
A Framework of Hierarchical Graphs and its

Application to the Semantics of SRML

Nikos Mylonakis Fernando Orejas

January 13, 2012

Abstract

Hierarchical graphs or, in general, hierarchical graphical structures are
needed when describing visual models at different levels of abstraction.
This is the case of the semantic model of SRML, the service modeling
language of the project SENSORIA. In particular, the state model of
this language is considered at two level of abstraction. Roughly, at the
lowest level, a state configuration is a graph consisting of interconnected
components and, at the highest level, business configurations are graphs
consisting of interconnected activities, where each activity is a graph of
components. Then, a state configuration is the flattening of the corres-
ponding business configuration.

Following these ideas, in this paper, we present a new framework of
hierarchical graphs, showing that it is m-adhesive. Then we show how
this framework can be used to define (part of) a graph transformation
semantics of SRML.

1 Introduction

SRML ([8, 9, 10]) is a service modeling language designed within the pro-
ject SENSORIA. Its state model is considered at two level of abstraction.
Roughly, at the lowest level, a state configuration is a graph consisting of
interconnected components and, at the highest level, business configurati-
ons are graphs consisting of interconnected activities, where each activity
is a graph of components. This definition at two levels of abstraction is ne-
eded to allow for dynamic service binding. Unfortunately, the operational
semantics of SRML is defined in a relative ad-hoc way, which means that,
to animate its models, one would have to build a specific implementation.

The goal of this work is to provide a graph transformation seman-
tics for SRML, so that its models could be animated using some graph
transformation tool, such as the Maude implementation of graph trans-
formation [2]. Following these ideas, in this paper, we present a new
framework of hierarchical graphs, based on the notion of symbolic graph
and symbolic graph transformation [11], showing that it is m-adhesive.
Then we show how this framework can be used to define (part of) a graph
transformation semantics of SRML.

The paper is organized as follows. In Sections 2 and 3, we present an
overview of SRML and symbolic graphs, respectively. Then, in Section 4,
we present our framework of hierarchical graphs. Section 5 is dedicated to
show how can we define part of the semantics of SRML using hierarchical

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/46610344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

graph transformation. Finally, in Section 6, we discuss some related work
and conclude the paper.

The paper includes a (long and) detailed appendix of the proof that
our category of hierarchical graphs is m-adhesive. This appendix is not
intended for publication. It is included so that the reviewers can check
the correctness of our results. However, the paper without the appendix
should be readable on its own.

2 Introduction to SRML

The essential concept of the Sensoria Reference Modeling Language (SRML)
is the notion of module which is inspired by the constructions presented
in Service Component Architecture (SCA). See [8, 9, 10] for a detailed
description of the language. Roughly speaking, a module can be seen as
a graph of components which are connected by wires. Moreover a module
also includes some provides and requires interfaces, which are also connec-
ted by wires to the components. As an example of a module we present
a booking agent. This module, which is graphically depicted in Fig. 1, is
supposed to offer a service for booking trips (flight and hotel). It includes
a single component (BookAgent) which is supposed to take care of the
booking and three interfaces. A provides interface (Customer) for custo-
mer requests and two requires interfaces (FlightAgent and HotelAgent).
The BookAgent is supposed to receive trip reservation requests from cus-
tomers that are connected to the Customer interface. Then, BookAgent
is supposed to request a flight and a hotel to services connected to the
FlightAgent and HotelAgent, respectively, which are supposed to provide
the corresponding reservation confirmations through a hotel and a flight
code. These codes will then be returned to the customer. However, due
to lack of space, in our example, we only see how the Bookagent requests
a flight to the FlightAgent.

BOOKING AGENT

CR:
Customer

BA:
BookAgent

FA:
FlightAgent

HA:
HotelAgent

CB

BH

BF

Figure 1: BOOKING AGENT service module

Components are specified by a business role consisting of a signature
and an orchestration part. The signature declares the events in which that
component may take part and the orchestration describes the behavior

2

of the component. For instance, below we can see a small part of the
specification of the main component of the booking agent module.

BUSINESS ROLE BookAgent is
r&s booktrip

from,to:string; out,in:integer;
Btconf: (fcode,hcode);

s&r bookflight

from,to:string; out,in:integer;
Bfconf: fcode;

. . .
ORCHESTRATION

local
from,to:string; out,in:integer;
fconf: fcode; hconf: hcode;

transition Torder
triggered by booktrip

effects

from’ = booktrip.from ∧
to’ = booktrip.to ∧
out’ = booktrip.out ∧
in’ = booktrip.in

sends bookflight

bookflight.from = from’ ∧
bookflight.to = to’ ∧
bookflight.out = out’ ∧
bookflight.in = in’ ∧

. . .

In this specification we declare
that BookAgent has an interaction
called booktrip in which the com-
ponent participates receiving and
then sending information (r&s) and
another interaction called bookflight
in which the component partici-
pates sending and then receiving
information (s&r). For example,
booktrip has four input parame-
ters (from, to, out and in) and one
output parameter (tconf). Then,
in the orchestration part, first we
declare the local variables of the
component and possibly their ini-
tialization, and then we specify the
effects of the interactions in which
the component may take part. For
instance, in the example, the local
variables from, to, in, and out are
supposed to store the basic data of
the trip being booked (source, des-
tination, departure and return dates, respectively), and fconf and hconf
are supposed to store the flight and hotel reservation codes that have been
booked. In the example, we also declare the local effects of an interac-
tion, called Torder, in which the component takes part. This interaction
is triggered by the event book trip that the component receives. The con-
tents of the local variables from, to, in, and out after the interaction are
the contents of the corresponding parameters of booktrip. Moreover, the
interaction triggers an event bookflight, which is sent by the component
with the corresponding input parameters.

External interfaces are specified through business protocols. They also
include a signature and they specify the conversations that the module
expects relative to each party. It is the responsibility of the coparty to
adhere to these protocols. Finally, wires bind the names of the interactions
and specify the protocols that coordinate the interactions between two
parties. For instance, this module includes the wire CB that connects the
business protocol of the customer of the BOOKING AGENT module and
the business role BookingAgent of the same module. We do not include
here an example of an interface or of a wire specification, since they are
not relevant for this paper.

3 Symbolic graphs and symbolic graph transfor-
mation

Symbolic (hyper)graphs [11] can be seen as a specification of a class of attributed
graphs (i.e. of graphs including values from a given data algebra in their nodes or
edges). In particular, in a symbolic graph, values are replaced by variables and, mo-
reover, a set of formulas, Φ, specifies the values that the variables may take. Then,
we may consider that a symbolic graph SG denotes the class of all graphs obtained
replacing the variables in the graph by values that satisfy Φ. For instance, the symbo-

3

lic graph in Figure 2 specifies a class of attributed graphs, including distances in the
edges, that satisfy the well-known triangle inequality.

- 1 -

with d
3
 ! d

1
+d

2

d
1

d
2

d
3

Figure 2: A symbolic graph

The notion of symbolic graph is based on the notion of E-graph (for details, see
[6, 7]). The only difference of the notion of E-graph that we use with respect to the
notion in [6] is that we deal with hypergraphs. This means that instead of having
source and target functions that map edges to nodes, we have an attachment function
that maps each (hyper)edge to a sequence of nodes, i.e. the nodes connected by the
edge.

Definition 3.1 (Symbolic graphs and morphisms) A symbolic graph over the
data algebra D is a pair 〈G,ΦG〉, where G is an E-graph over a set of variables X, and
ΦG is a set of first-order formulas over the operations and predicates in D including
variables in X and elements in D.

Given symbolic graphs 〈G1,ΦG1〉 and 〈G2,ΦG2〉 over D, a symbolic graph morphism
h : 〈G1,ΦG1〉 → 〈G2,ΦG2〉 is an E-graph morphism h : G1 → G2 such that D |=
ΦG2 ⇒ h(ΦG1), where h(ΦG1) is the set of formulas obtained when replacing in ΦG1

every variable x1 in the set of labels of G1 by hX(x1).
Symbolic graphs over D together with their morphisms form the category SymbGraphsD.

In [11] it is shown that SymbGraphsD is an adhesive HLR category.
In symbolic graph transformation we consider that the left and right-hand sides of

a rule are symbolic graphs, where the conditions on the left hand side on the rule are
included in the conditions in the right hand side of the rule. This means that applying
a transformation to a symbolic graph 〈G,ΦG〉 reduces or narrows the instances of
the result. For instance, G may include an integer variable x such that ΦG does not
constrain its possible values. However, after applying a given transformation, in the
result graph 〈H,ΦH〉 we may have that ΦH includes the formula x = 0, expressing
that 0 is the only possible value of x.

Definition 3.2 (Symbolic graph transformation rules) A symbolic graph trans-
formation rule is a triple 〈ΦL, L ←↩ K → R,ΦR〉, where L,K are E-graphs over the
same set of labels XL, R is an E-graph over a a set of labels XR, with XL = XK ⊆ XR,
L←↩ K → R is a standard graph transformation rule, and ΦL and ΦR are sets of for-
mulas over XL and XR, respectively, and over the values in the given data algebra D,
with ΦL ⊆ ΦR.As an example, in Figure 3 we show a rule with two events and a bookagent com-
ponent. The rule states that when arriving a booktrip event, the bookagent registers
them and sends a new bookflight event. The formula below expresses that the origin,
destination, and departure and return dates are the same in the incoming and in the
outgoing events. For simplicity, we do not depict the intermediate graph K, nor do we
state explicitly which are the sets XL and XR of the given rule. Instead, we assume
that XL consists of all the variables that are explicitly depicted in the left-hand side
graph, and XR consists of all the variables that are depicted in the rule. Similarly,
we just depict a single set of formulas for a given rule, assuming that ΦR is the set
consisting of all these formulas and ΦL is the subset of ΦR consisting of the formulas
that only include variables in XL.

4

Figure 3: A symbolic rule

As usual, the application of a graph transformation rule to a given symbolic graph
SG can be defined by a double pushout in the category of symbolic graphs. However,
it can also be expressed in terms of a transformation of E-graphs.

As a remark, given a symbolic graph transformation rule 〈ΦL, L ←↩ K ↪→ R,ΦR〉
over a given data algebra D and a symbolic graph morphism m : 〈L,ΦL〉 → 〈G,ΦG〉,
we have that 〈G,ΦG〉 =⇒p,m 〈H,ΦH〉 if and only if the diagram below is a double
pushout in E−Graphs and D |= ΦG ⇒ m(ΦL).

L

(1)m

��

K

(2)

? _oo � � //

��

R

m′

��
G F?

_oo � � // H

and, moreover, ΦH = ΦG ∪m′(ΦR).

4 Hierarchical symbolic graphs

In this section we introduce our notion of hierarchical (symbolic) graph and we show
that these graphs, together with their associated notion of morphism, form an M-
adhesive category. Our notion of hierarchical graph is inspired in the notion of Petri
Net refinement in [12]. According to that notion, in a a net refinement, a transition t
can be replaced by another net, Nt, where some of its transitions are connected to the
same places that n was connected. In our case, we consider that a hierarchical graph is
a graph whose edges may include (hierarchical) graphs, that may be considered their
refinement. As in the case of nets, the edges in the graph inside e may be connected to
the same nodes that e is connected. This is done by means of a notion of hierarchical
graph with interface, where the interface are part of the nodes of the graph (more
precisely a sequence of nodes). In particular, if e is a hierarchical edge (i.e. e includes
a graph) whose attachment is the sequence α, we assume that the graph inside e is a
graph with interface α. Notice that, as a consequence, the nodes in the attachment of
e maybe considered to be simultaneously inside and outside e. For instance, in Fig.
4 we can see a simple hierarchical graph. On the left, we can see the top level graph
of that graph, i.e. the graph without seeing the contents of its edges. This graph has
two nodes, n1 and n2 and two edges, e1 and e2. Edge e1 is connected to n1 and n2

and e2 is connected to n1 and twice to n2. This means that the attachment of e1 may
be n1n2 and the attachment of e2 may be n1n2n2. The graph on the right shows the
contents of the edges. In particular, e1 has no contents, i.e. e1 is non-hierarchical, or,
to be more precise technically it includes the nodes in its interface (n1 and n2). The
edge e2 includes a graph with three edges e3, e4 and e5, whose interface is n1n2n2. In

5

particular e3 and e4 are connected to n1 and n2 (and to other internal nodes). Notice
that, technically, we consider that nodes n1 and n2 belong simultaneously to the top
level edge and to the graphs contained in e1 and e2.

e1

e2

n1 n2 e1

e2

n1 n2

Figure 4: A hierarchical graph

Definition 4.1 (Symbolic graphs with interface and morphisms) A symbolic
graph with interface over a data algebra D is a triple 〈G,ΦG, IG〉, where 〈G,ΦG〉
is a symbolic graph over D and IG is the interface, a sequence of nodes from G, i.e.
IG ∈ V ∗G. A morphism between symbolic graphs with interface h : 〈G,ΦG, IG〉 →
〈G′,ΦG′ , IG′〉 is a symbolic graph morphism such that h∗(IG) = IG′ , where h∗ denotes
the extension of h to sequences of nodes.

In what follows, all our symbolic graphs are assumed to include an interface. As a
consequence, symbolic graphs with interface will just be called symbolic graphs.

A hierarchical graph HG is a pair 〈HGtop, ctsHG〉, where HGtop is a symbolic
graph, the top level graph, and ctsHG is the contents function that, for every edge in
the top level graph, yields the graph included in that edge. For simplicity, we consider
that if an edge is non-hierarchical then it includes the empty graph. Or, to be more
precise, a non-hierarchical edge e is an edge that includes a graph consisting only of
the nodes in its interface (i.e. the nodes in the attachment of e).

Hierarchical graphs are defined inductively as follows. For each natural number n,
we define the class of hierarchical graphs of depth i, HGi, where HG0 consists of all
hierarchical graphs whose top level graph has no edges, and HGi+1 is the class of all
hierarchical graphs whose edges include hierarchical graphs of, at most, depth i.

Definition 4.2 (Hierarchical graphs) The class HG =
⋃

i≥0HGi of hierarchical
symbolic graphs with interface is inductively defined as follows:

• HG0 is the class of all pairs 〈HGtop, ∅〉, where HGtop is a symbolic
graph without edgesand ∅ is the empty function.

• HGi+1 is the class of all pairs 〈HGtop, ctsHG〉, where HGtop is a
symbolic graph, and ctsHG : EHGtop →

⋃
0≤j≤iHGj, that maps each

edge in HGtop into a graph of layer j smaller than i+ 1.

Hierarchical graphs in HGi are called hierarchical graphs of depth i.

For instance, the graph on the right of Fig. 4 is a hierarchical graph of depth 1.
Hierarchical graphs can be flattened to form a standard symbolic graph replacing

every hierarchical edge by its contents. More precisely:

Definition 4.3 (Flattened graph) the flattening of a hierarchical graph, Flat(HG)
is inductively defined as follows:

• If HG ∈ HG0 then Flat(HG) = HGtop.

6

• If HG ∈ HGi+1 then:

Flat(HG) = HGtop ∪
(⋃
e∈E

HGtop

cts(e)
)
\{e ∈ EHGtop | Ects(e) 6= ∅}

Hierarchical graph morphisms are also defined inductively:

Definition 4.4 (Hierarchical graph morphisms) Hierarchical graph morphisms are
also defined inductively:

• If HG0 is a graph in HG0, a hierarchical graph morphism h : HG0 →
HG1 is a symbolic graph morphism h : HGtop

0 → HGtop
1 between

symbolic graphs with interface.

• If HG0 is a graph in HGi+1, a hierarchical graph morphism h :
HG0 → HG1 is a pair 〈htop, hdown〉, where htop : HGtop

0 → HGtop
1 ,

and hdown = {he : ctsHG0(e) → ctsHG0(htop(e))}e∈E
HGtop is a

family including a hierarchical graph morphism for each edge in
HGtop

0 .

In general, given a hierarchical morphism h = 〈htop, hdown〉 we say that a symbolic
graph morphism g is inside h if g = htop or g is inside any morphism in hdown.

This notion of graph morphism is quite restrictive with respect to graph trans-
formation. In particular, transformation rules based on this notion of morphism can
not produce transformations on the hierarchical structure of the given graph. We are
currently studying different ways of making this definition more flexible.

It is routine to see that hierarchical symbolic graphs and morphisms over a data
algebra D form a category, which we call HSymbGraphsD. Moreover, we can see
that this category is M-adhesive, where M is the class of all monomorphisms h such
that if g is inside h then g is anM-morphism in HSymbGraphsD. In Appendix 1 we
may find a quite lengthy detailed proof. In particular, pushouts in this category are
built by induction. Given the diagram below, if for all i : 0 ≤ i ≤ 2 HGi is of depth 0
then HG3 is essentially obtained as the pushout of the corresponding top level graphs
of the diagram. If some graph is of depth greater than 0, then the top level graph of
HG3 is the pushout of the top level graphs of the graphs in the diagram and for every
edge e3 in HGtop

3 , ctsHG3(e3) is the colimit of the contents of each edge e0 in HGtop
0

such that gtop1 (htop
1 (e0)) = e3, of each edge e1 in HGtop

1 such that gtop1 (e1) = e3, and
of each edge e2 in HGtop

2 such that gtop2 (e2) = e3.

HG0

h1 //

h2

��

HG1

g1

��
HG2 g2

// HG3

5 Towards a semantics for SRML

Roughly speaking (for more detail, see e.g. [10]), states in SRML are defined at two
levels: as state configurations and as business configurations. A state configuration
can be described as a graph whose nodes are the components that are active at a given
moment and whose edges are the wires connecting them. Moreover, a state configura-
tion also includes the values contained by the local variables of wires and components
and the events that are pending to be executed. Then, in a business configuration,
components and wires of a state configuration that correspond to the same business
process are grouped into business activities, which are typed over activity modules.
An activity module looks like a service module, but is created dynamically.

7

These states can evolve in two different ways. On the one hand, the execution
of an event causes that this event is eliminated from the set of pending events and,
moreover, it may cause that some local variables in the components involved in the
event change their value, and some other events are triggered meaning that they are
added to the set of pending events. For instance, the execution of the booktrip event,
as specified in the BookAgent module in Sect. 2 would cause that the local variables
of the BA component are assigned to the input arguments of the event and that a
bookflight event is added to the set of pending events. On the other hand, when
the requires interface of an activity module AM matches the provides interface of a
service module SM the two modules are connected and the activity is bound to this
new service. This implies that initialized instances of the components and wires of
SM are added to the state configuration and also to the activity associated to AM .
The activity module associated to the enriched activity would include the components
and wires of that activity and, in addition, the remaining (non-matched) interfaces
of AM and SM . For instance, if some customer is booking a trip, in the business
configuration there may be an activity including instances of the components and
wires of the BookAgent module (and perhaps some other components and wires). The
activity module AM typing this activity may include a FlighAgent and a HotelAgent
requires interfaces. If a service module SM is discovered in some repository including
a provides interface matching the FlightAgent interface in AM then the two modules
are connected, meaning that instances of the components and wires in SM would
be added to the booking trip activity and to the state configuration. The activity
module associated to that activity would still include the HotelAgent interface and, in
addition, it would also include the non-matched interfaces of SM . In this paper, we
consider only the first kind of state modification, i.e. state modifications associated to
events execution, while the second kind of modification is left for future work.

Figure 5: (Part of) a state configuration

In our approach, business and state configurations are represented by hierarchical
graphs, whose hyperedges represent components and events at the lowest level and
activities at the top level, and whose nodes represent wires. For instance, Fig. 5
represents part of a state configuration. This configuration includes three components.
A customer component represents a customer called Bob that is booking a trip from
Barcelona to London on Jan. 1, 2012, returning on Jan. 7. This component has sent
a booktrip event to the BookAgent component, but this event is pending. At the
business configuration level, all these components and wires would be included in one
activity, which is not depicted due to lack of space.

Transitions specified in service modules are represented by transformation rules
and the execution of an event is represented by the transformation defined by the
associated rule. For instance, in Fig. 3 we depict the transformation rule associated
to the transition described in the business role of the BookAgent component. In

8

particular, in that rule we specify that, if a BookAgent has a pending booktrip event,
then we may transform the given state configuration into a new configuration where
that event is not pending anymore, the local variables of the BookAgent component
are updated by the arguments of the event and a new event bookflight is sent through
one of the wires. Then, in Fig. 6. we can see the result of applying that rule to the
state configuration depicted in Fig. 5.

Figure 6: Updated configuration

6 Conclusion and Related Work

In this paper we have presented a new framework for dealing with hierarchical graphs
and hierarchical graph transformation, showing that this framework is m-adhesive.
Moreover we have shown how this approach can be used to define part of the semantics
of the service modeling language SRML.

Our notion of hierarchical graph, as said in the previous section, is inspired in the
notion of Petri net refinement in [12]. It is also inspired in the notion of hierarchical
graph presented in [5]. However, in that notion the graphs inside a hyperedge cannot
be connected to nodes outside the hyperedge. Moreover, their graphs are just labelled
and do not support arbitrary attributes and attribute computation. Palacz, in [13],
defines a much more general framework, where a hierarchical graph is a standard (non-
attributted) graph plus a predecessor function that implicitly represents the hierarchy.
In that way any element in the graph can be connect to any other element in the
graph, independently of the hierarchy of the elements. Unfortunately, the approach is
too general for DPO graph transformation. So the author restricts to certain classes
of morphisms to ensure the existence of pushouts and the uniqueness of pushout com-
plements. In both cases the main constructions (pushouts, pushout complements) are
defined in an ad-hoc way for the specific class of graphs considered. Finally, in [4], the
authors also propose a very general notion of hierarchical, without any restriction on
the kinds of connections. However, they do not study graph transformation. Instead,
they define a family of operations for building them, with the aim of using them for
giving semantics to some process algebras.

The semantics of SRML has been addressed in several papers by the group lead
by Fiadeiro (e.g. see [8, 9, 10]). In this paper we replace the explicit ad-hoc com-
putation associated to the semantics of interactions, by hierarchical symbolic graph
transformation. The main differences of SRML with respect to other approaches in
the area of service oriented is that the language supports service binding at run time,
in contrast with approaches like [15, 3, 1, 14].

9

In future work, we plan to study how to define more flexible notions of hierarchical
graph morphisms so that we it is possible to perform transformations that change the
hierarchical structure of a graph. In addition, we also plan to study how we can extend
our semantics to cover service binding.

References

[1] B. Benatallah, F. Casati, and F. Toumani. Web service conversation
modeling: a cornerstone for e-business automation. IEEE Internet
Computing, 8(1):46–54, 2004.

[2] Artur Boronat and José Meseguer. An algebraic semantics for mof. In
José Luiz Fiadeiro and Paola Inverardi, editors, FASE, volume 4961
of Lecture Notes in Computer Science, pages 377–391. Springer, 2008.

[3] M. Broy, I. H. Krüger, and M. Meisinger. A formal model of services.
ACM Trans Softw Eng Methodol, 16(1), 2007.

[4] R. Bruni, F. Gadducci, and A. Lluch-Lafuente. An algebra of hie-
rarchical graphs. In M. Wirsing, M. Hofmann, and A. Rauschmayer,
editors, TGC, volume 6084 of Lecture Notes in Computer Science,
pages 205–221. Springer, 2010.

[5] F. Drewes, B. Hoffmann, and D. Plump. Hierarchical graph trans-
formation. Journal of Computer and System Sciences, 64:249–283,
2002.

[6] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamental theory
of typed attributed graph transformation based on adhesive HLR-
categories. Fundamenta Informaticae, 74(1):31–61, 2006.

[7] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of
Algebraic Graph Transformation. EATCS Monographs of Theoretical
Computer Science. Springer, 2006.

[8] J. L. Fiadeiro and A. Lopes. An algebraic semantics of event-
based architectures. Mathematical Structures in Computer Science,
17(5):1029–1073, 2007.

[9] J. L. Fiadeiro, A. Lopes, and L. Bocchi. Algebraic semantics of service
component modules. In WADT, pages 37–55, 2006.

[10] J. L. Fiadeiro, A. Lopes, and L. Bocchi. An abstract model of service
discovery and binding. Formal Asp. Comput., 23(4):433–463, 2011.

[11] F. Orejas and L. Lambers. Symbolic attributed graphs for attributed
graph transformation. In Int. Coll. on Graph and Model Transfor-
mation. On the occasion of the 65th birthday of Hartmut Ehrig, 2010.

[12] J. Padberg. Categorical approach to horizontal structuring and refi-
nement of high-level replacement systems. Applied Categorical Struc-
tures, 7(4):371–403, 1999.

[13] W. Palacz. Algebraic hierarchical graph transformation. J. Comput.
Syst. Sci., 68(3):497–520, 2004.

[14] W. Reisig. Modeling and analysis techniques for web services and
business processes. In FMOODS, volume 3535 of Lecture Notes in
Computer Science, pages 243–258. Springer, 2005.

[15] W.M.P. van der Aalst, M. Beisiegel, K. M. van Hee, D. König, and
C. Stahl. A soa-based architecture framework. In The role of business
processes in service oriented architectures, volume 06291 of Dagstuhl
seminar proceedings. Schloss Dagstuhl, 2006.

10

A Proofs

In this appendix we prove that HSymbGraphsD is M-adhesive.

Proposition A.1 M-morphisms in HSymbGraphsD are closed under isomorp-
hism, composition and decomposition

Proof
If h is an M-morphism and g is an isomorphism, then all the morphisms inside h are
symbolic M-morphisms and all the morphisms inside g are symbolic isomorphisms.
Since symbolic M-morphisms are closed under isomorphism, all the morphisms in-
side the composition of h and g are symbolic M-morphisms, which means that this
composition is also an M-morphism.

To prove that M-morphisms are closed under composition, we proceed by induc-
tion:

• If HG is a graph in HG0 and h : HG0 → HG1, g : HG1 → HG2 are
M-morphisms then h : HGtop

0 → HGtop
1 and gtop : HGtop

1 → HGtop
2

are symbolic graph M-morphisms, implying that gtop ◦ h is also a
symbolic graph M-morphism. This means that gtop ◦ h : HG0 →
HG2 is a hierarchical M-morphism.

• If h : HG0 → HG1, g : HG1 → HG2 are M-morphisms then
htop : HGtop

0 → HGtop
1 and gtop : HGtop

1 → HGtop
2 are symbolic

graphM-morphisms and, for all edges e0 in HGtop
0 and e1 in HGtop

1 ,
he0 and ge1 are M-morphisms. But this means that gtop ◦ htop is
a symbolic graph M-morphism and for every edge e0 in HGtop

0 ,
ge1 ◦ he0 is an M-morphism, where e1 = htop(e0).

Finally, using again induction, we can see that M-morphisms are closed under
decomposition, meaning that if g and g ◦ h are M-morphisms, then h is also an M-
morphism:

• If HG is a graph in HG0, given hierarchical morphisms h : HG0 →
HG1, g : HG1 → HG2 such that g and g ◦ h are M-morphisms, we
have that gtop and gtop◦h are symbolic graphM-morphisms. By the
decomposition property of symbolicM-morphisms, this means that
h is also a symbolic M-morphism, implying that h is a hierarchical
M-morphism.

• Given hierarchical morphisms h : HG0 → HG1, g : HG1 → HG2,
such that g and g ◦ h are M-morphisms, we have that gtop and
gtop ◦ htop are symbolic graph M-morphisms, for every edge e1 in
HGtop

1 , ge1 is a hierarchical M-morphism, and for every edge e0 in

HGtop
0 , gh

top(e0)◦he0 is also a hierarchicalM-morphism. On the one
hand, by the decomposition property of symbolicM-morphisms, we
have that htop is a symbolic M-morphism. On the other hand, by
induction, he have that for every e0 ∈ HGtop

0 , he0 is a hierarchical
M-morphism. Therefore, h is a hierarchical M-morphism.

Let us now see that HSymbGraphsD has pushouts and pullbacks. However,
instead of proving directly the existence of pushouts, we will prove the existence of
general colimits.

Proposition A.2 HSymbGraphsD has colimits.

Proof

Given a diagram D consisting of a family of hierarchical morphisms {hi : HGi1 →
HGi2}i∈D, we define its colimit by induction:

11

• If all the graphs involved are inHG0, the colimit in HSymbGraphsD
essentially coincides with the colimit in SymbGraphsD .

• If each graph involved HGj is in HGij , with ij ≤ k+1, the colimit of
the diagram HG and the corresponding morphisms gj : HGj → HG
are defined as follows:

– HGtop and gtopj are given by the colimit of the diagram {htop
i }i∈I

in SymbGraphsD:

– For every edge e in HGtop, ctsHG(e) is the colimit of the dia-
gram including all the graphs ctsHGj (e′), where e = gtopj (e′),

and all the morphisms he′
m : ctsHGm1 (e′) → ctsHGm2 (e′′) ,

where e′′ = htop
m (e′) and e = gtopm2

(e′′). By induction, we may
assume that this colimit exists.

– For every edge ej in HGtop
j , g

ej
j is the canonical morphism de-

fined by the colimit associated to the edge gtopj (ej) in HGtop

defined in the item above.

It is routine to prove that this construction is indeed a colimit.

As a consequence, we have:

Corollary A.3 HSymbGraphsD has pushouts.

Now, we prove the existence of pullbacks:

Proposition A.4 HSymbGraphsD has pullbacks.

Proof
Given hierarchical morphisms hi : HGi → HG3, for i ∈ {1, 2}, we define its pullback
by induction:

• IfHG1, HG2, HG3 are graphs inHG0, the pullback in HSymbGraphsD
essentially coincides with the pullback in SymbGraphsD .

• If HG1, HG2 and HG3 are graphs in HGi1 , HGi2 and HGi3 , respec-
tively, with i1, i2, i2 ≤ i+ 1, the pullback:

HG0

h1 //

h2

��

HG1

g1

��
HG2 g2

// HG3

is defined as follows:

– HGtop
0 , htop

1 and htop
2 are given by the pullback in SymbGraphsD:

HGtop
0

h
top
1 //

h
top
2

��

HGtop
1

g
top
1

��
HGtop

2
g
top
2

// HGtop
3

– For every edge e0 in HGtop
0 , we have that ctsHG0(e0) and he0

1

and he0
2 are given by the pullback:

12

ctsHG0(e0)
h
e0
1 //

h
e0
2

��

ctsHG1(e1)

g
e1
1

��
ctsHG2(e2)

ce2
// ctsHG3(e3)

where e1 = htop
1 (e0), e2 = htop

2 (e0) and e3 = gtop1 (e1) = gtop2 (e2).

Again, it is routine to prove that this construction is indeed a pullback.

Pushouts and pullbacks preserve M-morphisms:

Proposition A.5 If the diagram below is a pushout and h1 is an M-morphism then
g2 is also an M-morphism. Similarly, if the diagram below is a pullback and g2 is an
M-morphism then h1 is also an M-morphism.

HG0

h1 //

h2

��

HG1

g1

��
HG2 g2

// HG3

Proof
Again by induction, the case base is trivial, since pushouts (resp. pullbacks) in
SymbGraphsD preserve symbolic graph M-morphisms. The general case for pull-
backs is simple. In particular, it is enough to notice that the pullback of the top level
morphisms preserve symbolic graph M-morphisms, and pullbacks of the down level
morphisms may be assumed, by induction, to preserve M-morphisms. For pushouts,
the general case is slightly more involved. First, as before, we know that the pushout
of the top level morphisms preserve symbolic graphM-morphisms. Then, considering
that are graphs are assumed to be finite, it is enough to notice that each colimit of the
down level morphisms can be defined as a combination of pushouts and pullbacks over
M-morphisms. Then, by induction we know that each of these pushouts preserves
M-morphisms and we also know that the composition of the resulting M-morphisms
is also an M-morphism.

Proposition A.6 Pushouts along hierarchical M-morphisms are weak van Kampen
squares.

Proof
Let us consider the following commutative cube, where h1, h

′
1, g2, g

′
2, f1, f2, f3 are M-

morphisms, the bottom square is a pushout and the back faces are pullbacks. We have

13

to show that the top square is a pushout if and only if the front faces are pullbacks.

HH0

h1
kkkkkkkk

uukkkkkkkk

h2

5555555

��5555555f0

��

HH1

g1

4444444

��4444444f1

��

HG0

h′
1

kkkkkkkk

uukkkkkkkk

h′
2

4444444

��4444444

HH2

f2

��

g2
kkkkkkkk

uukkkkkkkk

HG1

g′1

4444444

��4444444

HH3

f3

��

(1)

HG2

g′2
kkkkkkkk

uukkkkkkkk

HG3

Again, we proceed by induction. If all the graphs in the diagram are in HG0,
then the property trivially holds, because the diagram would essentially be a weak van
Kampen square in SymbGraphsD.

Let us consider the general case and suppose that the top square is a pushout, let
us show that the two front faces are pullbacks. We know that the corresponding cube
in terms of the top graphs and the top morphisms:

HHtop
0

h
top
1

jjjjjjjj

uujjjjjjjj

h
top
2

6666666

��6666666f
top
0

��

HHtop
1

g
top
1

6666666

��6666666f
top
1

��

HGtop
0

(h′
1)

top
jjjjjjj

uujjjjjjj

(h′
2)

top

6666666

��6666666

HHtop
2

f
top
2

��

g
top
2

jjjjjjjj

uujjjjjjjj

HGtop
1

(g′1)
top

6666666

��6666666

HHtop
3

f
top
3

��

(2)

HGtop
2

(g′2)
top

jjjjjjj

uujjjjjjj

HGtop
3

is a weak van Kampen square in SymbGraphsD, therefore its front faces are pullbacks
in that category. Hence, we have to show that for every edge e1 in HHtop

1 , ctsHH1(e1)

is the pullback of fe3
3 and (g′1)e

′
1 , where e3 = gtop1 (e1) and e′1 = f top

1 (e1). Now, let
e′3 = f top

3 (e3). We have two cases:

• If there is no edge e0 in HHtop
0 , such that e1 = htop

1 (e0) then we
know that there is also no edge e′0 in HGtop

0 , such that f top
1 (e1) =

14

(h′1)top(e0), since HHtop
0 is the pullback of the back left square in

(2). In addition, if we call e3 = gtop1 (e1), we know that there is also
no edge e2 in HHtop

2 such that e3 = gtop2 (e2) since the top diagram in
(2) is a pushout. Moreover, for similar reasons, we may also be sure
that there is no edge e′2 in HGtop

2 such that f top
3 (e3) = (g′2)top(e′2).

This means, by the definition of pushouts of hierarchical graphs,
that ctsHH1(e1) = ctsHH3(e3) and ctsHG1(e′1) = ctsHG3(e′3) and

the morphisms ge11 and (g′1)e
′
1 are identities.

Now, let us consider the diagram below:

∅

∅iiiiiiiiiiii

ttiiiiiiii

∅

��-------∅

��

ctsHH1(e1)

g
e1
1

>>>>>>>>

��>>>>>>>>f1
e1

��

∅

∅iiiiiiiiiiii

ttiiiiiiii

∅

��-------

∅

∅

��

∅mmmmmmmmm

vvmmmmmm

ctsHG1(e′1)

(g′1)
e′1

>>>>>>>>

��>>>>>>>>

ctsHH3(e3)

f
e3
3

��

∅

∅mmmmmmmmm

vvmmmmmm

ctsHG3(e′3)

where ∅ denotes the empty graph or the empty morphism, depending
on the context. Now, by construction, we may see that, in the above
diagram, the bottom face and the top face are pushouts and the
back faces are pullbacks. Therefore, by induction, the front left face
is a pullback.

• If there is an edge e0 in HHtop
0 such that e1 = htop

1 (e0), then this
edge must be unique, since h1 is an M-morphism. However, if we
call e3 = gtop1 (e1), there may be several edges d1 in HHtop

1 such
that e3 = gtop1 (d1). Moreover, for each d1 there must be exactly an
edge d0 such that htop

1 (d0) = d1, since h1 is an M-morphism and
the top face diagram of (2) is a pushout. And for the same reasons,
for all these edges d0, htop

2 (e0) = htop
2 (d0). Let us call e2 the edge

in HHtop
2 such that e2 = htop

2 (e0). This means that, in general,
ctsHH3(e3) is not the result of the pushout of he0

1 and he0
2 , but it is

the result of the colimit involving all the morphisms hd0
1 and hd0

2 .
Similarly, if we call e′i = f top

i (ei), for each such edges d0 and d1 there
would be exactly two edges d′0 and d′1 in HGtop

0 and HGtop
1 , where

(g′1)top(d′1) = e′3 and (h′1)top(d′0) = d′1. In particular, d′0 = f top
0 (d0)

and d′1 = f top
1 (d1). Moreover, ctsHG3(e′3) is the result of the colimit

involving all the morphisms (h′1)d
′
0 and (h′2)d

′
0 .

Now, we proceed by induction on the number of these edges, proving
that for any number n of such edges d01, d0n, we can build a weak
van Kampen square:

15

H0

a1
kkkkkkkkk

uukkkkkk

a2

77777777

��77777777a

��

ctsHH1(e1)

g1
tttt

yyttttt

f1
e1

��

HH ′

g2
TTTTTTTTTT

**TTTTTTTTTT

f ′

��

G0

a′
1

kkkkkkkkk

uukkkkkk

a′
2

66666666

��66666666

ctsHH2(e2)

f2
e2

��

b2
llllll

uullllllll

ctsHG1(e′1)

g′1
tttt

yyttttt

HH

f

��

HG′

g′2
UUUUUUUUUU

**UUUUUUUUUU

ctsHG2(e′2)

b′2
kkkkkk

uukkkkkkkk

HG

where a1, a
′
1, g1, and g′1 areM-morphisms, the top face and bottom

face diagrams are pushouts (i.e. the top face is a pushout of the
morphisms g1 ◦ a1 and a2 and the bottom face is a pushout of the
morphism g′1◦a′1 and a′2), where all the vertical squares are pullbacks
and where HH is the colimit of all the morphisms hd0

1 and fd0
0 and

HG is the colimit of all the morphisms h
d′0
1 and f

d′0
0 and f, g2 ◦ g1,

and g′2 ◦ g′1 are morphisms induced by these colimits.

– If there is only one edge d1 in HHtop
1 such that e3 = gtop1 (d1),

i.e. e1 = d1, then we have that the cube below, by induction on
the depth of the graphs, is a weak van Kampen square, where
the top square is a pushout:

H0

h
e0
1

mmmmmm

vvmmmmmm

h
e0
2

1111111

��1111111f
e0
0

��

H1

g
e1
1

1111111

��1111111f1
e1

��

G0

(h′
1)

e′0
mmmmm

vvmmmmm

(h′
2)

e′0

111111

��111111

H2

f2
e2

��

g
e2
2

mmmmmm

vvmmmmmm

G1

(g′1)
e′1

111111

��111111

H3

f
e3
3

��

G2

(g′2)
e′2

mmmmm

vvmmmmm

G3

where, e2 = htop
2 (e0) and, for every 0 ≤ i ≤ 3, e′i = fi(ei),

Hi = ctsHHi(ei) and Gi = ctsHGi(e′i). Therefore, the this

16

cube satisfies the induction hypothesis when g1 and g′1 are the
identity morphisms.

– If there are n+ 1 such edges, by induction we know that there
is a weak van Kampen square associated to n edges:

H0

a1
kkkkkkkkk

uukkkkkk

a2

77777777

��77777777a

��

ctsHH1(e1)

g1
tttt

yyttttt

f1
e1

��

HH ′

g2
TTTTTTTTTT

**TTTTTTTTTT

f ′

��

G0

a′
1

kkkkkkkkk

uukkkkkk

a′
2

66666666

��66666666

ctsHH2(e2)

f2
e2

��

b2
llllll

uullllllll

ctsHG1(e′1)

g′1
tttt

yyttttt

HH

f

��

HG′

g′2
UUUUUUUUUU

**UUUUUUUUUU

ctsHG2(e′2)

b′2
kkkkkk

uukkkkkkkk

HG

where the top face is a pushout and HH and HG are the colimit
of the morphisms associated to the given edges. Let d1 be the
remaining edge and let us consider the following diagram:

ctsHH0(d0)

h
d0
2

jjjjjjj

uujjjjjjj

h
d0
1

========

��========f
d0
0

��

ctsHH2(d2)

��6666666666666666

f2
d2

��

ctsHG0(d′0)

(h′
2)

d′0
jjjjjj

uujjjjjj

(h′
1)

d′0

========

��========

ctsHH1(e1)

f1
e1

��

ttiiiiiiiiiiiiiiiiiiiii

ctsHG2(d′2)

��6666666666666666
H ′3

��

ctsHG1(e′1)

ttiiiiiiiiiiiiiiiiiiiii

G′3

where, d0 is the only edge in HHtop
0 such that d1 = htop

1 (d0),
for every i = 0, 1, d′i = f top

i (di), the top and bottom squares
are pushouts and the (unnamed) morphism from H ′3 to G′3 is
the universal morphism associated to the top face pushout. By

17

induction on the depth of the graphs, this diagram is a weak van
Kampen square where the top and bottom faces are pushouts
and the rest of faces are pullbacks. Let us now put together
(and extend) the two diagrams above, skipping some arrows
which are not important now:

H ′0

}}||||||||

**UUUUUUUUUUUUUUUUUUUUU

��

H0

a2
RRRRRRRRR

))RRRRRRa1
ttttt

zztttt

a

��

ctsHH0(d0)

h
d0
2

pppp

xxpppp h
d0
2

NNNN

&&NNNN

f
d0
0

��

ctsHH1(e1)

g1
tttt

yyttttt

f1
e1

��

G′0

~~||||||||

**UUUUUUUUUUUUUUUUUUUUU ctsHH2(e2)

f2
e2

��

ctsHH1(d1)

f1
d1

��

���������������������������

HH ′

g2
TTTTTTTTTT

**TTTTTTTTTT

f ′

��

G0

a′
2

RRRRRRRRR

))RRRRRRa′
1

ttttt

zztttt

ctsHG0(d′0)

(h′
2)

d′0
pppp

xxpppp (h′
2)

d′0

NNNN

&&NNNN

ctsHG1(e′1)

g′1
ssss

yyssss

HH

f

�� ##GGGGGGGGGGGGGGGGGGGGGG ctsHG2(e′2) ctsHG1(d′1)

��

HG′

g′2
UUUUUUUUUU

**UUUUUUUUUU

H ′3

wwoooooooooooo

��

HG

##GGGGGGGGGGGGGGGGGGGGGG HH ′′

��

G′3

wwoooooooooooo

HG′′

where H ′0 and G′0 are, respectively, the pullbacks of a2 and hd0
2 ,

and of a′2 and (h′2)d
′
0 , HH ′′ is the pushout of the composed

morphisms H ′0 → HH and H ′0 → H ′3, similarly, HG′′ is the
pushout of the morphisms G′0 → HG and G′0 → G′3, and the
rest of the arrows are part of or induced by these pushouts and
pullbacks. Now, by induction of the depth of the graphs, this
diagram is again a weak van Kampen square, where all the ver-
tical diagrams are pullbacks by composition and decomposition
of pullbacks and the top and bottom diagrams are pushouts by
construction. Therefore, the front faces are also pullbacks. Mo-
reover, by construction, HH ′′ and HG′′ are the colimit of the
morphisms associated to the given edges.

The proof that the front right face is also a pullback is similar to the previous
proof.

Finally, we have to show that if the two front faces are pullbacks then the top face
is a pushout. Again, we know that the corresponding cube in terms of the top graphs
and the top morphisms is a van Kampen square in SymbGraphsD, therefore its top
face is a pushout in that category. Hence, we have to show that for every edge e3 in
HHtop

3 ctsHH3(e3) is the colimit of all the morphisms of he0
1 and he0

2 for all edges e0
such that e3 = gtop1 (e1), where e1 = htop

1 (e0). We proceed by induction on the number
of edges e0 such that e3 = gtop1 (e1) = gtop2 (e2), where e1 = htop

1 (e0) and e2 = htop
2 (e0).

Notice that, for all these edges e0, e2 = htop
2 (e0) is always the same edge, since gtop2 is

a monomorphism. In particular we prove that for any number n of such edges, given

18

graphs H3 and G3, if G3 is the colimit of all the morphisms (h′1)e
′
0 and (h′2)e

′
0 , where

e′0 = f top
0 (e0), and for each diagram:

ctsHH0(e0)

h
e0
1

jjjjjjj

uujjjjjjj

h
e0
2

========

��========f
e0
0

��

ctsHH1(e1)

��66666666666666666

f1
e1

��

ctsHG0(e′0)

(h′
1)

e′0
jjjjjj

uujjjjjj

(h′
2)

e′0

========

��========

ctsHH2(e2)

f2
e2

��

ttiiiiiiiiiiiiiiiiiiiii

ctsHG1(e′1)

��77777777777777777
H3

��

(3)

ctsHG2(e′2)

tthhhhhhhhhhhhhhhhhhhhh

G3

where for every i = 0, 2, e′i = f top
i (ei), all the vertical faces are pullbacks, then we have

that H3 is the colimit of all the morphisms of he0
1 and he0

2 for all these edges e0. In

particular, since we assume that ctsHG3(e′3) is the colimit of all the morphisms (h′1)e
′
0

and (h′2)e0 , and if we replace H3 and G3 in diagram (3) by ctsHH3(e3) and ctsHG3(e′3),
respectively, then all the vertical faces are pullbacks, this would imply that ctsHH3(e3)
is the colimit of all the morphisms of he0

1 and he0
2 , as we want to prove.

• If there are no edges e0 such that e3 = gtop1 (e1), where e1 = htop
1 (e0),

this means that there must be either an edge e1 in HHtop
1 or an edge

e2 in HHtop
2 such that e3 = gtop1 (e1) or e3 = gtop2 (e2). Let us assume

that the existing edge is e1 (in the case of e2 the proof is similar).
In this case, we have to prove that ctsHH3(e3) = ctsHH1(e1), since
this is equivalent to show that that the diagram below is a colimit:

∅
∅ //

∅

��

ctsHH1(e1)

g1
e1

��
∅

∅
// ctsHH3(e3)

Now, we can see that there is no edge e′0 inHGtop
0 such that (h′1)top(e′0) =

f top
1 (e1), since we know that diagram (2) above is a weak van Kam-

pen square, where the back left face is a pullback, and this would
have implied that there would have been an edge e0 in HHtop

0 such
that htop

2 (e0) = e2. For similar reasons, i.e. the front right face of
(2) is a pullback, we know that there does not exist an edge e′2 in
HGtop

2 such that (g′2)top(e′2) = f top
3 (e3). Then, let us now consider

the following diagram:

19

∅

∅iiiiiiiiiiii

ttiiiiiiii

∅

��-------∅

��

ctsHH1(e1)

g
e1
1

>>>>>>>>

��>>>>>>>>f1
e1

��

∅

∅iiiiiiiiiiii

ttiiiiiiii

∅

��-------

∅

∅

��

∅mmmmmmmmm

vvmmmmmm

ctsHG1(e′1)

(g′1)
e′1

>>>>>>>>

��>>>>>>>>

ctsHH3(e3)

f
e3
3

��

∅

∅mmmmmmmmm

vvmmmmmm

ctsHG3(e′3)

where e′1 = f top
1 (e1) and e′3 = f top

3 (e3). By construction and knowing
that diagram (1) is a weak van Kampen square where the front faces
are pullbacks, the above diagram would also be a weak van Kampen
square where the front faces are pullbacks. Hence, by induction, the
top face would be a pushout, i.e. a colimit.

• Assume that there are n + 1 edges e0 and H3 and G3 are graphs
such that G3 is the colimit of all the morphisms (h′1)e

′
0 and (h′2)e

′
0 ,

where e′0 = f top
0 (e0), and for each diagram:

ctsHH0(e0)

h
e0
1

jjjjjjj

uujjjjjjj

h
e0
2

========

��========f
e0
0

��

ctsHH1(e1)

��66666666666666666

f1
e1

��

ctsHG0(e′0)

(h′
1)

e′0
jjjjjj

uujjjjjj

(h′
2)

e′0

========

��========

ctsHH2(e2)

f2
e2

��

ttiiiiiiiiiiiiiiiiiiiii

ctsHG1(e′1)

��77777777777777777
H3

f

��

(4)

ctsHG2(e′2)

tthhhhhhhhhhhhhhhhhhhhh

G3

where for every i = 0, 2, e′i = f top
i (ei), all the vertical faces are

pullbacks. Then, we have to prove that H3 is the colimit of all the
morphisms he0

1 and he0
2 for the n + 1 edges e0. Let d0 be one of

these n + 1 edges, let d′0 = f top
0 (d0) and G′3 be the colimit of all

20

the morphisms (h′1)e
′
0 and (h′2)e

′
0 for the n remaining e′0 edges. We

define the graph H ′3 as the pullback of the diagram below:

H ′3
g //

f ′

��

H3

f

��

(5)

G′3
g′

// G3

where g′ is the universal morphism given by the colimit property of
G′3. We can see that H ′3 satisfies that for each edge e0 different from
d′0 we can build a diagram:

ctsHH0(e0)

h
e0
1

jjjjjjj

uujjjjjjj

h
e0
2

========

��========f
e0
0

��

ctsHH1(e1)

��6666666666666666

f1
e1

��

ctsHG0(e′0)

(h′
1)

e′0
jjjjjj

uujjjjjj

(h′
2)

e′0

========

��========

ctsHH2(e2)

f2
e2

��

ttiiiiiiiiiiiiiiiiiiiii

ctsHG1(e′1)

��6666666666666666
H ′3

f ′

��

(6)

ctsHG2(e′2)

ttiiiiiiiiiiiiiiiiiiiii

G′3

where all its vertical faces are pullbacks. In particular, the back faces
of diagram (6) coincide with the back faces of diagram (4) which are
assumed to be pullbacks, therefore it is enough to build the front
faces by pullback decomposition of the front faces of diagram (4)
and diagram (5). This means that, by induction, H ′3 is the colimit
of all the morphisms he0

1 and he0
2 for all these edges e0 different from

d0.

Similarly, if G′′3 is defined by the pushout below and H ′′3 is the defined
by the pullback below:

ctsHG0(d′0)

(PO)

(h′
1)

d′0 //

(h′
2)

d′0

��

ctsHG1(d′1)

c′1

��

H ′′3

(PB)

h //

f ′′

��

H3

f

��
ctsHG2(e′2)

c′2

// G′′3 G′′3
h′

// G3

where g′′ is the universal morphism given by the colimit property of
G′3. Then, again, H ′′3 satisfies that we can build a diagram:

21

ctsHH0(d0)

h
d0
1

jjjjjjj

ttjjjjjjj

h
d0
2

========

��========f
d0
0

��

ctsHH1(d1)

��6666666666666666

f1
d1

��

ctsHG0(d′0)

(h′
1)

d′0
jjjjjj

ttjjjjjj

(h′
2)

d′0

========

��========

ctsHH2(e2)

f2
e2

��

b3
iiiiiiii

ttiiiiiiiiiiii

ctsHG1(d′1)

��77777777777777777
H ′′3

f ′′

��

(6)

ctsHG2(e′2)

b′3
hhhhhhhh

tthhhhhhhhhhhh

G′′3

where all its vertical faces are pullbacks. Moreover, by construction
or by assumption, all the vertical arrows are M-morphisms and so
is hd0

1 , and also by construction the bottom diagram is a pushout.
Therefore, the diagram is a weak van Kampen square and, so, the
top diagram is a pushout.

Finally, consider the following diagram:

ctsHH2(e2)

b2
llllll

uulllllllll

b3

77777777

��77777777f2
e2

��

H ′3

g
0000000

��00000000f ′

��

ctsHG2(e′2)

b′2
llllll

uulllllllll

b′3

7777777

��77777777

H ′′3

f ′′

��

hjjjjjjjjjj

ttjjjjjjjjjj

G′3

g′
0000000

��0000000

H3

f

��

G′′3

h′iiiiiiiiii

ttiiiiiiiiii

G3

In this diagram all the vertical faces are pullbacks by construction
and it is routine to prove that the bottom diagram is a pushout,
since G3 is the colimit of all the morphisms (h′1)e

′
0 and (h′2)e

′
0 , G′3

is the colimit of all these morphisms except (h′1)d
′
0 and (h′2)d

′
0 , and

G”3 is the pushout of (h′1)d
′
0 and (h′2)d

′
0 . This means that the above

diagram is a weak van Kampen square and, as a consequence, the

22

top diagram is a pushout. But this means that H3 is the colimit of
all the morphisms (h1)e0 and (h2)e0

So, as a consequence of Propositions A.1, A.3, A.4, A.5, and A.6 we have:

Theorem A.7 HSymbGraphsD is an M-adhesive category.

23

	Introduction
	Introduction to SRML
	Symbolic graphs and symbolic graph transformation
	Hierarchical symbolic graphs
	Towards a semantics for SRML
	Conclusion and Related Work
	Proofs

