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transfer and dfusion equations
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CUniversity of Electro-Communications, 1-5-1 Chofugaoka, Chofu, 182-8585 Japan

Abstract

Numerical modeling of light propagation in random media has been an important issue for biomedical imaging, incfiigiag di
optical tomography (DOT). For high resolution DOT, accurate and fast computation of light propagation in biological tissue is
desirable. This paper proposes a space-time hybrid model for numerical modeling based on the radiative trangifesiand di
equations (RTE and DE) in random media under refractive-index mismatching. In the proposed model, the RTE and DE regions a
separated into space and time by using a crossover length and the time from the ballistic regimeficsitre igimeppa ~ 10/

andtpa ~ 20/vy; wherey; andv represent a reduced transport §méent and light velocity, respectively. The present model
succeeds in describing light propagation accurately and reduces computational load by a quarter compared with full computati
of the RTE.

Keywords: Radiative transfer equation; fusion equation; Hybrid scheme; Discrete ordinate and finfferdince method; Light
propagation in homogeneous random media.

1. Introduction models are susceptible to errors around these sources and ob-
jects, leading to low quality DOT images.

Diffuse optical tomography (DOT)flers the potential to Alternative models for the accurate ani@ent calculation
monitor oxygenation in biological tissue noninvasively [1, 2]. of light propagation have also been proposed [9, 10, 11, 12, 13,
It requires an algorithm to estimate the distribution of optical14], and among these a hybrid model based on the RTE and DE
properties in tissue from measurements at the boundaries @&f one of the most promising approaches. Tarvanien et al. have
the medium studied [3]. The algorithm essentially consists oproposed the hybrid model in frequency domain [10, 11, 12],
two parts. One is a forward model to calculate the light prop-and Gorpas et al. have applied this model to fluorescence imag-
agation in a medium and the resultant outward reemissions @ig [13, 14]. It has been successfully shown that the light propa-
the boundary of the medium. The other is an inverse model tgation calculated from this model is in good agreement with the
search for a distribution of the optical properties by minimizingRTE calculations. The hybrid model is based on the DE giving
differences between the calculated and experimental data. accurate results far from sources. In the model, the whole re-

As a forward model, it has been widely accepted that the ragion of a medium is divided in the RTE region at short source-
diative transfer equation (RTE) provides an accurate descriptiodetector distances (< ppa) and the DE region at long dis-
of light propagation phenomena by comparing with experimentancesg > ppa), Whereopa represents a crossover length from
tal data using tissue phantoms [4]. Doe to this, the applicabilthe ballistic regime to the fiusive regime [15]. Despite the
ity of the RTE has been investigated to improve DOT imagegood results, the estimates @f involve trial and error, and
[5]. With its accurate calculations of light properties, the RTEare medium-dependent. As a result there is still a need for a
still suffers from the disadvantage of high computation load duenodel whereopa is expressed in terms of the optical proper-
to the complexity of the integro-fierential equations and high ties, independently of the media involved. Also, due to high
number of independent variables. Thus, most forward modeomputational loads of solving the time-dependent RTE, only
els are based on theffiision equation (DE) [6, 7], which is few publications showing the results of the RTE in time-domain
deduced from the RTE. Use of the DE reduces computationare found [16].
times and memory requirements significantly compared to that Thjs paper extends the concept of the hybrid model in the
ofthe RTE. However, the DE is known to be invalid in the vicin- steady state legitimately to the time domain as the time domain
ity of sources and absorbing objects [8]. As a result DE-baselas more information of light propagation than a steady state

system. In this extended hybrid model, the RTE and DE regions

“Now at Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, are divided in spaqe and time by using th‘? crossover lgngth
Hokkaido, 060-8628, Japan and a crossover timga ~ ppa/v. To estimate thepa and
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Figure 1: Two-dimensional homogeneous 3.25chh0 cm media for numerical The sourceq(r, Q,t) takes the form of a delta function as
calcul.a_tlons based on (a) the RTE and (b) the DE. A light pulse is injected ag(r _ rs)é(ﬂ _ Qs)é(t), wherers andQs denote the position and
a position &,y) = (0.0,2.0) (in cm) represented by the red dots. Six blue dots the anaular direction of an incident pulse. respectivel
represent detectors, D1 to D6, aty) = (0.5, 2.0), (2.0, 2.0), and (3.1, 2.0) for 9 1dent pulse, respectively. _
D1, D2, and D3 inside the medium, and at (2.3, 0), (2.0, 4.0), and (3.2, 2.0) for At the boundary, the refractive-index mismatching is consid-
D4, D5, and D6 on the boundary. The refractive-index mismatched boundargred, this is a more realistic boundary condition than the non-
condition is employed. Fresnels law is adopted in the RTE, and the Robiaantry houndary condition. The reflection and refraction at the
boundary condition is adopted in the DE. . . .

Y P boundary are described by Fresnel’s law, which gives the reflec-

tivity R(n, 6) as

propagation based on the RTE and DE are investigated with the

refractive-index mismatched boundary condition. The accuracy : [S?“Z("f‘(’) n tai(ef“’) 0 < 6
. . . R(n, 0) = SirP(6+6)  tark(6r+6) (3)

and computationalfciency of the proposed model is tested by 1 950

= Uc

a comparison with numerical results based on the RTE.

This paper is organized as follows. The following section (Z)Wheren is the relative refractive index of the mediutis an
provides a brief explanation of numerical models of the RTE'an le between the outaoina normal veotemnd & as shown
DE, and the hybrid model proposed here. Section 3 provide 9 going o

ical its of the liaht tion based the th Fig. 1(a), the refraction anglg = sin"!(nsiné) is obtained
numerical resufts of the light propagation based on the reBy Snell’s law, and). represents the critical angle. The trans-
models under several conditions. Finally, conclusions are d

N i erhissivityT(n, ) is given by 1- R(n, 6).
tailed in Section 4. To obtain numerical solutions of the RTE, this equation is re-
placed by a set of linear equations by using the upwind-discrete
ordinate and finite-dierence scheme [4]. In this scheme,
I(r,Q,1) is discretized a$ jxm Wherei, j, k, andm denote the
This paper uses homogeneous 2D rectangular media (3.2 cimdices of the discrete spatiati(y;), angular®, and temporal
% 4.0 cm) as shown in Fig. 1 throughout. tm variables. The integration term in the equation is calculated
based on the extended trapezoidal rylelQP1 ~ ¥ WicPy Ii
2.1. Radiative transfer equation with a weight factom and angular indek. Commonly,w is
Light propagation in random media is described by the in-91V€Nn by 2r/N, with the number of discrete anglég. How-
tensity I(r, 2, 1), which is the energy distribution of photons €€l wher\, is not sdficiently large, normalization d? is not
described by the position = (x,y), angular directionQ® = possible, i. e. _WheIZkaP[(kf # 1 especially at Iargg valugs
(Q,.©Q), and timet. Considering photon-matter interactions of g. For numerical calculations to converge, a modified weight

. 9 B . R
as transit, absorption, and scattering, this makes it possible {§Ctr i adoptedyvﬁm‘_’ = Wi(X) Wi Prc) ' [19] in this study.
derive the RTE [17], The temporal derivative is approximated by the forward Euler

scheme [16].

2. Numerical model

0
\ﬁ +Q-V+,ut(r)]|(r,ﬂ,t)

= ,us(r)deQ’P(Q,Q’)I(r,Q’,t)+q(r,Q,t), (1)

2.2. Diffusion approximation

In the difusion approximation (DA), a first order approxima-
tion of I(r, Q,t) with respect taQ and Fick’s law is assumed.
where y(r) is given by the sum of the absorptiena(r) and  Then, the dfusion equation (DE) can be derived from the RTE,
scattering cofficientsus(r), v is the velocity of light in the tar-
get mediumP(Q, ') is a scattering phase function providing [i _DV2+4
a scattering probability from th®’ before scattering to th@ Vot Ha
after scattering, and(r, ,1) is the light source. In the above
formulation, polarization and inelastic scattering of photons aravhere the fluence raté(r,t) is given byfdQI(r,Q, t), the
disregarded. diffusion codficient D is by [2(1 - g)us)] ! for the time do-

Like other studies the present study employs the Henyeymain system [20, 21], and the isotropic sougge(r, t) is given
Greenstein phase function f&%(Q, Q’) due to its simplicity by fqu(r,Q, t). The refractive-index mismatched boundary

2

(D(r’t) = QDE(r,t), (4)




y-axis y-axis

regions by the interface (thick solid lines, called the crossover
poc] e ortce Extended norace interface) which is determined by use of the crossover length
boundoy e ° ppa beyond which the DA is valid. The RTE region is a rectan-

gle with a size of gpa X ppa, and the DE region is the rest of

(Fresnel's law  |{PDA
BC for RTE)
External boundary

Source Poa A (Robin BC for oe) the medium.

o | As the boundary conditions for the RTE, the Fresnel's law is
puc] N Pﬂcim\é\é’éﬂfkﬁéé‘w . applied at the external boundary in thexis (thin solid line),
v ot—<—————%="  and the non-reentry boundary conditidict - &, < 0) = 0)

@t <tos e Ot >toa is applied at the extended interface (thin dotted lines) which
bE! is located in the DE region by the distancemf: from the

crossover interface. The RTE is solved in the extended region
with the size of 2¢pa + pec) X (opa + pac)- As the boundary
conditions for the DE, thé@ values at the crossover interface,

@(tp,)in RTE — &(t,,) in DE

tos External boundary |
RTE N

s § which are calculated by the RTE, are used as®helues for
Louomnoe | the DE at the crossover interface (the Dirichlet boundary condi-
0 Por Distance from source tion), and at the external boundary of the medium (thick dashed

(c) Regime map

lines) the refractive-index mismatched boundary condition (the
Figure 2: Space-time hybrid model based on the RTE and DE, showing spdR0bin boundary condition, Eq. (5)) is used.
tial hybrid models for the time period of ta)< tpa and (b} > tpa, and The reason of introducing the extended interface where the

(c)conceptual regime map. In the spatial hybrid model (a)tfer tpa, the _ e ; ; ;
whole medium is divided into the RTE (white) and DE (gray) regions separatefron reentry boundary condition is applled for the RTE is as

by the crossover interface (thick solid lines). As the boundary conditions forollows.  If the no_n-reentry bo_undarY andition is applied just
the RTE, the Fresnel's law is applied at the external boundary ip-thés (thin ~ at the crossover interface (thick solid lines), the calculabed
solid line), and the non-reentry boundary conditibifX-e, < 0) = 0)isapplied  values at the interface are venydrent from those calculated
at the extended interface (thin solid line). A_s the boundary condl_tlons for theDy the RTE which is solved over the whole medium with the
DE, the® values calculated by the RTE are given at the crossover interface (the , . }
Dirichlet boundary condition), and the Robin boundary condition is applied at-reésnel’s law applied at the whole external boundary. Then, if
the external boundary of the medium (thick dashed lines). In the spatial hybridhe @ values calculated with the non-reentry boundary condi-
model (b) fort > tpa, the RTE region shrinks and occupies onlyyfaxis. The tion applied at the crossover interface are used as the Dirichlet
conceptual regime map of the space-time hybrid model (c) in the plane of tim . .
t, versus distance from the sourge schematically indicates the RTE (white) %ounqary cond|t|pn for the DE, the resultant solutions of t_he
and DE (gray) regions which are divided by the crossover lengi)@andtime ~ DE Wwill be very diferent from the true ones. In order to avoid
(toa)- this problem, the non-reentry boundary condition is applied at
the extended interface. And the distaneg;, is chosen so that
condition is reduced to the Robin boundary condition within thethecD values at the crossover interface, which are calculated by
DA 2'2' FI twu di ional ! u't' y tion withi the RTE in the extended region, are almost the same as those
[22]. For two dimensional cases, itis calculated by the RTE which is solved over the whole medium.
In other wordspgc is chosen as the shortest distance where the
® values at the original interface do not change by moving the
position of the extended interface further. From a preliminary
study,pgc is estimated as/g;, wherey; = (1 - Q)us + 14 is the

reduced transport cfiecient. A work investigating light propa-

D(rp, 1) + gA(n)Den - VO(rp, 1) = 0, (5)

where the coicientA(n) > 1is given by (1 Rx(n))/(1-Ry(n))
related to the extrapolated length (see. Fig. 1(b)), and

1 (2 gation using the RTE [23] has also concluded that light intensi-
Ri(n) = > doR(8, n) coss, ties at positions A« or more inside from the external boundary
"’ﬁ 2 are almost the same as those for an infinite media without the
2 (" ( | boundary. So itis reasonable to estirpgteas Ju;
Ro(n) = = doR(6, n) cog 6. g) Externa Y. o M-
2(1) 7 J a2 (©.) © In addition to the spatial hybrid model, temporal hybrid

In th h th | . luated ianed) t model is constructed, and Fig. 2(c) shows a conceptual regime
n the paper here, the value A{n) is evaluated (assigned) to map of the space-time hybrid model in the plane of time,

the numerical solutions to Eqs. (6) and (3). versus distance from the sourge, It schematically indicates

Numerical computations of the DE are based on the centrqhe RTE (white) and DE (gray) regions which are divided by

spatial finitg diference scheme and the temporal forward Eule|:[he crossover lengtivga) and time {oa). Before time reaches
scheme in time. toa(t < tpa) the spatial hybrid model shown in Fig. 2(a) is
used at each time step in the forward Euler scheme for calcu-
lation of time development. After time reachiga(t > tpa),
Figure 2 illustrates the space-time hybrid model based on ththe RTE region in the spatial hybrid model shrinks and occu-
RTE and DE. The spatial hybrid models are shown in Fig. 2(apies only the external boundary in tieaxis with the length of
and (b) for the time period df< tpp andt > tpa, respectively.  2opa (thick solid line) as shown in Fig. 2(b). The RTE is solved
For the time period of < tpa in Fig. 2(a), the spatial domain in the extended region enclosed by thaxis and extended in-
of the medium is divided into the RTE (white) and DE (gray) terface (thin dotted lines) with the size ofd{ + psc) X psc.

3

2.3. Hybrid model with space and time separated



Table 1: Optical properties of the medium from tissue phantom data{4% 1 + = (;Q - ‘| - - )
. S umerical calculations;
us(1 - g) represents the reduced scattermg/fnoent ool ® RTE (Numerical calculations) ]
Hall/em]  ug[l/em]  pg[l/em] g n os —— DE (Analytical solutions)
RTE 035 11.6 11.6 00 156 l —— RTE (Analyal solutions)
0.35 58.0 11.6 0.8 1.56 o7
DE 0.35 11.6 1.56 ?5 061
§ 0.5
The boundary conditions are the same as those<4dia, i.€., 03y
the Fresnel's law at the external boundary in ykexis and the 0.2
non-reentry boundary condition at the extended interface. The 01t
results of® on they-axis by the RTE are used as the Dirichlet bl e
boundary condition for the DE similarly to the case far tpa. ps]

The magnitudes gfpa andpgc are estimated as 10 and

3/uy, respectively, and the details of the estimation are diSfigure 3: Plot of the fluence ratégp, t) based on the RTEy(= 0.0) and the DE

cussed in subsection 3.6. at the source-detector distanee-1 cm in an infinite medium. Red crosses and
blue dots represent the numerical results of the DE and the RTE, respectively.
Red and blue solid curves denote reported analytical solutions of the DE [24]

3. Numerical results and RTE [25], respectively.

3.1. Calculation conditions ) o ) . )
cm in an infinite medium. It was confirmed that the numerical

. As shown in Fig. 1, th_e source (the red dot) is set at the _pOSir'esuIts ofd are in good agreement with the analytical solutions
tion (xs, ys) = (0.0, 2.0) (in cm) throughout the paper, and light within the error margins

properties are determined at six positions D1 to D6 (the blue
dots). At the detectors inside the medium, D1 to D3, the time- ) )

resolved fluence rateB(r, t) are measured, while at the detec- 3-3- Light propagation near the source
tors at the surface of the medium D4 to D6, the time-resolved |, this study,

) the RTE is solved numerically for four condi-
photon currentd*(r, t) defined by Eq. (7) are measured.

tions: (1 = 0.8 and isotropic source, (@)= 0.0 and isotropic
source, (3) = 0.8 and anisotropic sourc&,, Qs,) = (1,0),
I = Joeo QT O)(Q - &)I(r.2.1)  (RTE) (7)  and (4p = 0.0 and anisotropic Sourc€%;, Qs)) = y(1, 0). The
~Den - VO(r, 1) = Z250(r, 1) (DE) DE is solved under only one conditio® = [2(1 — g)ug] ™t =
0.043 cm and isotropic source becaudés independent ofj
Both the RTE and DE are solved numerically giving the sam&yhen ., is fixed. Figure 4 shows that time developmentiof
optical properties, and the same size of space and time steRfetected at D1 inside the medium for the various conditions,
The optical properties refer to those of a phantom containingyhere the source-detector distapce: 0.5 cm is shorter than
SiO; particles [4] as listed in Table 1. The space step aixe . (» < ppa). Essentially, photons propagate ballistically and
is 0.008 cm, which is shorter than the transport distance (ingre |ess scattered in the vicinity of the source position, making
verse ofu(r)). Number of the discrete solid anglel is 48,  the DE invalid in this area. At an early tinte< p/v ~16 ps, no
which adequately suppresses any rige. The time step size photons arrive at the detector in the RTE-based calculations. In
At needs to satisfy the Courant-Fredrichs-Lewy condition angne DE-based calculations, meanwhilehas nonzero values at

is given as 0.01 ps. this period of time, meaning that the DA fails.
o ) The temporal profiles ob calculated using the RTE are sen-
3.2. Validation of current numerical schemes sitive to the anisotropic factgrand source conditions as shown

Before discussing the numerical results for two-dimensionain Fig. 4. This sensitivity indicates that higher orderd efith
finite media, the validity of the numerical schemes proposedespect ta contribute significantly tab. Compared with the
here is compared with analytical solutions in infinite media.forward scatteringd = 0.8), the temporal profiles ob with
Analytical solutions of the DE have been derived for a vari-the isotropic scatteringg(= 0.0) tend to behave ballistically,
ety of geometries [24, 26]. Analytical solutions of the RTE especially at the anisotropic source.
have been derived for only a few geometries such as infinite The time development af* at detector D44 = 0.3 cm) near
media [25, 27] due to the complexity of the integrdkeliential ~ the source on the boundaries behave similark tws shown in
equations. To perform numerical calculations for infinite me-Fig. 5. This shows that the RTE-based computationd*cdre
dia having no boundaries, the source and detector positions argfluenced by the values gfand the source conditions. At the
set sifficiently far from the boundaries which have to be ob-detector position, light propagation based on the RTE gith
tained in numerical calculations. In Fig. 3, the numerical re-0.8 and the anisotropic source show delayed times. This arises
sults of ® compare with the analytical solutions based on theas the strong forward scattering and the anisotropic source make
RTE (@ = 0.0) and DE at the source-detector distapce 1  backward light propagation late.
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Figure 5: Calculated temporal profiles of the photon curréhtat detector D4
Figure 4: Calculated temporal profiles of the fluence ratest detector D1 on the surface of the medium with a short source-detector disfarc@3 cm
inside the medium with the source-detector distance 0.5 cm shorter than (< PDA). Crosses represent calculated results based on the DE, solid curves

ppa. Crosses represent calculated result®©diased on the DE, solid curves those based on the RTE Wig].: 0.8 and the ani_sotropi_c Source 4y, Qs) =
those based on the RTE with= 0.8 and the anisotropic sourc4, Qs) =  (1+0). dashed curves those wigh= 0.0 and the anisotropic sourc@4 Qs,) =

(1,0), dashed curves those wigh= 0.0 and the anisotropic sourc4x, Qsy) = (1,0), dash-dot_(chain) CUrves Wi.g]: 0'8. and the isotropic source, and dotted
(1,0), dash-dot (chain) curves with= 0.8 and the isotropic source, and dotted curves those witlg = 0.0 and the isotropic source.
curves those witlyg = 0.0 and the isotropic source.

Thus, by time-scalinty— t/ta1i0, the results ofd(t/t.4i0) based
On the boundaries, thé calculated using the RTE is qual- on the DE are consistent with thosed(t) on the RTE, as well
itatively similar to® and the characteristic times are consis-as on the changing values &f
tent with both light properties, although the peak valugofs
smaller than that ob. This is based on a fact that the charac-3.5. Spatial distribution of light
teristic times of the intensity are only weakly dependent on

e So far, the temporal profiles of light propagations at a fixed
the direction.

position are examined, and the validity of the DA is confirmed
at the long distances(> ppa). Then, the spatial distribution of
3.4. Light propagation far from the source the fluence rate based on théfdient models is investigated at

Figures 6 and 7 show the time developmen®adind J* de- a fixed time. The fluence rate is calculated by the DE and RTE
with g = 0.0. Figure 8 shows the spatial distributionsdfat

tected at D2, D3, D5, and D6 far from the source. At the Iongth hort time (< t Similarly to the t L orofil tth
distances (> ppa), the temporal behaviors @ and J* are e short timé (< tpa). Similarly to the temporal profiles at the

different from those at the short distangeé< poa). The in- short distances in Fig. 4, the spatial distributions at the short

fluences ofg and the source anisotropy on the light propaga_time are dependept on the numerical model§ anq cqndi"[ions. In

tion become much smaller, indicating that this data is lost dugontrast, at the time longer thapa, the_spa_tla_l distributions

to multiple scattering. As a result, the temporal profiles base a_lculated f_rom the _DE_ and RTE are quite similar to each qther

on the RTE at derent values 0§ and source anisotropies are Fig. 9). This result indicates that the DA holds at the long time

very similar at the detector position. Then, it may be postu-t (> ton)-

lated that the DE holds in the region far from the source. How- ) ) )

ever, the numerical results @ obtained from the RTE still 3-6. Light propagation based on the hybrid models

have small disagreements with those from the DE. Generally, The time resolved profiles @ andJ* show a single peak as

the times of® and J* using the RTE are faster than those us-plotted in Figs. 4 and 5, the peak time is dependent on the light

ing the DE. These disagreements arise in association with thecattering by the medium. This suggests that the peakttisne

boundary conditions, as will be explained next. may be a fundamental time like that of the mean time of flight.
Ininfinite media, the temporal profiles ®fbased onthe RTE Figure 10 shows a log-log plot of the normalized peak times

and DE coincide with each other, including the times as showpeay;v calculated based on the RTE and DE in thffedent

in Fig. 3. This allows the conclusion that the disagreementsonditions and as a function of the normalized source-detector

in the times in finite media arise from theffdirences in the distancepy{, 1y = (1 - Q)us + ua is the reduced transport dtie

boundary conditions of the two equations. When decreasingient. The normalization is to indicate general features regard-

the values of the cdkcientA in Eq. (5), the temporal profiles less of the optical properties, hetgsak calculated from the DE

based on the DE shift towards longer times and approach thie scaled by the ;aio.

profiles based on the RTE. This indicates that the DE holds in At the shorter distances, lggou; < 0.6, the ballistic mode

the region far from the source, qualitatively. Also, the ratig, is dominant in the light propagation, afidaxis approximately

of the time scale based on the RTE to that on the DE is an almosggual to~ p/v. At the longer distances, @ < log;ypu;, the

constant value- 1.045, irrespective of the detector positions. diffusion process is dominant, and the gradients ofylggax

5
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Figure 6: Computed temporal profiles @fat detectors D2( = 2.0 cm) and Figure 7: Calculated temporal profiles &f at detectors D%(= 2.8 cm) and

D3(p = 3.1 cm) inside the medium far from the sourge ¥ ppa). Crosses D6(p = 3.2 cm) on the surface of the medium with long source-detector dis-
represent calculated results based on the DE, solid curves those based on tasces. Crosses represent calculated results based on the DE, solid curves those
RTE with g = 0.8 and the anisotropic sourc@4x, Qsy) = (1,0), dashed curves  based on the RTE witg = 0.8 and the anisotropic sourc4x, Qsy) = (1,0),

those withg = 0.0 and the anisotropic sourc€dx, Qsy) = (1,0), dash-dot  dashed curves those wigh= 0.0 and the anisotropic sourc@4, Qsy) = (1,0),

(chain) curves withg = 0.8 and the isotropic source, and dotted curves thosedash-dot (chain) curves with= 0.8 and the isotropic source, and dotted curves
with g = 0.0 and the isotropic source. those withg = 0.0 and the isotropic source.

EaEblg 2: Qomput_ation times using the three models: RTE, hybrid model, an%ith g=08 and the anisotropic Sourcﬁ&’ st) _ (1’ 0) eval-
(time integration 1200 ps) . .
RTE Hybrid DE ugted as follows: although the hybryd model is const.ructed for
Computation time [min] 2658 648 50 dlfferen.tg values f':md source conditions, the q!scussmﬂ can be
generalized and is applicable to other conditions. Figure 11
plots the calculated results df using the three models, the
hybrid model (solid dots), the RTE (solid curves), and the DE
against log,p for the RTE and DE calculations are in good (crosses) at two detectors inside the medium. The temporal pro-
agreement. This agreement indicates that the boundary condiles of @ based on the hybrid model are consistent with those
tions have an insignificantfiect on the gradients. Around the on the RTE at the positions near (detector D1) and far from
region 06 < log,opu; < 1.0 there is a crossover which ap- the source (detector D2) within errors. Further, the temporal
pears ballistic to dfusive motions and here the valuesyaind ~ profiles calculated using the hybrid model connect without any
source anisotropy contribute stronglytipa From Fig. 10, gap att = tpa even though the spatial hybrid model is changed
the ballistic regime is defined as the Jggu; < 1.0 region, in-  as mentioned in sec 2.3. This continuity indicates the validity
cluding the crossover, and thefiisive regime is defined as the ©of the proposed hybrid model. However, as shown in Fig. 11
1.0 < log, oy region. (b), there are small ffierences between the RTE and the hybrid
Figure 10 suggests values of the crossover lepgthand model in the later time region at detector D2. Thiffelience
timetpa to be about 1f; and 2Qvy{, irrespective of a medium  results in a limitation of the current modification with the Robin
with optical properties. Usingpa andtpa, it becomes possible boundary condition by only a simple adjustment of fhealue.
to construct a space-time hybrid model based on the RTE and Time developments ad* based on the three models on the
DE in the way explained in Section 2.3. For the construction oboundaries are plotted in the Fig. 12. The calculated results
the hybrid model, an additional lengthc is necessary and this for J* obtained with the hybrid model coincide with those
length characterizes the boundaffeets. In a previous previ- of the RTE at the short and long distances (detectors D4 and
ous study [23]pgc Was estimated to be approximately3 In D5). Modeling of light propagation at boundaries is monédi
the current paper, the values@fa, psc, andtpa are 1.15 cm,  cult than modeling inside media because thedences in the
0.4 cm, and 119.1 ps, respectively. boundary conditions between the RTE and DE cause errors and
To implement the temporal hybrid, quantitative agreement ofliscontinuities in the temporal profilestat tpa. This suggests
times for the RTE and DE is required. As discussed in the prethat the temporal hybrid does not hold at boundaries. To get
vious subsection, however, the characteristic times calculateground this, the RTE is solved in the source plane (the y-axis)
using the DE are dierent from those using the RTE becauseeven though is longer thartpa (see Fig. 2(b)), resulting in the
of the difference in boundary conditions. A number of methodscontinuous profiles o8* based on the hybrid model obtained
to achieve coincidence of the times for the RTE and DE appeadn Fig. 12.
possible. In this paper, th& value of the Eq. (5) is changed  The proposed hybrid model can reduce computational load
and reset to one that enables qualitative agreements of the ligtitie to the spatial and temporal hybrids without loss in accuracy.
propagation for the RTE and DE. Table 2 shows the computational times using the three models
The results ofd and J* calculated using the hybrid model with time integration up to 1200 ps. The computational time
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using the hybrid model is reduced to a quarter of that using the
RTE only. [5]
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Figure 9: Spatial distributions @b normalized by its maximum value at at a
given timet = 500 ps longer thatpa. Other details are the same as Fig. 8.

4. Conclusions (6]
For efective computation of light propagation in random me- [7]
dia, we have constructed a space-time hybrid model based on
the time-dependent RTE and DE by using the crossover Iength[8]
ppa and timetpa. To determingpa andtpa, time developments
of ® andJ* obtained from the RTE and the DE in two dimen-
sional homogeneous media under refractive-index mismatch-
ing were examined. The results show that the DA is valid at al°!
space-time regiorg > ppa ~ 10/y{ andt > tpa ~ 20/vy{, re- [10]
gardless of the random medium. The constructed hybrid model
calculates light propagation adequately, and reduces computa-
tional load to a quarter compared with the full calculations ofttl
the RTE. In conclusion, the present model is potentially useful
as a forward model in DOT.

g = 0.0 in the isotropic source, respectively. Solid triangles and squares are for
g = 0.8 and withg = 0.0 in the anisotropic source, respectively.
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