clustering strategy requires smaller
values, which has a direct impact on the number of SMT
problems that have to be solved. On the other hand, since
this clustering is not specifically tailored for SMT, the time
taken by each one of these iterations is usually larger than
with the new clustering.

This faster processing of the SMT problems when Algo-
rithm 1 is used for clustering can be explained by looking
at the information of Tables IV and V. First of all, given
a SMT formula, the number of variables and equation it
contains are good predictors of the running time taken to
decide its satisfiability. Since it was shown in [11] that
these quantities are proportional to the number of distinct
sequences (|Lu|), the size of the alphabet (|AL|) and the
length of the sequences, it is easy to see from these tables
that clusters produced by Algorithm 1 are more easily

processed than the ones created by the random strategy. On
the other hand, the fact that all activities are present in every
cluster produced by the random strategy (notably with the
exception of msweb) tends to generate an initial number of
arcs that is closer to the final one, thus allowing to reduce
the α parameter (except, again, in the msweb log). All in
all the clustering proposed effectively reduces the burden
on the SMT solver, which has a major impact for instance
while processing the t32_1 log, but ways in which the
global number of iterations could be decreased should be
investigated.

VI. RELATED WORK

The techniques presented in this paper are grounded on
the traditional idea of divide and conquer a complex prob-
lem, by splitting the input into several pieces and combining
the individual solutions into the final output. We will focus
on the particular application of this strategy in the area of
process discovery.

To the best of our knowledge, [18] was the first attempt to
tackle process discovery by using clustering. The approach
was extended further in [19]. For the clustering technique
presented in [19], an abstraction is computed as a pre-
process: each trace is projected into the most relevant
features (computed previously) and associated with a vector
of values. Then the k-means algorithm is used to partition
the vectorial space defined by the traces. A similar strategy
to this one was presented in [20].

A totally different approach is described in [21], [22],
where the problem of multiple trace alignment is considered.
These approaches are based on combining trace alignment
techniques together with a hierarchical clustering algorithm.
Although their complexity may be high, the use of alignment
methods may be a crucial element to improve the quality of
current process mining techniques [1].

Finally, in [23] an approach that is based on recursively
projecting the traces of the log is presented. The partitioning
of the log is not horizontal (e.g., selecting traces of the log)
like the one of this paper, but vertical (e.g., selecting events
of the log and projecting every trace onto these events). This
allows ending up with traces that are amenable for process
discovery since the final relations between events tend to be
simpler.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a high-level framework for the prob-
lem of C-net discovery. By using an specially tailored
clustering algorithm, and adapting a monolithic C-net miner
that relies on SMT, this paper demonstrates that the approach
is able to handle inputs for which the monolithic application
of the SMT-based discovery will fail. Remarkably, the ap-
proach is not sacrificing fitness, and can be guided to derive
nets whose size is below some threshold. Moreover, when
comparing the quality of the derived C-nets with respect to



the monolithic approach, there are no significant differences.
The techniques of this paper are implemented in a tool,
and experimental results on process discovery benchmarks
demonstrate the feasibility of the contribution proposed to
tackle these logs in limited time.

As future work, we plan to test the techniques of this
paper on larger benchmarks. Moreover, the techniques of
this paper can be extended in some dimensions. First, further
extensions of the clustering algorithm will be explored, to
enable guiding the discovery problem with particular objec-
tives (e.g. readability, precision, handle noise, among others).
Second, the problem of C-net simulation will be explored.
This may allow for instance to alleviate the complexity of
the clustering approach presented in this paper: each time
a C-net is derived from a given cluster, remove from the
remaining clusters the traces that are included by this C-net.
Finally, other strategies to combine the C-nets obtained in
the clusters which consider additional information will be
considered.
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