

TREBALL FINAL DE GRAU

TÍTOL DEL TFG: Platform for innovative content distribution

TITULACIÓ: Grau en Enginyeria Telemàtica

AUTOR: Einar-Martín Meyerson Uriarte

DIRECTOR: Joan Llobera

SUPERVISOR: David Rincón

DATA: 26 Sept 2016

Platform for innovative content distribution 2

Titulo: Plataforma per la distribució de contingut innovador

Autor: Einar-Martín Meyerson Uriarte

Director: Joan Llobera

Fecha: 26 de Septiembre 2016

Resumen

Hoy en día los usuarios están empezando a consumir nuevos contenidos de
carácter innovador en un entorno doméstico debido a la introducción de
dispositivos como los cascos de realidad virtual (RV). El problema que
afrontamos en este trabajo es cómo acceder a este contenido de RV.

Este trabajo ha consistido en desarrollar una plataforma de distribución de
contenidos innovadores utilizando diferentes técnicas de distribución para un
proyecto Europeo del Horizon 2020 denominado ImmersiaTV que va redefinir
la cadena de distribución amplia extremo a extremo: producción, distribución y
entrega de contenido multiplataforma sincronizado basado en video
omnidireccional. En el contexto de ImmersiaTV, nuestra contribución se centra
en la creación de la segunda pieza del puzle: la distribución del contenido.

Ahora que la producción de contenido de RV este en auge, este tipo de
plataformas empezarán a salir a luz ya que la demanda crecerá y por lo tanto
la oferta tendrá que seguir el mismo camino. Con esta plataforma queremos
crear un sitio en la red donde usuarios que quieran consumir específicamente
contenido de RV puedan hacerlo de manera ágil y sencilla.

En este trabajo nos hemos centrado en contenido basado en videos
omnidireccionales (para el proyecto ImmersiaTV) y modelos 3D creados por
sensores (para este proyecto en particular), cuya publicación y distribución se
realiza a través de una aplicación web.

El contenido basado en vídeo omnidireccional se produce con un plug-in
diseñado en ImmersiaTV para la herramienta Premiere Pro de Adobe y el
contenido basado en modelos 3D, hechos por sensores, se produce con
sensores como Kinect 2 y Structure dentro de este mismo trabajo.

Los contenidos tradicionales como el video omnidireccional y el modelado por
ordenador son contenidos que, por una parte, son muy rápidos de producir
(video omnidireccional) a expensas de la calidad de la experiencia o muy
costos en tiempo de producción (modelado por ordenador). Por otra parte los
contenidos basados en sensores son rápidos de producir, con un resultado
satisfactorio en términos de la calidad de la experiencia de RV.

3 Platform for innovative content distribution

Para probar el uso de la plataforma hemos usado un reproductor existente
creado dentro del proyecto ImmersiaTV. Sin embargo, para probar los
formatos innovadores basados en sensores, hemos desarrollado una
aplicación específica. Esta aplicación también permite a los usuarios comparar
como cambia la experiencia de RV a través de tres diferentes formatos de
contenido como son el video omnidireccional, el modelado con ordenador y el
basado en sensores.

Los usuarios también podrán experimentar la diferencia entre ser
representados por un avatar modelado por ordenador o por un modelo 3D
creado en vivo por la Kinect 2 dentro de la experiencia de RV.

Aunque este trabajo no trata de medir los resultados de la experiencia de RV
sino de distribuir el contenido para poder ser consumido, durante la creación
de la plataforma hemos podido comprobar la gran diferencia, en términos de
calidad de la experiencia, entre los diferentes escenarios.

Platform for innovative content distribution 4

Title: Platform for innovative content distribution

Author: Einar-Martín Meyerson Uriarte

Director: Joan Llobera

Date: 26 Sept 2016

Overview

Nowadays users are starting to consume new innovative content in a domestic
environment due to the introduction of head mounted displays. The problem
we face in this work is how to access this virtual reality (VR) content.

This work consists in develop a platform for innovative content distribution
using different techniques for the European Horizon 2020 project ImmersiaTV
which is redefining the end-to-end broadcast chain: production, distribution and
delivery of multiplatform synchronized content based in omnidirectional video
Inside ImmersiaTV, this work will focus in the second piece of the puzzle, the
creation of the content distribution platform.

Now that the production of VR content is booming, these kind of distribution
platforms are beginning to come to light as the demand of VR content is
growing, therefore the offer has to follow the same path. What we want to create
with this platform is a spot in the internet for users who want to consume VR
content have a quick and easy way to access it.

This work has focused on content based on omnidirectional videos (for
ImmersiaTV) and sensor-generated mesh (for this particular work), whose
publication and distribution is done through a web application.

The omnidirectional video-based content is produced with an Adobe Premiere
Pro plug-in developed in ImmersiaTV. The sensor-generated mesh content is
produced with sensors like Kinect 2 and Structure in this work.

Traditional content like omnidirectional video and computer-generated imagery
are content that on the one hand are very quick to produce (omnidirectional
video) at the expenses of the experience quality or very costly in production
time (traditional CGI), moreover, sensor-generated mesh content are quick to
produce with satisfactory results in terms of the VR experience quality.

In order to test the platform we have used an existing player created in the
ImmersiaTV project. However, to test the innovative formats, we have
developed a specific application. This application also allows users to compare
the difference between the VR experience through three different content
formats such as omnidirectional video, traditional CGI and sensor-based.

5 Platform for innovative content distribution

Users can also experience the difference between being represented by an
avatar modelled by computer or a live 3D model created by the Kinect 2 inside
the VR environment.

Although this work does not attempt to measure the results of the user’s VR
experience if not to distribute the content in order to be consumed, during the
development of the platform we have seen a big difference, in terms of
experience quality, between the different content scenarios.

Platform for innovative content distribution 6

ÍNDEX

INTRODUCTION .. 9

CHAPTER 1. STATE OF THE ART ... 11

1.1. Distribution techniques .. 11
1.1.1. RTSP .. 11
1.1.2. DASH .. 11
1.1.3. AssetBundles (Unity3D format) .. 12

1.2. Content formats for immersive displays ... 13
1.2.1. Omnidirectional videos ... 13
1.2.2. Traditional CGI.. 16
1.2.3. Sensor mesh-based content ... 17
1.2.4. Volumetric Video .. 19

CHAPTER 2. HARDWARE & SOFTWARE TECHNOLOGIES USED 23

2.1. Hardware .. 23
2.1.1 Google Cardboard .. 23
2.1.2 Samsung Gear VR ... 24
2.1.3 HTC Vive .. 24
2.1.4 QBIC MS-1 (Omnidirectional camera) .. 25
2.1.5 Structure sensor ... 27
2.1.6 Kinect 2 ... 27

2.2. Software tools .. 28
2.2.1. Docker .. 28
2.2.2. GStreamer .. 28

2.3. Web technologies .. 29
2.3.1. Node.js + Express .. 29
2.3.2. Angular ... 29
2.3.3. Bootstrap .. 30
2.3.4. Redis ... 30

CHAPTER 3. EVOLUTION OF THE DESIGN OF THE CONTENT
DISTRIBUTION PLATFORM ... 31

3.1. RTSP based distribution ... 31
3.1.1. Architecture... 32
3.1.2. Problems encountered ... 32
3.1.3. User experience ... 33

3.2. DASH-based distribution .. 35
3.2.1. Architecture... 35
3.2.2. Problems encountered ... 36
3.2.3. User experience ... 37

3.3. DASH-based distribution, v2.0 ... 38
3.3.1. Architecture... 39
3.3.2. Problems encountered ... 40
3.3.3. User experience ... 40

7 Platform for innovative content distribution

3.4. Distribution based on Innovative formats .. 42
3.4.1. Architecture... 42
3.4.2. Problems encountered ... 43
3.4.3. User experience ... 43

3.5. Conclusions of the development .. 44

CHAPTER 4. DEMO WITH A CONTENT PLAYER ... 45

4.1. Environments: Omni, Traditional and Sensor based ... 45
4.1.1 Omnidirectional video demo environment .. 46
4.1.2 Traditional CGI demo environment .. 46
4.1.3. Sensor-based demo environment ... 47

4.2. User tracking options .. 48

4.3. Personal experience inside the demo testbed .. 49

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 50

5.1. Achieved goals ... 50

5.2. Future work ... 50

5.3 Environmental impact ... 52

ACRONYMS .. 53

BIBLIOGRAPHY .. 54

ANNEX 1: IMMERSIATV PROJECT ... 58

ANNEX 2: CODE ... 61

Platform for innovative content distribution 8

9 Platform for innovative content distribution

INTRODUCTION

Consumer market-oriented virtual reality (VR) headsets have brought Immersive
Virtual Environments to the general public. This has provoked the appearance of
new methods to create content.

Against the traditional CGI approach, based on hand-crafting 3D virtual
environments, omnidirectional video has recently gained momentum as a
possible production technique. However, new methods using sensors are starting
to gain strength, with different advantages and drawbacks. The big debate today
is production speed versus quality of the experience. Although in terms of the
experience the Place illusion (the sense of “being there”) and the Plausibility
illusion (the sense that what you see is actually occurring) are very important [1],
nowadays it is unfeasible to create a VR environment that meets the
requirements for a perfect experience without tedious and complex hand crafted
content production. This is why content producers are searching for new methods
that increase production speed without affecting too much the experience.

However, all this new content, along with the traditional one, is difficult to find for
general public consumption. Furthermore, the range of devices in the market,
with a great variety in resolutions, has increased massively, forcing media content
producers to search for solutions to serve best quality content no matter what
characteristics and capabilities the different terminals have.

The goal of this work is to satisfy the need for a platform to publish and distribute
innovative content. We focus on delivering streamed experiences based on
omnidirectional video and sensor-generated mesh content. We developed a web
application for distribution of innovative content in four development stages.

To test this web application, we have used omnidirectional videos readily
available –produced within the Horizon 2020 Project ImmersiaTV [2] [3] (in Annex
1 you can find a brief explanation of the project). To test this web application using
innovative content, we have developed specific content examples using sensors
like Kinect 2 and Structure sensor.

Specifically, our contribution in the ImmersiaTV project has been the
development of the connexion between the content producers and consumers.
We have developed a content distribution platform which converts to DASH
content exported from the Adobe Premiere plug-in in order to be published and
viewed through the ImmersiaTV Unity player.

This document is divided into four chapters. The first one describes the state of
art in different distribution techniques like: RTSP, DASH and AssetBundle. Then
it describes different VR content formats, including some innovative ones that
have been produced during the development of this work.

The second chapter lists the different technologies, hardware and software used.
Hardware like the omnidirectional cameras, the Head-Mounted Display (HMD) or

Platform for innovative content distribution 10

the sensors used to create the innovative formats and the software used to
develop the web application platform.

The third chapter will describe the evolution of the distribution platform through
the four different stages of development, describing the purpose, architecture,
problems encountered and user experience of each stage.

The fourth chapter will describe a demo created in order to test the distribution
platform. Moreover, this demo will test the difference in the user’s Place illusion
(PI) and Plausibility illusion (Psi) between three different environments:
omnidirectional video, traditional CGI and sensor mesh-based.

In the conclusions, we describe the final workflow: users can convert content to
MPEG-DASH, publish the converted content and view it through a multi-platform
player. We also describe a demo developed in Unity 3D with three different
scenes representing different VR content formats, where users can compare the
quality of experience in each of the VR scenes.

11 Platform for innovative content distribution

CHAPTER 1. STATE OF THE ART

1.1. Distribution techniques

The purpose of this work is the creation of a platform for distribution of innovative
VR content. All this content must be distributed using different methods,
depending on the contents’ format. In this work we will take advantage of three
distribution techniques: RTSP, MPEG-DASH and AssetBundles.

1.1.1. RTSP

Real Time Streaming Protocol [4] (RTSP) is a standard protocol widely used for
efficiently control the streaming of audio and video data, particularly in broadcast
production environments. The protocol is used either for multicast and unicast
streaming. RTSP acts like a remote control for multimedia servers; through the
network clients can play, pause, record or perform other actions. The
transmission of the streaming data is not done by the RTSP protocol. Most of the
RTSP servers use Real-time Transport Protocol (RTP) in conjunction with Real-
time Control Protocol (RTCP) for media stream delivery through a combination of
TCP and UDP. Distribution over the internet is problematic due to the fact that
RTP is generally based on the UDP protocol, although RTP over TCP is also
possible, and useful for wireless distribution.

Unlike HTTP which was designed for general web content, RTSP was designed
specifically for media streaming. Furthermore RTSP/RTP can conceivably signal
and carry video and audio of any compression format. Years ago manufacturers
tended to stick to the simplest format with the widest web-browser compatibility,
JPEG over HTTP, however, due to the customer demand for more sophisticated
and mobile-friendly compression formats, there has been a boom in MPEG-4 and
H.264 over RTSP/RTP or RTSP/TCP implementations in network cameras [5].

Despite all these advantages, one drawback RTSP has is the fact it works on a
different port to HTTP (554 compared to 80) it is sometimes blocked by proxy
server and firewalls.

An example of servers and clients using RTSP are GStreamer, VideoLAN with
VLC media player and FFmpeg [6].

1.1.2. DASH

Dynamic Adaptive Streaming over HTTP (MPEG-DASH) [7] is an adaptive bitrate
streaming technique that allows high quality media content streaming over the
internet delivered from HTTP servers. MPEG-DASH works by breaking the
content (e.g. movie or live broadcast event) into a sequence of small file
segments, each segment containing a short interval of time. Each segment of
time is coded for different qualities of video in parallel in order to have all the
intervals of time synchronized between them. The MPEG-DASH client detects

Platform for innovative content distribution 12

the user’s bandwidth capacity and adjusts the quality of the video stream between
multiple bitrates and/or resolutions. This has made possible, for content
publishers, to generate a single set of files that should be compatible with as
many devices as possible, and adapt to the bandwidth variations of common IP
networks.

Unlike other distribution protocols with adaptive bit rates like Apple HLS, Microsoft
Smooth Streaming or Adobe HDS, MPEG-DASH is an open standard and much
more flexible in terms of codecs (audio and video), protection and segment
duration.

MPEG-DASH is available natively in Android through ExoPlayer [8], an
application level media player for Android, on a variety of smart TVs. MPEG-
DASH is gaining strength due to the variety of devices with different resolutions
there are nowadays in the market. Furthermore, major video distributors like
Netflix and YouTube already support MPEG-DASH [9].

1.1.3. AssetBundles (Unity3D format)

AssetBundles [10] are compressed files you can export from Unity3D which allow
on demand streaming and loading of Assets from local or remote location. An
Asset is any item (e.g. 3D model, audio file or image) that can be integrated within
the Unity3D [11] game engine. With AssetBundles, Assets can be stored remotely
and accessed on demand, reducing the initial project size.

Assets are compressed before been remotely uploaded as an AssetBundle.
Unity3D supports three compression options [12]:

 LZMA – The Lempel-Ziv-Markov chain algorithm (LZMA) is an algorithm used
to perform lossless data compression. It was the first used in the 7z format
[13] of the 7-Zip archiver. LZMA uses a dictionary compression algorithm1
similar to the LZ77 algorithm, whose output is then encoded with a range
encoder2, using a complex model to make a probability prediction of each bit
[14].

Compression in a single LZMA stream of serialized data files needs to be
decompressed entirely before use. This compression algorithm gives the
smallest possible compressed size. However, it decompresses slowly
resulting in high loading times.

 LZ4 – LZ4 is a lossless data compression algorithm from the LZ77 family of
byte-oriented compression schemes focused on compression and
decompression speed [15]. This method produces a larger compressed file
size. However, it does not require downloading the entire file to be

1 Lossless data compression algorithm which operates by searching for matches between the text to be

compressed and a set of strings contained in a data structure called the ‘dictionary’.
2 It is a lossless compression method defined by G. Nigel N. Martin in 1979 which given a stream of symbols

and their probabilities, a range coder produces a space efficient stream of bits to represent these symbols.

13 Platform for innovative content distribution

decompressed before use. This algorithm, unlike LZMA, divides the Asset into
compression blocks reducing in some way the decompression time.

 Uncompressed – This method produces the biggest file size. However this
format is the fastest to access once downloaded.

Once the AssetBundle is downloaded for the first time, Assets can be cached in
order to eliminate delays associated with download.

There are many use-cases for AssetBundles [16]:

 New content can be dynamically loaded and unloaded from an application.

 Platform and device specific assets can be loaded without having to download
or store redundant assets for other platforms or resolutions.

 Downloading and installing the assets can be adjusted depending on the
user’s location, language or preferences.

 Applications can be fixed, changed or updated with new content without
having to reinstall the application in the end-users’ device.

1.2. Content formats for immersive displays

1.2.1. Omnidirectional videos

Omnidirectional video, also known as 360-degree video, are videos where a view
in all directions is recorded at the same time. During playback, the viewer has
control of the viewing direction. This control can be done via the mouse or the
keyboard if the video is played in a computer or by head movement if the video
is played in a HMD.

This format is produced by recording with a special rig of multiple cameras or with
a dedicated VR camera that contains multiple lenses embedded in the device.
The result of each camera is then stitched3 to form a single video, in the first case
(rig of multiple cameras) this process is done with a specialized video editing
software. The synchronization of all the cameras is necessary for a best quality
result in the stitching. An example of this kind of software is VideoStitch. This
software uses three different techniques for synchronization [17]: Audio-based,
Motion-based and Flashed-based.

Fig. 1.1 shows the different steps a content producer has to accomplish in order
to create an omnidirectional video with VideoStitch:

3 Process of combining multiple images with overlapping fields of view to produce a segmented panorama.

Platform for innovative content distribution 14

Fig. 1.1. Omnidirectional video creation process

During the development of this work a ring of four QBIC MS-1 cameras along with
the VideoStitch software has been used to create omnidirectional videos. Once
the recording time has ended the next step is to import the four videos into
VideoStitch and synchronize them if needed.

Fig. 1.2 VideoStitch synchronization process

Taking a look at Fig. 1.2, the red boxes show the recorded time of each camera,
in a perfect situation these times have to be the same, however they aren’t forcing
the synchronization. In this example, a clap was done so Audio-based
synchronization could be executed. Once the synchronization is perfect
VideoStitch will stitch the four videos with the calibration option.

The next step is to fix the orientation of the calibration output. As seen in Fig. 1.3
the resulting orientation is wrong:

15 Platform for innovative content distribution

Fig. 1.3. Wrong orientation of the calibrated output

With the help of the mouse, the orientation is edited so when the experience
played inside a HMD is coherent and undistorted. A good orientation of the
omnidirectional video is seen in Fig. 1.4:

Fig. 1.4. Correct orientation of the calibrated output

In the second case (specialized VR camera) the camera itself does the stitching.
After all the stitching is done and the panorama is created, with the use of UV4
mapping5 techniques this panorama will be projected inside a 3D sphere.

4 The letters "U" and "V" denote the axes of the 2D texture because "X", "Y" and "Z" are already used to

denote the axes of the 3D object in model space.
5 3D modelling process of projecting a 2D image to a 3D model’s surface for texture mapping.

SWIPE

Platform for innovative content distribution 16

Comparing the two ways of producing omnidirectional videos, dedicated
omnidirectional cameras are becoming the best economic way as you save the
need to buy multiple cameras and use an external software for stitching.

Advantages and drawbacks

The advantages of this content format is the speed of production, and minimal
requirements: in its minimal expression it only requires one omnidirectional
camera for shooting and a virtual reality headset to view the obtained result. This
allows creating rapidly simple virtual reality experiences for user consumption.
Despite the production speed advantage this is at the expense of the experience
quality. Using omnidirectional video imposes that the only movement preserving
the place illusion is to turn your head around while being placed in the centre of
a sphere exactly aligned with a vertical axis. Due to this limited sensorimotor
contingencies the user will feel a smaller feeling of place illusion.

1.2.2. Traditional CGI

Traditional CGI (Computer-generated imagery) is content created by computer.
This content is defined by the creation of 3D models typically used in the video
game and film industry as well as in VR academic research.

In order to produce it you need to use 3D graphic, modelling and rendering
software like Autodesk 3ds Max along with a game engine like Unity3D for
example.

This content creation falls into three basic phases:

 3D modelling - the process of creating a computer model from an object’s
shape.

 Layout and animation - the placement and movement of objects and
characters in the scene.

 3D rendering - converts the model into an image by computer calculations
based on light placement, surface type and other qualities. This is often
performed in a mix of pre-calculated results and real-time calculations to adapt
to the user’s input.

In Fig. 1.5 we can see the traditional CGI model creation process of a German
shepherd from the game Call of Duty:

17 Platform for innovative content distribution

Fig. 1.5 Traditional CGI content creation process. Taken from [18]

In order to create a virtual reality experience with traditional CGI, it is necessary
to use a head mounted display (HMD) like the HTC Vive [19]. In this case, since
all the content is created by hand the time spent is greater, however scans of 3D
physical objects in combination with hand-crafted animations and motion-capture
data are increasingly used, which reduces the time.

Advantages and drawbacks

The advantages of this content is that the PI of the user inside the experience
tends to be greater. Unlike the omnidirectional video, traditional CGI offers an
immersive virtual environment where the user can move around, which will
produce a greater sense of ‘being there’ (PI). Users using a HMD can move freely
to the limit of the tracking space being covered. Allowing free movements is key
to increase the PI of the user. Although traditional CGI content has many
advantages, it also has a big drawback: this kind of content is very slow to
produce. In order to create a decent environment for a VR experience you need
experts in many sectors and the most important, time. In some cases the time
and resources spent are often economically not viable.

1.2.3. Sensor mesh-based content

Sensor mesh-based content is capturing fast and accurate depth information of
static objects and environments with a sensor.

To produce this content a depth sensor is needed. The number of this kind of
sensors in the market nowadays is increasing, a few examples of this sensors
are Structure sensor and Kinect 2. The first example has to be attached to an
iPad however both use the same software in order to visualize the depth
information sent by the sensors, Skanect 3D scanning software [20]. Along with
the depth and infrared cameras, both sensors use a colour camera to capture
colour (Structure sensor uses the iPad’s camera). This implies that in order to

Platform for innovative content distribution 18

create accurate 3D coloured models all cameras, depth, infrared and colour have
to be calibrated.

In this work sensor-generated models are created with the Structure sensor. In
Fig. 1.6 we can see how with the help of an iPad Pro 4 the Structure sensor scans
the environment. The way this sensors work is by projecting a unique infrared
pattern of dots out in front of it, then the infrared camera uses this pattern of dots
to visualize the shape and distance of objects. The projection is done with a
dedicated infrared laser projector. Each colour of the image determines the
distance to the sensor; red parts are closer, blue parts are further:

Fig. 1.6 Structure sensor scanning. Taken from [21]

The information obtained by the sensor is send through the Wi-Fi interface to the
Skanect software. Skanect will create a 3D model without colour from this
information. Next step is to process this model where many options are possible
from; hole filling, remove parts and colorize. In Fig. 1.7 we can observe an
example of 3D model before and after been coloured:

Fig. 1.7 3D model before and after been coloured

19 Platform for innovative content distribution

Advantages and drawbacks

The advantages of the sensor mesh based content are similar to the traditional
CGI, however because it depends on the hardware, the quality of the results
obtained from the sensors is worst nowadays. Nevertheless 3D models obtained
from the sensors can be edited in order to increase the quality of these and in
this way increase the speed of production. New sensors, more powerful and
precise, will be developed in the upcoming future and this kind of content creation
will outpoint in some part the traditional CGI.

In terms of user experience, being able to scan and then track the environment
with the real world gives the user the possibility to interact inside the VR
experience as if it was the real world increasing in some way the PI and Psi of
the user. The main drawback is the need of hardware. This kind of hardware have
limitations, and nowadays it is difficult to scan objects or environments with small
details because of the range of precision of the sensors. Other problems to
overcome is not all objects can be scanned, too bright or transparent objects are
difficult to scan or sometimes impossible.

1.2.4. Volumetric Video

Volumetric video content is the introduction of a 3rd dimension inside a normal 2D
video captured scene in order to give some “volume” to the scene.

This content is produced by attaching a depth sensor, in this case a Kinect 2, to
a DSLR camera (there is no need to use an external video camera as the Kinect
itself has a colour camera embedded, however it is recommended for high quality
content). Both cameras have to be calibrated, after this process is done the
relationship between the two of them have to be calibrated too in order to properly
project the colour information from the video camera onto the depth. To do this,
you will need to determine the physical position of the two cameras relative to
one another. This will allow to combine the two data streams (colour and depth)
into one 3D scene [22].

In Fig. 1.8 we can observe the 3D mesh information of the Kinect 2 in conjunction
with the RGB information of the colour camera:

All this processes can be done by a non-free licensed software (currently in
closed beta) named DepthKit [23] with Unity3D. However there is another option
using Unity3D and a free (only for research reasons) asset named Kinect v2
Examples with MS-SDK [24]. Both options use the Kinect for Windows SDK. Like
the sensor mesh based content, the Kinect uses the infrared camera in order to
determine the shape and distance of objects.

Platform for innovative content distribution 20

Fig. 1.8 Depth info with RGB

Fig. 1.9 shows a capture from different perspectives in order to see the volume
of the model created from the Kinect 2:

Fig. 1.9 Volumetric video perspective snapshots

Advantages and drawbacks

The main advantage of the volumetric video content, in comparison with the
sensor mesh based content, is the ability to capture 3D content with movement.
Furthermore, this content can be captured live with the possibility to combine it
with the other three contents mentioned earlier. Despite these advantages, the
main drawback of this content is that the Kinect’s depth sensor only captures
inside its Field of view6 (FoV) thus the 3D model will be incomplete out of this,

6 Extension of the observable world at any given time.

21 Platform for innovative content distribution

however there’s the possibility to combine several Kinects in order to create a full
3D model although this involves the development of complex software.

In Fig. 1.10 we can observe how the hand blocks the FoV of the Kinect 2 creating
an incomplete 3D model. As mentioned before, in order to create a full 3D model,
more Kinects will have to be used in different positions.

Fig. 1.10 Kinect 2 FoV block

In the case of using only one Kinect, the PI of the user is bigger comparing it with
the omnidirectional video due to the factor that within a HMD the user has the
possibility to lean out a bit and check the volume unlike the omnidirectional video
which everything is 2D. This option is not possible inside a smartphone within a
virtual head due to movement limitations, only 360º head turn is permitted.

In terms of speed of production, volumetric video is fast to produce in live
conditions as it only needs to have the Kinect sensor connected and a platform
to be reproduced on. However if this content need to be recorded and reproduced
after you need to use external software like DepthKit or develop your own one,
the main inconvenient of this last one is finding the way to save the depth and
colour information for later playback.

In this work for volumetric video playback (no live conditions) a script was created
based on the Kinect v2 Examples with MS-SDK asset in order to save the colour
and depth information (a JPEG image and two files with information of depth and
colour in a raw format7) of each frame (scripts for volumetric video creation can
be found in the Annex 2: Code). The main problem of this method is the amount
of space needed for a few seconds; 25 frames (with a resolution of 1920x1080)

7 Data format not yet been processed and therefore containing all the data from the original file.

Platform for innovative content distribution 22

are equivalent to 239MB. We have to take in account that we have to safe the
whole information of the image in order to create the coloured mesh.

The calculations are:

 25 raw colour data 1920x1080 in RGBA32 8 bits per channel.

 25 raw depth data 512x424 in ARGB4444 16 bits per pixel.

 25 JPEG images (more or less 1.2MB)

239MB = 25 frames · (
((1920 · 1080) px · 4B + (512 · 424) px · 2B)

1024 · 1024
+ 1.2MB)

23 Platform for innovative content distribution

CHAPTER 2. HARDWARE & SOFTWARE
TECHNOLOGIES USED

2.1. Hardware

The platform developed in this work for innovative VR content distribution needs
hardware in order to create and consume this content. In this section an example
of this hardware and its specifications will be described. A more detailed
description of these technologies can be found in [25].

2.1.1 Google Cardboard

The Google Cardboard glasses [26] (GC) are a low cost (14.99 USD) open
source VR viewer developed by Google. This display is phone based, in other
words, you have to place your smartphone in front of the lens in order to enjoy
the VR experience. This viewer is made from a piece of cardboard cut into a
precise shape (all the specification on how to make you own cardboard display
can be downloaded from Google’s website), 45 mm focal length lenses, a
conductive lever (triggers a touch event on a phone’s), Velcro and a rubber band
for a total of 85 grams without the phone. This gear can be used for any
smartphone with a screen up to 6 inches (150 mm).

The way this display works is it uses the smartphone’s gyroscope to track the
head rotation, this way the users feel the sense of being immersed inside the VR
experience. The GC uses the phone’s specifications related to VR as motion-to-
photon latency8. The high latency that nowadays many smartphone’s offer (80-
100ms), can cause motion sickness on users that experiment with long time VR
content. GC solves this problem, partially, forcing users to hand-held the display
as this slows down the speed at which the head is turned, nevertheless VR
content needs a motion-to-photon latency of <20ms for users to enjoy the
experience.

Fig. 2.1 Google Cardboard glasses. Taken from [27]

8 Time needed for a user`s movement to be fully reflected on a display screen.

Platform for innovative content distribution 24

2.1.2 Samsung Gear VR

The Samsung Gear VR [28] is a mobile virtual reality headset developed by
Samsung Electronics in collaboration with Oculus with a price of 99€. Unlike GC,
the Samsung Gear VR only works with the following Samsung Galaxy
smartphones: S6, S6 Edge, S6 Edge+, Note 5, S7 and S7 Edge. However this
display has a custom inertial measurement unit (IMU) for rotational tracking
connected to the smartphone via micro-USB. This IMU is more accurate and well
calibrated with low motion-to-photon latency (<20ms) than the internal
smartphone IMUs, used by the GC, which will reduce motion sickness
significantly. The Gear VR headset has a FoV of 96º (nominal), it also includes a
touchpad and a back button on the side, as well as a proximity sensor to detect
when the headset is on, all together weights <400 grams without the phone.

With everything discussed above, despite the GC and the Gear VR are both
phone-based displays this last one offers a better experience due to the drop in
the motion-to-photon latency.

Fig. 2.2 Samsung Gear VR. Taken from [29]

2.1.3 HTC Vive

The HTC Vive is a VR head mounted display (HMD) developed by HTC and
Valve corporations with a price of 899€. The HTC Vive comes together with 2
base stations (for user tracking), two hand controllers along with all the
components related to connect all these together with the PC. This display needs
some minimum PC requirements like NVIDIA GeForce GTX 970 or greater, Intel
Core i5-4590 equivalent or greater, 4GB+ of RAM, compatible HDMI 1.3 video
output and 1x USB 2.0 port to work properly. This is a difference in comparison
with the phone-based displays, however this will result in a better VR experience
as it offers 90 Hz of refresh rate, a FoV of 110º (nominal) and OLED displays of
1080x1200 per eye.

The HTC Vive, like all the HMD, has a user tracking system. The display uses
more than 70 sensors including a MEMS gyroscope, accelerometer and laser

25 Platform for innovative content distribution

position sensors. If both base stations are used to track the user’s movement, it
is said that the HTC Vive operates in a tracking space of 4.6m2.

Fig. 2.3 HTC Vive. Taken from [30]

2.1.4 QBIC MS-1 (Omnidirectional camera)

For video capture omnidirectional cameras were used. The omnidirectional
camera consists in a rack of 4 QBIC MS-1 [31] cameras with 185º of horizontal
angle view. These cameras can record in a maximum resolution of 1080p60 and
can be accessed through an APP via Wi-Fi so the user can execute play on the
four cameras at the same time (with some milliseconds of difference).

Fig. 2.1 Camera QBIC MS-1. Taken from [32]

The omnidirectional camera has to be calibrated previously so the obtained result
is the desired one. Before calibration, synchronization is very important, if
synchronization fails, the output video will have doubled images during playback
at different moments. This is due to the cameras have a FoV of 185º, if people

Platform for innovative content distribution 26

move too close around the cameras there is a big possibility they enter in the FoV
of more than one camera. If synchronization fails, when stitching the videos you
will have two different frames stitched together which will cause a ‘ghost’ effect.

When calibrating, objects near the camera have to be at a certain distance, 3m
is the recommended so you don’t get any parallax effect.

Fig. 2.2 Parallax effect diagram. Taken from [33]

This effect is caused due to the four cameras do not have the same point of view.
It’s the same thing you can experiment by putting a finger very close between
your eyes; you won’t be able to see it correctly as it will be too close to get a
correct complete image of it. If you alternatively close one eye, you will see how
the finger changes its position, the distance between this two positions is what is
called parallax effect. If you move the finger further this distance will decrease.

When stitching the videos together, if objects have to be near the cameras better
try to have the object only on one camera lens FoV, in other case the parallax
effect will be seen. Despite everything you try to do, removing all the parallax is
impossible, however there are ways to reduce it. In Fig 2.6 we can observer an
example of parallax error when stitching the videos.

Fig. 2.6 Parallax effect error example in omnidirectional video. Taken from [34]

27 Platform for innovative content distribution

2.1.5 Structure sensor

The Structure sensor [35], developed by Occipital, is a 3D scanner that has to be
attached to an iPad, in the case of this work an iPad Pro 4. Occipital also provides,
through the Apple store, several apps to use with the Structure sensor. In this
work we will use three of them: Calibrator (Used to calibrate the Structure
sensor’s infrared camera with the iPad’s colour camera), Scanner (Used to scan
individual objects) and Room Capture (Used to scan small spaces/rooms without
many details).

The sensor has a maximum recommended range of 3.5m+ within a precision of
30mm (1%) and a minimum recommended range of 40cm within a precision of
0.5mm (0.15%). Its FoV is 58º horizontal and 45º vertical and it works in a
framerate of 30/60 frames per second. Once the Structure scanner is used to
scan, the resulted 3D model can be sent through the iPad’s Wi-Fi interface to
Skanect for further processing.

Fig. 2.3 Structure sensor with iPad Pro 4. Taken from [36]

2.1.6 Kinect 2

The Kinect 2 [37], developed by Microsoft, is a sensor which combines three type
of cameras: Colour (resolution of 1080p at 30 Hz), Infrared (resolution of 512x424
at 30 Hz) and Depth (resolution of 512x424 at 30 Hz with a FoV of 70x60 within
a range of 0.5-4.5 meters). These three cameras combined together can provide
3D models at real time. In this work we will use Kinect’s SDK together with the
Unity3D asset Kinect 2 Examples with MS-SDK in order to record volumetric
video.

In section 4.2 we will describe how the Kinect 2 was used in order to track the
user’s body inside a VR environment.

Platform for innovative content distribution 28

Fig. 2.4 Kinect 2. Taken from [38]

2.2. Software tools

2.2.1. Docker

Docker [39] is an open source project that automates the deployment of
applications inside software containers. Docker containers, because it wraps up
the application in a complete filesystem containing all the necessary parts needed
to run, guarantees that regardless environment changes it will always run the
same.

In this work Docker was used in order to have all the elements that composed
the web application wrapped up in containers and all working in the same
operating system, in this case Linux. This removed the problem of having to
develop specifically for each OS (this was one of the main problems at the
beginning). As mentioned before, this software tool guaranteed that no matter
what environment the web application was to be deployed in, it would work
making it easy to test in different setups.

The web application developed in this work was divided into four different
containers, although at the beginning having this many containers was tedious to
configure, other Docker tools were used during the development in order to
automate this: Docker Compose and Docker Hub. Later, in section 3.3 of this
document the reasons why this tools were used will be explained.

2.2.2. GStreamer

GStreamer [40] is a free and open-sourced multimedia framework software
based in a pipeline structure. For this case a pipeline is referred as a set of data
processing elements connected in series where the output of one element is the
input of the next one. GStreamer can read media files in one format, process
them and export this media files in another.

29 Platform for innovative content distribution

GStreamer was used in the first stage of development in order to create a stream
with several media files through a RTSP pipeline. The pipeline was launched with
the GStreamer RTSP server in order to create a low-latency streaming. Other
reasons why GStreamer was used in the first stage of development were audio
and video streams had to be exported to a specific format so the Unity3D player
could play the content. Depending on what content format the editor worked with,
the web application had to create a specific pipeline so the output was the desired
one. Furthermore GStreamer also has support for all OS.

2.3. Web technologies

For the development of the web application different web technologies have been
used. In this section each technology used will be described and justified.

2.3.1. Node.js + Express

Node.js [41] is an open-source, cross-platform JavaScript runtime environment
for developing tools and applications. Node.js is based in an event-drive
architecture9 capable of asynchronous input/output processing.

On the other hand, Express [42] is an open-source web application framework
for Node.js. It is designed for building web applications and APIs. It is the
standard server framework for Node.js.

These two technologies were chosen in order to create the core of the web
application. Other reasons were how Node.js works with its package manager
npm. Npm consists in a command line client that interacts with a remote registry
that allows users to consume and distribute JavaScript modules that are available
on the registry. This is a fast and easy way to add different technologies into the
web applications. Last but not least, during the whole development of the work
the JavaScript IDE named WebStorm was used. WebStorm has the option of
creating a new Node.js + Express project which facilitated the start of the work
by creating the main structure of it.

2.3.2. Angular

Angular [43] is an open-source JavaScript front-end web application framework.
This framework created by Google was designed to make front-end development
as easy as possible.

Angular was chosen due to it combined perfectly with Node.js and Express.
Although Angular combines also with MongoDB in order to create the MEAN

9 Software architecture pattern promoting the production, detection, consumption of, and reaction to events.

Platform for innovative content distribution 30

stack, later on the reasons why Redis was chosen over mongoDB will be
described. Angular was also chosen because it was fast to incorporate and easy
to learn in order to create a not very complex web application, however Angular
has plenty of options and needs time in order to be an expert.

2.3.3. Bootstrap

Bootstrap [44] is an open-source front-end web framework for designing web
applications. Bootstrap contains HTML and CSS based design templates for
many interface components in order to give a modern appearance to the web
application without investing any time in programing the visual style.

Bootstrap was chosen for many reasons, save programing time as well as it is
designed to give responsiveness10 to the web application. Last but not least,
bootstrap is easy and fast to incorporate into the web application at any
development stage.

2.3.4. Redis

Redis [45] is a NoSQL open source key-value database. You can compare it as
a giant array in memory for storing data, data that can be strings, hashes, data
sets or lists. However, Redis does not permit queries, you are only allowed to
insert and obtain data beside the common operations on sets (difference, union
and insertion).

Redis was chosen for several reasons. One of the main reasons was how fast it
was to implement in the web application. Without any big changes in the code
structure, the Redis database was added. This was the main reason why Redis
was chosen above mongoDB which needed a more complex configuration. Redis
was also chosen due to the data model the web application used, projects (keys)
were connected to other details all grouped in a JSON (value).

10 Adaptation of the web application’s layout to the size of the device where it’s viewed.

31 Platform for innovative content distribution

CHAPTER 3. EVOLUTION OF THE DESIGN OF THE
CONTENT DISTRIBUTION PLATFORM

As mentioned before, VR headsets are becoming very popular nowadays and
this has provoked new innovative content to emerge. The problem is, there is no
dedicated platform for user to consume and enjoy the experience of this VR
content today.

In March 2015 YouTube was one of the first introducing the possibility for users
to upload and playback omnidirectional videos followed by Facebook in
September of the same year [46]. Despite this new feature, both applications
don’t aim in distributing VR content. However VRideo [47] and VRAPP [48] are
two examples of platforms aiming to distribute omnidirectional videos.
Nevertheless these platforms in conjunction with YouTube and Facebook only
distribute 360º videos, unlike the platform developed in this work.

The main goal of this work is to develop a web platform for the distribution of
innovative VR content based in omnidirectional video and sensor-generated
mesh. In order to satisfy as many users as possible, content (based on
omnidirectional video) exported from Adobe Premiere was converted to MPEG-
DASH so it can be reproduced in as many different smartphones as possible
regardless of internet connectivity or device resolution. Users have the option to
publish the content they want to view and select it from a custom Unity3D player
created for the ImmersiaTV project. On the other hand, content exported from
Unity3D as AssetBundles (based on sensor-generated mesh) can also be
published but has to be viewed through a Unity3D player developed in this work.

The web application was developed in four different stages. This section will
describe what technologies were used in each development stage and why. Each
stage will begin with a brief description of the motivation followed by the
architecture. The architecture of each development stage is very important as it
describes the function of all the new “pieces” (new technologies) and where they
fit in the “puzzle” (distribution platform). A list of problems encountered is
described and the section ends with a user experience example.

Finally the chapter will conclude with a brief explanation of the development
conclusions.

3.1. RTSP-based distribution

The idea of this first version of the web application was to create a VR content
streaming service using the RTSP server of GStreamer. Potential users using a
custom Unity3D player would have the opportunity to connect to the stream and
visualize the content. The first development stage of the web application started
by choosing the technologies that were going to be used.

Platform for innovative content distribution 32

3.1.1. Architecture

The core of the web application was developed with Node.js and Express in
conjunction with Angular. For the visual part of the web page Bootstrap was used.
This four elements describe in section 2.3 will be common during the
development of the web application. In order to list the media content for user
selection a module named jsTree was used. This module allowed to create a
“mirror” of a folder and its content and visualize it in a “tree” layout as seen in Fig.
3.2.

As mentioned before this first stage was based in a RTSP distribution using a
GStreamer pipeline. This pipeline was generated automatically depending on the
selected media content’s format.

The architecture of the RTSP-based distribution web app is show in Fig. 3.1:

Fig. 3.1 RTSP-based distribution web app architecture

Media content producers upload their content to the Input folder. Users then
select this content and start the server. The GStreamer software will create a
pipeline and the Unity3D players will connect to the pipeline in order to view the
content of the stream created via RTSP.

3.1.2. Problems encountered

The main problem of the RTSP-based distribution web application was that once
the user had created the pipeline with the content to stream no more streams
could be created due to GStreamer limitations: it could only create one pipeline
per socket. If the user wanted to view various video streams, all the media content
had to be selected of all the different streams, and finally select in each player
the different ids of the media contents of each streams.

33 Platform for innovative content distribution

Although the web application was developed for remote deployment in a server
using Linux, local tests11 were made in order to remove network condition
constraints. The problem with these localhost tests was that the GStreamer
software is different for each operating system. Furthermore, the web app used
processes to create the pipelines and each OS terminal works in a different way.
This created the need of different scripts for each OS which increased the
development time and application size.

Last but not least, because the distribution of the media streams was through a
GStreamer pipeline created by a process, if the sever crashed no more content
could be served. This was a key problem to be solved in future releases.

3.1.3. User experience

The view of the first version of the web page was as seen in Fig. 3.2:

Fig 3.2 View of the RTSP-based distribution web page

The web page view was divided into two sections. The first one (left hand side),
FTP Server, is the mirrored server folder containing all the media content. The
second (right hand side), Files selected, is where the selected media content is
listed.

In order to create a stream, a potential user must select all the content he wants
to introduce in the GStreamer pipeline. In this example the content inside the
folder HD_video_files named HD_video_example.h264 is selected as shown in
Fig. 3.3:

11 Tests carried out where communication between client and server is within a LAN.

Platform for innovative content distribution 34

Fig 3.3 Media content selected

Each table entry is composed of three elements: id, media content name and a
button for removing. The id (table index12 of the selected element, in this example
the first element in the table has index “0” so the id will be “0”) has to be introduced
in the players in order to view the correct media content. Usually the players will
be configured previously thus the order of selection will be crucial.

Once all the content has been selected the user can now press the PLAY
SERVER button. GStreamer will create a new pipeline like the show in Fig. 3.4
and users will have the opportunity to connect to the stream.

Fig. 3.4 GStreamer pipeline example

In order to stop the stream, once the PLAY SERVER button is pressed this will
change automatically to STOP SERVER, if the user presses this button not only
the stream will stop but it will destroy the processes containing the GStreamer
pipeline. This means that if the user starts the server again the media content will
start from the beginning and not from where he had stopped before.

Fig. 3.5 Stop server option

12 Position of an element inside a list starting with 0.

35 Platform for innovative content distribution

3.2. DASH-based distribution

The main purpose of this DASH-based distribution web app was to change the
distribution technique in order to serve better quality content to us much possible
users regardless on network constraints and device characteristics.

In this second stage of development of the web application, RTSP was changed
to MPEG-DASH. This meant GStreamer was deleted from the web application.
At this stage, the VR content users had to consume was exported from Adobe
Premiere. This content was then converted to MPEGDASH using a script.

Users consume the content via a Unity3D player which reads a content JSON file
in order to list the available content. This way users have a variety of contents in
a more organized way.

As mentioned in the first stage of development, one of the biggest problems was
trying to deploy the web application within different OS. The solution for this
problem was to use the Docker tool. The reasons for the use of this technology
have been stated in section 2.2.1.

3.2.1. Architecture

The core architecture of the web page remained the same (Node JS, Express,
Angular and Bootstrap). However at this stage of development the web
application was running inside a Docker container (Web app container Dockerfile
and scripts can be found in the Annex 2: Code). As we mentioned earlier, Docker
works over Linux so only one configuration was needed, this reduced
substantially the amount of code as all the rest of OS configurations, except for
Linux, were removed. In addition, a separate container for the DASH conversion
(DASH container Dockerfile and script can be found in the Annex 2: Code)
process was created. From now on, every new technology added to the web
application architecture was introduced in a Docker container in order to have
everything wrapped up in an organised environment.

As in the first stage, the web app mirrored two folders using the module jsTree,
one for the exported Premiere projects (Input) and one for the DASH converted
content (Output). This folders were created too in the Docker container using data
volumes. This data volumes are copies of the folders inside the Docker file
system, any change made in these folders will be done to the data volumes too.

Finally the users published the content in a contents JSON file that was to be
consumed by a Unity3D player.

The architecture of the DASH based distribution can be seen in Fig. 3.6:

Platform for innovative content distribution 36

Fig 3.6 DASH based distribution web app architecture

Despite the complexity of the architecture at this stage of development, due to
the way the web application was organized made the workflow much easier for
everybody. Furthermore, the web application became more robust.

3.2.2. Problems encountered

The main problem during this stage of development was how hard and complex
was to configure each of the elements as there was no know way to automate
this process. Each Docker had to be build and run every time a test was to be
made, this was a massive waste of time. Another big problem was users had to
refresh the web page in order to view new content added to the folders. Other
problems were the web page’s lack of information when process/errors occurred
during the MPEG-DASH conversion. Due to the way the web application was
programed at that stage, users could only convert one project at a time.

There were also problems related to the MPEG-DASH conversion when several
projects had the same XMLs file name. The problem was the output folder from
the MPEG-DASH conversion took the same name as the Premiere XML file,
when trying to convert another Premiere project with that same name it could not
be converted as the folder was already created.

Last but not least, as the web page at the moment didn’t use any kind of database
there was no way to know what processes where taking place at that moment,
so users could try and convert to MPEG-DASH the same project thus generating
an error.

37 Platform for innovative content distribution

3.2.3. User experience

The view of the second version of the web page was like seen in Fig. 3.7:

Fig 3.7 View of the DASH based distribution web page

The web page was divided into two sections, Premiere and DASH. Both sections
had the same structure as the first version, mirrored folder and files selected
table. In order to publish and consume new content exported from Premiere,
users firstly had to select this content from the Premiere Output column and finally
press the CONVERT TO DASH button.

Fig. 3.8 Premiere to DASH conversion

As shown in Fig. 3.8, the button’s text changed to PROCESSING, this is the only
information the user had in order to know in which state is the DASH conversion.
Once the DASH conversion ended, the user had to refresh the web page in order
to view this new content in the DASH content column.

Platform for innovative content distribution 38

By selecting all the content to publish and pressing the PUBLISH CONTENT
button, a JSON file was created as shown in Fig 3.9.

Fig. 3.9 DASH content publishing

This JSON file contained the ULR paths of each published XML file in order to
list the available content in the Unity3D player.

Unlike in the first version where the user had to select the media files he wanted
to stream through the GStreamer pipeline, in this second users select XMLs of
metadata created from Adobe Premiere containing information of the media files
of each consumable content (an example of this XML file can be found in the
Annex 2: Code). This way users can publish multiple contents and selected what
to view through the Unity3D player.

3.3. DASH-based distribution, v2.0

In the third stage of development the web page needed a big change in terms of
design and user friendliness. At the moment users didn’t have any information on
the MPEG-DASH conversion state and had difficulties to find the content they
wanted to convert or publish. A database was added, in order to save and
visualize the state of conversion. The new design introduced many new
functionalities like the possibility of converting several projects at the same time
or searching and filtering the content. In general the web page appearance
acquired a more professional look.

One of the biggest non solved problem in previous versions was the dependency
on the web application in order to serve the media content. This problem was
solved introducing a web server that was going to serve the media content
separate from the web application, this way if the web application crashed the
media content could still be available. Another thing that needed a big change
was how all the services were started and deployed. At this stage all the different
services had to be build and executed separately wasting time, in this third stage
a new tool was introduced to solve this inconvenient increasing the efficiency in
the deployment of the services.

39 Platform for innovative content distribution

3.3.1. Architecture

The core architecture of the web page remained the same (Node.js, Express,
Angular and Bootstrap). In this third stage Redis database was introduced, the
reasons for this selection are stated in section 2.3.4. The official Redis container
from Docker Hub was used besides the Redis modules for Node.js.

At this stage of development and due to the big changes made in the design the
module jsTree was removed. Instead the module for Node.js “fs” (File System)
was used in order to read the content inside the folders for MPEG-DASH output
and Premiere input created in the second version of the web app. As mentioned
before, a web server, Nginx, was added in the architecture so that in case the
web app crashed the media content could still be available.

Now that the architecture of the web app had become more complex a new
method of deployment and configuration had to be introduced. The Docker
Compose tool helped in that task. In a unique script written in YAML13, various
containers (Web app, Redis, Nginx and MPEG-DASH converter) could be
configurated and deployed at the same time. This method organized the Docker
architecture. Furthermore, in order to have a stable version of each container
throughout the development, a stable version of each image was upload to
Docker Hub, a Docker image repository. With Docker Hub and Docker Compose
only one script was needed in order to run all the services, this reduced massively
the deployment time.

The architecture of the DASH based distribution can be seen in Fig 3.10:

Fig. 3.10 DASH based distribution 2.0 web app architecture

13 Human-readable data serialization language that takes concepts from other programming languages.

Platform for innovative content distribution 40

3.3.2. Problems encountered

As in all the development stages at the moment, some problems were
encountered. The biggest problem was due to the technologies used, in order to
update the MPEG-DASH processing state, every second a database request had
to be made. This problem could get worst if the number of entries in the database
increased increasing the loading times of the web app. Although in this third stage
of development the possibility of converting simultaneous projects at the same
time was possible, due to the fact the MPEG-DASH conversion used a big
amount of CPU the maximum number of simultaneous conversions was three.

3.3.3. User experience

The view of the third web application development stage had two options in a left
side menu: Convert and Publish.

The first one is shown in Fig. 3.11. This view listed all the available projects that
could be converted to MPEG-DASH format. Each element in the list had a
Sequence (name given to the XML file), Premiere Project (name of the Premiere
project), Status (could be between Ready, Processing, Error and Done), Created
at (date of creation of the project), Media Files (number of media files inside the
project) and Action (Convert or remove MPEG-DASH project). A searching option
(only works with Sequence and Premiere Project) and status filtering option is
situated over the available content table.

Fig. 3.11 View of the DASH distribution v2.0 web app (Convert option)

In this example we have four content projects in the list. There are two with status
Done, this means the project has already been converted to MPEG-DASH thus
the only action permitted is to remove the project. On the other hand there are
two projects with status Ready, this means these projects have recently been
exported thus the only action permitted is to convert these projects. By pressing
the button bellow the “Action” column of one of the Ready projects, the status
automatically changes to Processing. Actually “Processing” is what the database
introduces, nevertheless in the web page, users view the MPEG-DASH
processing status as shown in Fig. 3.12:

41 Platform for innovative content distribution

Fig. 3.12 Processing status

If something goes wrong during the conversion the status changed to Error. If
users hover over the word Error, the error will pop up as seen in Fig. 3.13:

Fig. 3.13 Error when converting to MPEG-DASH

Fig. 3.14 shows the list content the users have available for publishing and
viewing after with the Unity3D player.

Fig. 3.14 View of the MPEG-DASH distribution v2.0 web app (Publish option)

Platform for innovative content distribution 42

The table in the Publish view has three new columns: Select, Name and
Published. In order to publish content, users have to select all the content they
want to publish by checking the checkboxes in the Select column, then introduce
in the Name column, the name they would like the Unity3D player to show as the
title of the content (if the Name field is not filled, the Sequence name is taken as
default name) and finally click the PUBLISH button. If everything went as
expected, a checkmark has to appear in the Published column of each previous
selected content as seen in Fig. 3.15:

Fig. 3.15 Publishing content

As in the second stage, a contents JSON file is created with relevant information
of each published content. This information will be read by the player in order to
locate the content and make it available for the users (An example of this JSON
file can be found in the Annex 2: Code).

3.4. Distribution based on Innovative formats

At this stage, the core of the web app had been developed. However a new
functionality had to be developed. At the beginning of this document different VR
content formats have been mentioned. Some of them are based in 3D models.
The main purpose of this development stage is to include the possibility for users
to publish this 3D content in order to consume it via a Unity3D player. This content
will be converted previously to AssetBundles so the player can download and
decompress it.

3.4.1. Architecture

The architecture of this development stage is practically the same with a
difference, the 3D content has to be previously converted to an AssetBundle in
order to compress all its components in a unique downloadable file. This

43 Platform for innovative content distribution

transformation is done via Unity3D with the help of a script (The AssetBundle
conversion script can be found in the Annex 2: Code).

The architecture of the MPEG-DASH-based and innovative distribution is seen in
Fig. 3.16:

Fig. 3.16 MPEG-DASH-based and innovative formats distribution web app
architecture

3.4.2. Problems encountered

The main problem during this stage was to find the suitable way to compress the
3D models into an AssetBundle. Traditional CGI along with sensor mesh based
content were possible to compress as they are static elements, on the other hand,
volumetric video content, as it is based on a group of 3D elements that create
movement were not possible to compress into an AssetBundle for the moment.
This kind of content had to be included entirely in the Unity player increasing the
size of it as stated in section 1.2.4.

3.4.3. User experience

The user experience is the same as in the MPEG-DASH base distribution v2.0.
The only difference is users have a new option to choose from the left hand side
menu: 3D content. The view of this new option has the same appearance as the
Publish view. Users can publish different innovative contents and view these after
through a Unity3D player.

Platform for innovative content distribution 44

3.5. Conclusions of the development

As this web application was developed in order to distribute the content for
ImmersiaTV, the development stages followed the progress of the project.
Although ImmersiaTV is still under development, the web application satisfied
what the project needed at that precise time, distribute VR content based in
omnidirectional video through MPEG-DASH. Furthermore, the web application
introduced the option to distribute sensor mesh-based 3D content.

In early development stages it what hard to believe the web application could
work and look like it does. As complexity in the architecture increased, the
deployment methods became harder until Docker was introduced. Docker has
been a great discovery due to how it made easier the introduction of new features
as a Redis database or an NGINX server without any headaches. It also helped,
in terms of testing; how the web application worked perfectly regardless of OS,
which was a big problem at the beginning of the development.

Throughout all the different stages many features didn’t work as expected. The
main one was users had to refresh the web page in order to view the new
exported content. Another big issue was, once the Redis database was
introduced, if changes in the data model had to be made it was difficult to deal
with MPEG-DASH content added in the database within the old model. However
as the Redis is a Key-Value NoSQL database old and new data models could
coexist in the same database introducing new scripts.

Concluding, the goals of the web application have been achieved even though it
has room for many improvements all of these stated in section 5.2.

45 Platform for innovative content distribution

CHAPTER 4. DEMO WITH A CONTENT PLAYER

This work had the main objective of developing a platform for innovative content
distribution. As we mentioned earlier in the document, to test the omnidirectional
video based content the ImmersiaTV player was used however for the sensor
mesh-based content a different player was developed. Despite this work did not
have the goal to develop this kind of applications, we decided to develop a simple
app in order to visualize the difference between the three content formats:
omnidirectional video, traditional CGI and sensor mesh-based. This application
had an extra option where users can chose between been tracked by a CGI
avatar or their own Kinect 2 live model.

The main purpose of this demo with the Unity player was to compare the PI and
Psi between the three different environments with the two different options of
body tracking. Due to lack of time, tests with real users could not be done.
However a personal experience opinion will be given further in this document.

4.1. Environments: Omni, Traditional and Sensor based

As we mentioned before the demo is based in three different scenes each one
based in an immersive content format. In order to have a consistent demo the
three scenes were based on the same model. The model used was created from
the coffee and water corner of i2cat offices in Barcelona. A picture of this corner
can be seen in the Fig.4.1:

 Fig. 4.1 Coffee and water corner at i2cat office

The reasons why this spot was chosen above other possibilities were it was the
best suited environment inside the i2cat office (work development site) for the

Platform for innovative content distribution 46

sensor based due to it needed internet connection in order to send the 3D
information to the Skanect software. Furthermore, there was a traditional CGI
model of the corner already modelled which removed the need of modelling one
from scratch. However, due to hardware restrictions the spot was not the best
one for omnidirectional video.

4.1.1 Omnidirectional video demo environment

Despite the demo had to be based in the same spot, as we mentioned earlier,
the i2cat office coffee and water corner was not the best suited spot for
omnidirectional videos. This was due to the omnidirectional cameras had to be
placed at a minimum distance of 3m from everything. The 3m distance is needed
to remove as many parallax effect as possible and to make the stitching possible
as described in section 2.1.4.

Despite many attempts with different camera positioning, the result was not the
satisfied one forcing to film another spot. The new chosen spot was the entrance
to the Nexus I building at Campus Nord UPC in Barcelona, as seen in Fig. 4.2:

Fig. 4.2 Omnidirectional video environment (Nexus I building entrance)

Despite the difference in the location between the scenes, the experience is not
affected and users can experiment the difference between the PI and Psi
between the different content formats.

4.1.2 Traditional CGI demo environment

The traditional CGI model of the corner was created using Autodesk 3ds Max by
a member of the i2cat staff. The colours of the different objects were changed in
order to match the real ones. Being this a preliminary test the realism was not a
priority.

47 Platform for innovative content distribution

As the speed of production was one of the key factors to measure, this demo did
not need anything more realistic in order to view the difference in the user’s
experience between the three environments.

The traditional CGI model of the corner is seen in Fig. 4.3:

Fig. 4.3 Traditional CGI model of the coffee and water i2cat office corner

4.1.3. Sensor-based demo environment

The sensor based model of the i2cat corner was created using the Structure
sensor together with the Skanect software. The Structure sensor is attached to
an iPad and uses the Wi-Fi interface in order to send the 3D information, this
caused several problems due to the fact the sensor could not connect with the
software at first instance. The software uses a broadcast method in order to
detect and connect with the sensor, this is why we had to create a local network
with a router so both, software and sensor, could see each other.

The Structure sensor has several options regarding scanning options: objects
and rooms. In this case the room scan option was used. This is the option used
when trying to scan a closed area like a small room, however this area is
recommended not to have detailed objects as the sensor’s precision is not very
accurate. For individual objects, the Structure sensor has other options.

The main problem of the sensor based model is the precision depends on the
hardware. The model created for this demo was created in one unique scan, and
no further editing was used. Although the quality of the model could be better, the
speed of production compensates this drawback.

Platform for innovative content distribution 48

The sensor based model of the corner is seen in Fig. 4.4:

Fig. 4.4 Sensor based model of the coffee and water corner at i2cat office

4.2. User tracking options

In this demo users have the opportunity to choose between two different options
for body tracking, traditional avatar or sensor based. Both options use the Kinect
v2 SDK in order to track the user’s skeleton. For users to see themselves inside
the VR environment and somehow increase the PI and Psi, a mirror was added
in the traditional CGI and sensor based scenes.

A user tracked within a traditional avatar (with a good configuration) had a better
mobility inside the VR environment due to the avatar’s joints are tracked with the
Kinect’s skeleton. However, if the user looks at the mirror or himself, the PI will
decrease due to the user is not perfectly tracked with the avatar, also the
movements have some delay and this is the key factor for the decrease in the PI.

On the other hand, a user tracked within a sensor based avatar using the Kinect
v2 will have a better PI as the user will see himself tracked better inside the mesh.
With this option the delay in movement was less comparing it with the CGI avatar.
However, there were problems trying to track the sensor based model with the
user which limited the movement. Furthermore as the Kinect only tracks what it
has inside it FoV, the avatar was incomplete unlike the CGI example.

An example of both tracking options can be seen in Fig 4.5:

49 Platform for innovative content distribution

Fig. 4.5 Traditional CGI avatar and sensor-based avatar

4.3. Personal experience inside the demo testbed

The main difference between the three different environments was the movement
limitations. The first time I was immersed inside the omnidirectional video scene
I tried to move myself inside the scene with no success. Inside the omnidirectional
video the perspective did not change when head movement, besides rotation,
was made. On the other hand with the traditional CGI and sensor mesh-based
scenes movement was not limited and objects became bigger as you got close
to them, however the first reaction inside this scenes, especially in the traditional
CGI, was to try and touch the 3D models in the scene; the result was like a ghost
trying to catch something, as if the sense of touch had been disabled.

In terms of body tracking the best one was the Kinect 2 option as the delay
between the movements was not as big as with the traditional CGI. Moreover, as
you could see yourself through the mirror inside the VR experience, the quality of
the experience was better.

In my opinion the best VR reality experience is inside the sensor mesh-based
content or the traditional CGI, been tracked by the Kinect 2 sensor. However both
scene options need more development time in order to create a decent
experience for user testing.

Platform for innovative content distribution 50

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

5.1. Achieved goals

This work had a main objective of developing a platform for distribution of
innovative content. This objective has been achieved with the result of a
functional web application that can distribute via MPEG-DASH content based in
omnidirectional videos and via AssetBundles content based in 3D models.

On the other hand, although the work did not focus in the experience of the users
but to distribute the content, a demo has been developed in order to test the
functionalities of the web application. Moreover, this demo was developed
creating three different VR environments representing three different content
formats so users had the opportunity to experience the difference in PI and Psi
between them. As mentioned before, due to lack of time no tests with users could
be made despite this work was not aiming this.

The content shown in the demo due to no previous experience working with this
kind of content, the results are far away from how it should have been in terms of
3D model quality. However the quality of the models does not affect drastically in
the user experience.

Last but not least, volumetric video has been developed during some stages of
the development of this work. This format has successfully been created in live
conditions and also on demand as shown in the demo. However, unlike the other
content formats, it was impossible to compress it in order to create an
AssetBundle and publish it through the web application as stated in section 3.4.2.

5.2. Future work

In future work new functionalities for the web application can be developed. An
option to view a preview visualization of the content could help users know more
information about what are they going to publish. Furthermore along with this
previsualization, the web application could give the user more information about
the content as: the duration, audio and video codecs, resolution of the videos,
etc.

Following the same lines, the database Redis could change to MongoDB [49] in
order to create more complex database structure and increase the amount of
information the web application offers about the media content. MongoDB is
document-oriented unlike Redis that is based in key-value store, in other words,
MongoDB is characterized by its schema-free organization of data. It supports
more data types than Redis. The server-side scripts are written in JavaScript,
Redis is written in Lua. As a last statement, along with Node.js, Express and
Angular, MongoDB is part of the MEAN stack. In order to change the whole
database, the Redis Docker will have to be change for a MongoDB Docker.

51 Platform for innovative content distribution

Moreover the npm module of Redis will have to be changed for the MongoDB
module. However the biggest amount of time that will have to be invested will be
in changing all the scripts in the web application. This task will not be trivial and
a good organization will be needed in order to preserve the functionality of the
web application.

At the moment the web application updates the status of the MPEG-DASH
processing every second. A new technology named Socket.IO [50] could be
introduced so the status only changes when changes are detected in the
database, this would decrease the web application’s loading time. Socket.IO is a
JavaScript library for real-time web applications. It enable real-time, bi-directional
communication between web clients and servers. Socket.IO is divided in two
parts: a client-side library that runs in the browser, and a server-side library for
Node.js. Socket.IO like Node.js is event-drive. In order to introduce Socket.IO in
the web application, the npm module has to be downloaded. With these
technology we can also solve the problem of having to refresh the web page for
new content to be shown.

Other things related to the web application are the optimization of the process. A
“hot folder”14 functionality could be introduced in order to export from Premiere
and automatically convert to MPEG-DASH without having to pass through the
web page. Socket.IO could be used in order to detect changes in a folder,
however adding the Chokidar [51] module we can achieve this. Chokidar is a
Node.js module based in the fs module. Chokidar can listen for events inside a
file directory like insert, delete or change.

In terms of the demo, many things could be improved. The first thing is to find a
better spot in order to create the three environments. To create a better VR
experience, the CGI and sensor based models have to be improved. At the
moment the 3D models are based in a three wall environment where if the user
looks further the only thing to see is a blue infinite horizon. In order to maximize
the quality of the experience, the environment the user is immersed in has to be
fully modelled or scanned, with a coherent background, not just blue everywhere.
A good option would be mix the omnidirectional video content with the 3D models.

On the other hand, a compression format for the volumetric video created with
the Kinect v2 has to be developed to decrease the amount of space consumed
by the Unity application in order to play recorded volumetric video. This point is
one of the most important ones in terms of distributing new innovative VR content
as at the moment no volumetric video can be streamed through the internet. This
new research area can change the way people communicate between each other
through VR.

Last but not least, tests with real users would have to be done in order to have
feedback about the PI and Psi of the different VR environments of the demo. This
will help to choose which content format comparing speed of production versus
quality of the experience is the best nowadays for content producers.

14 A file system directory which is monitored by software so that any new files arriving in it can be processed.

Platform for innovative content distribution 52

5.3 Environmental impact

It is know that energy consumption has great impact in the environment. During
the development of this work a server was used to deploy the web application
and for MPEG-DASH conversion. As mentioned earlier in section 3.3.2 only three
simultaneous conversions where possible which meant the server worked nearly
with 100% of its CPU. Taking in consideration a working day of 8h, a server
connected 24h (taking as an example [52]) can consume in average 0,437 kWh
per day. According to the values presented in 2016 by the Ministry of Industry,
Energy and Tourism of Spain [53], in reference to the data of 2012 the CO2

emissions were 0,37 kgCO2/kWh. This results in a total CO2 emission of 162
grams of CO2 per day.

In order to reduce the CO2 emissions, more servers with less CPU consumption
could be used in order to balance work. The MPEG-DASH conversion could be
optimized in order to reduce the CPU consumption also. Servers that are not
been used have to be turned off.

53 Platform for innovative content distribution

ACRONYMS

API Application Program Interface

APP Application

CGI Computer-Generated Imagery

CPU Central Processing Unit

CSS Cascading Style Sheet

DSLR Digital Single lens reflex

FoV Field of View

FTP File Transfer Protocol

GC Google Cardboard glasses

HMD Head Mounted Display

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IMU Inertial Measurement Unit

IP Internet Protocol

JSON JavaScript Object Notation

LAN Local Area Network

LMZA Lempel-Ziv-Markov chain Algorithm

MEMS Microelectromechanical Systems

MPEG-DASH Dynamic Adaptive Streaming over HTTP

NoSQL Non Structured Query Language

OLED Organic light-emitting diode

OS Operating System

PI Place illusion

Psi Plausibility illusion

RAM Random Access Memory

RTCP Real-time Control Protocol

RTP Real-time Transport Protocol

RTSP Real Time Streaming Protocol

RV Realidad Virtual

SDK Software Development Kit

TCP Transmission Control Protocol

UDP User Datagram Protocol

URL Uniform Resource Location

VR Virtual Reality

XML eXtensible Markup Language

Platform for innovative content distribution 54

Bibliography

 [1] M. Slater, “Place illusion and plausibility can lead to realistic behaviour in

immersive virtual environments,” Philos. Trans. R. Soc. B Biol. Sci., vol.
364, no. 1535, pp. 3549–3557, Dec. 2009.

[2] The project: ImmersiaTV: http://www.immersiatv.eu/the-project-2/

[3] Horizon 2020 - European Commission:

https://ec.europa.eu/programmes/horizon2020/.

[4] H. Schulzrinne, A. Rao, and R. Lanphier, Real Time Streaming Protocol

(RTSP). IETF, 1998.

[5] “Comparison of Streaming Formats.”

http://bensoftware.com/blog/comparison-of-streaming-formats/

[6] General information about: Real Time Streaming Protocol, Wikipedia, the

free encyclopedia.
https://en.wikipedia.org/wiki/Real_Time_Streaming_Protocol

[7] General information about: Dynamic Adaptive Streaming over HTTP,

Wikipedia, the free encyclopedia.
https://en.wikipedia.org/wiki/Dynamic_Adaptive_Streaming_over_HTTP

[8] ExoPlayer Developr Guide: http://google.github.io/ExoPlayer/guide.html

[9] Why YouTube & Netflix use MPEG-DASH in HTML5:

https://bitmovin.com/status-mpeg-dash-today-youtube-netflix-use-html5-
beyond/

[10] Unity - Manual: AssetBundles:

https://docs.unity3d.com/Manual/AssetBundlesIntro.html

[11] Assets, Objects and serialization,” Unity.

https://unity3d.com/ru/learn/tutorials/topics/best-practices/assets-objects-
and-serialization

[12] Unity - Manual: Asset Bundle Compression:

https://docs.unity3d.com/Manual/AssetBundleCompression.html

[13] Information about 7z Format: http://www.7-zip.org/7z.html

[14] General information about: Lempel–Ziv–Markov chain algorithm,

Wikipedia, the free encyclopedia:
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Marko
v_chain_algorithm

55 Platform for innovative content distribution

[15] General information about: LZ4 (compression algorithm), Wikipedia, the

free encyclopedia:
https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)

[16] AssetBundles and the AssetBundle Manager, Unity:

https://unity3d.com/es/learn/tutorials/topics/scripting/assetbundles-and-
assetbundle-manager

[17] Studio user guide| VideoStitch, 360 VR Video software | VideoStitch:

http://www.video-stitch.com/documentation/user-guide/

[18] Riley from Call of Duty Ghosts 2013:

http://www.cgrecord.net/2016/01/riley-from-call-of-duty-ghosts-2013.html

[19] General information about: HTC Vive,” Wikipedia, the free encyclopedia:

https://en.wikipedia.org/wiki/HTC_Vive

[20] 3D scanning software Skenct 3D: http://skanect.occipital.com/

[21] Structure sensor information: http://www.3ders.org/articles/20130917-

capture-the-world-in-3d-structure-sensor-turns-ipad-into-a-3d-
scanner.html

[22] E. Rodgers, “DSLR and Kinect combine to produce dream-like visuals,”

The Verge, 02-May-2012:
http://www.theverge.com/2012/5/2/2993117/3d-filmmaking-open-source-
RGBD

[23] DepthKit website: http://www.depthkit.tv/

[24] Kinect v2 Examples with MS-SDK - Asset Store:

https://www.assetstore.unity3d.com/en/#!/content/18708

[25] B. Kuchera, “The complete guide to virtual reality in 2016 (so far)

(Update: February 2016),” Polygon, 15-Jan-2016:
http://www.polygon.com/2016/1/15/10772026/virtual-reality-guide-oculus-
google-cardboard-gear-vr

[26] General information about: Google Cardboard, Wikipedia, the free

encyclopedia: https://en.wikipedia.org/wiki/Google_Cardboard

[27] Google Cardboard - Visores oficiales de realidad virtual - Google Store:

https://store.google.com/product/google_cardboard

[28] B. Lang, “Samsung Gear VR Specifications Reveal Sub-20ms Latency,”

Road to VR, 03-Sep-2014: http://www.roadtovr.com/samsung-gear-vr-
official-specifications-20ms-latency/

Platform for innovative content distribution 56

[29] Gafas Gear VR para smartphones Galaxy | SAMSUNG, Samsung ES:
http://fb.es.samsung.com/consumer/mobile-devices/wearables/gear/SM-
R322NZWAPHE

[30] Image of HTC Vive: http://imagenes.lifeinformatica.com/HTC-

99HAHZ046-00/imgs/99HAHZ046-00.png

[31] QBiC-MS-1-Instruction-Manual.pdf: http://elmousa.com/wp-

content/uploads/2016/03/QBiC-MS-1-Instruction-Manual.pdf

[32] QBiC PANORAMA X, Elmo USA:

https://www.elmousa.com/product/qbic-panorama-x/

[33] Parallax diagram description foto from Dr. Daniel Lau:

http://lau.engineering.uky.edu/author/dlau/

[34] Internship at Inria: Parallax compensation on 360° panoramic video:

http://devernay.free.fr/vision/jobs/2013panoramic.html.

[35] Structure Sensor Support Center | What are the Structure Sensor’s

technical specifications?: http://structure.io/support/what-are-the-
structure-sensors-technical-specifications

[36] Structure Sensor - 3D scanning, augmented reality, and more for mobile

devices: http://structure.io/

[37] Kinect hardware information: https://developer.microsoft.com/en-

us/windows/kinect/hardware

[38] Kinect image from Google images:

https://upload.wikimedia.org/wikipedia/commons/f/f6/Xbox-One-
Kinect.jpg

[39] General information in Docker (software), Wikipedia, the free

encyclopedia: https://en.wikipedia.org/wiki/Docker_(software)

[40] General information in GStreamer, Wikipedia, the free encyclopedia:

https://en.wikipedia.org/wiki/GStreamer

[41] General information in Node.js, Wikipedia, the free encyclopedia:

https://en.wikipedia.org/wiki/Node.js

[42] General information in Express.js, Wikipedia, the free encyclopedia:

https://en.wikipedia.org/wiki/Express.js

[43] General information in AngularJS, Wikipedia, the free encyclopedia:

https://en.wikipedia.org/wiki/AngularJS

[44] General information in Bootstrap, Wikipedia, the free encyclopedia:

https://en.wikipedia.org/wiki/Bootstrap_(front-end_framework)

57 Platform for innovative content distribution

[45] Redis official page: http://redis.io/

[46] General information about 360-degree video, Wikipedia, the free

encyclopedia: https://en.wikipedia.org/wiki/360-degree_video

[47] Immersive Video for Virtual Reality | Vrideo: http://www.vrideo.com/

[48] VRapp.co | Experience and Share Virtual Reality on the Web:

https://vrapp.co/

[49] “MongoDB vs. Redis Comparison:
 http://db-engines.com/en/system/MongoDB%3BRedis

[50] General information about Socket.IO, Wikipedia, the free encyclopedia:

https://en.wikipedia.org/wiki/Socket.IO

[51] Chokidar module GitHub: https://github.com/paulmillr/chokidar.

[52] A. J. Pablo, ¿Cuánta energía gasta un ordenador? (aproximaciones):

http://www.leantricity.es/cuanta-energia-gasta-un-ordenador-
aproximaciones/

[53] “Valores de emisiones publicados en otros documentos” Ch. 6 sec. 6.1

de Factores de emisión de CO2 y coeficientes de paso a energía
primaria de diferentes fuentes de energía final consumidas en el
sector de edificios en España:
http://www.minetur.gob.es/energia/desarrollo/EficienciaEnergetica/RITE/
Reconocidos/Reconocidos/Otros%20documentos/Factores_emision_CO
2.pdf

Platform for innovative content distribution 58

Annex 1: ImmersiaTV Project

59 Platform for innovative content distribution

Platform for innovative content distribution 60

61 Platform for innovative content distribution

Annex 2: Code

2.1. Dockerfile example

FROM ubuntu:16.04

 MAINTAINER Einar Meyerson <einar.meyerson@i2cat.net>

RUN apt-get update && \

 apt-get install -y --no-install-recommends software-properties-

common

RUN apt-get update && apt-get install -y \

 python \

 git \

 make \

 npm \

 curl \

 nodejs

RUN ln -s /usr/bin/nodejs /usr/bin/node

RUN npm install -g bower

COPY Content_JSONs /var/www/api/Content_JSONs

COPY package.json /var/www/api/

COPY README.md /var/www/api/

COPY routes /var/www/api/routes

COPY server.js /var/www/api/

COPY www /var/www/api/www

WORKDIR /var/www/api

RUN npm install && npm install forever -g

RUN cd www && bower install --allow-root && cd ..

COPY run.sh /usr/local/bin

RUN apt-get install -y apt-transport-https ca-certificates

RUN apt-key adv --keyserver hkp://p80.pool.sks-keyservers.net:80 --

recv-keys 58118E89F3A912897C070ADBF76221572C52609D

RUN echo "deb https://apt.dockerproject.org/repo ubuntu-xenial main"

> /etc/apt/sources.list.d/docker.list

RUN apt-get update

RUN apt-get install -y --no-install-recommends docker-engine

RUN chmod +x /usr/local/bin/run.sh

#RUN groupadd docker && usermod -a -G docker `whoami`

EXPOSE 8080

CMD ["run.sh"]

Platform for innovative content distribution 62

2.2. Script run.sh

#!/bin/bash

export PREMIEREPATH="/data/premiere"

export HOTPATH="/data/hot_dash"

export DASHPATH="/data/dash"

export HOST_IP

forever stopall

forever start server.js

forever --fifo logs 0

2.3. Metadata XML example

<ITVEvents xmlns="urn:immersiatv:immersiatv01:2016:xml" xmlns:xsi="h

ttp://www.w3.org/2001/XMLSChema-

instance" xsi:schemaLocation="urn:immmersiatv:immersiatv01:2016:xml

http://server.immmersiatv.eu/public_http/metadata/ImmersiaTV.xsd" ty

pe="static">

<DefineScene id="0" device="hmd" time="0">

<DefineShape id="1" mediaFile="sp_trans_omni_0_1_2_5/sp_trans_omni_0

_1_2_5" type="sphericalCap">

<Anchor id="0" distance="1.00"/>

</DefineShape>

</DefineScene>

<DefineScene id="1" device="tablet" time="0">

<DefineShape id="1" mediaFile="sp_trans_omni_0_1_2_5/sp_trans_omni_0

_1_2_5" type="sphericalCap">

<Anchor id="0" distance="1.00"/>

</DefineShape>

</DefineScene>

<DefineScene id="2" device="tv" time="0">

<DefineShape id="1" mediaFile="tv_tv_12/tv_tv_12" type="rectangle"><

/DefineShape>

</DefineScene>

<DefineScene id="3" device="hmd" time="626.440002441406">

<RemoveShape id="1"/>

</DefineScene>

<DefineScene id="4" device="tablet" time="626.440002441406">

<RemoveShape id="1"/>

</DefineScene>

<DefineScene id="3" device="tv" time="626.440002441406">

<RemoveShape id="1"/>

</DefineScene>

</ITVEvents>

63 Platform for innovative content distribution

2.4. JSON content file example

{

title: "ImmersiaTV content server",

content:

[

{

name: "Portal_transitions_4",

hash: "2c77c1c4c6400938e6d89f2d7bfa33ed",

url: "http://192.168.10.115:8083/dash/Portal_transitions_

4____PortalTransitionEntradaSalida/Portal_transitions_4.x

ml"

},

{

name: "release_06_jg_tutorial_part3_trigger_insert_appear

",

hash: "e2072fb422e36a2a69b3ddb2fd77e165",

url: "http://192.168.10.115:8083/dash/release_06_jg_tutor

ial_part3_trigger_insert_appear____Release_06_trigger/rel

ease_06_jg_tutorial_part3_trigger_insert_appear.xml"

},

{

name: "18082016_propio",

hash: "b5f380caf837eb00f6e9be44c02fda00",

url: "http://192.168.10.115:8083/dash/18082016_propio/180

82016_propio.xml"

},

{

name: "Sinc_Test_Lapa",

hash: "2a4b59045ba19c2cccd627705e39d830",

url: "http://192.168.10.115:8083/dash/Sinc_Test_Lapa/Sinc

_Test_Lapa.xml"

}

]

}

http://192.168.10.115:8083/dash/Portal_transitions_4____PortalTransitionEntradaSalida/Portal_transitions_4.xml
http://192.168.10.115:8083/dash/Portal_transitions_4____PortalTransitionEntradaSalida/Portal_transitions_4.xml
http://192.168.10.115:8083/dash/Portal_transitions_4____PortalTransitionEntradaSalida/Portal_transitions_4.xml
http://192.168.10.115:8083/dash/release_06_jg_tutorial_part3_trigger_insert_appear____Release_06_trigger/release_06_jg_tutorial_part3_trigger_insert_appear.xml
http://192.168.10.115:8083/dash/release_06_jg_tutorial_part3_trigger_insert_appear____Release_06_trigger/release_06_jg_tutorial_part3_trigger_insert_appear.xml
http://192.168.10.115:8083/dash/release_06_jg_tutorial_part3_trigger_insert_appear____Release_06_trigger/release_06_jg_tutorial_part3_trigger_insert_appear.xml
http://192.168.10.115:8083/dash/18082016_propio/18082016_propio.xml
http://192.168.10.115:8083/dash/18082016_propio/18082016_propio.xml
http://192.168.10.115:8083/dash/Sinc_Test_Lapa/Sinc_Test_Lapa.xml
http://192.168.10.115:8083/dash/Sinc_Test_Lapa/Sinc_Test_Lapa.xml

Platform for innovative content distribution 64

2.5. AssetBundle script

using UnityEditor;

public class CreateAssetBundles

{

 [MenuItem ("Assets/Build AssetBundles")]

 static void BuildAllAssetBundles ()

 {

 BuildPipeline.BuildAssetBundles ("Assets/AssetBundles",

BuildAssetBundleOptions.None, BuildTarget.StandaloneOSXUniversal);

 }

}

