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Hybrid model of light propagation in random media based on the time-dependent radiative
transfer and diffusion equations

Hiroyuki Fujiia,∗, Shinpei Okawab, Yukio Yamadac, Yoko Hoshia

aTokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506 Japan
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cUniversity of Electro-Communications, 1-5-1 Chofugaoka, Chofu, 182-8585 Japan

Abstract

Numerical modeling of light propagation in random media has been an important issue for biomedical imaging, including diffuse
optical tomography (DOT). For high resolution DOT, accurate and fast computation of light propagation in biological tissue is
desirable. This paper proposes a space-time hybrid model for numerical modeling based on the radiative transfer and diffusion
equations (RTE and DE) in random media under refractive-index mismatching. In the proposed model, the RTE and DE regions are
separated into space and time by using a crossover length and the time from the ballistic regime to the diffusive regime,ρDA ∼ 10/µ′t
and tDA ∼ 20/vµ′t whereµ′t andv represent a reduced transport coefficient and light velocity, respectively. The present model
succeeds in describing light propagation accurately and reduces computational load by a quarter compared with full computation
of the RTE.

Keywords: Radiative transfer equation; Diffusion equation; Hybrid scheme; Discrete ordinate and finite difference method; Light
propagation in homogeneous random media.

1. Introduction

Diffuse optical tomography (DOT) offers the potential to
monitor oxygenation in biological tissue noninvasively [1, 2].
It requires an algorithm to estimate the distribution of optical
properties in tissue from measurements at the boundaries of
the medium studied [3]. The algorithm essentially consists of
two parts. One is a forward model to calculate the light prop-
agation in a medium and the resultant outward reemissions at
the boundary of the medium. The other is an inverse model to
search for a distribution of the optical properties by minimizing
differences between the calculated and experimental data.

As a forward model, it has been widely accepted that the ra-
diative transfer equation (RTE) provides an accurate description
of light propagation phenomena by comparing with experimen-
tal data using tissue phantoms [4]. Doe to this, the applicabil-
ity of the RTE has been investigated to improve DOT images
[5]. With its accurate calculations of light properties, the RTE
still suffers from the disadvantage of high computation load due
to the complexity of the integro-differential equations and high
number of independent variables. Thus, most forward mod-
els are based on the diffusion equation (DE) [6, 7], which is
deduced from the RTE. Use of the DE reduces computational
times and memory requirements significantly compared to that
of the RTE. However, the DE is known to be invalid in the vicin-
ity of sources and absorbing objects [8]. As a result DE-based
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models are susceptible to errors around these sources and ob-
jects, leading to low quality DOT images.

Alternative models for the accurate and efficient calculation
of light propagation have also been proposed [9, 10, 11, 12, 13,
14], and among these a hybrid model based on the RTE and DE
is one of the most promising approaches. Tarvanien et al. have
proposed the hybrid model in frequency domain [10, 11, 12],
and Gorpas et al. have applied this model to fluorescence imag-
ing [13, 14]. It has been successfully shown that the light propa-
gation calculated from this model is in good agreement with the
RTE calculations. The hybrid model is based on the DE giving
accurate results far from sources. In the model, the whole re-
gion of a medium is divided in the RTE region at short source-
detector distances (ρ < ρDA) and the DE region at long dis-
tances (ρ > ρDA), whereρDA represents a crossover length from
the ballistic regime to the diffusive regime [15]. Despite the
good results, the estimates ofρDA involve trial and error, and
are medium-dependent. As a result there is still a need for a
model whereρDA is expressed in terms of the optical proper-
ties, independently of the media involved. Also, due to high
computational loads of solving the time-dependent RTE, only
few publications showing the results of the RTE in time-domain
are found [16].

This paper extends the concept of the hybrid model in the
steady state legitimately to the time domain as the time domain
has more information of light propagation than a steady state
system. In this extended hybrid model, the RTE and DE regions
are divided in space and time by using the crossover lengthρDA

and a crossover timetDA ∼ ρDA/v. To estimate theρDA and
tDA without reference to media, the time development of light
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Figure 1: Two-dimensional homogeneous 3.2 cm× 4.0 cm media for numerical
calculations based on (a) the RTE and (b) the DE. A light pulse is injected at
a position (x, y) = (0.0,2.0) (in cm) represented by the red dots. Six blue dots
represent detectors, D1 to D6, at (x, y) = (0.5, 2.0), (2.0, 2.0), and (3.1, 2.0) for
D1, D2, and D3 inside the medium, and at (2.3, 0), (2.0, 4.0), and (3.2, 2.0) for
D4, D5, and D6 on the boundary. The refractive-index mismatched boundary
condition is employed. Fresnel’s law is adopted in the RTE, and the Robin
boundary condition is adopted in the DE.

propagation based on the RTE and DE are investigated with the
refractive-index mismatched boundary condition. The accuracy
and computational efficiency of the proposed model is tested by
a comparison with numerical results based on the RTE.

This paper is organized as follows. The following section (2)
provides a brief explanation of numerical models of the RTE,
DE, and the hybrid model proposed here. Section 3 provides
numerical results of the light propagation based on the three
models under several conditions. Finally, conclusions are de-
tailed in Section 4.

2. Numerical model

This paper uses homogeneous 2D rectangular media (3.2 cm
× 4.0 cm) as shown in Fig. 1 throughout.

2.1. Radiative transfer equation

Light propagation in random media is described by the in-
tensity I (r,Ω, t), which is the energy distribution of photons
described by the positionr = (x, y), angular directionΩ =
(Ωx,Ωy), and timet. Considering photon-matter interactions
as transit, absorption, and scattering, this makes it possible to
derive the RTE [17],[

∂

v∂t
+Ω · ∇ + µt(r)

]
I (r,Ω, t)

= µs(r)
∫

S
dΩ′P(Ω,Ω′)I (r,Ω′, t) + q(r,Ω, t), (1)

whereµt(r) is given by the sum of the absorptionµa(r) and
scattering coefficientsµs(r), v is the velocity of light in the tar-
get medium,P(Ω,Ω′) is a scattering phase function providing
a scattering probability from theΩ′ before scattering to theΩ
after scattering, andq(r,Ω, t) is the light source. In the above
formulation, polarization and inelastic scattering of photons are
disregarded.

Like other studies the present study employs the Henyey-
Greenstein phase function forP(Ω,Ω′) due to its simplicity

[18] and for the two dimensional cases, this function is given
as

P(Ω ·Ω′) = 1
2π

1− g2

1+ g2 − 2gΩ ·Ω′ , (2)

where the anisotropic parameterg is defined as an expectation
value ofΩ · Ω′ for the functionP(Ω,Ω′). In this paper, the
value ofg is chosen to be zero or positive for modeling isotropic
and forward scatterings in biological tissue and phantoms. Due
to the elastic scattering,P satisfies the normalized condition∫

dΩP(Ω ·Ω′) = 1.
The sourceq(r,Ω, t) takes the form of a delta function as

δ(r − rs)δ(Ω−Ωs)δ(t), wherers andΩs denote the position and
the angular direction of an incident pulse, respectively.

At the boundary, the refractive-index mismatching is consid-
ered, this is a more realistic boundary condition than the non-
reentry boundary condition. The reflection and refraction at the
boundary are described by Fresnel’s law, which gives the reflec-
tivity R(n, θ) as

R(n, θ) =


1
2

[
sin2(θr−θ)
sin2(θr+θ)

+
tan2(θr−θ)
tan2(θr+θ)

]
θ < θc

1 θ ≥ θc
(3)

wheren is the relative refractive index of the medium,θ is an
angle between the outgoing normal vectoren andΩ as shown
in Fig. 1(a), the refraction angleθr = sin−1(nsinθ) is obtained
by Snell’s law, andθc represents the critical angle. The trans-
missivity T(n, θ) is given by 1− R(n, θ).

To obtain numerical solutions of the RTE, this equation is re-
placed by a set of linear equations by using the upwind-discrete
ordinate and finite-difference scheme [4]. In this scheme,
I (r,Ω, t) is discretized asI i, j,k,m wherei, j, k, andm denote the
indices of the discrete spatial (xi , y j), angularΩk, and temporal
tm variables. The integration term in the equation is calculated
based on the extended trapezoidal rule,

∫
dΩPI ∼ ∑k wkPkk′ Ik

with a weight factorwk and angular indexk. Commonly,wk is
given by 2π/Nθ with the number of discrete anglesNθ. How-
ever, whenNθ is not sufficiently large, normalization ofP is not
possible, i. e. when

∑
k wkPkk′ , 1 especially at large values

of g. For numerical calculations to converge, a modified weight
factor is adopted,w(mod)

k = wk(
∑

l wlPlk)−1 [19] in this study.
The temporal derivative is approximated by the forward Euler
scheme [16].

2.2. Diffusion approximation

In the diffusion approximation (DA), a first order approxima-
tion of I (r,Ω, t) with respect toΩ and Fick’s law is assumed.
Then, the diffusion equation (DE) can be derived from the RTE,[

∂

v∂t
− D∇2 + µa

]
Φ(r, t) = qDE(r, t), (4)

where the fluence rateΦ(r, t) is given by
∫

dΩI (r,Ω, t), the
diffusion coefficient D is by [2(1− g)µs)]−1 for the time do-
main system [20, 21], and the isotropic sourceqDE(r, t) is given
by
∫

dΩq(r,Ω, t). The refractive-index mismatched boundary
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Figure 2: Space-time hybrid model based on the RTE and DE, showing spa-
tial hybrid models for the time period of (a)t < tDA and (b)t > tDA, and
(c)conceptual regime map. In the spatial hybrid model (a) fort < tDA, the
whole medium is divided into the RTE (white) and DE (gray) regions separated
by the crossover interface (thick solid lines). As the boundary conditions for
the RTE, the Fresnel’s law is applied at the external boundary in they-axis (thin
solid line), and the non-reentry boundary condition (I (Ω·en < 0) = 0) is applied
at the extended interface (thin solid line). As the boundary conditions for the
DE, theΦ values calculated by the RTE are given at the crossover interface (the
Dirichlet boundary condition), and the Robin boundary condition is applied at
the external boundary of the medium (thick dashed lines). In the spatial hybrid
model (b) fort > tDA, the RTE region shrinks and occupies only they-axis. The
conceptual regime map of the space-time hybrid model (c) in the plane of time,
t, versus distance from the source,ρ, schematically indicates the RTE (white)
and DE (gray) regions which are divided by the crossover length (ρDA) and time
(tDA).

condition is reduced to the Robin boundary condition within the
DA [22]. For two dimensional cases, it is

Φ(rb, t) +
π

2
A(n)Den · ∇Φ(rb, t) = 0, (5)

where the coefficientA(n) ≥ 1 is given by (1+R2(n))/(1−R1(n))
related to the extrapolated length (see. Fig. 1(b)), and

R1(n) =
1
2

∫ π/2
−π/2

dθR(θ, n) cosθ,

R2(n) =
2
π

∫ π/2
−π/2

dθR(θ, n) cos2 θ. (6)

In the paper here, the value ofA(n) is evaluated (assigned) to
the numerical solutions to Eqs. (6) and (3).

Numerical computations of the DE are based on the central
spatial finite difference scheme and the temporal forward Euler
scheme in time.

2.3. Hybrid model with space and time separated

Figure 2 illustrates the space-time hybrid model based on the
RTE and DE. The spatial hybrid models are shown in Fig. 2(a)
and (b) for the time period oft < tDA andt > tDA, respectively.
For the time period oft < tDA in Fig. 2(a), the spatial domain
of the medium is divided into the RTE (white) and DE (gray)

regions by the interface (thick solid lines, called the crossover
interface) which is determined by use of the crossover length
ρDA beyond which the DA is valid. The RTE region is a rectan-
gle with a size of 2ρDA × ρDA, and the DE region is the rest of
the medium.

As the boundary conditions for the RTE, the Fresnel’s law is
applied at the external boundary in they-axis (thin solid line),
and the non-reentry boundary condition (I (Ω · en < 0) = 0)
is applied at the extended interface (thin dotted lines) which
is located in the DE region by the distance ofρBC from the
crossover interface. The RTE is solved in the extended region
with the size of 2(ρDA + ρBC) × (ρDA + ρBC). As the boundary
conditions for the DE, theΦ values at the crossover interface,
which are calculated by the RTE, are used as theΦ values for
the DE at the crossover interface (the Dirichlet boundary condi-
tion), and at the external boundary of the medium (thick dashed
lines) the refractive-index mismatched boundary condition (the
Robin boundary condition, Eq. (5)) is used.

The reason of introducing the extended interface where the
non-reentry boundary condition is applied for the RTE is as
follows. If the non-reentry boundary condition is applied just
at the crossover interface (thick solid lines), the calculatedΦ
values at the interface are very different from those calculated
by the RTE which is solved over the whole medium with the
Fresnel’s law applied at the whole external boundary. Then, if
theΦ values calculated with the non-reentry boundary condi-
tion applied at the crossover interface are used as the Dirichlet
boundary condition for the DE, the resultant solutions of the
DE will be very different from the true ones. In order to avoid
this problem, the non-reentry boundary condition is applied at
the extended interface. And the distance,ρBC, is chosen so that
theΦ values at the crossover interface, which are calculated by
the RTE in the extended region, are almost the same as those
calculated by the RTE which is solved over the whole medium.
In other words,ρBC is chosen as the shortest distance where the
Φ values at the original interface do not change by moving the
position of the extended interface further. From a preliminary
study,ρBC is estimated as 3/µ′t , whereµ′t = (1− g)µs+ µa is the
reduced transport coefficient. A work investigating light propa-
gation using the RTE [23] has also concluded that light intensi-
ties at positions 3/µ′t or more inside from the external boundary
are almost the same as those for an infinite media without the
external boundary. So it is reasonable to estimateρBC as 3/µ′t .

In addition to the spatial hybrid model, temporal hybrid
model is constructed, and Fig. 2(c) shows a conceptual regime
map of the space-time hybrid model in the plane of time,t,
versus distance from the source,ρ. It schematically indicates
the RTE (white) and DE (gray) regions which are divided by
the crossover length (ρDA) and time (tDA). Before time reaches
tDA(t < tDA) the spatial hybrid model shown in Fig. 2(a) is
used at each time step in the forward Euler scheme for calcu-
lation of time development. After time reachestDA(t > tDA),
the RTE region in the spatial hybrid model shrinks and occu-
pies only the external boundary in they-axis with the length of
2ρDA (thick solid line) as shown in Fig. 2(b). The RTE is solved
in the extended region enclosed by they-axis and extended in-
terface (thin dotted lines) with the size of 2(ρDA + ρBC) × ρBC.
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Table 1: Optical properties of the medium from tissue phantom data [4].µ′s =
µs(1− g) represents the reduced scattering coefficient

µa[1/cm] µs[1/cm] µ′s[1/cm] g n
RTE 0.35 11.6 11.6 0.0 1.56

0.35 58.0 11.6 0.8 1.56
DE 0.35 11.6 1.56

The boundary conditions are the same as those fort < tDA, i.e.,
the Fresnel’s law at the external boundary in they-axis and the
non-reentry boundary condition at the extended interface. The
results ofΦ on they-axis by the RTE are used as the Dirichlet
boundary condition for the DE similarly to the case fort < tDA.

The magnitudes ofρDA andρBC are estimated as 10/µ′t and
3/µ′t , respectively, and the details of the estimation are dis-
cussed in subsection 3.6.

3. Numerical results

3.1. Calculation conditions

As shown in Fig. 1, the source (the red dot) is set at the posi-
tion (xs, ys) = (0.0, 2.0) (in cm) throughout the paper, and light
properties are determined at six positions D1 to D6 (the blue
dots). At the detectors inside the medium, D1 to D3, the time-
resolved fluence ratesΦ(r, t) are measured, while at the detec-
tors at the surface of the medium D4 to D6, the time-resolved
photon currentsJ+(r, t) defined by Eq. (7) are measured.

J+(r, t) =


∫
Ω·en>0

dΩT(n, θ)(Ω · en)I (r,Ω, t) (RTE)

−Den · ∇Φ(r, t) = 2
πA(n)Φ(r, t) (DE)

(7)

Both the RTE and DE are solved numerically giving the same
optical properties, and the same size of space and time steps.
The optical properties refer to those of a phantom containing
SiO2 particles [4] as listed in Table 1. The space step size∆x
is 0.008 cm, which is shorter than the transport distance (in-
verse ofµt(r)). Number of the discrete solid anglesNθ is 48,
which adequately suppresses any ray effect. The time step size
∆t needs to satisfy the Courant-Fredrichs-Lewy condition and
is given as 0.01 ps.

3.2. Validation of current numerical schemes

Before discussing the numerical results for two-dimensional
finite media, the validity of the numerical schemes proposed
here is compared with analytical solutions in infinite media.
Analytical solutions of the DE have been derived for a vari-
ety of geometries [24, 26]. Analytical solutions of the RTE
have been derived for only a few geometries such as infinite
media [25, 27] due to the complexity of the integro-differential
equations. To perform numerical calculations for infinite me-
dia having no boundaries, the source and detector positions are
set sufficiently far from the boundaries which have to be ob-
tained in numerical calculations. In Fig. 3, the numerical re-
sults ofΦ compare with the analytical solutions based on the
RTE (g = 0.0) and DE at the source-detector distanceρ = 1
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Figure 3: Plot of the fluence ratesΦ(ρ, t) based on the RTE (g = 0.0) and the DE
at the source-detector distanceρ =1 cm in an infinite medium. Red crosses and
blue dots represent the numerical results of the DE and the RTE, respectively.
Red and blue solid curves denote reported analytical solutions of the DE [24]
and RTE [25], respectively.

cm in an infinite medium. It was confirmed that the numerical
results ofΦ are in good agreement with the analytical solutions
within the error margins.

3.3. Light propagation near the source

In this study, the RTE is solved numerically for four condi-
tions: (1)g = 0.8 and isotropic source, (2)g = 0.0 and isotropic
source, (3)g = 0.8 and anisotropic source (Ωsx,Ωsy) = (1,0),
and (4)g = 0.0 and anisotropic source (Ωsx,Ωsy) = (1,0). The
DE is solved under only one condition:D = [2(1 − g)µs]−1 =

0.043 cm and isotropic source becauseD is independent ofg
whenµ′s is fixed. Figure 4 shows that time development ofΦ
detected at D1 inside the medium for the various conditions,
where the source-detector distanceρ = 0.5 cm is shorter than
ρDA (ρ < ρDA). Essentially, photons propagate ballistically and
are less scattered in the vicinity of the source position, making
the DE invalid in this area. At an early timet < ρ/v ∼16 ps, no
photons arrive at the detector in the RTE-based calculations. In
the DE-based calculations, meanwhile,Φ has nonzero values at
this period of time, meaning that the DA fails.

The temporal profiles ofΦ calculated using the RTE are sen-
sitive to the anisotropic factorg and source conditions as shown
in Fig. 4. This sensitivity indicates that higher orders ofI with
respect toΩ contribute significantly toΦ. Compared with the
forward scattering (g = 0.8), the temporal profiles ofΦ with
the isotropic scattering (g = 0.0) tend to behave ballistically,
especially at the anisotropic source.

The time development ofJ+ at detector D4 (ρ = 0.3 cm) near
the source on the boundaries behave similarly toΦ as shown in
Fig. 5. This shows that the RTE-based computations ofJ+ are
influenced by the values ofg and the source conditions. At the
detector position, light propagation based on the RTE withg =
0.8 and the anisotropic source show delayed times. This arises
as the strong forward scattering and the anisotropic source make
backward light propagation late.
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On the boundaries, theJ+ calculated using the RTE is qual-
itatively similar toΦ and the characteristic times are consis-
tent with both light properties, although the peak value ofJ+ is
smaller than that ofΦ. This is based on a fact that the charac-
teristic times of the intensityI are only weakly dependent on
the direction.

3.4. Light propagation far from the source

Figures 6 and 7 show the time development ofΦ andJ+ de-
tected at D2, D3, D5, and D6 far from the source. At the long
distancesρ (> ρDA), the temporal behaviors ofΦ and J+ are
different from those at the short distancesρ (< ρDA). The in-
fluences ofg and the source anisotropy on the light propaga-
tion become much smaller, indicating that this data is lost due
to multiple scattering. As a result, the temporal profiles based
on the RTE at different values ofg and source anisotropies are
very similar at the detector position. Then, it may be postu-
lated that the DE holds in the region far from the source. How-
ever, the numerical results ofΦ obtained from the RTE still
have small disagreements with those from the DE. Generally,
the times ofΦ andJ+ using the RTE are faster than those us-
ing the DE. These disagreements arise in association with the
boundary conditions, as will be explained next.

In infinite media, the temporal profiles ofΦ based on the RTE
and DE coincide with each other, including the times as shown
in Fig. 3. This allows the conclusion that the disagreements
in the times in finite media arise from the differences in the
boundary conditions of the two equations. When decreasing
the values of the coefficient A in Eq. (5), the temporal profiles
based on the DE shift towards longer times and approach the
profiles based on the RTE. This indicates that the DE holds in
the region far from the source, qualitatively. Also, the ratiotratio

of the time scale based on the RTE to that on the DE is an almost
constant value∼ 1.045, irrespective of the detector positions.
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Figure 5: Calculated temporal profiles of the photon currentsJ+ at detector D4
on the surface of the medium with a short source-detector distanceρ = 0.3 cm
(< ρDA). Crosses represent calculated results based on the DE, solid curves
those based on the RTE withg = 0.8 and the anisotropic source (Ωsx,Ωsy) =
(1,0), dashed curves those withg = 0.0 and the anisotropic source (Ωsx,Ωsy) =
(1,0), dash-dot (chain) curves withg = 0.8 and the isotropic source, and dotted
curves those withg = 0.0 and the isotropic source.

Thus, by time-scalingt → t/tratio, the results ofΦ(t/tratio) based
on the DE are consistent with those ofΦ(t) on the RTE, as well
as on the changing values ofA.

3.5. Spatial distribution of light

So far, the temporal profiles of light propagations at a fixed
position are examined, and the validity of the DA is confirmed
at the long distancesρ (> ρDA). Then, the spatial distribution of
the fluence rate based on the different models is investigated at
a fixed time. The fluence rate is calculated by the DE and RTE
with g = 0.0. Figure 8 shows the spatial distributions ofΦ at
the short timet (< tDA). Similarly to the temporal profiles at the
short distances in Fig. 4, the spatial distributions at the short
time are dependent on the numerical models and conditions. In
contrast, at the time longer thantDA, the spatial distributions
calculated from the DE and RTE are quite similar to each other
(Fig. 9). This result indicates that the DA holds at the long time
t (> tDA).

3.6. Light propagation based on the hybrid models

The time resolved profiles ofΦ andJ+ show a single peak as
plotted in Figs. 4 and 5, the peak time is dependent on the light
scattering by the medium. This suggests that the peak timetpeak

may be a fundamental time like that of the mean time of flight.
Figure 10 shows a log-log plot of the normalized peak times
tpeakµ

′
tv calculated based on the RTE and DE in the different

conditions and as a function of the normalized source-detector
distanceρµ′t , µ

′
t = (1− g)µs+ µa is the reduced transport coeffi-

cient. The normalization is to indicate general features regard-
less of the optical properties, here,tpeakcalculated from the DE
is scaled by the 1/tratio.

At the shorter distances, log10ρµ
′
t ≤ 0.6, the ballistic mode

is dominant in the light propagation, andtpeak is approximately
equal to∼ ρ/v. At the longer distances, 1.0 ≤ log10ρµ

′
t , the

diffusion process is dominant, and the gradients of log10 tpeak

5



0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t [ps]

Φ
/P

ea
k 

va
lu

e 
of

 Φ

 

 

DE
RTE g=0.8 (anisotropic source)
RTE g=0.0 (anisotropic source)
RTE g=0.8 (isotropic source)
RTE g=0.0 (isotropic source)

[2, 2] [3.1, 2]

Figure 6: Computed temporal profiles ofΦ at detectors D2(ρ = 2.0 cm) and
D3(ρ = 3.1 cm) inside the medium far from the source (ρ > ρDA). Crosses
represent calculated results based on the DE, solid curves those based on the
RTE with g = 0.8 and the anisotropic source (Ωsx,Ωsy) = (1,0), dashed curves
those withg = 0.0 and the anisotropic source (Ωsx,Ωsy) = (1,0), dash-dot
(chain) curves withg = 0.8 and the isotropic source, and dotted curves those
with g = 0.0 and the isotropic source.

Table 2: Computation times using the three models: RTE, hybrid model, and
DE (time integration 1200 ps)

RTE Hybrid DE
Computation time [min] 2658 648 20

against log10ρ for the RTE and DE calculations are in good
agreement. This agreement indicates that the boundary condi-
tions have an insignificant effect on the gradients. Around the
region 0.6 ≤ log10ρµ

′
t ≤ 1.0 there is a crossover which ap-

pears ballistic to diffusive motions and here the values ofg and
source anisotropy contribute strongly totpeak. From Fig. 10,
the ballistic regime is defined as the log10ρµ

′
t ≤ 1.0 region, in-

cluding the crossover, and the diffusive regime is defined as the
1.0 ≤ log10ρµ

′
t region.

Figure 10 suggests values of the crossover lengthρDA and
time tDA to be about 10/µ′t and 20/vµ′t , irrespective of a medium
with optical properties. UsingρDA andtDA, it becomes possible
to construct a space-time hybrid model based on the RTE and
DE in the way explained in Section 2.3. For the construction of
the hybrid model, an additional lengthρBC is necessary and this
length characterizes the boundary effects. In a previous previ-
ous study [23],ρBC was estimated to be approximately 3/µ′t . In
the current paper, the values ofρDA, ρBC, andtDA are 1.15 cm,
0.4 cm, and 119.1 ps, respectively.

To implement the temporal hybrid, quantitative agreement of
times for the RTE and DE is required. As discussed in the pre-
vious subsection, however, the characteristic times calculated
using the DE are different from those using the RTE because
of the difference in boundary conditions. A number of methods
to achieve coincidence of the times for the RTE and DE appear
possible. In this paper, theA value of the Eq. (5) is changed
and reset to one that enables qualitative agreements of the light
propagation for the RTE and DE.

The results ofΦ and J+ calculated using the hybrid model
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Figure 7: Calculated temporal profiles ofJ+ at detectors D5(ρ = 2.8 cm) and
D6(ρ = 3.2 cm) on the surface of the medium with long source-detector dis-
tances. Crosses represent calculated results based on the DE, solid curves those
based on the RTE withg = 0.8 and the anisotropic source (Ωsx,Ωsy) = (1,0),
dashed curves those withg = 0.0 and the anisotropic source (Ωsx,Ωsy) = (1,0),
dash-dot (chain) curves withg = 0.8 and the isotropic source, and dotted curves
those withg = 0.0 and the isotropic source.

with g = 0.8 and the anisotropic source (Ωsx,Ωsy) = (1,0) eval-
uated as follows: although the hybrid model is constructed for
differentg values and source conditions, the discussion can be
generalized and is applicable to other conditions. Figure 11
plots the calculated results ofΦ using the three models, the
hybrid model (solid dots), the RTE (solid curves), and the DE
(crosses) at two detectors inside the medium. The temporal pro-
files ofΦ based on the hybrid model are consistent with those
on the RTE at the positions near (detector D1) and far from
the source (detector D2) within errors. Further, the temporal
profiles calculated using the hybrid model connect without any
gap att = tDA even though the spatial hybrid model is changed
as mentioned in sec 2.3. This continuity indicates the validity
of the proposed hybrid model. However, as shown in Fig. 11
(b), there are small differences between the RTE and the hybrid
model in the later time region at detector D2. This difference
results in a limitation of the current modification with the Robin
boundary condition by only a simple adjustment of theA value.

Time developments ofJ+ based on the three models on the
boundaries are plotted in the Fig. 12. The calculated results
for J+ obtained with the hybrid model coincide with those
of the RTE at the short and long distances (detectors D4 and
D5). Modeling of light propagation at boundaries is more diffi-
cult than modeling inside media because the differences in the
boundary conditions between the RTE and DE cause errors and
discontinuities in the temporal profiles att = tDA. This suggests
that the temporal hybrid does not hold at boundaries. To get
around this, the RTE is solved in the source plane (the y-axis)
even thought is longer thantDA (see Fig. 2(b)), resulting in the
continuous profiles ofJ+ based on the hybrid model obtained
in Fig. 12.

The proposed hybrid model can reduce computational load
due to the spatial and temporal hybrids without loss in accuracy.
Table 2 shows the computational times using the three models
with time integration up to 1200 ps. The computational time
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Figure 8: Spatial distributions ofΦ normalized by its maximum value at a given
time t = 20 ps shorter thantDA based on (a) the DE, (b) the RTE withg = 0.8
and the anisotropic source (Ωsx,Ωsy) = (1,0), (c) the the RTE withg = 0.0 and
the anisotropic source (Ωsx,Ωsy) = (1,0).

Figure 9: Spatial distributions ofΦ normalized by its maximum value at at a
given timet = 500 ps longer thantDA. Other details are the same as Fig. 8.

using the hybrid model is reduced to a quarter of that using the
RTE only.

4. Conclusions

For effective computation of light propagation in random me-
dia, we have constructed a space-time hybrid model based on
the time-dependent RTE and DE by using the crossover length
ρDA and timetDA. To determineρDA andtDA, time developments
of Φ andJ+ obtained from the RTE and the DE in two dimen-
sional homogeneous media under refractive-index mismatch-
ing were examined. The results show that the DA is valid at a
space-time region,ρ > ρDA ∼ 10/µ′t andt > tDA ∼ 20/vµ′t , re-
gardless of the random medium. The constructed hybrid model
calculates light propagation adequately, and reduces computa-
tional load to a quarter compared with the full calculations of
the RTE. In conclusion, the present model is potentially useful
as a forward model in DOT.
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Figure 10: Peak timestpeakof Φ calculated using RTE and DE as a function of
the source-detector distanceρ. Thetpeakandρ values are normalized by 1/(µ′tv)
and 1/µ′t respectively. Crosses representtpeakµ

′
tv/tratio based on the DE. Solid

circles and diamonds representtpeakµ
′
tv based on the RTE withg = 0.8 and with

g = 0.0 in the isotropic source, respectively. Solid triangles and squares are for
g = 0.8 and withg = 0.0 in the anisotropic source, respectively.
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Figure 12: Time-resolved profiles ofJ+ calculated using the three models
with g = 0.8 and the anisotropic source (Ωsx,Ωsy) = (1,0) measured at two
boundary positions; (a) D4 (0.0, 2.3) cm (ρ < ρDA) and (b) D5 (2.0, 4.0) cm
(ρ > ρDA). Other details are the same as in Fig. 11.
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