
CUDB: An Improved Decomposition Model for

Orthogonal Pseudo-Polyhedra

Irving Cruz-Mat́ıas and Dolors Ayala
Universitat Politècnica de Catalunya

Departament de Llenguatges i Sistemes Informàtics

Abstract

We present a new decomposition model for Orthogonal Pseudo-Po-
lyhedra (OPP): the Compact Union of Disjoint Boxes. This model is an
improved version of the Ordered Union of Disjoint Boxes model. Our
model has many desirable features versus the OUDB, such as less storage
size and a better efficiency in the connected-component labeling (CCL)
process. CCL is a very important operation for manipulating volume data
where multiple disconnected components that compose a volume need to
be identify. We present the algorithms for conversion to and from the
Extreme Vertices Model, which is closely related to the OUDB, and for
CCL. The performance of the CUDB is experimentally analyzed with 2D
and 3D datasets.

1 Introduction

In the Ordered Union of Disjoint Boxes (OUDB) model a spatial partition is
made in a non-hierarchical, sweep-based way, where an Orthogonal Pseudo-
Polyhedra (OPP) is divided by planes perpendicular to two different main-axis.
These planes split the full geometry of the OPP, however, unnecessary divisions
at certain local regions of the OPP are made many times due to the necessity of
OUDB to keep the resulting boxes sorted to preserve the adjacency information.

We present the Compact Union of Disjoint Boxes (CUDB) model, which
also partitions the geometry in a non-hierarchical, sweep-based way, but, all the
boxes that have been unnecessary divided in the OUDB are merged. Although
the implicit order of the boxes is lost, it is easy to preserve the adjacency
information with a tiny storage effort.

On the other hand, in most of the reported bibliography, the operations
to study binary models are performed directly on the classical voxel model.
However, in the field of volume analysis and visualization, several alternative
models have been devised for specific purposes.

Hierarchical decomposition models, such as octrees and kd-trees, have been
used for Boolean operations [13], connected-component labeling (CCL) [4], and
thinning [8] [16]. Octrees are used as a means of compacting regions and getting
rid of the large amount of empty space in the extraction of isosurfaces [15]. Kd-
trees have been used to extract 2-manifold isosurfaces [5].

There are models that store surface voxels, thereby gaining storage and com-
putational efficiency. The semi-boundary representation affords direct access to

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/46607556?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


surface voxels and performs fast visualization and manipulation operations [6].
Certain methods of erosion, dilation and CCL use this representation [14]. The
slice-based binary shell representation stores only surface voxels and is used to
render binary volumes [7].

CCL is a very important operation for manipulating volume data where
multiple disconnected components that compose a volume need to be identify.
A traditional Voxel-based method is presented in [12].

The OUDB model [1] has been proved to be efficient for CCL [10, 9]. With
regard to semi-boundary representations, it has been concluded that CCL is
better in OUDB than in semi-boundary representations when the number of
boxes in the OUDB is less than the number of boundary voxels, which generally
occurs [9].

An improvement of the OUDB-based CCL is presented by Ayala and Vergés
[3], where they compute the so-called OUDB-extended that allows to jump
directly to the required box that needs to be tested, instead of querying and
skipping all intermediate boxes. In this direction, we also devise an algorithm
for CCL in the CUDB model.

This paper is organized as follows. Section 2 presents a short introduction
to the EVM and OUDB models. Section 3 introduces the characteristics and
algorithms of the CUDB model. Section 4 discusses the CUDB performance.
Finally, Section 5 presents the conclusions and trends for future work.

2 EVM an OUDB

2.1 The Extreme Vertices Model

The Extreme Vertices Model (EVM ) [2] is a very concise representation scheme
in which any orthogonal polyhedron (OP) or orthogonal pseudo-polyhedron
(OPP) can be described using only a subset of its vertices: the extreme vertices.
The EVM is actually a complete (non-ambiguous) solid model: it is an implicit
boundary representation (BRep) model, i.e., all the geometry and topological
relations concerning faces, edges and vertices of the represented OPP can be
obtained from the EVM.

The EVM is very fast performing Boolean operations between OP and the
OUDB conversion to and from the EVM is straightforward. Therefore, we have
devised the corresponding algorithms for conversion in the CUDB model.

Next, some formal definitions and properties of the EVM are reviewed, which
are used in the rest of the present work.

Definitions Let P be an OPP:

• ABC-sorted. Let Q be a finite set of points in E3. The ABC-sorted set
of Q is the set resulting from sorting Q according to coordinate A, then
to coordinate B, and then to coordinate C. Thus, six possible ABC-sorted
sets can be defined in 3D: XYZ, XZY, YXZ, YZX, ZXY, and ZYX.

• A plane of vertices (plv) of P is the set of vertices lying on a plane per-
pendicular to a main axis of P (usually the A axis). Similarly line of
vertices (lov) is the set of brinks lying on a line parallel to a coordinate

2



axis (usually the C axis). Planes and lines of vertices are axis-prefixable
and both of them are hereafter referred as plv.

• A slice is the region between two consecutive planes (or lines) of vertices.
P can be expressed as the union of all its slices in a certain orthogonal di-
rection. Hence, P =

∪np−1
k slicek(P ), where np is the number of different

A-coordinates in P .

• A section (S) is the resulting polygon (or set of polygons) from the intersec-
tion between a slice of P and an orthogonal plane (or line) perpendicular
to a certain orthogonal direction. Si(P ) will refer to the ith section of P
between plvi(P ) and plvi+1(P ). A slice from a 2D-OPP is a set of one or
more disjoint rectangles, while a slice from a 3D-OPP is a set of one or
more disjoint prisms, whose base is the slice’s section. Each slice has its
representing section.

Figure 1(a) shows an OPP with all its EV’s and plv’s, also a brink from
vertex a to vertex c (both EV’s) where vertex b is non-EV, is depicted. Figure
1(b) shows the sections (in yellow).

(a) (b)

Figure 1: Example of an OPP encoded with EVM for an ABC-sorted. (a) All
EV’s, plv’s, and a brink from point a to c (both EV’s), where b is non-EVM.
(b) The four sections of the object highlighted in yellow.

Sections can be computed from planes of vertices and vice versa. For i =
1...n:

Si(P ) = Si−1(P )⊗∗ plvi(P ) (1)

plvi(P ) = Si−1(P )⊗∗ Si(P ) (2)

where plvi(P ) and Si(P ) denote the projections of plvi(P ) and Si(P ) onto a
main plane parallel to P , and ⊗∗ denotes the regularized XOR operation. Note
that in order to operate with the projections we need not consider the coordinate
of the extreme vertices that corresponds to the projecting plane.

3



2.2 The OUDB model

An OPP can be represented as a list of disjoint boxes. Whit this model, algo-
rithms for OPPs with an even simpler complexity can be obtained. From an
ABC-sorted EVM we can obtain its ABC-ordered OUDB for an OPP P . This
model is the set of boxes obtained by:

• Splitting P at every internal plane of vertices of P perpendicular to the
A-axis plvk(P ), k = 2, . . . , np − 1. Thus, obtaining an ordered sequence
A-slices (A-sections extruded in the A-direction).

P =

np−1∪
k

slicek(P )

• Splitting each A-slice at every one of its internal plane of vertices perpen-
dicular to the B-axis, thus obtaining a sorted sequence of Disjoint Boxes.

slicek(P ) =

npk−1∪
j=1

Boxk,j(P ) Therefore, P =

np−1∪
k

npk−1∪
j=1

Boxk,j(P )

There are six different ABC-OUDB models for a given OPP, which corre-
spond to each of the ABC-sorted EVM. Their corresponding sets of disjoint
boxes are generally different. Thus, the number of obtained boxes depends of
the ABC-sorting of the original EVM. Figure 2 shows an OPP and three possible
OUDB decompositions.

(a) (b) (c) (d)

Figure 2: (a) An OPP. (b) XZY-OUDB (6 boxes). (c) YXZ-OUDB (7 boxes).
(d) YZX-OUDB (8 boxes).

For more details concerning EVM and OUDB, see [1] and [2].

3 The CUDB model

The CUDB model is also a union of disjoint boxes but a more compact one
as several contiguous boxes are merged into one in several parts of the model.
Let P be an OPP. To obtain, for instance, the YZX-OUDB partitioning of
P , P is subdivided by planes perpendicular to the Y-axis first, and then by
planes perpendicular to the Z-axis, at every Cut of P . Thus, every Ci splits
all the geometry of P along the corresponding plane, and therefore some local

4



regions of P , with which Ci has actually no relationship, are further divided
unnecessarily. Figure 3(b) illustrates this situation where some pieces forces
unnecessarily divisions. In OUDB this constraint is mandatory to maintain
sorted the resulting boxes. However, in order to subdivide just the pieces of P
related with the cut which induces the splitting, this constraint can be relaxed.

(a) (b)

(c) (d)

Figure 3: (a) An OPP. (b) YZX-OUDB with 16 boxes. (c) Result after first
compacting in Z-coordinate. (d) YZX-CUDB with 7 boxes.

Formally, let bi and bj be two adjacent boxes of the OUDB(P ) in a ABC-
Sorted, and let BPi and BPj be their projections respectively over the plane
perpendicular to B-axis, then bi and bj can be compacted as a single box if
BPi = BPj . Figure 3(c) shows that boxes (1,3),(6,7), (8,11),(10,12) and (14,15)
can be compacted following this property. But the model still can be more
compacted. Now let bi and bj two adjacent boxes and let APi and APj their
projections respectively over the plane perpendicular to A-axis, then bi and bj
can be compacted as a single box if APi = APj . Figure 3(d) shows the resultant
CUDB model.

Although the implicit order among the boxes of the OUDB model is lost,
preserving the adjacency information in the CUDB model is easy with a tiny
storage effort.

Because of the splitting way, each box will have neighboring boxes in only two
orthogonal directions: A and B-axis, and for each direction we have two oppo-
site senses, so four arrays (two for each direction) of pointers to the neighboring
boxes is enough to preserve the adjacency information that is required for future
operations. This arrays are called: BackwardNeighbors and ForwardNeighbors.

5



It is important to point out that compacting is done on the fly when we pass
from EVM to CUDB model, i.e., we do not need to get the OUDB model before.
Next we describe the class of the CUDB for object-oriented programming and
the algorithms for conversion to and form EVM, and for CCL.

3.1 CUDB class

This construct is very similar to the OUDB class, but, it has the aforementioned
four arrays of pointers in the Box class.

Class Box

{

public:

point3D vertices[2];

vector<Box *> _ABackwardNeighbors;

vector<Box *> _AForwardNeighbors;

vector<Box *> _BBackwardNeighbors;

vector<Box *> _BForwardNeighbors;

void SetLabel(int value);

int GetLabel();

int GetId();

void SetId_(int id);

protected:

int Label;

int ID;

}

Class CUDB

{

public:

vector<Box *> _LastBoxes; //Boxes in the last 2D Slice

vector<Box *> _BoxesTmp; //Temporal vector for 2D compacting

vector<Box *> _SliceLastBoxes; //Boxes in the last 1D Slice

vector<Box *> _SliceBoxesTmp; //Temporal vector for 3D compacting

Box *GetBoxRefPosition(int id);

void SetCurrentBoxRef(const Box *ptr);

int GetId(void);

DimType GetDimension(void);

void SetDimension(DimType Dim);

void SetSorting(SortingType s);

void AddBox(MyPoint3D &Vb,MyPoint3D &Ve, int label);

CUDB(void);

~CUDB(void);

protected:

int Number_of_Boxes;

DimType dimension;

SortingType sorting;

vector<Box *> vector; //Vector with all the boxes.

}

6



3.2 Converting EVM to CUDB model

The corresponding conversion algorithm is obtained by reading each A-slice.
In this algorithm, a slice of a slice (a box) is represented with the variables:
P pre, P post, L pre, L post), where P pre and P post are the initial and final
A-coordinate respectively of the 3D slice (given by the plane of vertices), and
similarly L pre, L post are the initial and final B-coordinate for the 2D slice.

So, the EVMToCUDB procedure (see Algorithm 1) with dim =Dim3 pro-
duces the sequence of 2D sections (3D slices) of a 3D OPP P . Each 2D section
is recursively processed with dim =Dim2 to produce the sequence of 1D sec-
tions (one or more boxes). In turn, each 1D section is recursively processed
by the base case with dim =Dim1 which calls an AppendBox() procedure (see
Algorithm 2) at a time to create the CUDB model q.

In these two procedures, the adjacency relationship among the boxes can be
set according to the convenience of the user. When two adjacent boxes share
a face or part of a face, then they will have a two-manifold connection. But
if they share an edge, a part of an edge or a vertex, then they have a non-
manifold configuration. These cases are related to the well known 6-adjacency
and 26-adjacency respectively. In 2D the equivalent cases are 4-adjacency and
8-adjacency respectively.

Algorithm 1 EVM to CUDB

Input: q ← CUDB Model
Input: p← EVM Model
Input: Ppre← initial A-coordinate
Input: Ppost← final A-coordinate
Input: Lpre← initial B-coordinate
Input: Lpost← final B-coordinate
Input: dim← Model dimension
Input: inputSort← Model sorting

if dim =Dim1 then
for all brink br do

AppendBox(q, br, Ppre, Lpre, Ppost, Lpost, inputSort, dim)
end for
q.LastBoxes↔ q.BoxesTmp
Clear q.BoxesTmp

else
dim← dim− 1
EVM S0← ∅
EVM plv0← P.GetP lv(&coordIni)
EVM S1← S0⊗ plv0
EVM plv ← P.GetP lv(&coordF in)
if dim =Dim2 then

Ppre← coordIni
Ppost← coordF in

else
Lpre← coordini
Lpost← coordf in

end if
while plv not NULL do

EVMtoCUDB(q, S1, Ppre, Lpre, Ppost, Lpost, dim, inputSort)

7



EVM S2← S1⊗ plv
S1← S2
EVM plv ← P.GetP lv(&coordIni)
if dim =Dim2 then

Ppre← Ppost
Ppost← coordIni
for all box1 in q.SliceBoxesTmp do

for all box2 in q.SliceLastBoxes do
if box1 = box2 in B and C coordinates then

Compact box2← box1 ∪ box2
Update BBackwardNeighbors and BForwardNeighbors from box1 to
box2
Update ABackwardNeighbors and AForwardNeighbors from box1 to
box2
Add box to Aux

else if box1 is adjacent to box2 in B and C coordinates then
Add box2 to box1.ABackwardNeighbors

end if
end for
if box1 was not compacted then

Add box1 to q
Add box1 to Aux;
Add box1 as forward neighbor for each ABackwardNeighbors of box1

end if
end for
q.SliceLastBoxes↔ Aux
Clear q.SliceBoxesTmp
Clear q.LastBoxes

end if
end while

end if

Observe the Algorithm 2, where if a new box is created with dim=Dim3, it is
not added directly to CUDB model, but stored in a temporal vector in order to
be compared with future boxes and possibly compacted.

3.3 Converting CUDB to EVM model

Same that in OUDB model, all the boxes in CUDB are disjoint, so a simple
operation XOR of all the boxes in EVM format is necessary to get the whole
EVM model.

3.4 Area and Volume Computation

Computing the Volume (3D) or Area (2D) is straightforward if we just do a
traverse in all the boxes in CUDB model, and get its volume or area depend of
the dimension, like in OUDB model.

3.5 Connected component labeling

Many approaches [12, 10, 9, 3] apply the classical two-pass strategy of first label-
ing and then renumbering a set of equivalences. As we have already computed

8



Algorithm 2 AppendBox

Input: q ← CUDB Model
Input: br ← Brink
Input: Ppre← initial A-coordinate
Input: Ppost← final A-coordinate
Input: Lpre← initial B-coordinate
Input: Lpost← final B-coordinate
Input: dim← Model dimension
Input: inputSort← Model sorting
if dim =Dim2 then

ComparedIndex← B-coordinate
CompactedIndex← A-coordinate

else if dim =Dim3 then
ComparedIndex← C-coordinate
CompactedIndex← B-coordinate

end if
Create box1 defined by br, Ppre, Post, Lpre, Lpost
for all box2 in q.LastBoxes do

if box1 = box2 in ComparedIndex coordinate then
Compact box2← box1 ∪ box2
Add box2 to q.BoxesTmp

else if box1 is adjacent to box2 in ComparedIndex coordinate then
Add box2 to BackwardN

end if
end for
if box1 was not compacted then

if dim =Dim2 then
Add box1 to q
Add box1 to q.BoxesTmp
box1.ABackwardNeighbors← BackwardN
Add box1 as forward neighbor for each ABackwardNeighbors of box1

else if dim =Dim3 then
Add box1 to q.SliceBoxesTmp
Add box1 to q.BoxesTmp
box1.BBackwardNeighbors← BackwardN
Add box1 as forward neighbor for each BBackwardNeighbors of box1

end if
end if

9



the neighborhood of all boxes, we can apply the same strategy and achieve a
faster computation due to we avoid to test the boxes.

In our labeling process (see Algorithm 3), the CUDB model is traversed and,
on the fly, the current box is labeled with the minimum value of the already
labeled neighbor boxes or with a new label, when no neighbor has been labeled
yet. When a box has two or more neighbors labeled with different values, a
label equivalence is recorded.

Algorithm 3 CCL

Input: q ← CUDB Model
Output: s← Number of connected components
equivalences←new map<integer,integer>
currentLabel← 1
for all box1 in q do

label← Minimum label from all already labeled backward neighbors
if No labeled backward neighbors then
label← currentLabel
currentLabel← currentLabel + 1

end if
for all box2 in box1.ABackwardNneighbors do
makeEquivalence(equivalences, box2.GetLabel(), label)

end for
for all box2 in box1.BBackwardNneighbors do
if box2 is labeled then
makeEquivalence(equivalences, box2.label,label)

else
box2.label← label

end if
end for

end for
s← relabeling(q, equivalences)
return s

The label equivalences are saved in an dynamic map. Maps are a kind of
associative container that stores elements formed by the combination of a key
value and a mapped value, so, the key corresponds to the region number and the
mapped to its label. Unlike the approaches [9] and [3] where they save values for
all regions (even if they do not have equivalence), we only save the equivalences,
which means less memory requirement. The procedure MakeEquivalence up-
dates the map in the way shown in the Algorithm 4.

All the equivalences are solved in a second traversal of the model, the
relabeling pass. This procedure (see Algorithm 5) first sorts out all the equiva-
lences and propagates them correctly. At the end, the boxes are re-labeled with
the correct label and in a consecutive order.

10



Algorithm 4 makeEquivalence

Input: equivalences← Map of equivalences
Input: a← base label
Input: b← equivalence label
if a = b then

return
else if No equivalences[a] exists then

equivalence[a]← b
else if b < equivalences[a] then

makeEquivalence(equivalences, equivalences[a], b)
equivalences[a]← b

else
makeEquivalence(equivalences, b, equivalences[a])

end if

Algorithm 5 relabeling

Input: q ← CUDB Model
Input: equivalences← Map of equivalences
Output: s← Number of connected components
for all baseLabel in equivalences do

index← baseLabel
while equivalences[index] exists do
index← equivalences[index]

end while
equivalences[baseLabel]← index

end for
CC ←new map<integer,integer> {For CC counting}
counter ← 1
for all box in q do

label← box.GetLabel()
if exist equivalence[label] then
box.SetLabel(equivalence[label])

end if
label← box.GetLabel()
if No CC[label] exists then
CC[label]← counter
counter ← counter + 1

end if
box.SetLabel(CC[label]) {Consecutive label}

end for
return Size of CC

11



4 CUDB Performance

The new CUDB model has been compared with the OUDB-extended in storage
size, conversion (to an from EVM) and CCL speed. Below some experimental
results are presented. The testing set consists of one 2D image (Logo) and three
volume datasets (Phantom, Aneurysm, Stone) See figure 4. The algorithms
have been developed in C++ and run on a PC Intel R© Pentium R© CPU 3.2 GHz
with 3.2 GB of RAM.

(a) (b)

(c) (d)

Figure 4: (a) Logo. (b) Phantom. (c) Aneurysm. (d) Stone

Table 1 show the compilation of storage size comparative between EVM,
OUDB and CUDB model (the last two in XYZ-sorted). We note that CUDB
model is smaller than the others, mainly due to the reduced number of elements.
For illustration the Figure 5 shows that the CUDB-XYZ of Phantom has less
than 3.9% of boxes of the corresponding OUDB-XYZ decomposition.

Table 2 in turn shows a compilation of performance comparative, here we
note that, although the conversion from EVM to CUDB is slower than EVM to
OUDB due to the extra effort to compact the boxes, both the inverse conversion
and the CCL process are faster.

12



(a) (b)

Figure 5: Decompositions of a phantom sample . (a) XYZ-OUDB with 24851
boxes. (b) XYZ-CUDB with 954 boxes.

Table 1: Comparative EVM,OUDB,CUDB size in bytes
Dataset Resolution EVM OUDB CUDB #boxes

OUDB
#boxes
CUDB

Logo 50x50 2002 3,590 1,263 145 92

Phantom 500x500x500 57,111 787,349 23,156 24,851 954

Aneurysm 213x215x240 666,501 404,117 275,347 12,825 1,0705

Stone 159x271x179 6,739,767 4,767,472 2,837,183 161,751 124,717

5 Conclusions and future work

We have presented a new decomposition model for orthogonal pseudo-polyhedra,
the CUDB, which is a compact version of the OUDB model. We have shown
that this new model is smaller in storage size and has a better performance for
CCL than OUDB model. Moreover, this model has been satisfactorily applied
in our virtual porosimetry approach for computing the narrow throats [11].
We now plan to use CUDB in some other applications such as the pore graph
construction and another pore space partition method.

Table 2: Comparative EVM,OUDB,CUDB performance in seconds.
Dataset EVM to

OUDB
EVM to
CUDB

OUDB
to EVM

CUDB
to EVM

OUDB-
ext
CCL

CUDB
CCL

Logo <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Phantom 0.182 0.163 0.205 0.012 0.088 <0.001

Aneurysm 0.351 0.429 0.189 0.139 0.050 0.012

Stone 4.280 13.233 2.163 1.953 2.004 0.162

13



References

[1] A. Aguilera. Orthogonal Polyhedra: Study and Application. PhD thesis,
LSI-Universitat Politècnica de Catalunya, 1998.

[2] A. Aguilera and D. Ayala. Geometric Modeling, volume 14 of Computing
Supplement, chapter Converting Orthogonal Polyhedra from Extreme Ver-
tices Model to B-Rep and to Alternating Sum of Volumes, pages 1 – 28.
Springer, 2001.

[3] D. Ayala and E. Vergés. Improved virtual porosimeter. In CASEIB’08,
2008.

[4] M. Dillencourt, H. Samet, and M. Tamminen. A general approach to
connected-component labeling for arbitrary image representations. Journal
of the ACM, 39(2):253 – 280, 1992.

[5] A. Greßand R. Klein. Efficient representation and extraction of 2-manifold
isosurfaces using kd-trees. Graphical Models, 66:370 – 397, 2004.

[6] G. J. Grevera, J. K. Udupa, and D. Odhner. An Order of Magnitude
Faster Isosurface Rendering in Software on a PC than Using Dedicated,
General Purpose Rendering Hardware. IEEE Transactions Visualization
and Computer Graphics, 6(4):335–345, 2000.

[7] B. Kim, J. Seo, and Y. Shin. Binary volume rendering using Slice-based
Binary Shell. The Visual Computer, 17:243 – 257, 2001.

[8] W. R. Quadros, K. Shimada, and S. J. Owen. 3d discrete skeleton gener-
ation by wave propagation on pr-octree for finite element mesh sizing. In
Proc. ACM Symposium on Solid Modeling and Applications, pages 327 –
332, 2004.

[9] J. Rodŕıguez and D. Ayala. Fast neighborhood operations for images and
volume data sets. Computers & Graphics, 27:931–942, 2003.

[10] J. Rodŕıguez, D. Ayala, and A. Aguilera. Geometric Modeling for Sci-
entific Visualization, chapter EVM: A Complete Solid Model for Surface
Rendering, pages 259–274. Springer Verlag, 2004. ISBN: 3-540-40116-4.

[11] J. Rodŕıguez, I. Cruz, E. Vergés, and D. Ayala. Skeletonless porosimeter
simulation. In M. Choverand and M. O. Eds., editors, Proceedings of CEIG
2010, pages 49–56. Ed. Ibergarceta, 2010.

[12] A. Rosenfeld and J. Pfaltz. Sequential operations in digital picture pro-
cessing. Journal of the ACM, 13(4):471–494, 1966.

[13] H. Samet. Applications of spatial data structures: Computer graphics, im-
age processing, and GIS. Addison-Wesley Longman Publishing Co., Inc.,
1990.

[14] L. Thurfjell, E. Bengtsson, and B. Nordin. A boundary approach to
fast neighborhood operations on three-dimensional binary data. CVGIP:
Graphical Models and Image Processing, 57(1):13 – 19, 1995.

14



[15] J. Wilhems and A. V. Gelder. Octrees for faster isosurface generation.
ACM Transactions on Graphics, 11(3):201–227, July 1992.

[16] W. Wong, F. Y. Shih, and T. Su. Thinning algorithms based on quadtree
and octree representations. Information Sciences, 176:1379 – 1394, 2006.

15


