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Abstract. The hiring problem is a simple model of on-line decision-
making under uncertainty. As in many other such models, the input is
a sequence of instances and a decision must be taken for each instance
depending on the subsequence examined so far, while nothing is known
about the future. One famous example of on-line decision-making the
secretary problem, formally introduced in the early sixties. Broder et al.
(2008) introduced the hiring problem as an extension of the secretary
problem. Instead of selecting only one candidate, we are looking for se-
lecting (hiring) many candidates to grow up a small company. In this
context, a hiring strategy should meet two demands: to hire candidates
at some reasonable rate and to improve the average quality of the hired
staff. Soon afterwards, Archibald and Mart́ınez (2009) introduced a dis-
crete model of the hiring problem where candidates seen so far could
be ranked from best to worst without the need to know their absolute
quality scores. Hence the sequence of candidates could be modeled as a
random permutation. Two general families of hiring strategies were in-
troduced: hiring above the m-th best candidate and hiring in the top P%
quantile (for instance, P = 50 is hiring above the median). In this paper
we consider only hiring above the m-th best candidate. We introduce
new hiring parameters that describe the dynamics of the hiring process,
like the distance between the last two hirings, and the quality of the hired
staff, like the score of the best discarded candidate. While Archibald and
Mart́ınez made systematic use of analytic combinatorics techniques (Fla-
jolet, Sedgewick, 2008) in their analysis, we use here a different approach
to study the various hiring parameters related associated to the hiring
process. We are able to obtain explicit formulas for the probability dis-
tribution or the probability generating function of the random variables
of interest in a rather direct way. The explicit nature of our results also
allows a very detailed study of their asymptotic behaviour. Adding our
new results to those of Archibald and Mart́ınez leads to a very precise
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quantitative characterization of the hiring above the m-th best candi-
date strategy. This might prove very useful in applications of the hiring
process, e.g., in data stream algorithms.

1 Introduction

On-line decision making under uncertainty is a rich discipline of research. It arises
in diverse fields such as Computer Science and Economics, where the input is a
sequence of instances and a decision must be taken for each instance depending
on the subsequence examined so far, while nothing is known about the future.
The goal is often to design an algorithm or a strategy that meets the desired
requirements. There are many real world and theoretical situations that share
the aspects of decision making under uncertainty.

The famous secretary problem (see, for instance, [8]) involves many of the main
features of decision making under uncertainty. In the standard secretary prob-
lem, the employer is looking for only one candidate to fill one secretarial position
under the following conditions: the number n of applicants is known, the appli-
cants are interviewed sequentially in random order, each order being equally
likely, it is assumed that one can rank all the applicants from best to worst
without ties, the decision to accept or reject an applicant must be based only
on the relative ranks of those applicants interviewed so far, decisions are taken
on-line and are irrevocable, an applicant once rejected cannot be recalled later
and the employer will be satisfied with nothing but the very best. Thus the goal
is to maximize the probability of choosing the best candidate in the sequence.

There is a vast literature on secretary problems, where many extensions and gen-
eralizations (see for instance [4,3,6,8,13]) have been investigated, including the
relaxation of some of the conditions described above. One important “extension”
is to consider the case when the employer is looking for many employees to grow
her company. Broder et al. [2] introduced this extension as the hiring problem.
The hiring problem has the same spirit as the secretary problem but since the
number of hirings is not fixed in advance, there is no longer a clear notion of
what constitutes an optimal strategy. It is in this point where the hiring prob-
lem significantly departs from secretary problems. Another difference among the
standard versions of the two problems is the number of candidates, which is un-
known (potentially infinite) in the hiring problem, whereas this number is known
in advance in the secretary problem. Another one is the measure of quality: this
measure is clear for the secretary problem where the optimal strategy is the one
maximizing the probability of choosing the best candidate. In some extensions
there is a payoff assigned to each rank or we may look for maximizing the ex-
pected rank. As we have mentioned, since the number of applicants to hire in the
hiring problem is not fixed in advance, there are two —conflicting— goals in the
hiring problem: to hire candidates at some reasonable rate and to improve the
“average quality” of the hired staff. The hiring problem has been investigated



by several other authors, although under the different name of select sets, see
for instance [11] and references therein.

Broder et al. presented their continuous probabilistic model of the hiring problem
in [2]. They considered the quality scores of the candidates as i. i. d. random
variables with common distribution Unif(0, 1) rather than their relative ranks as
in secretary problem. They presented some natural hiring strategies which they
called Lake Wobegon strategies: hiring above the current mean and hiring above
the current median. For instance, in hiring above the current mean, the next
candidate is hired if and only if his quality score is better than the mean score
of all previous hired candidates, and discarded otherwise. Broder et al. use the
number of interviews required to hire n candidates and the gap between the score
of the last hired candidate and the maximum score (which is 1) as the hiring
parameters of interest.

Archibald and Mart́ınez [1] handled the hiring problem from another point of
view. They introduced a combinatorial (discrete) model of the problem. They
assume that the sequence of candidates may be infinite and that we can rank
candidates from best to worst without ties. So we start giving the first inter-
viewed candidate a rank 1 while at step j all ranks from 1 (worst) to j (best) are
equally likely. Then each finite subsequence of candidates represents a random
permutation. More precisely, given a permutation σn−1 (of size n−1) and a value
(relative rank) j, 1 ≤ j ≤ n, σn = σn−1 ◦ j denotes the resulting permutation
after relabelling j, j + 1, . . . , n − 1 in σn−1 as j + 1, . . . , n, and appending j to
the end. For example, let S7 = 1, 2, 1, 4, 2, 4, 2 represent the input sequence of
candidates. Then σ1 = 1, σ2 = σ1 ◦ 2 = 12, σ3 = σ2 ◦ 1 = 231 and so on until
σ7 = 4617352.

More formally, the input is a sequence of relative scores S = s1, s2, . . . , si, . . .,
with 1 ≤ si ≤ i, of the candidates. For a candidate with score si, exactly si − 1
previous candidates rank worse than that candidate. The relative score si of the
i-th candidate is uniformly distributed on {1, 2, . . . , i}. Furthermore, we have the
other common rules: a decision must be taken whether to hire the i-th candidate
or not at step i; decisions are irrevocable; there is no information about the
future candidates.

Hiring above the m-th best candidate strategy processes the sequence of
candidates in two phases. In the initial phase, the first m interviewed candidates
are hired regardless of their ranks. After that, there comes a selection phase, in
which any coming candidate will be hired if and only if he ranks better than
the m-th best already hired candidate. So the m-th best hired candidate (i.e.,
the current m-record) is the decision maker for this strategy and at any time
step n there are m choices for hiring a new candidate which must have one of
the relative ranks n, n− 1, . . . , n−m+ 1. For example, let m = 3 and we have
already seen seven candidates represented by the permutation σ7 = 4617352.
Then candidates with scores {4, 6, 1, 7, 5} are hired, whereas the ones with scores
{3, 2} are discarded. A candidate coming after σ7 gets hired if he has a rank in the



set {8, 7, 6}, whereas he gets discarded otherwise. For this hiring strategy it holds
that, for any n ≥ m, the hiring set always contains the m best candidates seen
so far (and maybe others). To be more precise, the set of hired candidates R≤m
can be described as the set of left-to-right (≤ m)-maxima (or (≤ m)-records); of
course, the particular case m = 1 (hiring above the best strategy) coincides with
the usual notion of records in a sequence. Let us explore the close connections
between this hiring strategy and records in more detail. Consider the sequence
x1, x2, . . . , xn of n different scores, which are ranked xi1 < xi2 < · · · < xin . In
the usual definition of m-records (see [12]) and references therein), an element xi
is contained in the set Rm of m-records if there exists an index j ≥ i, such that
xi is the m-th largest element in the set {x1, . . . , xj} (i.e., if xi is the m-th largest
element seen so far at time j). It holds now that the set R≤m of hired candidates
of this sequence using the “hiring above the m-th best strategy” exactly consists
of the m−1 candidates with largest score together with the set Rm of m-records,
i.e.,

R≤m = Rm ∪̇ {xin , xin−1
, . . . , xin−m+2

}.

In particular, it easily follows that, for distinct scores of the candidates, the size
of the hiring set is always m− 1 plus the number of m-records in this sequence.
Therefore, results for m-records in permutations as obtained, e.g., by Prodinger
[12] are of interest here also, and vice versa, our detailed studies of this hiring
strategy might lead to new insights in connection with record statistics.

Archibald and Mart́ınez used analytic combinatorics techniques [7] to analyze
the quantitative properties of hiring strategies. We review some of their results
in Sect. 2. While still combinatorial, our approach in this work is significantly
different. Since the behaviour of “hiring above the m-th best” is quite simple,
the definition of each parameter can be used to directly obtain explicit formulas
for the probability distribution or the probability generating function of the
quantity of interest. The explicit nature of the results allows a very detailed
study of their asymptotic behaviour. In particular we are able to characterize
the limiting behaviour of the quantities depending on the size relation between
m (the parameter of “rigidity” for hiring) and the number n of candidates, and
thus get results not only for m fixed and n → ∞. To clarify this point: the
value m is always fixed during the application of this hiring strategy to a given
sequence of candidates, but we can stop the hiring process after n candidates,
where n might depend on m; e.g., it might be natural to ask for the asymptotic
behaviour of the number of hired candidates if n = 2m, n = m2, or n = exp(m),
where m→∞ (and thus also n→∞). The results given in Sect. 3 will answer
such questions; to cover the whole range 1 ≤ m ≤ n we state our asymptotic
results in an equivalent way by expressing m = m(n).

For the readers’ convenience we collect here some notation used throughout this

paper. We denote by Hn :=
∑n
k=1

1
k the harmonic numbers and by H

(r)
n :=∑n

k=1
1
kr the r-th order harmonic numbers. The signless Stirling numbers of

first kind, which enumerate, e.g., the number of permutations of size n with



exactly k cycles, are denoted by
[
n
k

]
. Furthermore, we use the Iverson’s bracket

notation [[P ]]: [[P ]] evaluates to 1 if P is true and to 0 otherwise. Moreover, we

write Xn
(d)−−→ X for the weak convergence (i.e., convergence in distribution) of

a sequence of random variables (r.v.) Xn to a r.v. X. The normal distribution
with expectation µ and standard deviation σ is denoted by N (µ, σ2).

The sequel of this paper is structured as follows: Sect. 2 contains some of previous
results of Archibald and Mart́ınez for the hiring above the m-th best candidate
strategy. Sect. 3 collects our new results about this strategy and constitute the
main contribution of the paper. Sect. 4 is devoted to the proofs of the theorems
given in Sect. 3. Finally, Sect. 5 ends with conclusions and a discussion about
future work.

2 Previous work

The framework introduced by Archibald and Mart́ınez in [1] considers random
permutations to model the sequence of candidates as explained in the introduc-
tion. For each hiring parameter, they define a bivariate exponential generating
function (BEGF) of the form B(z, u) =

∑
p∈P u

cost(p)z|p|/|p|!, with P the family
of permutations and cost(·) a certain cost function. Then using the symbolic
method, they derive a PDE for B(z, u) by combining the corresponding re-
currence of that parameter with the BEGF. Solving the PDE and using some
analytic techniques often leads to a closed form for B(z, u), from which one gets
the probability distribution and (factorial) moments of the studied parameter
by extracting the coefficients [znuk]B(z, u) or [zn] ∂r

∂urB(z, u)
∣∣
u=1

, respectively.

2.1 Size of the hiring set

This fundamental parameter counts the number of hired candidates in the se-
quence after n interviews, applying some given strategy. Let hn,m be the random
variable that denotes the size of the hiring set, i.e., the number of hired candi-
dates, after n interviews when the strategy “hiring above the m-th best candi-
date” is applied. Recall the example mentioned in the introduction: for m = 3
and σ7 = 4617352, the hiring set contains {4, 6, 1, 7, 5} hence h7,3 = 5. Then,
for 1 ≤ m ≤ n, Archibald and Mart́ınez [1] showed (see also [12] for correspond-
ing results on m-records) the following exact result for the expectation of hn,m,
where the given asymptotic expansion holds uniformly for 1 ≤ m ≤ n:

E {hn,m} = m(Hn −Hm + 1) = m ln

(
n

m

)
+m+O(1).

For hiring above the best,m = 1, it holds E {hn,1} = lnn+O(1) and n!P {hn,1 = k}
is given by the signless Stirling number of the first kind

[
n
k

]
, which coincides with

the number of permutations of size n that have exactly k left-to-right maxima
[10]. For m = Θ(1) (fixed m), Archibald and Mart́ınez have shown that the



asymptotic behaviour of the variance is also V {hn,m} = m lnn+O(1). Further-
more, by applying Hwang’s quasi-power theorem [9], they have proved a central
limit theorem for hn,m, which we restate here.

Theorem 1. Let hn,m denote the size of hiring set for n candidates and the
strategy “hiring above the m-th best candidate”. Then, for m fixed and n→∞,
it holds:

hn,m −m lnn√
m lnn

(d)−−→ N (0, 1).

2.2 Gap of the last hired candidate

Let rn,m denote the rank of the last hired candidate for a permutation of size
n when the strategy “hiring above the m-th best candidate” is applied. We
consider gn,m := 1 − rn,m/n, the gap of the last hired candidate. The random
variable gn,m hints at the quality of the hired staff, and a good hiring strategy
should have E {gn,m} → 0 as n→∞. For example, let m = 3 and σ7 = 4617352,
then the candidate with score 5 is the last to be hired and g7,3 = 1− 5/7 = 2/7.
By definition, rn,m is uniformly distributed over the best m ranks seen so far:
n, n−1, n−2, . . . , n−m+ 1. Thus, gn,m is uniformly distributed over the values
0, 1

n ,
2
n , . . . ,

m−1
n , as stated in the following theorem.

Theorem 2. Let gn,m denote the gap of the last hired candidate for n candidates
under the strategy “hiring above the m-th best candidate”. Then, for 1 ≤ m ≤ n,

P
{
gn,m =

k

n

}
=

1

m
, for k ∈ {0, 1, . . . ,m− 1}.

As an immediate consequence, we have that E {gn,m} = m−1
2n .

In particular, it follows that gn,m = 0 for hiring above the best (m = 1) since
this strategy stops recruiting candidates once the best candidate has been hired;
for m > 1 fixed, gn,m quickly goes to 0 as n grows.

3 Results

3.1 Size of the hiring set, hn,m

In addition to the already mentioned results for the size hn,m of the hiring set
obtained in [1], where the authors mainly focused on a study of hn,m for m
fixed, we give here a characterization of the exact and limiting behaviour of this
fundamental quantity, which is valid for any size relation between m and n.



Theorem 3. Let hn,m denote the number of hired candidates for n candidates
and the strategy “hiring above the m-th best candidate”. Then the exact distri-
bution of hn,m is given as follows:

P {hn,m = j} =


[[n = j]], if m > n,

mj−m

(nm)

n−j∑
`=0

[
`+j−m
j−m

]
(`+ j −m)!

, if m ≤ j ≤ n,

=

{
[[n = j]], if m > n,
m!mj−m

n! ·
[
n−m+1
j−m+1

]
, if m ≤ j ≤ n,

where the simple closed formula for P {hn,m = j} follows from (6.21) in [10]

n∑
k=0

[
k
m

]
n!

k!
=

[
n+ 1

m+ 1

]
, for n,m ≥ 0.

For 1 ≤ m ≤ n the expectation and the variance of hn,m are given as follows,
where the asymptotic expansions hold uniformly for 1 ≤ m ≤ n and n→∞:

E {hn,m} = m(Hn −Hm + 1) = m
(

log n− logm+ 1
)

+O(1),

V {hn,m} = m(Hn −Hm)−m2(H(2)
n −H(2)

m ) = m
(

log n− logm− 1 +
m

n

)
+O(1).

The limiting distribution of hn,m is, for n → ∞ and depending on the size
relation between m and n, characterized as follows:

i) n−m�
√
n: Suitably normalized, hn,m is asymptotically standard normal

distributed, i.e.,

hn,m −m
(

log n− logm+ 1
)√

m
(

log n− logm− 1 + m
n

) (d)−−→ N (0, 1).

ii) n −m ∼ α
√
n, with α > 0: n − hn,m is asymptotically Poisson distributed

with parameter α2

2 , i.e.,

n− hn,m
(d)−−→ Poisson

(α2

2

)
.

iii) n−m = o(
√
n): n−hn,m converges in distribution to 0, i.e., n−hn,m

(d)−−→ 0.

3.2 Index of the last hired candidate

The index Ln,m of the last hired candidate can be seen as the time of the last
hiring in a permutation of size n. Its behavior helps us to better understand
the dynamics of the hiring process and it gives a measure of the hiring rate.
Archibald and Mart́ınez already introduced Ln,m in [1] and gave a general PDE



that applies to “hiring above the m-th best candidate” and many other (in
particular, to all those strategies were decisions depend exclusively in the relative
ranks of the candidates, not on their absolute scores). For example, form = 3 and
σ7 = 4617352, we have L7,3 = 6 since the candidate with score 5 is the last one to
be hired. The following theorem contains our results for Ln,m, which characterize
its probability distribution and the corresponding limiting distribution.

Theorem 4. Let Ln,m denote the index of the last hired candidate for n candi-
dates under the strategy “hiring above the m-th best candidate”. Then the exact
distribution of Ln,m is given as follows:

P {Ln,m = j} =

[[j = n]], if m > n,
( j−1
m−1)
(nm)

, if m ≤ n and 1 ≤ j ≤ n.

For m ≤ n the expectation of Ln,m is E {Ln,m} = m(n+1)
m+1 .

The limiting distribution of Ln,m is, for n → ∞ and depending on the size
relation between m and n, characterized as follows:

i) m fixed: Suitably normalized, Ln,m is asymptotically beta distributed with
parameters m and 1, i.e.,

Ln,m
n

(d)−−→ Beta(m, 1).

ii) m → ∞, but m = o(n): Suitably normalized, n − Ln,m is asymptotically
exponential distributed with parameter 1, i.e.,

m

n
(n− Ln,m)

(d)−−→ Exp(1).

iii) m ∼ αn, with 0 < α < 1: n−Ln,m is asymptotically geometrically distributed
with success probability α, i.e.,

n− Ln,m
(d)−−→ Geom(α).

iv) n−m = o(n): n−Ln,m converges in distribution to 0, i.e., n−Ln,m
(d)−−→ 0.

3.3 Distance between the last two hirings

We define the distance ∆n,m between the last two hirings as the number of
interviews between the last two hired candidates plus one. By convention we
take ∆n,m = 0 if hn,m < 2. A reasonable hiring rate requires Ln,m to be close
to n and ∆n,m to be relatively small compared to n. For instance, take m = 1.
From our results above on Ln and ∆n below, it follows that the last hiring
occurs, on average, when roughly n/2 have been interviewed, while ∆n is, on
average, around n/4. This clearly hints at an exponential waiting time between
consecutive hirings, as there are no hirings for the last n/2 interviews, and only



half that number of interviews where need from the second-to-last hiring to the
last hiring. While this argument is very informal, it shows that the study of
∆n complements our knowledge of the rate of hiring, mainly derived from the
behavior of Ln.

In the initial phase (2 ≤ n ≤ m) of hiring above the m-th best candidate,
∆n,m takes the value 1 because every candidate is hired. For n > max(m, 2),
∆n,m can take any value between 1 and n −m; if only one candidate is hired,
which holds for n = 1 and can occur also for the particular instance m = 1, we set
∆n,m = 0. For example, let m = 3 and σ7 = 4617352, then ∆7,3 = 2 because the
last two hired candidates are those with scores 7 and 5. The following theorem
gives a characterization of the exact and limiting probability distribution of
∆n,m.

Theorem 5. Let ∆n,m denote the distance between the last two hirings for n
candidates for the strategy “hiring above the m-th best candidate”. Then the exact
distribution of ∆n,m is given as follows (for all other values of the parameters
the probabilities are zero):

i) m > n: P {∆n,m = 1} = 1 if (d = 1 and n > 1) or (d = 0 and n = 0).
ii) m = 1 ≤ n:

P {∆n,1 = d} =

{
1
n , if d = 0,
1
n

(
Hn−1 −Hd−1

)
, if 1 ≤ d ≤ n− 1.

iii) 2 ≤ m ≤ n:

P {∆n,m = d} =


1

m−1
(
m2

n −
1

(nm)

)
, if d = 1,

m

(nm)

n∑
j=m+d

1

j −m

(
j − d− 1

m− 1

)
, if 2 ≤ d ≤ n−m.

For 2 ≤ m ≤ n the expectation of ∆n,m is given as follows, where the asymp-
totic equivalent holds for m = o(n) and n→∞:

E {∆n,m} =
m(n+ 1)

(m+ 1)2
− m2

n(m− 1)
+

2m

(m2 − 1)
(
n
m

) ∼ m(n+ 1)

(m+ 1)2
− m2

(m− 1)n
+o(1/n).

The limiting distribution of ∆n,m is, for n → ∞ and depending on the size
relation between m and n, characterized as follows:

i) m fixed: Suitably normalized, ∆n,m converges in distribution to a continuous

r.v., which is characterized by its density function:
∆n,m
n

(d)−−→ Xm, where Xm

has the density function

fm(x) = m2
(

(−1)mxm−1 log x+(−1)m−1Hm−1x
m−1+

m−2∑
`=0

(−1)`

m− 1− `

(
m− 1

`

)
x`
)
, 0 < x < 1.



ii) m → ∞, but m = o(n): Suitably normalized, ∆n,m is asymptotically expo-
nential distributed with parameter 1, i.e.,

m

n
∆n,m

(d)−−→ Exp(1).

iii) m ∼ αn, with 0 < α < 1: ∆n,m−1 is asymptotically geometrically distributed
with success probability α, i.e.,

∆n,m − 1
(d)−−→ Geom(α).

iv) n−m = o(n): ∆n,m−1 converges in distribution to 0, i.e., ∆n,m−1
(d)−−→ 0.

3.4 Score of the best discarded candidate,

As with the gap gn,m, this random variable Mn,m provides a measure of the
quality of the hired staff. For example, let m = 3 and σ7 = 4617352 then
M7,3 = 3, since all larger ranks are hired in this instance. A high value (close to
n) of Mn,m means that the hiring strategy is very selective, whereas a low value
of Mn,m means that the strategy is hiring too many candidates. For m ≤ n,
Mn,m can take values between 0 (all candidates have been hired) and n − m
because as mentioned before the best m candidates in the sequence are always
hired; if n < m then all candidates are hired and Mn,m = 0 holds. Explicit
formulæ for the probability distribution and the limiting distribution of Mn,m

are stated in the following theorem.

Theorem 6. Let Mn,m denote the score of the best discarded candidate for n
candidates under the strategy “hiring above the m-th best candidate”. Then the
exact distribution of Mn,m is given as follows:

P {Mn,m = b} =


[[b = 0]], if n > m,
m!
n!m

n−m, if b = 0 and 1 ≤ m ≤ n,
m!

(n−b+1)! · (n−m− b+ 1) ·mn−m−b, if 1 ≤ b ≤ n−m and 1 ≤ m ≤ n.

For 1 ≤ m ≤ n, the expectation of Mn,m is

E {Mn,m} = n−m− (n−m)m!mn−m+1

(n+ 1)!
−
n−m∑
j=0

j (j + 1)mjm!

(m+ j + 1)!

= n−m−
√

2πm

(
1− Γ (m+ 1,m)

Γ (m+ 1)

)
+O(1),

where Γ (s, x) is the incomplete Gamma function, which is defined as Γ (s, x) =∫∞
x
ts−1e−tdt and Γ (s) =

∫∞
0
ts−1e−tdt is the ordinary Gamma function. The

asymptotic expansion holds uniformly for 1 ≤ m ≤ n and n→∞.
The limiting distribution of Mn,m is, for n → ∞ and depending on the size

relation between m and n, characterized as follows:



i) m fixed: n−m−Mn,m converges in distribution to a discrete r.v., which is

characterized by its probability function: n−m−Mn,m
(d)−−→ Ym, where Ym

has the probability function

P {Ym = j} =
(j + 1)mjm!

(m+ j + 1)!
, j ∈ N.

ii) m→∞, but n−m�
√
m: Suitably normalized, n−m−Mn,m is asymp-

totically Rayleigh distributed with parameter 1, i.e.,

n−m−Mn,m√
m

(d)−−→ Rayleigh(1).

iii) n −m ∼ α
√
m, with α > 0: Suitably normalized, n −m −Mn,m converges

in distribution to the minimum between α and a Rayleigh distributed r.v.,
i.e.,

n−m−Mn,m√
m

(d)−−→ min
(
α,Rayleigh(1)

)
.

iv) n−m = o(
√
m): Mn,m converges in distribution to 0, i.e., Mn,m

(d)−−→ 0.

4 Proofs

We give here the analytical proofs of the theorems in Sect. 3. We focus here on
deriving the explicit results characterizing the exact probability distributions of
the quantities considered, since, due to the explicit nature of these exact formu-
las, the asymptotic results follow from them essentially by applying Stirling’s
formula for the factorials (or the Gamma function)

log x! =
(
x+

1

2

)
log x− x+

1

2
log(2π) +O(x−1) (1)

in connection with standard techniques, which allow us to be more brief here.

4.1 Proof of Theorem 3

Since the instance m > n is trivial (all candidates are hired), we can focus on the
case 1 ≤ m ≤ n. From the definition of this hiring strategy it follows immediately
that

hn,m = χ1 + χ2 + · · ·+ χn,

where the indicator variables χj , which are 1 if the j-th candidate of the sequence
is hired, and 0 otherwise, are mutually independent with distribution

P {χj = 1} =

{
1, for 1 ≤ j ≤ m,
m
j , for m < j ≤ n.



Thus, the probability generating function hn,m(v) :=
∑
`≥0 P {hn,m = `} v` is

given by the following explicit formula (note that the corresponding probability
generating function form-records in permutations already appears in [12]), which
will be the starting point to derive the exact and asymptotic results:

hn,m(v) = vm
n∏

j=m+1

mv + (j −m)

j
= vm

(mv + n−m)! ·m!

(mv)! · n!
= vm

(
n+m(v−1)

n

)(
mv
m

) .

(2)
To get an explicit result for the probabilities and thus the connection to signless
Stirling numbers of first kind we introduce the generating function hm(z, v) :=∑
n≥m

(
n
m

)
hn,m(v)zn. A simple computation shows then

hm(z, v) =
(zv)m

(1− z)mv+1
.

Using the well-known generating function [10] of the Stirling numbers
∑
n,k

[
n
k

]
zn

n! v
k =

1
(1−z)v the explicit result for the distribution of hn,m easily follows. Furthermore,

the result for hm(z, v) easily gives, via differentiating r times with respect to v,
evaluating at v = 1 and extracting coefficients [zn], explicit results for the r-th
factorial moments of hn,m and, as a consequence, the formulas for the expec-
tation and the variance stated in the theorem. The corresponding asymptotic
results follow from the asymptotic expansion of the first and second order har-

monic numbers, Hn = log n+ γ +O(n−1) and H
(2)
n = π2

6 − n
−1 +O(n−2).

It remains to show the limiting distribution results, which we will only sketch
here very briefly. Basically we will show that the moment generating function

E
{
eh

∗
n,ms

}
of a suitably normalized version h∗n,m of hn,m converges pointwise

for each real s to the moment generating function E
{
eXs

}
of a certain r.v. X.

An application of the theorem of Curtiss [5] shows then the weak convergence
of h∗n,m to X.

For the main region n −m �
√
n we consider the normalized r.v. h∗n,m :=

hn,m−µ
σ , with µ := µn,m = m(log n − logm + 1) and σ := σn,m = m(log n −

logm−1+m
n ), yielding thus the moment generating function E

{
eh

∗
n,ms

}
= e−

µ
σ s·

hn,m(e
s
σ ), with hn,m(v) the probability generating function (2) given above. For

simplicity we consider here only m→∞, since for the region m fixed the central
limit theorem has been shown already in [1]. An application of Stirling’s formula
(1) shows then, after some computations, the following expansion (which holds
for any fixed real s):

log
(
E
{
eh

∗
n,ms

})
=
s2

2
+O

(m(1− m
n )2

σ3

)
+O(σ−1) +O(m−1),

which implies that E
{
eh

∗
n,ms

}
→ e

s2

2 , pointwise for each real s, provided that

n−m�
√
n. Since e

s2

2 is the moment generating function of a standard normal
distribution, the theorem of Curtiss [5] yields the stated central limit theorem.



For the region n − m = O(
√
n) we consider the r.v. h∗n,m := n − hn,m,

yielding the moment generating function E
{
eh

∗
n,ms

}
= ens · hn,m(e−s). Again,

an application of Stirling’s formula shows the expansion

E
{
eh

∗
n,ms

}
= e

(n−m)2

2n (es−1) ·
(

1 +O
(n−m

n

)
+O

( (n−m)3

n2
))
.

Since eλ(e
s−1) is the moment generating function of a Poisson distributed r.v.

with parameter λ the limiting distribution result for n−m ∼ α
√
n follows. For

n −m = o(
√
n) the moment generating function of h∗n,m converges to 1, which

shows the stated theorem for this region also.

4.2 Proof of Theorem 5

We only comment on the non-trivial case 1 ≤ m ≤ n. Let us first consider the
generic instance 2 ≤ m ≤ n and d ≥ 2. By considering the position j ≥ m+ d of
the last hiring we immediately get the following formula:

P {∆n,m = d} =

n∑
j=m+d

[
P {We hire at position (j − d)}×

P {No hirings from position (j − d+ 1) till (j − 1)}×

P {We hire at position j} × P {No hirings from position (j + 1) till n}
]

=

n∑
j=m+d

m

j − d
·
j−1∏
`=j−d

(
1− m

`

)
· m
j
·

n∏
`=j+1

(
1− m

`

)
=

m(
n
m

) n∑
j=m+d

1

j −m

(
j − d− 1

m− 1

)
.

The other cases can be obtained from this generic instance by simple modifica-
tions. For 2 ≤ m ≤ n and d = 1 one has to add the contribution of the event
that the last hiring occurs at position j = m, thus

P {∆n,m = 1} =
m(
n
m

) n∑
j=m+1

1

j −m

(
j − 2

m− 1

)
+ P {Ln,m = m}

=
m(
n
m

) n∑
j=m+1

1

j −m

(
j − 2

m− 1

)
+

1(
n
m

)
=

1

m− 1

(m2

n
− 1(

n
m

)),
where the last simplification follows from a summation formula. Finally, for the
instance m = 1 the formula (??) holds for d ≥ 1, but simplifies to the result
stated in the theorem; additionally one has to consider here the case d = 0, i.e.,



there is only one hired candidate, namely the one with highest rank, which thus
has to appear at the first position, yielding P {∆n,1 = 0} = 1

n .
As in previous cases, the exact result for the expectation E {∆n,m} as stated

in the theorem follows by applying a simple summation formula, and the asymp-
totic result immediately follows.

The asymptotic results for ∆n,m are also a direct consequence of Stirling’s
formula applied to the exact probabilities, but, due to the summation occur-
ring in the formula, they require slightly more care. For the most interesting
region m → ∞, but m = o(n), we get for d = O( nm ) the local approximation

P {∆n,m = d} ∼ m
n e
−mdn , thus yielding the stated limiting distribution result

for this region. For m fixed we get the local approximation P {∆n,m = d} ∼
m2

n

∫ 1
d
n

1
t

(
t− d

n

)m−1
dt, thus showing that

∆n,m
n

(d)−−→ Xm, where Xm has density

function fm(x) = m2
∫ 1

x
1
t (t−x)m−1dt, 0 < x < 1. The expression for fm(x) can

be expressed also in the more explicit form stated in the theorem. The remaining
regions are straightforward and we do not comment on them here.

4.3 Proof of Theorem 6

Again we only comment on the non-trivial case 1 ≤ m ≤ n. To show the explicit
result for the exact distribution of Mn,m we will consider an auxiliary quantity,
namely the probability an,m,j , with 0 ≤ j ≤ n−m, that all of the m+ j highest
ranked candidates are hired (and maybe others). Of course, an,m,0 = 1, since
the m highest ranked candidates are always hired. Since the candidate with the
(m+ `)-th highest rank, 1 ≤ ` ≤ j, is hired exactly when at most m− 1 (i.e., 0,
1, . . . , m−1) of the (in total m+`−1) higher ranked candidates occur earlier in
the sequence, the probability that this happens is thus given by m

m+` , and these
events are independent, we get

an,m,j =

j∏
`=1

m

m+ `
=

m!mj

(m+ j)!
, 0 ≤ j ≤ n−m.

But the probability that the best discarded candidate has rank 1 ≤ b ≤ n−m is
thus simply given by the difference between the probability that all candidates
with a rank higher than b are recruted and the probability that all candidates
with a rank higher than b− 1 are recruted, i.e.,

P {Mn,m = b} = an,m,n−m−b − an,m,n+1−m−b

=
m!mn−m−b

(n− b)!
− m!mn+1−m−b

(n+ 1− b)!
=

(n−m− b+ 1)m!mn−m−b

(n− b+ 1)!
.

Additionally, we have P {Mn,m = 0} = P {hn,m = n} = m!mn−m

n! , thus complet-
ing the results for the exact probability distribution of Mn,m as stated in the
theorem. Moreover, the exact result for the expectation E {Mn,m} follows by
summation.



From this explicit formulas for the exact probabilities the limiting behaviour
can readily be obtained by applying Stirling’s formula. E.g., when considering
the main region m→∞, but n−m�

√
m, the local expansion

P {Mn,m = n−m− j} = P {n−m−Mn,m = j}

=
j

m
e−

j2

2m ·
(

1 +O
( j
m

)
+O

( j3
m2

))
immediately entails that

n−m−Mn,m√
m

(d)−−→ Y , where Y has the density function

f(x) = xe−
x2

2 , x > 0, thus Y is Rayleigh distributed with parameter 1. We omit
here the details for the remaining regions.

The asymptotic result for the expectation stated in the theorem can be
obtained from this local expansion of the probabilities P {Mn,m = n−m− j}.
However, there is also an alternative approach expressing the formula in terms
of hypergeometric functions leading to the following expansion, which holds uni-
formly for 1 ≤ m ≤ n:

E {Mn} = n−m−
√

2πm

(
1− Γ (m+ 1,m)

Γ (m+ 1)

)
+O(1),

where Γ (s, x) is the incomplete Gamma function, which is defined as Γ (s, x) =∫∞
x
ts−1e−tdt, while Γ (s) =

∫∞
0
ts−1e−tdt is the ordinary Gamma function.

Since Γ (m+1,m)
Γ (m+1) ≤ 1, for m ≥ 1, the asymptotic expansion given in the

theorem immediately follows.

5 Conclusions and Future Work

We have presented various theorems that describe the properties of the hiring
process when applying the “hiring above the m-th best candidate” strategy.
These results provide a very detailed picture of this natural hiring strategy. It is
obvious from Theorem 2 that the quality of the hiring set improves along time,
as the gap of the last hired candidate goes to zero as n becomes large. The hiring
rate is relatively slow, with the index of the last hiring satisfying Ln,m/n < 1
(Theorem 4). In particular, for m fixed, this entails an exponential number of
interviews to hire n candidates, although the base of the exponential growth
approaches 1 as m is larger.

As already pointed out by Broder et al. [2] and Archibald et al. [1], non-
degenerate hiring strategies3 always exhibit trade-offs between the quality of
the hired staff and the rate at which they hire. “Hiring above the m-th best
candidate” provides an excellent example. By playing around with the value
of m (the “rigidity”), we can give priority to a faster hiring rate or to a more

3 here, by a non-degenerate hiring strategy, we mean a hiring strategy that is not
hiring everybody nor discarding everybody.



selective process. If we make m bigger, then the distance between consecutive
hirings decreases (better hiring rate), but the gap of the last hired candidate
gets bigger too (worse staff quality). Similar trade-offs show up if we consider
other combinations of the parameters that we have studied, like the size of the
hiring set hn,m and the score Mn,m of the best discarded candidate.

Despite these trade-offs arise very naturally, it seems very difficult to define
a natural yardstick with which to compare different hiring strategies, and thus
to come up with a clear notion of optimality. Intuitively, an “optimal” hiring
strategy should achieve the perfect balance between the quality of the hired
staff and the rate of hiring, but quantifying this balance remains as an elusive
open problem.

A strong candidate to form part of the definition of optimality among hiring
strategies is a new parameter which we have not considered here, the number
of replacements. Take some ordinary hiring strategy and process the sequence
of candidates as usual. For a candidate with rank j apply the hiring strategy
and decide whether to hire or discard her. But here comes the difference: if the
candidate was to be discarded and there is some candidate in the hired staff
with lower rank, replace the worst hired candidate by the new candidate. The
size h of the hiring set will remain the same, but it will contain the best h
candidates in the sequence. The number of replacement Fn gives thus a measure
of the effort that a given hiring strategy needs to “build” the perfect staff, and
combines both quality and quantity aspects. We have preliminary results on the
expectation of Fn,m, namely,

E {Fn,m} =
m

2

(
H2
n +H2

m−1 +H
(2)
m−1 −H(2)

n

)
−mHnHm,

for “hiring above the m-th best candidate”, but we are still working to obtain
the probability distribution of Fn,m, as we have done for the other parameters
studied in this work.

Last but not least, we are currently studying the application of the results in
this paper and in [1] to the analysis of data stream algorithms. The nature of
data stream algorithms requires very little memory, simple computations and
reasonably accurate results. Processing a sequence with “hiring above the m-
th best candidate” is simple and can be efficiently done with little memory:
we need only the m best values seen so far. Tracking the corresponding hiring
parameters is very easy too. The usefulness of our results stems from the fact
that the observed realization of the hiring parameters can be used to infer global
properties of the underlying sequence. In particular, our exact and asymptotic
formulas for the probability distribution of several hiring parameters is very
useful to define estimators of global quantities of interest (e.g., the number of
distinct elements in the sequence) and to show that these estimators are unbiased
and have low variance.
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