
An SMT-based Discovery Algorithm for C-nets

Marc Solé1,2 and Josep Carmona2

1 Computer Architecture Department, UPC msole@ac.upc.edu
2 Software Department, UPC jcarmona@lsi.upc.edu

Abstract. Recently, Causal nets have been proposed as a suitable model
for process discovery, due to their declarative semantics and the great
expressiveness they possess. In this paper we propose an algorithm to
discover a causal net from a set of traces. It is based on encoding the
problem as a Satisfiability Modulo Theories (SMT) formula, and uses a
binary search strategy to optimize the derived model. The method has
been implemented in a prototype tool that interacts with an SMT solver.
The experimental results obtained witness the capability of the approach
to discover complex behavior in limited time.

1 Introduction

Process Mining [1] is a discipline that aims at using the data available in in-
formation systems to discover the processes taking place inside an organization,
check their compliance and perform predictions. It is an evolving area which,
although becoming crucial to support decision making, it still needs to settle
down in terms of algorithmic and model support. One example of this is the
vast amount of algorithms that exist for a wide range of models: Petri nets,
Heuristic nets, Event-Driven Process Chains, Fuzzy models, among others [1].

Recently, a formalism called Causal nets (C-nets) [2] has been proposed as
a suitable modeling language for process mining. It is a rather compact repre-
sentation that allows expressing complex behavior that it is sometimes difficult
to describe using other models. For instance consider the set of traces (log) in
Fig. 1(a). In Fig. 1(b) we can see two Petri nets that are required to represent all
the sequences without adding extra behavior. It is possible to use a single Petri
net, instead of two, but then the use of silent transitions is needed, as shown in
(c). On the other hand the equivalent C-net representation (d) is quite compact.
The semantics of that C-net can be informally described as:

Activity a must be executed initially, followed either by b, c or b and c. Any
of the these three possibilities is followed by the execution of activity e.

Figure 2 (from [2]) shows a more meaningful example, describing a C-net
that models the process of booking resources for a travel.

The discovery problem refers to obtaining a model (in some suitable formal-
ism) that describes the behavior recorded in a log. To the best of our knowledge,
there are few discovery algorithms for C-nets. One indirect method is to first

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/46610345?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

a

b c

e

a

b c

e

a

bc

e

Log

abe

ace

abce

acbe

(a)

(b)

(c)

(d) a

b

c

e

Fig. 1. (a) A log. (b) Set of two Petri nets describing the log. (c) Single Petri net
describing the log with the help of silent transitions. (d) Causal net of the same log.

a
start

booking

bbook flight

c

book car

d

book hotel

e

complete
booking

Log

abe

ace

abde

adbe

abcde

abdce

acbde

adbce

adcbe

acdbe

Fig. 2. Causal net Ctravel from [2].

discover a Petri net and then convert it into a C-net as described in [2]. This
strategy is very cumbersome since the conversion introduces a silent activity in
the C-net for each place in the Petri net, thus increasing significantly the size
of the C-net, although a very compact C-net representing the same language
may exist. Another possibility is to use discovery algorithms for flexible heuris-
tic nets [3], a model closely related to C-nets, or heuristic nets [4, 5] which can be
viewed as a restricted subclass of C-nets. However, these two approaches cannot
guarantee that the log is included in the language of the derived model.

This paper presents the first algorithm to discover a C-net from a log that
guarantees that i) the language of the C-net includes the log, and ii) the C-net

3

has the minimal number of arcs. It is based on encoding the problem as an SMT
formula, and using binary search to find a minimal C-net (in terms of number
of arcs). A prototype tool which interfaces an SMT solver is reported, showing
promising experimental results.

Organization of the paper: In Sect. 2 we give the formal definition of C-
nets and we introduce some of the mathematical background used in the rest of
the paper. Our approach to the discovery of C-nets is explained in Sect. 3 and
experimentally tested in Sect. 4. Finally, Sect. 5 presents some future work and
concludes this paper.

2 Background

2.1 Mathematical preliminaries

A multiset (or a bag) is a set in which elements of a set X can appear more than
once, formally defined as a function X → N. We denote as B(X) the space of all
multisets that can be created using the elements of X. Let M1,M2 ∈ B(X), we
consider the following operations on multisets: sum (M1 + M2)(x) = M1(x) +
M2(x), subtraction (M1−M2)(x) = max(0,M1(x)−M2(x)) and inclusion (M1 ⊆
M2)⇔ ∀x ∈ X,M1(x) ≤M2(x).

A log L is a bag of sequences of activities. In this work we restrict the type
of sequences that can form a log. In particular, we assume that all the sequences
start with the same initial activity and end with the same final activity, and that
these two special activities only appear once in every sequence. This assumption
is without loss of generality, since any log can be easily converted by using two
new activities that are properly inserted in each trace.

Given a finite sequence of elements σ = e1e2 . . . en, its length is denoted
|σ| = n, and its prefix sequence up to element i, with i ≤ n, denoted σi, is
e1 . . . ei. We define σ0 as the empty sequence, denoted ε. Conversely, its suffix
sequence after i, with i < n, denoted σi→, is ei+1 . . . en. The alphabet of σ,
denoted Aσ, is the set of elements in σ. We extend this notation to logs, so that
AL is the alphabet of the log L, i.e., AL =

⋃
σ∈LAσ. Finally, the number of

occurrences of a given element e in σ, i.e. |{ei | ei = e}|, is denoted as #(σ, e).

2.2 Causal nets (C-nets)

In this section we introduce the main model used along this paper.

Definition 1 (Causal net [2]). A Causal net is a tuple C = 〈A, as, ae, I, O〉,
where A is a finite set of activities, as ∈ A is the start activity, ae ∈ A is the
end activity, and I (and O) are the set of possible input (output resp.) bindings
per activity. Formally, both I and O are functions A → SA, where SA = {X ⊆
P(A) | X = {∅} ∨ ∅ /∈ X}, and satisfy the following conditions:

– {as} = {a | I(a) = {∅}} and {ae} = {a | O(a) = {∅}}

4

– all the activities in the graph (A, arcs(C)) are on a path from as to ae,
where arcs(C) is the dependency relation induced by I and O such that
arcs(C) = {(a1, a2) | a1 ∈

⋃
X∈I(a2)X ∧ a2 ∈

⋃
Y ∈O(a1)

Y }.

Definition 1 slightly differs from the original one from [2], where the set
arcs(C) is explicitly defined in the tuple. The C-net of Fig. 1(d) is formally
defined as C = 〈{a, b, c, e}, a, e, I, O〉, with I(a) = ∅, O(a) = {{b}, {c}, {b, c}},
I(b) = {{a}},O(b) = {{e}}, I(c) = {{a}},O(c) = {{e}}, I(e) = {{b}, {c}, {b, c}}
and O(e) = ∅. The dependency relation of C, which corresponds graphically to
the arcs in the figure, in this case is: arcs(C) = {(a, b), (a, c), (b, e), (c, e)}. The
activity bindings are denoted in the figure as dots in the arcs, e.g., {b} ∈ O(a) is
represented by the dot in the arc (a, b) that is next to activity a, while {a} ∈ I(a)
is the dot in arc (a, b) next to b. Non-singleton activity bindings are represented
by arcs connecting the dots: {b, c} ∈ O(a) is represented by the two dots in arcs
(a, b), (a, c) that are connected through an arc.

Definition 2 (Binding, Binding Sequence, Projection). Given a C-net
〈A, as, ae, I, O〉, the set B of activity bindings is {(a, SI , SO) | a ∈ A ∧ SI ∈
I(a) ∧ SO ∈ O(a)}. A binding sequence β ∈ B∗ is a sequence of activity
bindings. By removing the input and output bindings from a binding sequence β,
we do obtain an activity sequence denoted as σβ.

Two binding sequences of the C-net in Fig. 1(d) are: β1 = (a, ∅, {b})(b, {a}, {e})(e, {b}, ∅)
and β2 = (a, ∅, {b, c})(c, {a}, {e})(e, {c}, ∅). The projection of β1 is σβ1 = abe.

The semantics of a C-net are achieved by selecting, among all the possible
binding sequences, the ones satisfying certain properties. These sequences will
form the set of valid binding sequences of the C-net, and their corresponding
projection (see Def. 2) will define the language of the C-net. The next definition
addresses this.

Definition 3 (State, Valid Binding Sequence, Language). Given a C-net
C = 〈A, as, ae, I, O〉, its state space S = B(A × A) is composed of states that
represent multisets of pending obligations. Function ψ ∈ B∗ → S is defined
inductively: ψ(ε) = ∅ and ψ(β · (a, SI , SO)) = ψ(β)− (SI × {a}) + ({a} × SO).
The state ψ(β) is the state of the C-net after the sequence of bindings β. The
binding sequence β = (a1, S

I
1 , S

O
1) . . . (an, S

I
n, S

O
n) is said to be valid if:

1. a1 = as, an = ae and ∀k : 1 < k < n, ak ∈ A \ {as, ae}
2. ∀k : 1 ≤ k ≤ n, (SIk × {ak}) ⊆ ψ(βk−1)
3. ψ(β) = ∅

The set of all valid binding sequences of C is denoted as VCN(C). The language
of C, denoted L(C), is the set of activity sequences that correspond to a valid
binding sequence of C, i.e., L(C) = {σβ | β ∈ VCN(C)}.

For instance, in Fig. 1(d), β1 is a valid binding sequence, while β2 is not, since
the final state is not empty (condition 3 is violated). The language of that C-
net is {abe, ace, abce, acbe}. Similarly to Workflow Petri nets [6], C-nets have a
notion of soundness [2]:

5

a b

c

f

d

e z

(a)

a

b

c

e

(b)

Fig. 3. (a) C-net mixing concurrent and exclusive behavior for activities c and d.
(b) Immediately follows C-net of log L = {abce, acbe}. Its language (using regular
expressions) is ab(cb)∗e ∪ a(bc)+e ∪ ac(bc)∗e ∪ a(cb)+e.

Definition 4 (Soundness). A C-net C = 〈A, as, ae, I, O〉 is sound if (i) ∀a ∈
A,∀S ∈ I(a),∃β ∈ VCN(C) : (a, S,X) ∈ β, and (ii) ∀a ∈ A,∀S ∈ O(a),∃β ∈
VCN(C) : (a,X, S) ∈ β. That is, every input and output binding defined in C is
used in at least one valid sequence.

Importantly, C-nets can naturally represent behavior that cannot be easily
expressed in the Petri net notation unless unobservable (silent) transitions are
used. Fig. 3(a) illustrates this point. In the C-net, activities c and d can occur
concurrently or exclusively, even in different iterations of the loop created by
activity f , e.g., abcdez or abdefbcez. However, there is still another possibility
that arises from combining the AND-split and the XOR-join: abdceefbdfbcez.
Note that in this last trace, activity e could execute twice for a single b (although
in the overall trace they execute the same number of times).

C-nets, contrary to Petri nets, have an “additive” nature. That is, while
adding a place to a Petri net can only restrict behavior, adding an arc (or any
other element) to a C-net can only add behavior. The “additive” nature of C-nets
is formally defined with the help of Def. 5 and Property 1.

Definition 5. Given two C-nets C1 = 〈A1, a
1
s, a

1
e, I1, O1〉 and C2 = 〈A2, a

2
s, a

2
e, I2, O2〉,

we say that C1 is included in C2, denoted C1 ⊆ C2, if:

– a1s = a2s ∧ a1e = a2e,
– A1 ⊆ A2, and
– ∀a ∈ A1, I1(a) ⊆ I2(a) ∧O1(a) ⊆ O2(a)

Property 1. Let C1 and C2 be two C-nets. If C1 ⊆ C2, then VCN(C1) ⊆ VCN(C2),
L(C1) ⊆ L(C2) and arcs(C1) ⊆ arcs(C2).

2.3 C-net discovery

Given a log L, the problem tackled in this paper is to derive a C-net C such that
L(C) ⊇ L and C contains the minimal number of arcs. In Sect. 3 we present
such a method together with heuristics to limit the language of the derived net.

6

Given the additive nature of C-nets, there is a simple method to gener-
ate a C-net that can replay all the traces in L. It is based on the immedi-
ately follows relation [6] between the activities in L, denoted <L and defined as
<L= {(a, b) | ∃σ = a1 . . . an ∈ L : ai = a ∧ ai+1 = b}.

Definition 6. Given a log L, the immediately follows C-net of L, denoted CIF(L),
is the C-net 〈A, as, ae, I, O〉 such that: (i) A = AL, (ii) ∀σ = a1 . . . an ∈ L, a1 =
as ∧ an = ae, (iii) ∀a ∈ A,O(a) = {{b} | a <L b} ∧ I(a) = {{b} | b <L a}.

The immediately follows C-net can be computed in linear time with respect of
the size of the log, but allows for many unobserved behavior, thus exhibiting a
poor precision [7]. For instance consider the following log: L = {abce, acbe}.
Activities b and c interleave, but if we build the immediately follows C-net
(Fig. 3(b)) we can see that it allows for loops of arbitrary length involving
these two activities, e.g., abcbce or acbce, since L(CIF(L)) = ab(cb)∗e∪a(bc)+e∪
ac(bc)∗e ∪ a(cb)+e, which significantly differs from L.

3 Discovering strategies for C-nets based on SMT

3.1 Protobinding sequences of a log

In Sect. 2.2 we have seen first the definition of a C-net and then the definition of
the valid sequences of bindings it can produce. To discover a C-net from a log,
we follow the same path but in the opposite direction: we will define sequences
of triples representing unrestricted bindings that satisfy some properties, and
then we will show that given these sequences, it is easy to obtain a C-net C such
that these sequences are actually valid sequences of bindings of C. Consequently,
this transforms the discovery problem for C-nets into the problem of deriving
these sequences of triples from the sequences in the log. Let us first formalize
the concept of protobinding:

Definition 7 (Protobinding, Well-Formed Protobinding Sequence). A
triple (a,X, Y) is a protobinding if a is an element and both X and Y are sets.
A sequence β = (a1, X1, Y1) . . . (an, Xn, Yn) of protobindings is well-formed if it
satisfies the following conditions:

(W1) ∀i : 1 < i ≤ n,Xi ⊃ ∅ ∧ ai 6= a1
(W2) ∀i : 1 ≤ i < n, Yi ⊃ ∅ ∧ ai 6= an
(W3) X1 = Yn = ∅
(W4) ∀i : 1 ≤ i ≤ n, ψ(βi−1) ⊇ (Xi × {ai})
(W5) ψ(βn) = ∅

Compared with the definition of binding (Def. 2), this is a weaker definition since
it is no longer tied to a particular C-net. Given a setB of sequences of well-formed
protobindings it is possible to characterize (with necessary conditions) all the
C-nets such that their set of valid sequences of bindings contain the sequences
of protobindings in B, as next lemma states.

7

Lemma 1. Given a set of well-formed protobinding sequences B with identical
initial and final activities as and ae, respectively, and a C-net C = 〈A, as, ae, I, O〉.
The following conditions:

(N1) A ⊇ {ai | ∃β ∈ B : (ai, Xi, Yi) ∈ β}
(N2) ∀a ∈ A, I(a) ⊇ {Xi | ∃β ∈ B : (ai, Xi, Yi) ∈ β}
(N3) ∀a ∈ A,O(a) ⊇ {Yi | ∃β ∈ B : (ai, Xi, Yi) ∈ β}

hold if, and only if, VCN(C) ⊇ B.

Proof. ⇒ Take any protobinding sequence β ∈ B, we will prove that since it
is well-formed it is actually a valid binding sequence of C, thus VCN(C) ⊇ B.
By Def. 2, we know that to be a binding sequence (not necessarily valid) of
C, every protobinding (ai, Xi, Yi) ∈ β must satisfy that ai ∈ A, Xi ∈ I(ai)
and Yi ∈ O(ai), which is trivially true given our definition of C. Thus, β is a
binding sequence of C. We now prove that β is in fact also valid. To prove this
we use the fact that β is well-formed (thus satisfies W1 to W5). Proving that
β = (a1, X1, Y1) . . . (an, Xn, Yn) is a valid binding sequence, we need to prove
that a1 = as, an = ae and ∀k : 1 < k < n, ak ∈ A \ {as, ae}. The first two
conditions are satisfied because we require that all the sequences in B start with
as and end with ae. The third condition is guaranteed by W1 and W2. The
remaining two conditions for a valid sequence are directly W4 and W5.
⇐ If C is a C-net and L(C) ⊇ {σβ | β ∈ B}, then if N1 does not hold it

exists some activity that appears in the sequences of B that cannot be executed
by C. If N2 does not hold, then there is some sequence that is not possible
because some Xi cannot be used by C, and the same applies for N3 and Yi. ut

Creating a tuple 〈A, as, ae, I, O〉 satisfying N1, N2 and N3 does not necessarily
yield a C-net (for instance we could add activities to A that violate some of the
conditions of Def. 1), since these are necessary but not sufficient conditions. To
guarantee that a C-net is generated and it is sound (c.f., Def. 4), we restrict the
conditions of the previous lemma in the following theorem:

Theorem 1. Given a set of well-formed protobinding sequences B with identical
initial and final activities as and ae, respectively, the tuple C = 〈A, as, ae, I, O〉
with:

(T1) A = {ai | ∃β ∈ B : (ai, Xi, Yi) ∈ β}
(T2) ∀a ∈ A, I(a) = {Xi | ∃β ∈ B : (ai, Xi, Yi) ∈ β}
(T3) ∀a ∈ A,O(a) = {Yi | ∃β ∈ B : (ai, Xi, Yi) ∈ β}

is a sound C-net such that VCN(C) ⊇ B.

Proof. We will prove that C is a C-net, since then we can use Lemma 1 to
prove that VCN(C) ⊇ B. Proving that C is sound, once we know it is a C-net,
is straightforward since every input and output binding in I and O appears in
at least one of the sequences in B, thus in at least one valid binding sequence
of C, thus C is sound. So we have only to prove that C is a C-net satisfying

8

Def. 1. First of all we have to prove that as is the only activity with empty
input binding (I(as) = ∅) and ae is the only activity with empty output binding
(O(ae) = ∅). Consider all sequences β = (a1, X1, Y1) . . . (an, Xn, Yn) ∈ B, by
W3, we know that ∅ ∈ I(as) and ∅ ∈ O(ae) (because a1 = as and an = ae),
and since these two activities are only executed once (due to W1 and W2) there
is no other set in I(as) and O(ae). Since the other activities a ∈ A \ {as, ae}
are not executed at the begining nor the end of β, also by W1 and W2 we
know their Xi and Yi sets are non-empty, thus they cannot have I(a) = {∅}
nor O(a) = {∅}. We must also prove that the I and O functions are defined
over the powerset of A, i.e., ∀a ∈ A,∀X ∈ I(a), X ⊆ A. Because of W4 and
W5 the sequence can only consume obligations previously produced, and all
the obligations must be consumed. If some Xi in β contains activities not in
A, it is impossible to satisfy W4 thus it would not be well-formed, which is a
contradiction. Similarly, if some Yi in β contains activities not in A, then the
obligations created can never be consumed, violating W5. Finally, we have to
prove that all the activities in the graph (A, arcs(C)) are on a path from as to ae.
Again by W4 and W5, since an activity ai (different than as) can only execute
when it has at least one obligation (a, ai) for it in ψ(βi−1) and a ∈ Xi, thus
(a, ai) ∈ arcs(C), and the source of all this chain of obligations is as and ends in
ae or otherwise ai (or some of its successors in the obligation chain) would have
produced an obligation that nobody would have consumed, violating W5, then
every activity is in a dependency chain between as and ae. ut

The theorem allows an easy conversion from protobinding sequences to C-
nets, so that the C-net discovery problem from a log L can be reduced to the
following problem: given a log L, compute a well-formed protobinding sequence
for each sequence in L. Since by definition all our sequences in the log have
the same initial and final activities, then all the protobinding sequences will also
have, thus we can use Theorem 1 to discover a C-net. Although the theorem does
not consider all the C-nets whose valid binding sequences include the protobind-
ing sequences B, it gives always the smallest C-net (in terms of valid binding
sequences and also in terms of number of structural elements of the C-net) that
can generate the sequences in B as next corollary states.

Corollary 1. Given a set of well-formed protobinding sequences B with iden-
tical initial and final activities as and ae, respectively, a C-net C such that
VCN(C) ⊇ B and a C-net C⊥ satisfying T1, T2 and T3, then C⊥ ⊆ C.

Proof. If C is a C-net and VCN(C) ⊇ B, then by Lemma 1 we know it satisfies
N1, N2 and N3. Since C⊥ satisfies T1, T2 and T3, by Def. 5 C⊥ ⊆ C, and this
entails by Property 1 VCN(C⊥) ⊆ VCN(C). ut

In the next section we explain how we can encode as linear constraints the
problem of computing the sequences of protobindings.

3.2 Encoding the problem as linear constraints

Given a sequence σ = a1 . . . an of a log L, it is trivial to build a protobinding
sequence βσ out of it as βσ = (a1, X1, Y1) . . . (an, Xn, Yn). The difficult part is

9

to ensure that βσ is actually well-formed. We will encode the unknown Xi and
Yi sets using integer variables and then define the linear constraints that will
guarantee that βσ is well-formed. We start by delimiting the values that the Xi

and Yi unknowns can take using the following property:

Property 2. Let σ = a1 . . . an be a sequence of activities. Consider the proto-
binding sequence βσ = (a1, X1, Y1) . . . (an, Xn, Yn). If βσ is well-formed, then
∀i : 1 ≤ i ≤ n,Xi ⊆ Aσi−1

∧ Yi ⊆ Aσi→ .

Proof. If for some i, Xi 6⊆ Aσi−1
, then let a ∈ Xi \ Aσi−1

. Now activity ai
is waiting for an obligation (a, ai) that cannot have been produced (since a /∈
Aσi−1

). Thus ψ(βi−1) 6⊇ (Xi × {ai}) and β is not well-formed (violates W4),
which is a contradiction. Similarly, if Yi 6⊆ Aσi→ , then it exists an activity a such
that a ∈ Yi \Aσi→ . Now obligation (ai, a) cannot be consumed (since a /∈ Aσi→)
so ψ(βn) 6= ∅ (violating W5), and again β is not well-formed. ut

To encode arithmetically the sets Xi and Yi for each βσ, we use an integer
variable over the domain {0, 1} (i.e., a Boolean variable, although we treat it as
an integer in this section) to encode the fact that a particular activity belongs to
the set. In particular we use a variable xσ,i,(a,ai) to indicate whether activity a
belongs to Xi in βσ or not. As usual when sets are encoded using characteristic
functions we use the following semantics:

xσ,i,(a,ai) =

{
1 if a ∈ Xi in βσ

0 otherwise.

Similarly, the variable yσ,i,(ai,a) indicates if a belongs to Yi in βσ. Due to Prop-
erty 2, the activity a for x variables can only be chosen among the alphabet of
prefix σi−1, while in y variables it is restricted to the alphabet of the suffix of σ
after ai, i.e., Aσi→ . We denote by X and Y the set of all x and all y variables,
respectively.

We will now rewrite the conditions (W1,W2,W3,W4 and W5) of Def. 7 for a
well-formed protobinding sequence βσ = (a1, X1, Y1) . . . (an, Xn, Yn) as inequal-
ities using the X and Y variables.

Condition W1 In this case, part of the condition is already guaranteed, since
our definition of log already assumes that the initial activity only appears once.
Thus the condition simplifies to requiring that every Xi (except X1) must be
non-empty:

∀i : 1 < i ≤ n,
∑

e∈Aσi−1

xσ,i,(e,ai) ≥ 1 (1)

Condition W2 This is the symmetrical case to W1 but with the Yi sets. Since
the uniqueness of the final activity is already guaranteed, we must only enforce
that the Yi sets (except Yn) are non-empty:

∀i : 1 ≤ i < n,
∑

e∈Aσi→

yσ,i,(ai,e) ≥ 1 (2)

10

Condition W3 This needs no conversion, since we can directly assign the empty
set to X1 and Yn. Note that the model does not even generate any variable in
X or Y to represent these sets, since Aσ0 = Aσn→ = ∅.

Condition W4 This condition requires that the state of obligations after exe-
cuting prefix βi−1 (i.e., ψ(βi−1)) contains, at least, the obligations in (Xi×{ai}).
This is the same as requiring that the number of obligations of the type (e, ai) in
ψ(βi−1) is larger or equal than the number of obligations (e, ai) in (Xi × {ai}).
Moreover, if ai is the last occurrence of that activity, condition W5 applies in-
stead, since there cannot be pending obligations in the final state, so the last
occurence of an activity must consume all the obligations for it. The number of
such obligations in ψ(βi−1) can be computed by summing the number of times
the obligation has been produced minus the number of times it has been already
consumed before the execution of ai.

∀i : (1 ≤ i ≤ n ∧ ∃j : (j > i ∧ aj = ai)) ,∀e ∈ Aσi−1
,

∑

k:k<i∧ak=e

yσ,k,(e,ai) −
∑

m:m≤i∧am=ai

xσ,m,(e,ai) ≥ 0 (3)

Condition W5 To force that the final number of obligations must be zero
we require that the number of (e, ai) obligations is exactly zero after the last
execution of ai in the sequence. Since it is simply a stronger version of (3), it
replaces (3) in the last execution of ai.

∀i : (1 ≤ i ≤ n ∧ ∀j (j > i⇒ aj 6= ai)) ,∀e ∈ Aσi−1
,

∑

k:k<i∧ak=e

yσ,k,(e,ai) −
∑

m:m≤i∧am=ai

xσ,m,(e,ai) = 0 (4)

Definition 8 (Structural equations). The set of structural equations for a
C-net including the behavior of a log L, denoted structural equations(L), is the
set of equations obtained by adding the equations from (1), (2), (3) and (4) for
every σ ∈ L.

Example 1. Let us see an example. Consider the sequence σβ = abcbe, so that
β = (a1, X1, Y1)(a2, X2, Y2)(a3, X3, Y3)(a4, X4, Y4)(a5, X5, Y5) with a1 = a, a2 =
b, a3 = c, a4 = b, a5 = e, and X1 = Y5 = ∅. Table 1 shows the structural
equations for each prefix in the sequence.

Note that in this table some of the equations for i = 1 are empty since
Aσ0

= ∅, a similar case to that of i = 5 and (2), because Aσ5→ = ∅. Moreover,
(4) is used instead of (3) for i ∈ {3, 4, 5} because these are the last executions of
activities c, b and e, respectively.

In summary, by finding the satisfying assignments to the X and Y variables
in the equations arising from a log, one can derive a C-net that includes the
language of the log. In terms of complexity, the number of variables that each

11

i = 1 Aσ0 = ∅, Aσ1→ = {b, c, e}, σ1 = a

(1) –
(2) yσ,1,(a,b) + yσ,1,(a,c) + yσ,1,(a,e) ≥ 1
(3) –

i = 2 Aσ1 = {a}, Aσ2→ = {b, c, e}, σ2 = ab

(1) xσ,2,(a,b) ≥ 1
(2) yσ,2,(b,b) + yσ,2,(b,c) + yσ,2,(b,e) ≥ 1
(3) yσ,1,(a,b) − xσ,2,(a,b) ≥ 0

i = 3 Aσ2 = {a, b}, Aσ3→ = {b, e}, σ3 = abc

(1) xσ,3,(a,c) + xσ,3,(b,c) ≥ 1
(2) yσ,3,(c,b) + yσ,3,(c,e) ≥ 1
(4) yσ,1,(a,c) − xσ,3,(a,c) = 0 and yσ,2,(b,c) − xσ,3,(b,c) = 0

i = 4 Aσ3 = {a, b, c}, Aσ4→ = {e}, σ4 = abcb

(1) xσ,4,(a,b) + xσ,4,(b,b) + xσ,4,(c,b) ≥ 1
(2) yσ,4,(b,e) ≥ 1
(4) yσ,1,(a,b) − xσ,2,(a,b) − xσ,4,(a,b) = 0, yσ,2,(b,b) − xσ,4,(b,b) = 0 and

yσ,3,(c,b) − xσ,4,(c,b) = 0

i = 5 Aσ4 = {a, b, c}, Aσ5→ = ∅, σ5 = abcbe

(1) xσ,5,(a,e) + xσ,5,(b,e) + xσ,5,(c,e) ≥ 1
(2) –
(4) yσ,1,(a,e) − xσ,5,(a,e) = 0, yσ,2,(b,e) − yσ,4,(b,e) − xσ,5,(b,e) = 0 and

yσ,3,(c,e) − xσ,5,(c,e) = 0

Table 1. Structural equations for sequence abcbe.

activity occurrence generates is |A|, thus for a sequence σ, the total number of
variables generated is |A| · |σ|. Hence, the total number of variables for a log L
is |A| ·

∑
σ∈L |σ|, which is O (|L| · |A| ·maxσ∈L (|σ|)). The number of equations

for an activity ai ∈ σ is two ((1) and (2)) plus |Aσi−1 | for (3) and (4). Thus, for
a sequence σ, the maximum number of equations is O(|σ| · |A|) so for the whole
log L is O(|L| · |A| · maxσ∈L(|σ|)), the same as the number of variables. Next
sections illustrate how to algorithmically solve the discovery problem described
in this section.

3.3 Solving linear constraints using SMT

The equations presented in previous section can be represented in different do-
mains. In the algebraic domain, one option is to model equations (1)–(4) in a
Integer Linear Programming (ILP) model (but with binary variables), and use
one of the available solvers. However, such an option has an important drawback:
the cost function used to minimize the solution to the problem must be linear.
A possibility is to minimize the sum of all the X and Y variables. However, this
will promote solutions like the immediately follows C-net, since in that C-net
every activity (except the initial and final ones) always consumes one obligation
and produces one obligation, thus it is not possible to have a C-net producing
less obligations. Ideally we would like to express that we seek for a C-net as

12

simple as possible and, as we will see in Sect. 3.4, we can restrict its number
of arcs. However, this requires an expression involving logical disjunctions. Al-
though these type of constraints can be encoded as linear combinations3, they
require the introduction of auxiliary variables and additional constraints.

An alternative will be to solve the problem in the Boolean domain. SMT
solvers for the theory of quantifier-free bit-vector arithmetic [8], as we will see
in this section, can also model equations (1)–(4) and have the advantage that
they can also encode more easily the bound on the number of arcs in the C-net,
as well as some other constraints (see Sect. 3.6). Since SMT solvers provide a
higher degree of flexibility and our tests showed that in terms of running time
ILP solvers and SMT solvers had a similar performance in our benchmarks, we
have decided to use SMT to encode the problem.

Variables in X and Y are all Boolean, so to obtain a Boolean formula that
represents the model is possible. Now let us show how (1), (2), (3) and (4) can be
encoded as Boolean formulas. Equations (1) and (2) are trivial, since they corre-
spond to a disjunction. For instance, the inequality (1):

∑
e∈Aσi−1

xσ,i,(e,ai) ≥ 1

can be rewritten as
∨
e∈Aσi−1

xσ,i,(e,ai) = 1. Equations (3) and (4), are very sim-

ilar, so we can simply focus on one of them. The key idea is to compute Boolean
expressions that represent the individual bits of the sum or the subtraction of
these Boolean variables. For (3) we then have to check the sign of the result
(must be positive, so the most significant bit in two’s complement must be zero)
while for (4) the result must be zero (so all the bits of the result have to be zero).

The translation process is quite involved (this is why automated tools are
used for this task), but it can be quite straightforward for the most simple
cases. For instance, going back to Example 1, consider the equation yσ,1,(a,b) −
xσ,2,(a,b) ≥ 0 ((3) for i = 2). Translated to a Boolean expression this is simply
yσ,1,(a,b) ∨ xσ,2,(a,b).

Once all formulas have been translated to the Boolean domain, they can be
converted into CNF formulas and fed into a SAT solver. In this work (Sect. 4)
we have used the STP solver [9] to convert our linear equations to CNF formulas.

3.4 Adding a cost function

It is possible to encode as an SMT formula an expression that bounds the
number of arcs in the derived C-net. To accomplish this we can use any of
the sets of Boolean variables. Without loss of generality, we use set X. For
readability we introduce an auxiliary notation to denote all the variables in X
that correspond to a given binding (a, b) in the sequences of a log L. Namely,
X(a,b)(L) = {xσ,i,(a,b) | ∃σ = a1 . . . a|σ| ∈ L : ai = b ∧ a ∈ Aσi−1}. We can
now compute the number of arcs in the C-net obtained through T1, T2 and T3
(Theorem 1) using the following expression:

number of arcs(L)
def
=
∑

a∈AL

∑

b∈AL

∨

x∈X(a,b)(L)

x

3 For instance z = x ∨ y is equivalent to z ≥ x, z ≥ y and z ≤ x+ y.

13

Then, the equation bounding the number of arcs is:

bound arcs(L, l)
def
= number of arcs(L) ≤ l (5)

In Sect. 3.5 we will use this equation to find the C-net whose language in-
cludes the log L and has the minimum number of arcs. Since we will explore the
solution space using a binary search strategy, we need to derive lower and upper
bounds on the number of arcs that the C-net can have.

An upper bound can be obtained by computing the immediately follows C-
net and counting its arcs. A possible lower bound can be the maximum between
|AL|−1, which is the minimum number of arcs to guarantee that all the activities
in the log are connected, and the bound obtained in the following lemma:

Lemma 2. Let As be a set containing all the activities that appear in second
position in some sequence of log L. Similarly, let Ae be a set containing the
activities that appear in previous to the last position in some sequence. Any C-
net C such that L ⊆ L(C) satisfies:

arcs(C) ≥ |As|+ |Ae|+ |AL \ (As ∪Ae)| − 2 + max(|As \Ae|, |Ae \As|)

Proof. C has an arc from initial activity as to all the activities in As. Similarly
has an arc from every activity in Ae to the final activity ae, otherwise there
is a sequence in L that does not belong to L(C). This means we have already
|As|+ |Ae| arcs in C. Now for activities in As ∩Ae no further arc is mandatory,
however for activities not in the intersection there must be a path from as to
ae (by C-net definition). Since one activity in As \ Ae can be connected to
another activity in Ae \As, the difference set with maximum number of elements
determines the number of additional arcs that have to be added (thus we must
add max(|As \ Ae|, |Ae \ As|) to the number of arcs). Finally the activities not
in As, Ae nor in {as, ae} can be arbitrarily placed, however the structure that
yields the least number of additional arcs is to put them in a sequence in an
already existing path from as to ae, in which case one arc is added for each
activity in this set. Hence |AL \ (As ∪Ae ∪ {as, ae})| = |AL \ (As ∪Ae)| − 2 arcs
are added. ut

Depending on the characteristics of the log (mainly the sizes of the As and
Ae sets), this bound might be more restrictive than using simply connected-
ness arguments (i.e., the bound |AL| − 1) thus using the largest of both values
potentially decreases the number of SMT problems that have to be solved.

3.5 The algorithm

In Algorithm 1 we give the pseudocode of the proposed approach. The main
idea is to build the structural equations mandatory to any C-net whose language
includes a given log L, and then bound the number of arcs allowed in the solution.
Following the outcome of the SMT solver, the bound is changed, so that we
minimize the number of arcs using a binary search strategy. To obtain reasonable

14

Algorithm 1 Discover minimal C-net

1: procedure discoverMinCnet(L)
2: C = 〈A, as, ae, I, O〉 ← CIF(L) . See Sect. 2.3
3: As ← {a | (as, a) ∈ arcs(C)}
4: Ae ← {a | (a, ae) ∈ arcs(C)}
5: min← max(|A|, |As|+ |Ae|+ |A \ (As ∪Ae)| − 2 + max(|As \Ae|, |Ae \As|))
6: max← |arcs(C)| − 1
7: Es ← structural equations(L)
8: while min ≤ max do
9: avg ← b(min+max)/2c

10: E ← Es ∪ {bound arcs(L, avg)} . Add (5)
11: feasible, solutions← solve(E) . Call SMT solver
12: if feasible then
13: C ← extract cnet(solutions) . Model feasible
14: max← |arcs(C)| − 1 . Since |arcs(C)| ≤ avg
15: else
16: min← avg + 1 . Model unfeasible
17: end if
18: end while
19: return C
20: end procedure

initial bounds, we use Lemma 2 for a lower bound (line 5) and the number of
arcs in the immediately follows C-net for the upper bound (line 6).

Note that, although the minimum number of arcs to guarantee that all activ-
ities are connected is |A| − 1, the minimum bound in the algorithm is set to |A|.
This is because there is a single model that has |A| − 1 arcs, which corresponds
to a sequence of activities. If this model is feasible, then it should have been
already found in CIF, thus |arcs(C)| = |A| − 1 and the algorithm would never
enter the loop and return CIF. On the other hand, if |arcs(C)| > |A| − 1, then
there is no feasible model with just |A|−1 arcs, thus the minimum search bound
can be set to |A|.

The algorithm contains two calls to functions not yet introduced. One is
function solve(E) which simply calls the SMT solver on the set of equations
E and returns two values: feasible that is a Boolean value indicating whether
the solver found a solution to the equations in E and solutions that contains
the values of the X and Y variables in case the problem was feasible. The other
function, extract cnet(solutions), simply builds a C-net out of the values of
the variables in sets X and Y using the principles explained in Theorem 1.

Theorem 2. Let C be the C-net returned by Algorithm 1 executed on a log L.
The language of C includes L and there is no other C-net including L that has
less arcs than C.

Proof. Since the equations Es represent all possible well-formed protobinding
sequences of L, any valid solution is a set B of well-formed protobinding se-
quences of L. Using Theorem 1 on B (the extract cnet function) we obtain

15

the C-net C whose set of valid binding sequences includes B (thus its language
includes L) and has the smallest number of arcs (Corollary 1). Since we simply
add a restriction (bound arcs(L, avg)) on the maximum number of arcs that the
sequences in B induce on C, by performing a binary search we guarantee that
no other C-net whose language includes the L can have fewer arcs than C. ut

3.6 Encoding other types of constraints

The approach of Sect. 3.5 does not give any guarantee on the amount of addi-
tional behavior that the generated C-net might exhibit. For instance, consider
the log {abcdez, abdcez}. The C-net whose language contains only this log is
shown in Fig. 4(a). However there are other C-nets with six arcs that also con-
tain the log (as well as some other sequences), like the one in (b). Ideally we
would like to obtain the simplest C-net that adds the least amount of additional
behavior. While restricting the language accepted by a Petri net is straightfor-
ward, the same operation in C-nets is much more difficult given their additive
nature and the fact that their language is not prefix closed.

a b

c

d

e z

(a)

a

b

c

d

e

z

(b)

Fig. 4. Two possible C-nets with the minimum amount of arcs for log {abcdez, abdcez}.

The basic problem is that in C-nets we could only exclude complete sequences
(notice that there are infinite potential sequences starting with the initial activ-
ity and ending with the final activity), rather than prefixes (known as wrong
continuations [10] or faulty words [11]) as in Petri nets. Since it is not possi-
ble to exclude an infinite number of complete sequences, we have to resort to
some heuristics to favor the selection of C-nets with a more restricted language.
We will use three approaches: the first one penalizes the activities whose input
binding set does not contain activities that are near enough in a sequence, the
second limits the amount of different input and/or output bindings per activity,
and the third restricts the set of activities for which an activity can generate or
consume obligations. This latter approach is fundamental to tackle some of our
largest benchmarks, since it can greatly reduce the amount of variables in the
model to solve. Note that using the following heuristics the guarantee that no
other C-net whose language includes the log can have fewer arcs is lost.

Restricting the first occurrence of activities To check whether two ac-
tivities are nearby in a sequence, we take into account the other sequences in

16

the log and the position that the activity occupies in all other sequences that
share a prefix with the current sequence. For instance in the log used in Fig. 4,
{abcdez, abdcez}, activity d is executed in the fourth position in the first se-
quence, but there is another sequence sharing a prefix ab in which it appears in
the third position. Consequently, we would penalize activity d if its input binding
does not contain at least one of the activities after the first position. That is,
if its input binding is {a} we would add one to the penalty function. Summing
all the penalties for the first occurrence of every activity in each sequence, we
obtain an expression that can be bounded, similarly to (5), and added into the
SMT problem. In our example, the C-net of 4(b) would have a penalty of one
(because of activity c), while the C-net in (a) has a zero penalty.

Limiting the input/output bindings per activity The second approach
involves limiting the number of input and/or output bindings per activity. Aux-
iliary variables are used for this task. We illustrate this point using variables X,
since the strategy for the Y variables is identical. Assume that two input bindings
are allowed for each activity. For each variable xσ,i,(a,b) involving an obligation
(a, b) we generate one variable ik,(a,b) for each one of the k input bindings we
allow. Since in this case k = 2, this means that we would have i1,(a,b) and i2,(a,b).
Now for every input binding set in position i of sequence σ, we will enforce that∨

1≤j≤k

(∧
a∈Aσi

xσ,i,(a,ai) = ij,(a,ai) ∧
∧
a/∈Aσi

xσ,i,(a,ai) = 0
)

.

Limiting the obligation alphabet We have seen in Property 1 that the set
of input bindings for an activity ai in sequence σ is a subset of Aσi . However
this allows for very long causal dependencies, that are rather unfrequent in most
of the logs. We can simplify the C-net discovery problem by bounding this set
using a window: we will only allow activity ai to consume obligations generated
by activities that are at most at distance w of any occurrence of ai in any of the
sequences of the log. Using a window size of one (w = 1) the number of variables
can be dramatically reduced (the same principles are used to restrict the output
binding sets), allowing the discovery of larger benchmarks. However, when using
this approach complex causalities between activities can be missed.

4 Experiments

First of all, Table 2 describes some of the examples used in our experiments.
We have used logs obtained by simulation of C-nets coming from [2], or that we
have created to represent a variety of non-trivial behavior. Other benchmarks
are logs introduced in [12], for which we have manually created a C-net (to set
a target C-net to achieve) from a Petri net generated by a discovery tool using
the theory of regions [11]. The table also includes the following information: |L|
is the number of distinct sequences in the log, |σm| is the length of the largest
sequence and |A| is the size of the alphabet of activities.

17

aalst2b [2] |L| = 10, |σm| = 5, |A| = 5

abcde

a b

c

d e

abcbcdde
abbbcccddde
abbcdcde
abcbdcde
abcbbdccdde
abbccdde
abbcbdcdcde

mixedXorAnd |L| = 8, |σm| = 11, |A| = 5

abcdez
See Fig. 3(a)abdefbcez

abdceefbdfbcez

a12f0n00 5 [12] |L| = 5, |σm| = 7, |A| = 12

SbcejE

S

f

b
c

d

e

j

g

h

i

k

E

SbdjE
SfghikE
SfgihkE
SfhgikE

optional1 |L| = 11, |σm| = 8, |A| = 6

abf

a

b

c

e

d f

acbdef
abbedf
abbbbedf
acbedf
acbbbedf
acbbf
abbbbdef
abbdef
acbbbdef
acbf

cycles |L| = 7, |σm| = 18, |A| = 8

abcfgz

a b

c

d h

g

f

z

abcdbcfghfgz
abcfghdbcfgz
abcfgdhbcfgz
abcfdgbhcfgz
abcfdghbcfgz
abcdbcdbcfghfghfgz

Table 2. Logs used in the experiments

18

We have implemented Algorithm 1 in a prototype tool that uses the STP

solver [9] as the underlying SMT solver. We have compared it with the Flexible
Heuristic Miner (FHM) [3] which is able to discover a formalism similar to C-nets
(called flexible heuristic nets from a log [3]) . Table 3 shows the results on some
small log examples with the following information: arcs is the number of arcs
of the final C-net, T is the elapsed time (in seconds) required to complete the
discovery process, id indicates if the obtained C-net was identical to the original
one, in the case where the log originated from a C-net, or has the same language
as a Petri net found using the theory of regions, cf is the cost-based fitness per
case metric of [13] where 1.0 indicates that all sequences in the log belong to
the language of the C-net, and the smaller the value is the less sequences are
reproducible by the C-net, |X ∪ Y | is the number of Boolean variables used to
encode the SMT problem, |E| is the number of equations that the SMT problem
contains, bounds is the initial range in the number of arcs where the binary
search must take place, it is the number of iterations to obtain this C-net, and
column heur indicates if some of the heuristics in Sect. 3.6 was used, where f
refers to restricting the first occurrence of activities and i (o) to limiting the
number of input (output) bindings per activity.

FHM Algorithm 1
Benchmark arcs T id cf |X ∪ Y | |E| bounds arcs it T heur id cf

aalst1 (Fig. 2) 6 0.1 n 0.71 156 147 [6, 11] 6 2 0.3 – y 1.0
aalst2b 7 0.0 n 0.24 156 147 [5, 9] 6 3 0.2 – n 1.0
mixedXorAnd 8 0.0 n 0.12 219 162 [7, 11] 8 3 0.2 – y 1.0
a12f0n00 5 14 0.2 n 0.87 176 143 [12, 17] 14 3 0.1 f y 1.0
optional1 6 0.0 n 0.27 413 264 [6, 10] 9 2 0.1 f,o y 1.0
cycles 9 0.1 n 0.09 839 542 [8, 17] 9 3 1.3 f,i y 1.0
a22f0n00 1 34 0.5 n 0.37 28898 18942 [22, 166] ≤39 ≥4 >1h – – –

Table 3. Results of discovery algorithm on small examples.

The results on these small benchmarks show that the approach is, in general,
able to derive valuable C-nets. In fact the quality of the discovered nets is much
better than the ones derived using FHM. For instance, the latter generates four
C-nets with empty language. In contrast, Algorithm 1 always generates C-nets
whose language contains the given log (fitness=1.0), not only this but also it
rediscovers the original C-nets in most of the cases. However two logs are not
successfully discovered: for the aalst2b benchmark, we obtain a C-net equal to
the one in Table 2, but without the arc between b and d; on the other hand, the
largest benchmark in this table (a22f0n00 1 from [12]) could not be discovered
in the one hour limit used in our experiments. Although it seems reasonable to
assume that the large number of variables and equations is the responsible of
this fact, a more careful evaluation shows that this is not the determinant factor.
For instance, in Fig. 5, we can see the time used by the solver to solve the set of

19

equations, as the bound in the number of arcs allowed is reduced. Initially, the
solver finds quickly a solution, but as the bound approaches the lower limit, the
time needed grows exponentially. The reason is simple: the set of valid solutions
diminishes as the bound also reduces, and the solver has to spend more time
searching. Note that the set of equations to solve in all these cases is exactly the
same (same variables, same equations) with the only exception that the constant
used to bound the number of arcs is different.

 10

 100

 1000

 10000

 40 60 80 100 120 140

S
o

lv
e

r
ti
m

e
 (

s
)

Bound (number of arcs)

Fig. 5. stp solver times for the a22f0n00 1 benchmark.

To be able to process larger benchmarks we have to resort to our last heuristic
(limiting the obligation alphabet). Table 4 shows the results for our previous
benchmarks as well as some larger examples also from [12]. In this case we have
not used any other heuristic. Despite the fact that the original models were
discovered only in three of the benchmarks, in each case the model found was
actually the original but in which some additional input and output binding sets
were present. This strongly suggests that a strategy that minimizes the number
of such sets would greatly improve the results, as well as the overall readability
of the derived C-nets.

5 Conclusion and Future Work

This paper has presented an algorithm to derive a C-net from a set of traces,
which guarantees minimality in the number of arcs. As future work, we plan to
incorporate in the algorithm new ideas on how to bound the language of the
C-net obtained. Also, high-level strategies that can make the approach able to
handle industrial examples will be considered in the future.

20

Benchmark |L| |σm| |A| |X ∪ Y | |E| bounds arcs it T id cf

aalst1 10 5 5 136 137 [6, 11] 6 2 0.0 y 1.0
aalst2b 8 11 5 240 246 [5, 9] 6 3 0.1 n 1.0
mixedXorAnd 3 14 7 89 98 [7, 11] 8 3 0.0 y 1.0
a12f0n00 5 5 7 12 72 91 [12, 17] 14 3 0.0 y 1.0
optional1 11 8 6 229 220 [6, 10] 9 2 0.0 n 1.0
cycles 7 18 8 265 288 [8, 17] 9 3 0.1 y 1.0
a22f0n00 1 99 46 22 12827 10369 [22, 166] 34 7 9.3 n 1.0
a22f0n00 5 836 76 22 121281 97429 [22, 183] 34 7 264.9 n 1.0
a32f0n00 1 100 73 32 26378 19049 [32, 362] 46 8 35.4 n 1.0
a42f0n00 1 100 58 42 48432 31815 [42, 735] 63 9 248.4 n 1.0

Table 4. Results of discovery algorithm when heuristics to limit the number of variables
are used (activity window of size 1).

References

1. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer (2011)

2. Van Der Aalst, W., Adriansyah, A., Van Dongen, B.: Causal nets: a modeling
language tailored towards process discovery. In: CONCUR. (2011) 28–42

3. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner (fhm). In: CIDM,
IEEE (2011) 310–317

4. van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.: Genetic process
mining. In: ICATPN. Volume 3536 of LNCS. (2005) 48–69

5. Weijters, A., van der Aalst, W., de Medeiros, A.A.: Process mining with the
heuristics miner-algorithm. Technical Report WP 166, BETA Working Paper Se-
ries, Eindhoven University of Technology (2006)

6. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering
process models from event logs. IEEE TKDE 16(9) (2004) 1128–1142

7. Munoz-Gama, J., Carmona, J.: A Fresh Look at Precision in Process Conformance.
In: Business Process Management (BPM). (2010)

8. Jha, S., Limaye, R., Seshia, S.: Beaver: Engineering an efficient SMT solver for
bit-vector arithmetic. In: Computer Aided Verification. (2009) 668–674

9. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Com-
puter Aided Verification. (2007) 524–536

10. Bergenthum, R., Desel, J., Lorenz, R., S.Mauser: Process mining based on regions
of languages. In: Business Process Management (BPM). (2007) 375–383

11. Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the syn-
thesis of bounded nets. In: Theory and Practice of Software Development (TAP-
SOFT). Volume 915 of LNCS. (1995) 364–383

12. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Pro-
cess discovery using integer linear programming. In: Petri Nets. Volume 5062 of
LNCS. (2008) 368–387

13. Adriansyah, A., van Dongen, B., van der Aalst, W.: Conformance checking using
cost-based fitness analysis. In: Enterprise Distributed Object Computing Confer-
ence (EDOC). (2011) 55 –64

